JP2006322126A - Underwater rope - Google Patents

Underwater rope Download PDF

Info

Publication number
JP2006322126A
JP2006322126A JP2005292376A JP2005292376A JP2006322126A JP 2006322126 A JP2006322126 A JP 2006322126A JP 2005292376 A JP2005292376 A JP 2005292376A JP 2005292376 A JP2005292376 A JP 2005292376A JP 2006322126 A JP2006322126 A JP 2006322126A
Authority
JP
Japan
Prior art keywords
rope
wire
electric
wires
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005292376A
Other languages
Japanese (ja)
Other versions
JP4692964B2 (en
Inventor
Masayuki Yamaguchi
誠之 山口
Yasuhisa Ishihara
靖久 石原
Atsuo Ito
淳雄 伊藤
Yuji Tokunaga
祐二 徳永
Masakazu Ichikawa
正和 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Agency for Marine Earth Science and Technology
Tokyo Seiko Rope Manufacturing Co Ltd
Original Assignee
Japan Agency for Marine Earth Science and Technology
Tokyo Seiko Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Agency for Marine Earth Science and Technology, Tokyo Seiko Rope Manufacturing Co Ltd filed Critical Japan Agency for Marine Earth Science and Technology
Priority to JP2005292376A priority Critical patent/JP4692964B2/en
Publication of JP2006322126A publication Critical patent/JP2006322126A/en
Application granted granted Critical
Publication of JP4692964B2 publication Critical patent/JP4692964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/147Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising electric conductors or elements for information transfer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/005Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2083Jackets or coverings
    • D07B2201/2092Jackets or coverings characterised by the materials used
    • D07B2201/2093Jackets or coverings characterised by the materials used being translucent

Landscapes

  • Ropes Or Cables (AREA)
  • Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide underwater rope of simple structure, having such advantages that the position of aimed electric wire(s) can be confirmed by merely visual observation at any point midway of the cables, and signals and/or electric power can be drawn/communicated at desired points, and also Karman's vortex-suppressive effects can be combinedly afforded at places with water current. <P>SOLUTION: The underwater rope is such that electric cables(wires) intended for communication or power supply coated with resin are helically wrapped around wire rope and the electric cables(wires) and the wire rope are coated with a transparent or translucent resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は海洋観測用ブイの係留索などに好適な水中ロープに関する。   The present invention relates to an underwater rope suitable for a mooring line for a marine observation buoy.

海洋観測を行う場合、各種観測機器を搭載したブイを係留索により水底のアンカーに係留させるが、係留索には、水面直下から海中中間部たとえば500〜750mの位置にかけて各種センサーが取り付け、水温、流向流速、コンダクティビティ(塩分濃度)などを計測している。
各センサーは一般に電源と記録装置(通常は電子的なメモリー)を内蔵しており、従来では、設置後、所定の観測期間経過した後、それぞれのセンサーを回収して観測したデータを取り出すバッチ処理を行っている。
When conducting ocean observation, a buoy equipped with various observation devices is moored to the anchor at the bottom of the water by a mooring line. Various sensors are attached to the mooring line from directly below the surface of the water to the middle of the sea, for example, 500 to 750 m. It measures flow direction flow velocity, conductivity (salt concentration), etc.
Each sensor generally has a built-in power supply and recording device (usually an electronic memory). Conventionally, after installation, after a specified observation period has elapsed, batch processing is performed to collect the sensor and retrieve the observed data. It is carried out.

しかし、この方式では、観測データを迅速にラグタイムなしに採ることができない点、センサーの回収は係留索の回収を伴うので手間と時間及びコストがかかる点などに問題があった。
この対策として、絶縁被覆ワイヤロープにサーミスタチエーンを沿わせて取り付け、ワイヤロープと海水で構成される電気回路を通じて、電磁誘導データ伝送により海上の信号処理装置に送信する、電磁誘導式の通信手段が実用化されているが、それぞれのセンサーに電磁モデムを装備させて信号を発信させるので、機器が高価でオペレーションシステムも大規模なものになる問題がある。
However, this method has problems in that observation data cannot be collected quickly and without lag time, and that sensor retrieval involves the retrieval of mooring lines, which takes time, cost, and so on.
As a countermeasure, electromagnetic induction type communication means is attached to the insulation coated wire rope along the thermistor chain and transmitted to the signal processing device on the sea by electromagnetic induction data transmission through the electric circuit composed of the wire rope and seawater. Although it has been put into practical use, each sensor is equipped with an electromagnetic modem to transmit signals, so there is a problem that the equipment is expensive and the operation system becomes large.

他の方策として、従来、有線伝送方式、すなわち電線入りワイヤロープを使用する方式が用いられていた。かかるワイヤロープに関して、従来では、ワイヤロープのストランドを構成するワイヤの一部を電線に置き換えて撚り合せた構造、ワイヤロープの中心にてコンダクターと称する電線を入れた構造が知れている。
しかし、前者は、電線をストランドに拠り込むので製造工程が煩雑になる点、ロープ強度が損なわれたり、荷重によって電線が切断されたりする危険がある点、さらに特定のストランドの特定の箇所だけに電線部分が露出するので、信号や電力の取り出しや授受の位置が制限され、事実上、端部で信号や電力の取り出しや授受を行なわざるを得なくなるので、各長さ単位でのセンサーの接続などが困難になる問題があった。
後者は、電線をビニールなどのシースで包むので構造が複雑化するとともにロープ径が大きくなり、また、信号や電力の取り出し・授受位置が端末部分に制限され、各長さ単位でのセンサーの接続などが困難である問題があった。
As another measure, conventionally, a wired transmission system, that is, a system using a wire rope with wires has been used. With respect to such wire ropes, conventionally, a structure in which a part of the wire constituting the strand of the wire rope is replaced by an electric wire and twisted, and a structure in which an electric wire called a conductor is inserted at the center of the wire rope are known.
However, the former is based on the fact that the manufacturing process is complicated because the wires are based on the strands, there is a risk that the rope strength may be damaged, or the wires may be cut by a load, and only in specific parts of specific strands. Since the wire part is exposed, the position of signal and power extraction and transmission / reception is limited, and in effect, signal and power extraction and transmission / reception must be performed at the end, so sensors can be connected in units of each length. There was a problem that became difficult.
The latter wraps the wire with a sheath such as vinyl, which complicates the structure and increases the rope diameter. Also, the signal and power take-out / reception positions are limited to the terminal part, and sensors are connected in units of length. There was a problem that was difficult.

本発明は前記のような問題点を解消するためになされたもので、その目的とするところは、簡単な構造で、しかもケーブル中間部何れかの場所においても目視だけで目的電線の位置が確認できるとともに、所望の位置において信号や電力の取り出し・授受が可能であり、かつまた、流れがある場所においてカルマン渦抑止効果もあわせて得られる水中ロープを提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is a simple structure, and the position of the target wire can be confirmed by visual observation at any location in the middle of the cable. Another object of the present invention is to provide an underwater rope capable of taking out and exchanging signals and electric power at a desired position and also having a Karman vortex suppression effect at a place where there is a flow.

上記目的を達成するため本発明は、ワイヤロープの周囲に樹脂被覆を持つ通信用もしくは電力用電線をらせん状に巻き付け、それら電線とワイヤロープを透明もしくは半透明の樹脂で被覆したことを特徴としている。   In order to achieve the above object, the present invention is characterized in that a wire for communication or electric power having a resin coating around a wire rope is spirally wound, and the wire and the wire rope are covered with a transparent or translucent resin. Yes.

ワイヤロープの外周に電線をらせん状に巻き付け、それを樹脂で緊密に被覆しているので、防水と、外的な損傷に対する保護効果を得つつ電線を位置ずれを起させずにしっかりと保持させることができ、電線はロープ外周に連続してらせん状に表出しているので、いずれの位置において適当な手段でセンサーからの通信線や電力線を接触させるだけでセンサーが観測したデータを海面までリアルタイムで転送することが可能となる。   The wire is spirally wound around the outer circumference of the wire rope, and it is tightly covered with resin, so that the wire is securely held without causing misalignment while providing protection against water and external damage. Since the wire is spirally exposed continuously around the outer circumference of the rope, the data observed by the sensor can be real-time up to the sea level by simply contacting the communication line or power line from the sensor at any position. Can be transferred.

また、ワイヤロープの外周に電線を巻き付け、その外周を樹脂被覆することにより、ロープ全体が長手方向と直角の断面が凹凸のある異形状になり、粘性が空気よりも高く絶対流速が空気よりも小さい水中において、ロープ長手方向と直角状に作用する水の流れに乱れを創成することができるので、水中に張られたロープの下流側にカルマン渦が発生しにくくなり、これにより、索の振動が抑制され索に働く抵抗を小さくできる。しかも、凹凸はらせん状であり、360度の全方位に水の流れを乱す異形部が存するので、水の流れの方向によるカルマン渦発生防止効果の変化が小さくなり、安定した性能が期待でき、係留効果及びセンサーによる観測精度を良好にすることができる。   In addition, by winding an electric wire around the outer circumference of the wire rope and coating the outer circumference with a resin, the entire rope becomes an irregular shape with a cross section perpendicular to the longitudinal direction, the viscosity is higher than air and the absolute flow velocity is higher than air In small water, it is possible to create turbulence in the flow of water acting perpendicular to the longitudinal direction of the rope, so that Karman vortices are less likely to occur downstream of the rope stretched underwater, thereby causing vibration of the cord Is suppressed and resistance acting on the cord can be reduced. Moreover, since the irregularities are spiral and there are deformed parts that disturb the flow of water in all directions of 360 degrees, the change in the Karman vortex generation prevention effect due to the direction of the flow of water is reduced, and stable performance can be expected, The mooring effect and sensor observation accuracy can be improved.

好適には、電線はそれぞれ被覆が異色に着色された複数本である。 これによれば、被覆が透明ないし半透明であることとあいまって目視により信号用、電力用などをきわめて容易に識別可能であり、ケーブル中間部何れかの場所においても目的とするセンサーと接続すべき電線を誤ることなく正確に選択して接続することができる。   Preferably, the electric wire is a plurality of wires each having a different color. According to this, combined with the transparent or semi-transparent coating, it is very easy to visually identify signal and power applications, and it can be connected to the target sensor at any location in the middle of the cable. It is possible to accurately select and connect the power wires without mistakes.

好適には、電線とロープのらせんのピッチPは、ロープ外径:D、ロープ周囲を一回りする長さ:Lにおいて、∞>P=L/d>0.5である。
これによれば、流れの方向による性能変化が小さくなり360度のどの方向からの水流に対しても流れを乱してカルマン渦の発生を抑制する安定した性能が得られる。
Preferably, the pitch P of the helix between the electric wire and the rope is ∞> P = L / d> 0.5 when the rope outer diameter is D and the length around the rope is L.
According to this, the performance change by the direction of a flow becomes small, and the stable performance which suppresses generation | occurrence | production of a Karman vortex by disturbing a flow with respect to the water flow from any direction of 360 degrees is obtained.

以下添付図面を参照して本発明の実施例を説明する。
図1と図2は本発明を海洋観測用ブイの係留索に適用した実施例を示しており、1は観測ブイであり、風向・風速計,温・湿度計、気圧計、雨量計、日射計などの観測センサーが搭載され、計測データを送信アンテナから衛星などに送信するようになっている。2は観測ブイ1の下部に連結された本発明の水中ロープで、全長が500〜800mとなっている。3は前記水中ロープ2の下端に連結されたナイロンなどの合成繊維ロープであり、下端が海底のアンカー4に連結されている。
前記水中ロープ2には、所要の深度ごとにセンサーたとえば、流向流速計9a、電気伝導度・水温計(CT)9b、電気伝導度・水温・深度計(CTD)9cなどが取り付けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 and 2 show an embodiment in which the present invention is applied to a mooring line for a marine observation buoy. Reference numeral 1 denotes an observation buoy, which is a wind direction / anemometer, temperature / hygrometer, barometer, rain gauge, solar radiation. An observation sensor such as a meter is installed, and the measurement data is transmitted from the transmitting antenna to the satellite. 2 is an underwater rope of the present invention connected to the lower part of the observation buoy 1 and has a total length of 500 to 800 m. Reference numeral 3 denotes a synthetic fiber rope such as nylon connected to the lower end of the underwater rope 2, and the lower end is connected to an anchor 4 on the seabed.
Sensors such as a flow direction velocimeter 9a, an electric conductivity / water temperature meter (CT) 9b, an electric conductivity / water temperature / depth meter (CTD) 9c, and the like are attached to the underwater rope 2 for each required depth.

前記水中ロープ2は、図3ないし図5に示されており、5は複数本の素線500を撚り合せてなるストランド50を複数本撚りあわせたワイヤロープであり、この例では中心に1本のストランドを配し、その周りに6本のストランドを配して撚合した7×7構造となっている。 6aと6bは前記ワイヤロープ5の外周にらせん状に巻装された2本の電線であり、通信用ないし信号用、電力用など所望のものが選択される。各電線は導体60の周りに合成樹脂被覆61を施している。
7は前記電線6a、6b及びワイヤロープ5の周りに密着した樹脂被覆である。
The underwater rope 2 is shown in FIGS. 3 to 5, and 5 is a wire rope formed by twisting a plurality of strands 50 formed by twisting a plurality of strands 500. The strand has a 7 × 7 structure in which six strands are arranged and twisted. 6a and 6b are two electric wires spirally wound around the outer circumference of the wire rope 5, and desired ones for communication, signal, electric power and the like are selected. Each electric wire has a synthetic resin coating 61 around the conductor 60.
Reference numeral 7 denotes a resin coating that is in close contact with the wires 6 a and 6 b and the wire rope 5.

前記電線6a、6bはこの例では2本用いられ、合成樹脂被覆61はそれぞれ異なる色調たとえば赤と青からなっており、ワイヤロープ5における所望のストランド50,50の谷間に1本が、円周方向で位相のずれた別のストランド50,50間の谷間に他の1本がそれぞれ位置され、ストランド谷間に沿って巻装されている。この例では、電線6a、6bは180度位相をずらして配置されている。   Two wires 6a and 6b are used in this example, and the synthetic resin coating 61 is made of different colors, for example, red and blue, and one wire between the valleys of the desired strands 50 and 50 in the wire rope 5 is circumferential. The other one is located in the valley between the other strands 50, 50 out of phase in the direction, and is wound along the strand valley. In this example, the electric wires 6a and 6b are arranged 180 degrees out of phase.

樹脂被覆7は、図3(a)のように透明か、あるいは図3(b)のように半透明(例えば乳白色)のものを用いる。樹脂はある程度の柔軟性と十分な絶縁性があれば種類を問わないが、一般に、比較的軟質の熱可塑性樹脂ポリエチレン、ポリ塩化ビニール、テフロン(登録商標)、ナイロン、ポリウレタン等が適当である。
樹脂被覆7は、図4と図5(a)のように、ワイヤロープ5の断面形状に沿った部分70と電線6(6a、6b)の形状に沿った部分71を有し、この例ではひし形に類する断面が連続的に回転してゆく異形断面となっている。
したがって、ロープ全体が、ワイヤロープ5の断面形状に即応した凹部(溝)70と、これを底として半径方向に突出し電線6a、6bの形状に沿った凸部(凸条)71がらせん状に連続している。
The resin coating 7 is transparent as shown in FIG. 3A or translucent (for example, milky white) as shown in FIG. 3B. The resin may be of any kind as long as it has a certain degree of flexibility and sufficient insulation, but in general, a relatively soft thermoplastic resin polyethylene, polyvinyl chloride, Teflon (registered trademark), nylon, polyurethane, or the like is suitable.
As shown in FIGS. 4 and 5A, the resin coating 7 has a portion 70 along the cross-sectional shape of the wire rope 5 and a portion 71 along the shape of the electric wires 6 (6a, 6b). A cross section similar to a rhombus is an irregular cross section that rotates continuously.
Accordingly, the entire rope has a concave portion (groove) 70 that immediately responds to the cross-sectional shape of the wire rope 5 and a convex portion (protruding line) 71 that protrudes in the radial direction with this as a bottom and follows the shape of the electric wires 6a and 6b. It is continuous.

前記らせん状の凹凸は比較的長いピッチでも効果があり、あまり短いピッチで施してもカルマン渦防止の効果の向上は期待できない。
有効な範囲は、ロープの外径:D、ロープ周囲を一回りする長さ:Lとすると、一般に、∞>L/D>0.5である。なお∞は真っ直ぐな状態を意味する。らせんをロープ軸線に対する角度で表現すれば、一般に、1〜12°の範囲が実用的である。
The helical irregularities are effective even at a relatively long pitch, and even if applied at a very short pitch, an improvement in Karman vortex prevention effect cannot be expected.
The effective range is generally ∞> L / D> 0.5, where R is the outer diameter of the rope: D, and L is a length that goes around the rope. ∞ means a straight state. If the helix is expressed as an angle with respect to the rope axis, a range of 1 to 12 ° is generally practical.

上記のようならせん状の凹凸における好ましい条件は、図5(b)のように、電線6a、6bの外接円で構成される直径をAとし、凸部高さをHとすると、H/A=0.03〜0.5の範囲が望ましい。
この限定理由は、凸部高さが小さいと水流を乱す作用が脆弱となり、カルマン渦防止の効果を期待できず、凸部高さを大きくすると、カルマン渦防止の効果は期待できるが、流れと直角方向の投影面積が大きくなるので、流れに対する抗力が大きくなり、かえってロープの水中でのたわみが大きくなるなどの不具合を生ずるからである。H/A=0.03〜0.5であれば、水流を乱す作用と流れと直角方向の投影面積による抗力とをバランスよく達成することができる。したがって、この条件となるように電線の太さや被覆厚さを選定すればよい。
As shown in FIG. 5 (b), the preferable condition for the helical irregularities as described above is that the diameter formed by the circumscribed circle of the electric wires 6a and 6b is A and the height of the convex portion is H. A range of 0.03 to 0.5 is desirable.
The reason for this limitation is that if the height of the convex portion is small, the action of disturbing the water flow becomes fragile, and the effect of preventing Karman vortex prevention cannot be expected.If the height of the convex portion is increased, the effect of preventing Karman vortex can be expected, but This is because the projected area in the right-angle direction becomes large, so that the drag force against the flow becomes large, and on the contrary, there arises problems such as an increase in the deflection of the rope in water. If H / A = 0.03 to 0.5, the action of disturbing the water flow and the drag due to the projection area in the direction perpendicular to the flow can be achieved in a well-balanced manner. Therefore, what is necessary is just to select the thickness of the electric wire and the coating thickness so as to satisfy this condition.

前記樹脂被覆7は、ロープに電線を巻回したアセンブリーロープを熱収縮性の合成樹脂のチューブに通して加熱することで施してもよいが、好適には射出成形機ないしは押し出し機を用い、溶融した樹脂を加圧している槽内を、電線を巻回したアセンブリーロープを通過させることで施す。これによれば、ストランドと電線の形状によくなじんだものとなり、内層部分でストランドの谷間も埋めることができる利点がある。
この場合、前記アッセンブリーロープそのものを軸線の周りで回転させてもよいが、あるいは、ノズルとして、凹部を形成するための内径方向に凸となった型部と凸部を成形するための外径方向で凹となった型部を周方向で交互に形成した貫通孔を持つ回転ノズルが用いられ、かかるノズルを前記アッセンブリーロープの引き出し速度と同期回転させる。
こうすれば、型部により凸部と凹部を外径側に有する樹脂被覆層がロープの周りに形成される。しかもノズルが回転するので、凹部と凸部は継ぎ目のないらせん状となって連続的に被覆されるのである。
The resin coating 7 may be applied by heating an assembly rope obtained by winding an electric wire around a rope through a heat-shrinkable synthetic resin tube, preferably using an injection molding machine or an extruder, The inside of the tank which is pressurizing the molten resin is applied by passing an assembly rope wound with an electric wire. According to this, it becomes familiar with the shape of the strand and the electric wire, and there is an advantage that the valley of the strand can be filled with the inner layer portion.
In this case, the assembly rope itself may be rotated around the axis, or, as a nozzle, a mold part that is convex in the inner diameter direction for forming a concave part and an outer radial direction for molding the convex part. A rotating nozzle having through holes formed alternately in the circumferential direction is used, and the nozzle is rotated synchronously with the drawing speed of the assembly rope.
If it carries out like this, the resin coating layer which has a convex part and a recessed part on the outer diameter side by a type | mold part is formed around a rope. Moreover, since the nozzle rotates, the concave portion and the convex portion are continuously covered with a seamless spiral.

本発明は前記態様に限定されるものではない。
1)電線は2本に限定されず、1本でも3本以上でもかまわない。図6(a)は1本の電線6aとした場合を、(b)は4本の電線6a〜6dを用いた場合である。
ただ、細い電線を複数本密に巻き付け過ぎると前記したような異形断面による効果は薄くなるので、カルマン渦の防止が重視される場合には、太目の電線を比較的大きなピッチで巻き付けるとよい。
The present invention is not limited to the above embodiment.
1) The number of electric wires is not limited to two, and may be one or three or more. FIG. 6A shows a case where one electric wire 6a is used, and FIG. 6B shows a case where four electric wires 6a to 6d are used.
However, if a plurality of thin wires are wound too densely, the effect of the irregular cross section as described above becomes thin. Therefore, when prevention of Karman vortex is important, it is preferable to wind thick wires at a relatively large pitch.

2)ワイヤロープ5は、ロープの表面にストランドとストランドの溝がある構造であることが電線6a、6bの納まりが良いので、好ましい。図6は他の例を示しており、(a)は3ストランドタイプ、(b)は8ストランドタイプである。しかし、他の多重より構造であってもよいし、スパイラルロープのような一重よりで表面が比較的平滑な構造のロープでも適用可能である。
3)樹脂被覆7は内部の電線の色相が判別できればよいので、淡く着色してあってもよい。
2) It is preferable that the wire rope 5 has a structure having a strand and a groove of the strand on the surface of the rope because the electric wires 6a and 6b can be accommodated. FIG. 6 shows another example, in which (a) is a 3-strand type and (b) is an 8-strand type. However, the structure may be more than other multiple structures, and may be applied to a rope having a structure with a relatively smooth surface rather than a single rope such as a spiral rope.
3) Since the resin coating 7 only needs to be able to distinguish the hue of the internal electric wire, it may be lightly colored.

実施例のロープの作用を説明すると、図1のように係留索として使用した場合、ロープ全体が樹脂被覆7を有しているため長手方向で水密であり、またこれが保護層となって電線6a、6bを外傷から保護することができるとともに、電線6a、6bの位置ずれを規制することができる。
ロープは、海洋観測に使用する場合、所定の水深ごとにセンサーを取り付けて電線6a、6bに対して信号や電力を授受あるいは取り出しするが、ロープ5の外周を電線6a、6bがらせん状に存しており、しかも、これを透明または半透明の樹脂被覆7が囲んでいるため、どの位置においても巻き付けられた電線の位置と色相判別が容易になる。したがって、それぞれの電線の色相を変えておくだけで、ケーブル中間部何れかの場所においても目視により通信用、電力用などの目的電線を識別、確認ができる。
The operation of the rope of the embodiment will be described. When used as a mooring line as shown in FIG. 1, the entire rope has a resin coating 7 and is watertight in the longitudinal direction. , 6b can be protected from damage, and positional deviation of the electric wires 6a, 6b can be restricted.
When the rope is used for ocean observation, a sensor is attached at each predetermined depth to send and receive signals and electric power to and from the electric wires 6a and 6b. However, the electric wires 6a and 6b are spirally arranged on the outer periphery of the rope 5. In addition, since the transparent or translucent resin coating 7 surrounds this, it is easy to determine the position and hue of the wound wire at any position. Therefore, by simply changing the hue of each electric wire, it is possible to identify and confirm a target electric wire for communication, electric power, etc. visually at any location in the middle of the cable.

そして、センサー側の導体を適当な手段で電線6aまたは6bと接触させればよく、これは、たとえば先端の尖った針状などの電極を用い、これを樹脂被覆7と電線被覆61を貫いて突き刺せば、導体60に接続されるので容易であり、樹脂被覆7が軟質で電極に密接するため、防水性能も影響を受けない。
これにより、任意の位置で、電気信号のやり取りあるいは電力の取り出しが可能となり、海面上までデータを電送ができるので、無線あるいは衛星通信等の手段で陸上基地にデータを転送することが可能になる。なお、被覆樹脂で絶縁されるので、ロープ自体も信号電送に使用可能である。
Then, the sensor-side conductor may be brought into contact with the electric wire 6a or 6b by an appropriate means. For example, a needle-like electrode having a sharp tip is used, and this is passed through the resin coating 7 and the electric wire coating 61. If it is pierced, it is easy because it is connected to the conductor 60, and the resin coating 7 is soft and in close contact with the electrode, so that the waterproof performance is not affected.
As a result, electrical signals can be exchanged or electric power can be taken out at an arbitrary position, and data can be transmitted to the surface of the sea, so that data can be transferred to land bases by means of wireless or satellite communication. . In addition, since it is insulated with the coating resin, the rope itself can be used for signal transmission.

さらに、設置海域に潮流や海水の流れがある場合、その流れは鉛直状に延びている水中ロープに対して交差状に作用する。
このときに水中ロープが真円形断面である場合には、水流が円弧に沿って整流状態で下流へと向かうことにより、互いに反対方向に回転するカルマン渦が発生し、それによる変動する負圧で水中ロープが振動を起す。
これに対して、本発明はロープ2の外周を電線6a、6bがらせん状に巻回していることで、ワイヤロープ5の断面形状に即応した凹部(溝)70と、これを底として半径方向に突出し電線6a、6bの形状に沿った凸部(凸条)71により異形断面が構成されているので、水流が凹部70と突部71に衝突、反射して乱流状態となり、それが拡散しながら下流へと流れる。このため、カルマン渦が発生しなくなり、ロープ下流側に負圧が発生しにくくなるので、ロープの振動が抑制される。ことに、らせんにより360度の全方位に水の流れを乱す異形部が存するので、水の流れの方向によるカルマン渦発生防止効果の変化が小さくなり、安定した性能が期待できる。
Furthermore, when there is a tidal current or a seawater flow in the installation sea area, the flow acts in a crossing manner on the vertically extending underwater rope.
If the underwater rope has a true circular cross-section at this time, Karman vortices that rotate in opposite directions are generated by the flow of water along the circular arc in a rectified state. The underwater rope vibrates.
On the other hand, in the present invention, the electric wires 6a and 6b are spirally wound around the outer periphery of the rope 2, so that a concave portion (groove) 70 corresponding to the cross-sectional shape of the wire rope 5 and the radial direction with this as the bottom Since the irregular section is constituted by the convex portions (projections) 71 extending in the shape of the electric wires 6a and 6b, the water flow collides with the concave portions 70 and the convex portions 71 and is reflected to become a turbulent state, which is diffused. While flowing downstream. For this reason, Karman vortices are not generated, and negative pressure is unlikely to be generated on the downstream side of the rope, so that the vibration of the rope is suppressed. In particular, since there is a deformed portion that disturbs the flow of water in all directions of 360 degrees due to the spiral, the change in the Karman vortex generation preventing effect due to the direction of the water flow is reduced, and stable performance can be expected.

本発明による水中ロープの水中抵抗について水槽実験を行った。
実験水槽には水平循環型、全長9.6m、全幅3.96m、全高2.20mの回流水槽を用いた。試験に使用した供試体は、長さ600mmとし、本発明品は、構造が7×7のワイヤロープ本体に直径が2.3mmの電線を2本、ピッチ100mmでらせん状に巻装し、全体を樹脂で被覆した径12mmのものとした。比較のため、構造が1×37、直径が10.3mmのブイ用ワイヤロープに樹脂被覆を施した直径16.3mmの被覆ロープ(比較品)について試験を行った。
An aquarium experiment was conducted on the underwater resistance of the underwater rope according to the present invention.
The experimental water tank used was a circulating water tank with a horizontal circulation type, a total length of 9.6 m, a total width of 3.96 m, and a total height of 2.20 m. The specimen used for the test had a length of 600 mm, and the product of the present invention was wound in a spiral shape with a pitch of 100 mm and two wires with a diameter of 2.3 mm around a 7 × 7 wire rope body. Was coated with resin and had a diameter of 12 mm. For comparison, a test was conducted on a covered rope (comparative product) having a diameter of 16.3 mm in which a resin wire was applied to a buoy wire rope having a structure of 1 × 37 and a diameter of 10.3 mm.

試験方法は検力計に取り付けた保持フレームの両端から下る翼板に供試体を取り付け、インペラにて流速を創成させ、没水深度400mm、流向;供試体に直角、流速:0.5,1.0,1.5m/Sで行い、抵抗値を防水型3分力計のうち、流れ方向の抵抗値(Fx:定格25Kgf)を計測した。計測は各条件について2回行い、平均を取った。
なお、抵抗値には保持フレームの抵抗値も含まれるため、予め各流速について供試体をつけずに抵抗値を計測し、供試体つきの抵抗値から差し引いた。また、比較品と本発明品は断面積が異なるので、抵抗値を次式によって無次元化した。
抗力係数CFx=Fx/(0.5*ρ*V2*S)
ここで、Fx:抵抗値(N),ρ:水の密度(N・sec/m)、V:流速(m/s)、S:供試体の正面投影面積(m)である。
そして、供試体の振動の判定として、抵抗計測時系列データからのばらつきを示す分散(V)を測定した。V=(計測値―平均値)の2乗の総和/データ総数である。
The test method is to attach the specimen to the blades descending from both ends of the holding frame attached to the dynamometer, create a flow velocity with the impeller, submerged depth 400mm, flow direction; perpendicular to the specimen, flow velocity: 0.5, 1 0.0, 1.5 m / S, and the resistance value was measured for the resistance value (Fx: rated 25 kgf) in the flow direction of the waterproof three-component force meter. The measurement was performed twice for each condition, and an average was taken.
Since the resistance value includes the resistance value of the holding frame, the resistance value was measured in advance for each flow rate without attaching the specimen, and was subtracted from the resistance value with the specimen. In addition, since the cross-sectional areas of the comparative product and the product of the present invention are different, the resistance value is made dimensionless by the following equation.
Drag coefficient CFx = Fx / (0.5 * ρ * V 2 * S)
Here, Fx: resistance value (N), ρ: density of water (N · sec 2 / m 4 ), V: flow velocity (m / s), S: front projection area (m 2 ) of the specimen.
Then, as a determination of the vibration of the specimen, a variance (V) indicating variation from the resistance measurement time series data was measured. V = (measured value−average value) squared sum / total number of data.

抵抗試験結果(流速〜抗力係数)を示すと図7のとおりであり、抵抗試験結果(流速〜分散)を示すと図8のとおりである。図7と図8から明らかなように、本発明品は比較例と比べて抵抗値、抗力係数が小さく、振動が小さいことがわかる。これは、ロープ本体に電線をらせん状に巻装して被覆していることによる異形断面化でカルマン渦が抑制されたことによることが明らかである。   FIG. 7 shows the resistance test result (flow velocity to drag coefficient), and FIG. 8 shows the resistance test result (flow velocity to dispersion). As is apparent from FIGS. 7 and 8, it can be seen that the product of the present invention has a smaller resistance value, drag coefficient and smaller vibration than the comparative example. This is apparently because the Karman vortex was suppressed by deforming the cross section by winding the wire around the rope body in a spiral shape.

図9ないし図11は本発明品の時系列データ(抗力・時間)を示している。図12ないし図14は比較品の時系列データを示している。図9と図12はそれぞれ流速Vが0.5mのとき、図10と図13はそれぞれ流速Vが1.0mのとき、図11と図14はそれぞれ流速Vが1.5mのときである。なお、各図において(a)は試験の第1回目、(b)は第2回目を示している。これら図から明らかなように、本発明ロープは、振動が小さく、しかも幅広い流速域で良好であることがわかる。   9 to 11 show time-series data (drag / time) of the product of the present invention. 12 to 14 show time-series data of comparative products. 9 and 12 are respectively when the flow velocity V is 0.5 m, FIGS. 10 and 13 are when the flow velocity V is 1.0 m, and FIGS. 11 and 14 are when the flow velocity V is 1.5 m, respectively. In each figure, (a) shows the first test and (b) shows the second test. As is apparent from these figures, the rope of the present invention is small in vibration and good in a wide flow velocity range.

本発明を適用した係留索の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the mooring line to which this invention is applied. 図1におけるセンサーの取り付け部分の拡大斜視図である。It is an expansion perspective view of the attachment part of the sensor in FIG. (a)(b)は本発明のロープの側面図である。(A) (b) is a side view of the rope of this invention. 本発明ロープの部分切欠拡大側面図である。It is a partial notch expansion side view of the rope of the present invention. (a)は図4のX−X線に沿う断面図、(b)は好適な凸部高さ関係を示す説明図である。(A) is sectional drawing which follows the XX line of FIG. 4, (b) is explanatory drawing which shows suitable convex part height relationship. (a)(b)は本発明の他の例を示す断面図である。(A) (b) is sectional drawing which shows the other example of this invention. 本発明ロープと比較ロープの水槽中での抵抗試験結果(流速・抗力係数の関係)を示す線図である。It is a diagram which shows the resistance test result (the relationship between a flow velocity and a drag coefficient) in the water tank of this invention rope and a comparison rope. 本発明ロープと比較ロープの水槽中での抵抗試験結果(流速・分散の関係)を示す線図である。It is a diagram which shows the resistance test result (relationship of flow velocity and dispersion | distribution) in the water tank of this invention rope and a comparison rope. (a)は流速0.5mのときの、本発明ロープの抗力測定(第1回)の時系列データを示す線図である。(b)は同じく本発明ロープの抗力測定(第2回)の時系列データを示す線図である。(A) is a diagram showing time-series data of drag measurement (first time) of the rope of the present invention at a flow velocity of 0.5 m. (B) is also a diagram showing time series data of drag measurement (second time) of the rope of the present invention. (a)は流速1.0mのときの、本発明ロープの抗力測定(第1回)の時系列データを示す線図である。(b)は同じく抗力測定(第2回)の時系列データを示す線図である。(A) is a diagram showing time series data of drag measurement (first time) of the rope of the present invention at a flow velocity of 1.0 m. (B) is a diagram showing time series data of drag measurement (second time). (a)は流速1.5mのときの、本発明ロープの抗力測定(第1回)の時系列データを示す線図である。(b)は同じく抗力測定(第2回)の時系列データを示す線図である。(A) is a diagram showing time-series data of drag measurement (first time) of the rope of the present invention at a flow velocity of 1.5 m. (B) is a diagram showing time series data of drag measurement (second time). (a)は流速0.5mのときの、比較ロープの抗力測定(第1回)の時系列データを示す線図である。(b)は同じく抗力測定(第2回)の時系列データを示す線図である。(A) is a diagram which shows the time series data of the drag measurement (1st time) of a comparison rope when the flow velocity is 0.5 m. (B) is a diagram showing time series data of drag measurement (second time). (a)は流速1.0mのときの、比較ロープの抗力測定(第1回)の時系列データを示す線図である。(b)は同じく抗力測定(第2回)の時系列データを示す線図である。(A) is a diagram which shows the time series data of the drag measurement (1st time) of a comparison rope when the flow velocity is 1.0 m. (B) is a diagram showing time series data of drag measurement (second time). (a)は流速1.5mのときの、比較ロープの抗力測定(第1回)の時系列データを示す線図である。(b)は同じく抗力測定(第2回)の時系列データを示す線図である。(A) is a diagram which shows the time series data of the drag measurement (1st time) of a comparative rope when the flow velocity is 1.5 m. (B) is a diagram showing time series data of drag measurement (second time).

符号の説明Explanation of symbols

1 ブイ
2 本発明ロープ
5 ワイヤロープ
6、6a、6b、6c、6d 電線
7 樹脂被覆
60 導体
61 被覆
70 凹部
71 凸部
DESCRIPTION OF SYMBOLS 1 Buoy 2 This invention rope 5 Wire rope 6, 6a, 6b, 6c, 6d Electric wire 7 Resin coating 60 Conductor 61 Coating 70 Concave part 71 Convex part

Claims (3)

ワイヤロープの周囲に樹脂被覆を持つ通信用もしくは電力用電線をらせん状に巻き付け、それら電線とワイヤロープを透明もしくは半透明の樹脂で被覆したことを特徴とする水中ロープ。   An underwater rope characterized in that a wire for communication or electric power having a resin coating is wound around the wire rope in a spiral shape, and the wire and the wire rope are covered with a transparent or translucent resin. 電線はそれぞれ被覆が異色に着色された複数本であることを特徴とする請求項1に記載の水中ロープ。   The underwater rope according to claim 1, wherein the electric wire is a plurality of wires each having a different colored coating. 電線とロープのらせんのピッチPは、ロープ外径:D、ロープ周囲を一回りする長さ:Lにおいて、∞>P=L/d>0.5であることを特徴とする請求項1に記載の水中ロープ。   The pitch P of the helix between the electric wire and the rope is ∞> P = L / d> 0.5 when the outer diameter of the rope is D and the length of the circumference of the rope is L: L. The described underwater rope.
JP2005292376A 2005-04-19 2005-10-05 Underwater rope Active JP4692964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292376A JP4692964B2 (en) 2005-04-19 2005-10-05 Underwater rope

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005121573 2005-04-19
JP2005121573 2005-04-19
JP2005292376A JP4692964B2 (en) 2005-04-19 2005-10-05 Underwater rope

Publications (2)

Publication Number Publication Date
JP2006322126A true JP2006322126A (en) 2006-11-30
JP4692964B2 JP4692964B2 (en) 2011-06-01

Family

ID=37542008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292376A Active JP4692964B2 (en) 2005-04-19 2005-10-05 Underwater rope

Country Status (1)

Country Link
JP (1) JP4692964B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201577A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Sensor node and sensor network using the same
JP2014031602A (en) * 2012-08-06 2014-02-20 Tokyo Seiko Seni Rope Kk Rope for mooring buoy
EP2876201A1 (en) * 2013-11-26 2015-05-27 Garrett Storm Dunker Cord with reduced drag performance
EP3196090A1 (en) * 2016-01-22 2017-07-26 Fatzer AG Drahtseilfabrik Wire rope comprising a supply line, in particular a service rope for a funicular assembly
JP2019029283A (en) * 2017-08-02 2019-02-21 住友電気工業株式会社 Cable and evaluation method for cable

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849347U (en) * 1971-10-20 1973-06-28
JPS6025798U (en) * 1983-07-27 1985-02-21 ニチモウ株式会社 wire rope
JPS61231291A (en) * 1985-04-01 1986-10-15 日本鋼管株式会社 Covered cable with spiral rib
JPH01190861A (en) * 1988-01-26 1989-07-31 Shinko Kosen Kogyo Kk Tension member for structure
JPH03150012A (en) * 1989-11-07 1991-06-26 Nippon Telegr & Teleph Corp <Ntt> Untwisting device for communication cable subunit
JPH0510494U (en) * 1991-06-03 1993-02-09 伊藤 秀治 rope
JP2002173881A (en) * 2000-09-19 2002-06-21 Tokyo Seiko Co Ltd Wire rope having external damage sensing function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849347U (en) * 1971-10-20 1973-06-28
JPS6025798U (en) * 1983-07-27 1985-02-21 ニチモウ株式会社 wire rope
JPS61231291A (en) * 1985-04-01 1986-10-15 日本鋼管株式会社 Covered cable with spiral rib
JPH01190861A (en) * 1988-01-26 1989-07-31 Shinko Kosen Kogyo Kk Tension member for structure
JPH03150012A (en) * 1989-11-07 1991-06-26 Nippon Telegr & Teleph Corp <Ntt> Untwisting device for communication cable subunit
JPH0510494U (en) * 1991-06-03 1993-02-09 伊藤 秀治 rope
JP2002173881A (en) * 2000-09-19 2002-06-21 Tokyo Seiko Co Ltd Wire rope having external damage sensing function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201577A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Sensor node and sensor network using the same
JP2014031602A (en) * 2012-08-06 2014-02-20 Tokyo Seiko Seni Rope Kk Rope for mooring buoy
EP2876201A1 (en) * 2013-11-26 2015-05-27 Garrett Storm Dunker Cord with reduced drag performance
US9447529B2 (en) 2013-11-26 2016-09-20 A-Z Chuteworks L.L.C. Cord material and methods of using same
EP3196090A1 (en) * 2016-01-22 2017-07-26 Fatzer AG Drahtseilfabrik Wire rope comprising a supply line, in particular a service rope for a funicular assembly
JP2019029283A (en) * 2017-08-02 2019-02-21 住友電気工業株式会社 Cable and evaluation method for cable

Also Published As

Publication number Publication date
JP4692964B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4692964B2 (en) Underwater rope
JP5144259B2 (en) Power supply pipe with distributed load transfer elements made of composite material
JP5248530B2 (en) Wave receiving device
US20100277329A1 (en) Monitoring a flexible power cable
US7244155B1 (en) Mooring line for an oceanographic buoy system
CN102012285A (en) Micro-sensing optical unit and embedded application thereof
US6466719B2 (en) Optical temperature sensing arrangement for towed cable
KR101291307B1 (en) Underwater cable
CN102005259A (en) Submarine optical fiber composite high-voltage cable with detection function
CN112660305B (en) Buoy seabed-based dynamic cable system
JP4781768B2 (en) Underwater rope
CN111751027A (en) Integrally packaged chain type temperature sensor and processing technology thereof
KR100948073B1 (en) Duplex pipe line
US4251794A (en) Flexible linear thermal array
CN205003327U (en) Intelligent submarine fiber cable at core insulation layer embedding sensing part
WO2013126325A1 (en) Mooring cable for transmitting oceanographic data
CN207379635U (en) Temperature sensor and temperature measuring equipment
CN213716540U (en) Towing cable and towing system
CN209877949U (en) Instant-sensing underwater river channel section measuring system
CN108597664B (en) High-water-tightness mooring detection cable and manufacturing method thereof
CN206961558U (en) Novel cable with buoy
CN111540522A (en) Wind power generation high-voltage alternating current submarine cable
JP5967815B2 (en) Buoy mooring rope
CN217654708U (en) Floating type floating barrel water seepage monitoring device for wind turbine generator
CN212300676U (en) Chain temperature sensor of integration encapsulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4692964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250