JP2006322031A - Method for recovering metal - Google Patents

Method for recovering metal Download PDF

Info

Publication number
JP2006322031A
JP2006322031A JP2005145136A JP2005145136A JP2006322031A JP 2006322031 A JP2006322031 A JP 2006322031A JP 2005145136 A JP2005145136 A JP 2005145136A JP 2005145136 A JP2005145136 A JP 2005145136A JP 2006322031 A JP2006322031 A JP 2006322031A
Authority
JP
Japan
Prior art keywords
tin
mixture
alkali hydroxide
residue
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005145136A
Other languages
Japanese (ja)
Other versions
JP4876221B2 (en
Inventor
Kosuke Inoguchi
康祐 井野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2005145136A priority Critical patent/JP4876221B2/en
Publication of JP2006322031A publication Critical patent/JP2006322031A/en
Application granted granted Critical
Publication of JP4876221B2 publication Critical patent/JP4876221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering, from copper, lead, tin and indium which are contained in dross generated at metal melt treatment etc. in a smelting process, the respective metals at a low cost in high yield. <P>SOLUTION: A raw material composed of a mixture such as dross containing copper, lead, tin and indium is mixed with a dissolution bath of alkali hydroxide such as caustic soda to extract tin and indium in the dissolution bath. The resultant alkaline slag is mixed with water to decrease the concentration of alkali hydroxide in the solution (e.g. to ≤100 g/l) to obtain slurry in which tin is dissolved and an indium precipitate and a residue containing copper and lead are contained. Then the slurry is separated into the tin solution, the precipitate and the residue. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、錫、さらにはインジウム、その他の金属成分を含有する混在物を原料として各金属成分を回収する方法であって、特に、非鉄金属製錬工程において発生するドロス等の副産物からの含有金属成分の回収方法に関するものである。   The present invention is a method of recovering each metal component from a mixture containing tin, further indium, and other metal components as raw materials, and in particular, from a by-product such as dross generated in a non-ferrous metal smelting process. The present invention relates to a method for recovering metal components.

非鉄金属製錬工程で副産物として発生するドロスには、有価金属である銅(Cu)、鉛(Pb)および錫(Sn)、さらにはインジウム(In)が含まれていることが少なくない。しかし、このドロスでは、その含有金属成分が混在した金属粒となっている。銅と錫とが金属間化合物を形成して含有される場合があり、金属成分が固溶体化して含有される場合もある。また、鉛とインジウムについては、固溶体として鉛中にインジウムが含まれる場合がある。このようにドロス性状としては、雑多な合金や複合物などになっている場合が多い。また、錫やインジウムは、金属成分として単独に存在せず、他の金属成分と固溶体または合金となって存在するため、錫やインジウムを効率よく回収することが困難であった。   Dross generated as a by-product in a non-ferrous metal smelting process often contains valuable metals such as copper (Cu), lead (Pb), tin (Sn), and indium (In). However, in this dross, it is a metal particle in which the contained metal component is mixed. Copper and tin may be contained by forming an intermetallic compound, and the metal component may be contained as a solid solution. Moreover, about lead and indium, indium may be contained in lead as a solid solution. As described above, the dross property is often a miscellaneous alloy or composite. Further, since tin and indium do not exist alone as metal components but exist as solid solutions or alloys with other metal components, it is difficult to efficiently recover tin and indium.

しかしながら、近年資源のリサイクル化の要望が高まりつつあり、副産物として発生するドロス等からの各含有金属の回収がリサイクルの観点からも要望されている。
錫の回収方法としては、従来は、錫を含む原料をアルカリにより溶出し電解により採取する方法をはじめとする各種の回収方法が開示されている。
例えば、特開2004−315865号公報(特許文献1)には、錫を含有する廃棄物を焼却処理し酸性の液で溶解したものをアルカリ溶液で処理して錫を回収する開示がある。また、特公平5−14776号公報(特許文献2)には、錫が含まれる酸化物原料から水酸化カリウム浴を用いて錫を浸出する開示がある。
However, in recent years, demand for recycling of resources has been increasing, and recovery of each contained metal from dross generated as a by-product has also been requested from the viewpoint of recycling.
Conventionally, various methods for recovering tin have been disclosed, including a method in which a raw material containing tin is eluted with alkali and collected by electrolysis.
For example, Japanese Patent Application Laid-Open No. 2004-315865 (Patent Document 1) has a disclosure in which tin is recovered by incineration of a waste material containing tin and treating it with an acid solution to treat it with an alkaline solution. Japanese Patent Publication No. 5-14776 (Patent Document 2) discloses that tin is leached from an oxide raw material containing tin using a potassium hydroxide bath.

しかし、銅と錫を含む原料で金属間化合物などを形成しているものは、酸に溶解するなどにより分離しなければならず、金属の回収コストが嵩むものであった。すなわち、上記原料から銅と錫を酸で浸出した後、中和や置換により銅と錫を分離するなどの方法が知られているが、中和法では中和剤の使用量が多く経済的ではなく、一方、置換法ではCuイオンについてSnメタルを添加し置換する方法が開示されているが、Snより貴な成分を多く含むような原料では置換に必要なSnメタル量が多くなり経済的ではないという問題があった。
特開2004−315865号公報 特公平5−14776号公報
However, what forms the intermetallic compound etc. with the raw material containing copper and tin must be separated by dissolving in an acid, etc., and the metal recovery cost is increased. That is, after leaching copper and tin from the above raw materials with an acid, a method such as separation of copper and tin by neutralization or substitution is known, but the neutralization method uses a large amount of neutralizing agent and is economical. On the other hand, in the substitution method, a method of adding and replacing Sn metal with respect to Cu ions is disclosed. However, a raw material containing more noble components than Sn increases the amount of Sn metal necessary for substitution and is economical. There was a problem that was not.
JP 2004-315865 A Japanese Patent Publication No. 5-14776

製錬工程の金属融体処理時などにおいて発生するドロスに含まれる、銅、鉛および錫、さらにはインジウムからそれぞれの金属を低コストおよび高収率で回収する方法がなく、特に銅と錫が金属間化合物などの化合物を形成している混在物の原料から各金属を回収することについて開発が望まれていた。   There is no method for recovering each metal from copper, lead and tin, and indium contained in dross generated at the time of metal melt treatment in the smelting process at low cost and high yield, especially copper and tin. Development has been desired for recovering each metal from a raw material of a mixture forming a compound such as an intermetallic compound.

銅、鉛および錫、さらにはインジウムが含有され、特に銅と錫が金属間化合物などの化合物を形成している混在物の原料を溶融水酸化アルカリ浴(水酸化アルカリ溶融浴、または、溶融アルカリ浴などともいう。)に混合することで混在物中から錫、さらにはインジウムを選択的に抽出できることを見出し、さらに抽出後に水と混合して水中のアルカリ濃度を調整することで錫酸とすれば、各金属に分離可能となることを見出した。これらは、銅−錫金属間化合物の合金は耐食性も極めて高く水酸化アルカリを使ってもメタル状銅は抽出できないので、これらの銅と錫とが結合している原料に対して銅の融点よりはるかに低い温度でアルカリ溶融処理すると錫を選択的に浸出できるのではないかという見地に基づくものである。   Copper, lead and tin, as well as indium, and in particular, the raw material of the mixture in which copper and tin form a compound such as an intermetallic compound is used as a molten alkali hydroxide bath (an alkali hydroxide molten bath or a molten alkali). It is also known as a bath and the like.) It is found that tin and further indium can be selectively extracted from the mixture by mixing with stannic acid. It was found that each metal can be separated. These copper-tin intermetallic compounds have extremely high corrosion resistance, and metal-like copper cannot be extracted even if alkali hydroxide is used. Therefore, the melting point of copper is higher than the melting point of copper. This is based on the viewpoint that tin can be selectively leached by alkaline melting at a much lower temperature.

すなわち、本発明は第1に、銅と錫とを構成成分として含む化合物および鉛を含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫を該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を低減して(好ましくは、100g/リットル以下とする。)錫が溶解し銅と鉛とを含有する残渣を含むスラリーを得る工程と、該スラリーを錫溶液と該残渣とに分別する工程とを有する金属回収方法であり、第2に、銅と錫とを構成成分として含む化合物、鉛およびインジウムを含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫およびインジウムを該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を低減して(好ましくは、100g/リットル以下とする。)錫が溶解しインジウム殿物および銅と鉛とを含有する残渣を含むスラリーを得る工程と、該スラリーを錫溶液と該殿物と該残渣とに分別する工程とを有する金属回収方法であり、第3に、前記分別する工程が前記スラリーから比重分離法によって前記残渣を分離し、次いで残部を固液分離して前記錫溶液と前記殿物とに分別する工程である第2記載の金属回収方法であり、第4に、銅と錫とを構成成分として含む化合物および鉛を含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫を該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を200g/リットル以上として錫殿物および銅と鉛とを含有する残渣を含むスラリーを得る工程と、該スラリーを該殿物と該残渣と溶液とに分別する工程とを有する金属回収方法であり、第5に、前記分別する工程において得られた前記溶液を濃縮して水酸化アルカリを回収し前記溶融浴に繰り返す第4記載の金属回収方法であり、第6に、銅と錫とを構成成分として含む化合物、鉛およびインジウムを含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫およびインジウムを該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を200g/リットル以上として錫殿物、インジウム殿物および銅と鉛とを含有する残渣を含む第1スラリーを得る工程と、該第1スラリーを該錫殿物と該インジウム殿物とを含む混合殿物と該残渣と溶液とに分別する工程と、該混合殿物を水と混合し水酸化アルカリ濃度を100g/リットル以下として錫が溶解しインジウム殿物を含む第2スラリーを得る工程と、該第2スラリーを錫溶液と該インジウム殿物とに分別する工程とを有する金属回収方法であり、第7に、前記第1スラリーから分別する工程が該第1スラリーから比重分離法によって前記残渣を分離し、次いで残部を固液分離して前記混合殿物と前記溶液とに分別する工程である第6記載の金属回収方法であり、第8に、前記第1スラリーから分別された前記溶液を濃縮して水酸化アルカリを回収し前記溶融浴に繰り返す第6または7記載の金属回収方法であり、第9に、前記抽出において前記混在物と前記水酸化アルカリ溶融浴との混合物中に酸化剤を添加する第1〜8のいずれかに記載の金属回収方法であり、第10に、前記酸化剤が硝酸ナトリウム、過酸化水素、酸化鉛のうちの少なくとも1種である第9記載の金属回収方法であり、第11に、前記混在物が金属製錬工程で副産物として発生するドロスである第1〜10のいずれかに記載の金属回収方法であり、最後に第12に、前記水酸化アルカリが水酸化ナトリウムまたは水酸化カリウムである第1〜11のいずれかに記載の金属回収方法である。   That is, in the present invention, first, a compound containing copper and tin as constituent components and a mixture containing lead are mixed with an alkali hydroxide molten bath to extract tin in the mixture into the molten bath. A step of obtaining an alkali hydroxide mixture, and the mixture is mixed with water to reduce the alkali hydroxide concentration (preferably 100 g / liter or less), including tin and a residue containing copper and lead A metal recovery method comprising a step of obtaining a slurry and a step of separating the slurry into a tin solution and a residue. Second, a compound containing copper and tin as constituents, a mixture containing lead and indium Mixing the product with an alkali hydroxide molten bath to extract tin and indium in the mixture into the molten bath to obtain an alkali hydroxide mixture, and mixing the mixture with water to reduce the alkali hydroxide concentration. (Preferably And a step of obtaining a slurry containing indium residue and a residue containing copper and lead by dissolving tin, and a step of separating the slurry into a tin solution, the residue and the residue. And third, the step of separating the residue from the slurry by a specific gravity separation method, and then separating the remainder into solid-liquid separation to separate the tin solution and the residue. The metal recovery method according to the second item, wherein the compound containing copper and tin as a constituent component and a mixture containing lead are mixed with an alkali hydroxide molten bath, and the tin in the mixture is obtained. Extracting into the molten bath to obtain an alkali hydroxide mixture, and mixing the mixture with water to obtain a slurry containing tin residue and a residue containing copper and lead with an alkali hydroxide concentration of 200 g / liter or more Process and the process And a step of fractionating Li into the residue, the residue, and a solution. Fifth, the solution obtained in the fractionation step is concentrated to recover alkali hydroxide and then melt 4. The method for recovering a metal according to the fourth aspect, which is repeated in the bath, and sixthly, a compound containing copper and tin as constituents, a mixture containing lead and indium are mixed with an alkali hydroxide molten bath in the mixture. Extracting the tin and indium into the molten bath to obtain an alkali hydroxide mixture, mixing the mixture with water and setting the alkali hydroxide concentration to 200 g / liter or more, tin, indium, copper and lead A step of obtaining a first slurry containing a residue containing, a step of separating the first slurry into a mixture containing the tin and the indium, a residue and a solution, and the mixture Is mixed with water and hydroxylated A metal recovery method comprising: a step of obtaining a second slurry containing indium deposits by dissolving tin with an alkali concentration of 100 g / liter or less; and a step of separating the second slurry into a tin solution and the indium deposits. Seventhly, the step of separating from the first slurry is a step of separating the residue from the first slurry by a specific gravity separation method, and then separating the remainder into solid-liquid separation to separate the mixture into the solution. A sixth metal recovery method according to the sixth or seventh method, wherein the solution separated from the first slurry is concentrated to recover an alkali hydroxide and repeated in the molten bath. And ninth, is the metal recovery method according to any one of the first to eighth, wherein an oxidant is added to the mixture of the mixture and the alkali hydroxide molten bath in the extraction, and tenthly, acid The metal recovery method according to ninth, wherein the agent is at least one of sodium nitrate, hydrogen peroxide, and lead oxide. Eleventh, the mixture is dross generated as a by-product in the metal smelting process. The metal recovery method according to any one of 1 to 10, and finally, twelfth, the metal recovery method according to any one of 1 to 11, wherein the alkali hydroxide is sodium hydroxide or potassium hydroxide. .

本発明によれば、銅、鉛を多量に含有する混在物の原料から、銅と錫が金属間化合物などの化合物を形成している場合であっても錫、さらにはインジウムを効率よく回収できること、銅と鉛は金属として回収できそのまま再利用可能であること、薬剤はアルカリと水のみでよく、特別な高価な薬品が不要であり、金属銅の溶融や浸出を要しないためコストが抑えられること、など低コストで各含有金属を高収率で回収することができる。   According to the present invention, even if copper and tin form a compound such as an intermetallic compound from a mixed material containing a large amount of copper and lead, tin and further indium can be efficiently recovered. , Copper and lead can be recovered as metals and reused as they are, chemicals can be only alkali and water, no special expensive chemicals are required, and metal copper does not require melting or leaching, thus reducing costs Each contained metal can be recovered in a high yield at a low cost.

本発明は、銅製錬工程、鉛製錬工程などから発生するドロスのように、銅、錫、鉛、インジウムなどの有価金属を含む混在物の原料に適用することができ、特に錫と銅が合金化しており、さらには他の金属が含まれている混在物にも適用可能である。錫と銅とを構成成分として含む化合物とは錫と銅が金属間化合物となっている状態も含み、銅と錫が表面等に存在する場合も含む。また、鉛やインジウムにおいても塩や有機化合物の形態であっても本発明を適用可能である。本発明では銅と錫が金属間化合物など化合物を形成した状態のものにおいても適用可能である。銅と錫の金属間化合物としては、例えばCu2Sn等がある。
製錬の工程より発生するドロスには、銅が20〜40質量%、錫が10〜30質量%、鉛が30〜50質量%、インジウムが0.1〜3質量%(以下単に%と表す。)程度含まれ、これらの成分の内、銅と錫は合金化されているものもある。さらに、インジウムも、単独で存在するより、銅、錫との合金となっている場合が多い。
The present invention can be applied to a raw material of a mixture containing valuable metals such as copper, tin, lead, and indium, such as dross generated from a copper smelting process and a lead smelting process. It can be applied to a mixture that is alloyed and further contains other metals. The compound containing tin and copper as constituent components includes a state where tin and copper are intermetallic compounds, and includes a case where copper and tin are present on the surface or the like. In addition, the present invention can be applied to lead and indium even in the form of a salt or an organic compound. In the present invention, the present invention can also be applied to a state in which copper and tin form a compound such as an intermetallic compound. Examples of the intermetallic compound of copper and tin include Cu 2 Sn.
In the dross generated from the smelting process, copper is 20 to 40% by mass, tin is 10 to 30% by mass, lead is 30 to 50% by mass, indium is 0.1 to 3% by mass (hereinafter simply referred to as%). .) Included, and some of these components are alloyed with copper and tin. Furthermore, indium is often an alloy with copper and tin rather than being present alone.

前記混在物の原料を溶融アルカリ浴に投入する。溶融アルカリ浴は、水酸化アルカリ(単に、アルカリということがある。)成分が溶融した状態のもので、水酸化アルカリとしては、水酸化ナトリウム(苛性ソーダということがある。)がよく、濃度は、苛性ソーダ34質量%以上がよく、市販のフレーク苛性ソーダを用いることが可能である。アルカリ濃度が高いほうが錫の抽出に適宜である。また温度は水酸化アルカリの融点〜500℃がよい。さらには300〜500℃が良い。なお、苛性ソーダ以外としては水酸化カリウム等も可能である。   The mixed material is put into a molten alkali bath. The molten alkali bath is in a state in which an alkali hydroxide (sometimes simply called alkali) component is melted, and as the alkali hydroxide, sodium hydroxide (sometimes called caustic soda) is good, and the concentration is Caustic soda is 34% by mass or more, and commercially available flake caustic soda can be used. A higher alkali concentration is appropriate for tin extraction. The temperature is preferably from the melting point of alkali hydroxide to 500 ° C. Furthermore, 300-500 degreeC is good. Other than caustic soda, potassium hydroxide or the like is also possible.

さらに、酸化剤を添加すると、錫、インジウムの溶融アルカリ浴への抽出が早まる。酸化剤としては、過酸化水素など前述の任意の酸化剤を用いることができる。
なお、抽出時間は、原料の状態、酸化剤の添加等の条件にも影響されるため、それらの条件により適宜設計、設定すればよい。なお、1時間から数時間程度で可能である。さらに、抽出時に溶融アルカリ浴を撹拌すると効果的である。
Furthermore, when an oxidizing agent is added, extraction of tin and indium into a molten alkali bath is accelerated. As the oxidizing agent, any of the aforementioned oxidizing agents such as hydrogen peroxide can be used.
Note that the extraction time is affected by conditions such as the state of the raw material and the addition of an oxidant, and therefore may be appropriately designed and set according to those conditions. In addition, it is possible in about 1 hour to several hours. Furthermore, it is effective to stir the molten alkali bath during extraction.

溶融アルカリ浴中に投入された混在物の原料は、混在物中から錫、インジウムが溶融アルカリ浴に抽出され、銅、鉛は金属の状態のままである。銅と錫の金属間化合物は、上記の温度範囲に加熱しても溶融しないが、溶融アルカリ浴中においては錫が選択的に抽出され、銅が固体の金属(メタル)として残存する。   As for the raw material of the mixture put into the molten alkali bath, tin and indium are extracted from the mixture into the molten alkali bath, and copper and lead remain in a metal state. The intermetallic compound of copper and tin does not melt even when heated to the above temperature range, but tin is selectively extracted in the molten alkali bath, and copper remains as a solid metal (metal).

抽出後は、必要に応じて溶融浴を一旦冷却し、溶融状態から固化した水酸化アルカリ混合物(アルカリ滓ということがある。)を得る。アルカリ滓に水を添加して、水酸化アルカリ濃度が100g/リットル以下、好ましくは50g/リットル以下のスラリーとする。これはインジウムを水酸化物の浮遊殿物として、錫は錫酸塩として溶液中に溶解させるためである。アルカリ滓を水で希釈する際の発熱で液温は80℃程度となり、特に加温する必要は無い。また、銅および鉛は抽出も浸出もされずに金属のままで沈降する。   After extraction, the molten bath is once cooled as necessary to obtain an alkali hydroxide mixture (sometimes referred to as alkali soot) solidified from the molten state. Water is added to the alkaline soot to obtain a slurry having an alkali hydroxide concentration of 100 g / liter or less, preferably 50 g / liter or less. This is because indium is dissolved in the solution as a floating suspension and tin is dissolved in the solution as a stannate. The liquid temperature is about 80 ° C. due to the heat generated when diluting the alkaline soot with water, and it is not necessary to heat it. Also, copper and lead are precipitated without being extracted or leached.

このように、錫は液中に溶解されているが、他の元素は、浮遊殿物または金属としてあるので、比重分離、濾過等による物理的な分離方法により錫を選択的に液中に分離できる。
インジウムをさらに分離する場合は、まずスラリーをデカンテーション等により比重分離をして銅、鉛などの金属分(金属粒)を取り除き、次いで、液側のみを濾過すると、インジウムが濃縮された浮遊殿物とアルカリ溶液とに分別されて分離可能となり、アルカリ溶液に溶解する錫との分離が可能となる。
In this way, tin is dissolved in the liquid, but other elements are in the form of floating deposits or metals, so the tin is selectively separated into the liquid by a physical separation method such as specific gravity separation or filtration. it can.
When further separating indium, the slurry is first separated by specific gravity by decantation or the like to remove metals (metal particles) such as copper and lead, and then only the liquid side is filtered. The product can be separated into an alkaline solution and separated, and the tin dissolved in the alkaline solution can be separated.

アルカリ溶液と殿物等を分離する固液分離により得た分離後のアルカリ溶液では、前述のように錫が錫酸塩で含まれており、この液を電解採取、中和、晶析、消石灰添加などにより、金属錫またはその中間品として回収が可能である。以上を図1に示した。   In the separated alkaline solution obtained by solid-liquid separation that separates the alkaline solution and the residue, tin is contained in the stannate as described above, and this solution is electrocollected, neutralized, crystallized, slaked lime. By adding it, it can be recovered as metallic tin or an intermediate product thereof. The above is shown in FIG.

また、アルカリ滓に水を添加する際に、そのアルカリ濃度を2段階に制御することでさらにインジウム等を濃縮することができる。図2を用いて説明する。
アルカリ滓に1段階目の水を添加し、アルカリ濃度を200g/リットル以上、好ましくは300g/リットル以上とする。すると、インジウムは加水分解により沈殿する。錫は、錫酸と錫酸ナトリウム等の錫酸塩となるが、アルカリ濃度が高いためほとんどは錫酸ナトリウムなどの錫酸塩として沈殿してしまう。一方、銅および鉛は、金属状のままであるためアルカリ液にはほとんど溶解しないまま金属の銅および鉛として残存する。殿物状の錫酸塩およびインジウムに対して、銅および鉛は金属状なので比重分離法やオーバーフローによるデカンテーションにより容易に殿物と分離可能である。
In addition, when water is added to the alkaline soot, indium and the like can be further concentrated by controlling the alkali concentration in two stages. This will be described with reference to FIG.
The first stage water is added to the alkaline soot so that the alkali concentration is 200 g / liter or more, preferably 300 g / liter or more. Then, indium precipitates by hydrolysis. Tin becomes a stannate such as stannic acid and sodium stannate. However, since the alkali concentration is high, most of the tin is precipitated as a stannate such as sodium stannate. On the other hand, since copper and lead remain in a metallic state, they remain as metallic copper and lead with almost no dissolution in the alkaline solution. Since copper and lead are metallic with respect to the nodular stannate and indium, they can be easily separated from the nodule by specific gravity separation or decantation by overflow.

銅および鉛を分離した後の殿物を含有するアルカリ液を、濾過するとインジウムおよび錫が殿物として得られる。
得られたインジウムおよび錫の殿物にさらに2段階目の水を添加し、アルカリ濃度を100g/リットル以下、好ましくは50g/リットル以下とすると錫は錫酸ナトリウムなどの錫酸塩として液側に溶解し、インジウムは水酸化インジウム殿物として沈殿または浮遊する。これらを濾過またはデカンテーションすれば、液側に錫を得られ、殿物側にインジウムを得られるので、錫とインジウムを分離することが可能となる。
When the alkaline solution containing the precipitate after separating copper and lead is filtered, indium and tin are obtained as the deposit.
When the water of the second stage is further added to the obtained indium and tin deposits and the alkali concentration is 100 g / liter or less, preferably 50 g / liter or less, tin is added to the liquid side as a stannate such as sodium stannate. When dissolved, indium precipitates or floats as an indium hydroxide deposit. If these are filtered or decanted, tin can be obtained on the liquid side and indium can be obtained on the porcelain side, so that tin and indium can be separated.

また、1段階目で得られた液であるアルカリ溶液は、若干の錫も含まれることと、アルカリ薬剤として機能を損なっていないため、濃縮して水酸化アルカリを回収し抽出工程の溶融浴に繰り返すことによって、錫の回収と併せて溶融アルカリ浴のアルカリ剤として再利用することができる。   Also, the alkaline solution obtained in the first stage contains some tin and does not impair the function as an alkaline agent. By repeating, it can be reused as an alkali agent for the molten alkali bath together with the recovery of tin.

このように本発明により、銅、錫、鉛、さらにはインジウム等が含まれるドロス等の混在物の原料から金属成分が回収可能となり、また原料中の銅と錫が金属間化合物であった場合においても回収可能である。それぞれ回収したものは、製錬原料の他、中間物として利用可能である。   Thus, according to the present invention, it becomes possible to recover metal components from raw materials of mixed materials such as dross containing copper, tin, lead, and indium, etc., and when copper and tin in the raw materials are intermetallic compounds Can also be recovered. The recovered materials can be used as intermediates in addition to smelting raw materials.

なお、比重分離などによって回収された上記の銅と鉛を含有する残渣については、硫酸浸出などの湿式処理法または融点の差を利用して鉛を選択的に溶融する乾式処理法などの一般的な公知の方法によって銅と鉛を分別回収することができる。   In addition, with respect to the above-mentioned residues containing copper and lead recovered by specific gravity separation or the like, it is common to use a wet processing method such as sulfuric acid leaching or a dry processing method that selectively melts lead using a difference in melting point. Copper and lead can be separated and recovered by any known method.

また、本発明の工程において、温度、時間、酸化剤量、原料中の錫とアルカリ剤の量比、各処理工程でのアルカリ濃度をさらに設計、設定すればよりよい各金属の回収が期待できる。また、対象をさらに貴金属をも含むドロスとすることも可能である。   In addition, in the process of the present invention, better recovery of each metal can be expected by further designing and setting the temperature, time, amount of oxidizing agent, amount ratio of tin and alkali agent in the raw material, and alkali concentration in each processing step. . Moreover, it is also possible to make the object a dross that further contains a noble metal.

混在物の原料に製錬工程で副産物として発生したドロスを100g用意した。このドロスは、表1に示すように、錫20.23質量%、インジウム0.69質量%、鉛35.48質量%、銅29.64質量%を含むものであった。なお、銅と錫は合金であり、その合金をX線で測定した所、CuxSn(x=2〜3)と、インジウムの金属間化合物が含まれていた。
このドロスを、表2に示すように、苛性ソーダ300gを400℃(673K)で加熱した溶融アルカリ浴に投入した。この時の処理時間は4時間とした。また酸化剤として1時間おきに3gの硝酸ナトリウムを添加し、アルカリ浴への抽出を促進させた。
100 g of dross generated as a by-product in the smelting process was prepared as a mixed material. As shown in Table 1, the dross contained 20.23 mass% tin, 0.69 mass% indium, 35.48 mass% lead, and 29.64 mass% copper. Copper and tin are alloys, and when the alloy was measured by X-ray, CuxSn (x = 2 to 3) and an indium intermetallic compound were included.
As shown in Table 2, the dross was put into a molten alkali bath in which 300 g of caustic soda was heated at 400 ° C. (673 K). The processing time at this time was 4 hours. Further, 3 g of sodium nitrate was added as an oxidizing agent every 1 hour to promote extraction into an alkaline bath.

Figure 2006322031
Figure 2006322031

Figure 2006322031
Figure 2006322031

次に1次浸出として、この溶融アルカリ浴を冷却して固化させた後、水を500ml添加し、アルカリ濃度349g/リットル、液温80℃とした。これを1時間撹拌し、水にアルカリ分を溶解させた。これによって錫殿物、インジウム殿物および銅と鉛とを含有する残渣を含むアルカリ溶液の第1スラリーを得た。なお、最終の液温は25℃であった。この時のアルカリ溶液を分析したところ、錫382mg/リットル、インジウム61.6mg/リットル、鉛263mg/リットル、銅0.6mg/リットルであった。   Next, as primary leaching, this molten alkali bath was cooled and solidified, and then 500 ml of water was added to adjust the alkali concentration to 349 g / liter and the liquid temperature to 80 ° C. This was stirred for 1 hour, and the alkali was dissolved in water. Thus, a first slurry of an alkaline solution containing tin, indium, and a residue containing copper and lead was obtained. The final liquid temperature was 25 ° C. Analysis of the alkaline solution at this time revealed tin 382 mg / liter, indium 61.6 mg / liter, lead 263 mg / liter, and copper 0.6 mg / liter.

さらに2次浸出として、上記両殿物の混合殿物に水を400ml添加し、アルカリ濃度を52g/リットルとし、液温80℃にて始め、1時間撹拌した。撹拌後の液温は25℃であった。
この時のアルカリ溶液を分析したところ、錫40600mg/リットル、インジウム3.3mg/リットル、鉛201mg/リットル、銅0.69mg/リットルであり、錫が溶液中に溶解して回収された。
Further, as secondary leaching, 400 ml of water was added to the mixture of the above two articles, the alkali concentration was adjusted to 52 g / liter, and the mixture was stirred at a liquid temperature of 80 ° C. for 1 hour. The liquid temperature after stirring was 25 ° C.
When the alkaline solution at this time was analyzed, it was 40600 mg / liter of tin, 3.3 mg / liter of indium, 201 mg / liter of lead, and 0.69 mg / liter of copper, and tin was dissolved and recovered in the solution.

これらの処理による残渣中の金属を分析したところ、錫0.71%、インジウム0.16%、鉛49.01%、銅41.52%であった。
上記実施例により、錫は、アルカリ溶液側に90.3%回収でき、インジウムは殿物として79%、銅、鉛は残渣としてそれぞれ99.2%、97.9%回収可能となった。
Analysis of the metals in the residues resulting from these treatments revealed 0.71% tin, 0.16% indium, 49.01% lead, and 41.52% copper.
According to the above examples, 90.3% of tin can be recovered on the alkaline solution side, 79% of indium can be recovered as a residue, and 99.2% and 97.9% of copper and lead can be recovered as residues, respectively.

本発明により銅、錫、鉛さらにはインジウムを含有し、特に銅と錫が金属間化合物として含有されるドロス等の混在物から各含有金属の回収が可能となった。   According to the present invention, it is possible to recover each contained metal from a mixture such as dross containing copper, tin, lead and indium, and in particular copper and tin as intermetallic compounds.

本発明方法を示した説明図である。It is explanatory drawing which showed this invention method. 本発明方法を示した説明図である。It is explanatory drawing which showed this invention method.

Claims (12)

銅と錫とを構成成分として含む化合物および鉛を含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫を該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を低減して錫が溶解し銅と鉛とを含有する残渣を含むスラリーを得る工程と、該スラリーを錫溶液と該残渣とに分別する工程とを有する金属回収方法。   Mixing a compound containing copper and tin as constituents and a mixture containing lead with an alkali hydroxide molten bath to extract tin in the mixture into the molten bath to obtain an alkali hydroxide mixture; Mixing the mixture with water to reduce the alkali hydroxide concentration to obtain a slurry containing a residue in which tin dissolves and contains copper and lead; and separating the slurry into a tin solution and the residue. Metal recovery method. 銅と錫とを構成成分として含む化合物、鉛およびインジウムを含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫およびインジウムを該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を低減して錫が溶解しインジウム殿物および銅と鉛とを含有する残渣を含むスラリーを得る工程と、該スラリーを錫溶液と該殿物と該残渣とに分別する工程とを有する金属回収方法。   A compound containing copper and tin as constituents, a mixture containing lead and indium is mixed with an alkali hydroxide melting bath, and tin and indium in the mixture are extracted into the melting bath to obtain an alkali hydroxide mixture. Mixing the mixture with water to reduce the alkali hydroxide concentration to dissolve the tin to obtain a slurry containing the indium deposit and a residue containing copper and lead; and the slurry to the tin solution and the The metal collection | recovery method which has the process of classifying into a residue and this residue. 前記分別する工程が前記スラリーから比重分離法によって前記残渣を分離し、次いで残部を固液分離して前記錫溶液と前記殿物とに分別する工程である、請求項2記載の金属回収方法。   3. The metal recovery method according to claim 2, wherein the fractionation step is a step of separating the residue from the slurry by a specific gravity separation method, and then solid-liquid separation of the remainder to separate the tin solution and the residue. 銅と錫とを構成成分として含む化合物および鉛を含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫を該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を200g/リットル以上として錫殿物および銅と鉛とを含有する残渣を含むスラリーを得る工程と、該スラリーを該殿物と該残渣と溶液とに分別する工程とを有する金属回収方法。   Mixing a compound containing copper and tin as constituents and a mixture containing lead with an alkali hydroxide molten bath to extract tin in the mixture into the molten bath to obtain an alkali hydroxide mixture; Mixing the mixture with water to obtain a slurry containing a tin residue and a residue containing copper and lead with an alkali hydroxide concentration of 200 g / liter or more; and adding the slurry to the residue, the residue and a solution; And a metal recovery method. 前記分別する工程において得られた前記溶液を濃縮して水酸化アルカリを回収し前記溶融浴に繰り返す、請求項4記載の金属回収方法。   The metal recovery method according to claim 4, wherein the solution obtained in the fractionation step is concentrated to recover alkali hydroxide and repeated in the molten bath. 銅と錫とを構成成分として含む化合物、鉛およびインジウムを含有する混在物を水酸化アルカリ溶融浴と混合して該混在物中の錫およびインジウムを該溶融浴中に抽出し水酸化アルカリ混合物を得る工程と、該混合物を水と混合し水酸化アルカリ濃度を200g/リットル以上として錫殿物、インジウム殿物および銅と鉛とを含有する残渣を含む第1スラリーを得る工程と、該第1スラリーを該錫殿物と該インジウム殿物とを含む混合殿物と該残渣と溶液とに分別する工程と、該混合殿物を水と混合し水酸化アルカリ濃度を100g/リットル以下として錫が溶解しインジウム殿物を含む第2スラリーを得る工程と、該第2スラリーを錫溶液と該インジウム殿物とに分別する工程とを有する金属回収方法。   A compound containing copper and tin as constituents, a mixture containing lead and indium is mixed with an alkali hydroxide melting bath, and tin and indium in the mixture are extracted into the melting bath to obtain an alkali hydroxide mixture. Obtaining the first slurry containing the residue containing tin, indium, and copper and lead by mixing the mixture with water and setting the alkali hydroxide concentration to 200 g / liter or more, and the first Separating the slurry into a mixture containing the tin deposit and the indium deposit, the residue and the solution; and mixing the mixture with water to reduce the alkali hydroxide concentration to 100 g / liter or less. A metal recovery method comprising a step of obtaining a second slurry containing dissolved indium, and a step of separating the second slurry into a tin solution and the indium deposit. 前記第1スラリーから分別する工程が該第1スラリーから比重分離法によって前記残渣を分離し、次いで残部を固液分離して前記混合殿物と前記溶液とに分別する工程である、請求項6記載の金属回収方法。   The step of separating from the first slurry is a step of separating the residue from the first slurry by a specific gravity separation method, and then solid-liquid separating the remainder to separate the mixture into the solution. The metal recovery method described. 前記第1スラリーから分別された前記溶液を濃縮して水酸化アルカリを回収し前記溶融浴に繰り返す、請求項6または7記載の金属回収方法。   The metal recovery method according to claim 6 or 7, wherein the solution separated from the first slurry is concentrated to recover alkali hydroxide and repeated in the molten bath. 前記抽出において前記混在物と前記水酸化アルカリ溶融浴との混合物中に酸化剤を添加する、請求項1〜8のいずれかに記載の金属回収方法。   The metal recovery method according to claim 1, wherein an oxidant is added to the mixture of the mixture and the alkali hydroxide molten bath in the extraction. 前記酸化剤が硝酸ナトリウム、過酸化水素、酸化鉛のうちの少なくとも1種である、請求項9記載の金属回収方法。   The metal recovery method according to claim 9, wherein the oxidizing agent is at least one of sodium nitrate, hydrogen peroxide, and lead oxide. 前記混在物が金属製錬工程で副産物として発生するドロスである、請求項1〜10のいずれかに記載の金属回収方法。   The metal recovery method according to claim 1, wherein the mixture is dross generated as a by-product in a metal smelting process. 前記水酸化アルカリが水酸化ナトリウムまたは水酸化カリウムである、請求項1〜11のいずれかに記載の金属回収方法。   The metal recovery method according to claim 1, wherein the alkali hydroxide is sodium hydroxide or potassium hydroxide.
JP2005145136A 2005-05-18 2005-05-18 Metal recovery method Active JP4876221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145136A JP4876221B2 (en) 2005-05-18 2005-05-18 Metal recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145136A JP4876221B2 (en) 2005-05-18 2005-05-18 Metal recovery method

Publications (2)

Publication Number Publication Date
JP2006322031A true JP2006322031A (en) 2006-11-30
JP4876221B2 JP4876221B2 (en) 2012-02-15

Family

ID=37541922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145136A Active JP4876221B2 (en) 2005-05-18 2005-05-18 Metal recovery method

Country Status (1)

Country Link
JP (1) JP4876221B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035778A (en) * 2007-08-02 2009-02-19 Dowa Metals & Mining Co Ltd Method for recovering tin
JP2009074128A (en) * 2007-09-20 2009-04-09 Dowa Metals & Mining Co Ltd Method for recovering tin
JP2012021176A (en) * 2010-07-12 2012-02-02 Mitsui Mining & Smelting Co Ltd Method for producing metallic lead
JP2014065941A (en) * 2012-09-26 2014-04-17 Dowa Metals & Mining Co Ltd Recovery method of tin
CN108913911A (en) * 2018-06-20 2018-11-30 扬州市华翔有色金属有限公司 A kind of refining alkaline residue mentions tin new process
JP2019131877A (en) * 2018-02-02 2019-08-08 Jx金属株式会社 LEACHING METHOD OF Sn AND MANUFACTURING METHOD OF Sn
CN111172409A (en) * 2020-01-19 2020-05-19 河南豫光金铅股份有限公司 Recovery smelting process of tin-containing material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776386B (en) * 2012-07-20 2014-02-12 北京科技大学 Method for recycling stannic oxide from tin-containing lead slag
CN106399722A (en) * 2016-10-17 2017-02-15 扬州宁达贵金属有限公司 Method of recovering tin from liquid crystal containing indium concentrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665949A (en) * 1979-11-02 1981-06-04 Mitsui Mining & Smelting Co Ltd Separation of copper from copper-containing lead dross
JPS575829A (en) * 1980-06-14 1982-01-12 Dowa Mining Co Ltd Separating and recovering method for tin in lead refining process
JPS5976835A (en) * 1982-10-25 1984-05-02 Sumitomo Metal Mining Co Ltd Dry refining method of lead

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665949A (en) * 1979-11-02 1981-06-04 Mitsui Mining & Smelting Co Ltd Separation of copper from copper-containing lead dross
JPS575829A (en) * 1980-06-14 1982-01-12 Dowa Mining Co Ltd Separating and recovering method for tin in lead refining process
JPS5976835A (en) * 1982-10-25 1984-05-02 Sumitomo Metal Mining Co Ltd Dry refining method of lead

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035778A (en) * 2007-08-02 2009-02-19 Dowa Metals & Mining Co Ltd Method for recovering tin
JP2009074128A (en) * 2007-09-20 2009-04-09 Dowa Metals & Mining Co Ltd Method for recovering tin
JP2012021176A (en) * 2010-07-12 2012-02-02 Mitsui Mining & Smelting Co Ltd Method for producing metallic lead
JP2014065941A (en) * 2012-09-26 2014-04-17 Dowa Metals & Mining Co Ltd Recovery method of tin
JP2019131877A (en) * 2018-02-02 2019-08-08 Jx金属株式会社 LEACHING METHOD OF Sn AND MANUFACTURING METHOD OF Sn
CN108913911A (en) * 2018-06-20 2018-11-30 扬州市华翔有色金属有限公司 A kind of refining alkaline residue mentions tin new process
CN111172409A (en) * 2020-01-19 2020-05-19 河南豫光金铅股份有限公司 Recovery smelting process of tin-containing material

Also Published As

Publication number Publication date
JP4876221B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4876221B2 (en) Metal recovery method
Ding et al. Integrated process for recycling copper anode slime from electronic waste smelting
CN102586627B (en) Method for recovering bismuth from bismuth slag
EP2147128B1 (en) Process for producing pure metallic indium from zinc oxide and/or solution containing the metal
JP3802046B1 (en) Method for processing heavy metal-containing powder
JP2013139595A (en) Method for recovering valuables from impurity lump containing copper derived from lead smelting
CN103966451A (en) Method for preparing sodium stannate from copper anode mud silver separation residue
Trpcevska et al. Leaching of zinc ash with hydrochloric acid solutions.
JP2010138490A (en) Method of recovering zinc
JP5507310B2 (en) Method for producing valuable metals
JP2008297608A (en) Method for separating/recovering tin
JP6335519B2 (en) Method for treating antimony-containing material discharged from tin smelting process
US5961691A (en) Recovery of lead and others metals from smelter flue dusts
RU2670117C2 (en) Process for the selective recovery of lead and silver and carbonate lead and silver concentrate, obtained by the method above
JP2005270860A (en) Treatment method of flying ash
JP5188768B2 (en) Tin recovery method
JP2007039798A (en) Method for recovering indium, and its use
WO2006084273A2 (en) Process for hydrometallurgical treatment of electric arc furnace dust
JP2003105456A (en) Method for manufacturing silver
JP4565179B2 (en) Method for recovering Sn from Sn-containing raw material
JP2006348340A (en) Method for manufacturing metal containing indium/tin
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP6457039B2 (en) Silver recovery method
JP2004307885A (en) Method for reducing impurity in metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4876221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250