JP2006322026A - Electrode for electrolytic water treatment and apparatus using the same - Google Patents

Electrode for electrolytic water treatment and apparatus using the same Download PDF

Info

Publication number
JP2006322026A
JP2006322026A JP2005144870A JP2005144870A JP2006322026A JP 2006322026 A JP2006322026 A JP 2006322026A JP 2005144870 A JP2005144870 A JP 2005144870A JP 2005144870 A JP2005144870 A JP 2005144870A JP 2006322026 A JP2006322026 A JP 2006322026A
Authority
JP
Japan
Prior art keywords
electrode
water treatment
tantalum oxide
coating layer
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005144870A
Other languages
Japanese (ja)
Other versions
JP4975271B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2005144870A priority Critical patent/JP4975271B2/en
Publication of JP2006322026A publication Critical patent/JP2006322026A/en
Application granted granted Critical
Publication of JP4975271B2 publication Critical patent/JP4975271B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for water treatment, which has a great oxidative function as an anode, further can be used as a cathode, and has an electric potential suitable for decomposing organic matters and sterilizing microorganisms. <P>SOLUTION: The electrode for water treatment includes a coating layer of a catalyst, which mainly contains tantalum oxide and further contains a platinum group metal. The tantalum oxide exists in the electrode, thereby the overvoltage of the platinum group metal moves to the electric potential suitable for decomposing the organic matters and sterilizing the microorganisms. Thus provided electrode suits for electrolytically treating wastewater containing the organic matters and having a high COD, while keeping a strong electrolytically oxidizing function and adequate corrosion resistance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解水処理に使用する電解酸化作用が強く、耐腐食性が良好、かつ逆電流に対する耐性に優れた電解的水処理用電極並びにそれを活用した電解的水処理装置に関するものである。   The present invention relates to an electrode for electrolytic water treatment that has a strong electrolytic oxidation action for use in electrolytic water treatment, good corrosion resistance, and excellent resistance to reverse current, and an electrolytic water treatment apparatus using the same. .

環境問題の進展によって、工場のみならず、家庭用排水その他についてもあらかじめ浄化が求められるようになってきている。従来の排水の基準は残留重金属を中心とするものであり、これらには十分対応できている反面、水の富栄養化に起因して排水中の窒素化合物、燐、その他のCOD特に有機CODが上昇し、これらに対する排水基準が強化されてきており、これに対応する事が必要となってきている。
従来有機CODに対しては生物化学処理が主に行われてきたが、場所と時間を取るため十分に大きな処理設備を必要とするが、不十分になるケースが多かった。そのため、薬液と前記生物化学処理の組み合わせ、あるいは電解処理や紫外線処理等と前記生物化学処理の組み合わせなどにより不十分な処理設備に対する対策が採られてきた。
Due to the progress of environmental problems, purification of not only factories but also household wastewater and others has been required in advance. Conventional wastewater standards are centered on residual heavy metals, which can be adequately addressed, but due to the eutrophication of water, nitrogen compounds, phosphorus, other CODs in the wastewater, especially organic COD Increasingly, drainage standards for these have been strengthened and it is necessary to respond to them.
Conventionally, biochemical treatment has been mainly performed on organic COD, but a sufficiently large treatment facility is required to take a place and time, but it is often insufficient. For this reason, measures against insufficient processing facilities have been taken by combining the chemical solution and the biochemical treatment, or the combination of electrolytic treatment, ultraviolet treatment, and the biochemical treatment.

しかし最近ではこれらのうち薬液を使用するケースでは薬液による2次公害の問題などが指摘されており、電解や紫外線処理などの無添加技術が強く要請されており、バラスト水中の微生物、プランクトン処理用等として、外部からの薬液を加えない、電解や紫外線処理などが行われるようになっている。
紫外線処理は大規模な処理設備と液の濁度、着色によって大きな制限を受けるためにその用途は使用条件が限られるという点から電解処理が自然に脚光を浴びてきている。
この電解処理には種々の形式が知られているが、その作用としては陽極酸化処理による有機物の分解、CODの減少、あるいは着色物質の分解による脱色などが通常行われている。また最近ではラジカル発生並びにラジカルの強い酸化作用を利用した有機物分解処理等も行われるようになってきている。
Recently, however, in cases where chemical solutions are used, problems of secondary pollution due to chemical solutions have been pointed out, and additive-free technologies such as electrolysis and ultraviolet treatment have been strongly demanded, and they are used to treat microorganisms and plankton in ballast water. For example, electrolysis or ultraviolet treatment is performed without adding a chemical solution from the outside.
Since the ultraviolet ray treatment is greatly restricted by large-scale treatment facilities, liquid turbidity, and coloration, its use is limited, so that the electrolytic treatment has naturally attracted attention.
Various methods are known for this electrolytic treatment. As its action, decomposition of organic substances by anodizing treatment, reduction of COD, or decolorization by decomposition of colored substances is usually performed. In recent years, organic substance decomposition treatment using radical generation and the strong oxidizing action of radicals has also been performed.

これらの電解処理は電解槽の構造も重要であるが、電極の特性そのものが特に重要であり、種々の電極が開発されている。中でも、酸化作用が大きく、オゾン発生による処理が出来る酸化鉛電極は酸化処理にきわめて有効であり、代表的には本発明者による開示がある(特許文献1及び特許文献2)。しかし、鉛はそのものが重金属であるという理由のため、現実的には実用上問題ないものの、直接廃水処理に使われる事は稀であった。但しオゾン発生など間接的に使われているケースは多い。
また古くから使用されている白金電極はその過電圧が高く、水処理として使用されているが、白金は高価で寿命が比較的短いため、最近ではその使用が減少傾向にある。
In these electrolytic treatments, the structure of the electrolytic cell is also important, but the characteristics of the electrodes themselves are particularly important, and various electrodes have been developed. Among them, a lead oxide electrode that has a large oxidizing action and can be treated by generation of ozone is extremely effective for the oxidation treatment, and is typically disclosed by the present inventors (Patent Document 1 and Patent Document 2). However, because lead is itself a heavy metal, it is practically not a problem, but it is rarely used directly for wastewater treatment. However, there are many cases where it is used indirectly such as ozone generation.
In addition, platinum electrodes that have been used for a long time have a high overvoltage and are used for water treatment. However, since platinum is expensive and has a relatively short life, its use has been decreasing recently.

一方、脱色用などとしては酸化スズ電極が提案されており(非特許文献1)、特に酸素過電圧が高いため有機物分解用として有効であるとされている。しかしこの電極では逆電流を流すと電気化学的にほぼ瞬間的に電極が破壊されるという問題を持っている。
また万能電極として導電性ダイアモンド電極が提案されている。この電極は極めて強い酸化作用と共に陽極としても安定に使えるという特徴があるために、多くの用途に展開されることが予想されている。しかし、現状では基材がシリコンとニオブに限定されていること、CVD法で作製されるために生産性が悪く、また高価になるためにその使用は限定的であるという問題がある。また、ダイアモンドを粉末として基材上に被覆する技術も提案されているが、実用化は今後の課題であると考えられる(特許文献3及び特許文献4)。
On the other hand, a tin oxide electrode has been proposed for decolorization and the like (Non-Patent Document 1), and is particularly effective for decomposing organic substances because of its high oxygen overvoltage. However, this electrode has a problem that when the reverse current is passed, the electrode is destroyed almost instantaneously electrochemically.
A conductive diamond electrode has been proposed as a universal electrode. Since this electrode has a characteristic that it can be used as an anode with an extremely strong oxidizing action, it is expected to be used in many applications. However, at present, there are problems that the base material is limited to silicon and niobium, the productivity is poor because it is produced by the CVD method, and its use is limited because it is expensive. Moreover, although the technique which coat | covers a diamond on a base material as a powder is also proposed, utilization is considered to be a future subject (patent documents 3 and patent documents 4).

一方電極を組み込んだ水処理用電解槽としては各種が考えられるが、特に平行に並んだ陽極と陰極に垂直方向から電解液を流す方法が有効であるとされる(特許文献5)。このための電極としては陰極としても陽極としても使用できる事が重要であり、しかも基材が穴あき板やメッシュなどに加工が出来、有効に使えることが重要である。そのために定期的に電流を逆転させたり、洗浄が容易に出来たりという種々の工夫が施されているが、一般に前記電極には低負荷でしか運転できないという問題があった。高負荷で運転可能なダイアモンド電極は多孔性の金属基材の使用に制限があるために更に一層の改良を必要とすると言う問題があった。
特開昭63−057791号公報 特開昭63−057792号公報 特開平09−279398号公報 特開平10−90774号公報 特開2004−176088号公報 電気化学及び工業物理化学62,1087(1994)
On the other hand, various types of water treatment electrolytic cells incorporating electrodes are conceivable, but a method of flowing an electrolytic solution from an orthogonal direction to an anode and a cathode arranged in parallel is considered to be effective (Patent Document 5). For this purpose, it is important that the electrode can be used as both a cathode and an anode, and it is important that the base material can be processed into a perforated plate or a mesh and can be used effectively. For this reason, various measures have been taken such as periodically reversing the current and facilitating cleaning. However, the electrode generally has a problem that it can be operated only at a low load. The diamond electrode that can be operated at a high load has a problem in that further improvement is required due to the limited use of a porous metal substrate.
JP 63-057991 A JP-A-63-057992 JP 09-279398 A Japanese Patent Laid-Open No. 10-90774 JP 2004-176088 A Electrochemistry and industrial physical chemistry 62, 1087 (1994)

本発明は、排水処理などの水処理並びに今後の大きな問題となるバラスト水処理などに有効な陽極として大きな酸化作用を有すると共に、陰極としても問題なく使え、しかも基材が従来から広く使われているチタンなどの弁金属を使うことが出来る電解的水処理に有用な電極並びにそれを使用した水処理装置を提供することを課題とした。   The present invention has a large oxidizing action as an effective anode for water treatment such as wastewater treatment and ballast water treatment, which will be a major problem in the future, and can be used as a cathode without any problem, and the substrate has been widely used conventionally. It is an object of the present invention to provide an electrode useful for electrolytic water treatment that can use a valve metal such as titanium and a water treatment apparatus using the electrode.

本発明は弁金属基材、及び当該弁金属基材の表面に形成された、酸化タンタルを主とし更に白金族金属を有する触媒被覆層を含んで成ることを特徴とする電解的水処理用電極と、この電極を陽極及び陰極として電解槽に収容し、両電極と交差する方向に被処理水を供給して、当該被処理水の電解的水処理を行うことを特徴とする電解的水処理装置である。   The present invention relates to an electrode for electrolytic water treatment comprising a valve metal substrate and a catalyst coating layer formed mainly on tantalum oxide and further comprising a platinum group metal formed on the surface of the valve metal substrate. And an electrolytic water treatment characterized in that the electrode is accommodated in an electrolytic cell as an anode and a cathode, and water to be treated is supplied in a direction intersecting with both electrodes to perform an electrolytic water treatment of the water to be treated. Device.

以下本発明を詳細に説明する。
本発明の水処理用電極は、酸化タンタルを主とし、更に白金族金属を有する触媒被覆層を含む。
白金族金属には、白金、イリジウム、パラジウム、ロジウム、ルテニウム及びオスミウムが含まれる。白金族金属のうち、白金は酸素過電圧が高くかつ酸化作用が大きいため、更にイリジウムは酸素発生用電極として極めて優れた耐久性を有するため、本発明で特に好ましく使用出来る。
The present invention will be described in detail below.
The electrode for water treatment of the present invention includes a catalyst coating layer mainly composed of tantalum oxide and further having a platinum group metal.
Platinum group metals include platinum, iridium, palladium, rhodium, ruthenium and osmium. Of the platinum group metals, platinum has a high oxygen overvoltage and a large oxidizing action, and iridium has extremely excellent durability as an oxygen generating electrode, and therefore can be particularly preferably used in the present invention.

本発明の水処理用電極で触媒被覆層が酸化タンタルと白金族金属を有する理由は次の通りである。
白金やイリジウム等の白金族金属はそれ自体は電極物質として極めて活性であるので、水溶液中で陽極として使用すると酸素発生が主体となり、被処理水中に含まれるCOD成分や有機物の分解には必ずしも有効には働かない。一方酸化タンタルは、電極としての活性はないが、電極の安定化と電極物質の選択反応性に有効に働き、いわば助触媒的作用を有する。
このような機能を有する白金族金属と酸化タンタルと組み合わせることにより、次の理由で被処理水の電解的処理が効率良く行えると考えられる。つまり白金及びイリジウム等の白金族金属は酸化タンタルの安定化作用によって電解によっても消耗が少なくなると共に、実質的な電極触媒である白金属族金属に掛かる過電圧が大きくなり、その電位が酸素又は水素発生過電圧より、有機物を分解する電位に近づく事により有効に有機物を分解し、あるいはCODの低下を行うことが出来るようになる。
The reason why the catalyst coating layer has tantalum oxide and a platinum group metal in the electrode for water treatment of the present invention is as follows.
Platinum group metals such as platinum and iridium themselves are extremely active as electrode materials, so when used as an anode in an aqueous solution, oxygen generation is the main component, which is not necessarily effective in decomposing COD components and organic substances contained in water to be treated. Does not work. On the other hand, tantalum oxide has no activity as an electrode, but it works effectively on the stabilization of the electrode and the selective reactivity of the electrode material.
By combining the platinum group metal having such a function and tantalum oxide, it is considered that electrolytic treatment of water to be treated can be efficiently performed for the following reason. In other words, platinum group metals such as platinum and iridium are less consumed by electrolysis due to the stabilizing action of tantalum oxide, and the overvoltage applied to the white metal group metal, which is a substantial electrode catalyst, increases, so that the potential is oxygen or hydrogen. By approaching the potential for decomposing the organic substance from the generated overvoltage, the organic substance can be effectively decomposed or the COD can be reduced.

このように酸化タンタルは、白金族金属の酸素又は水素発生過電圧を上昇させるという機能を有し、この機能は酸化タンタルの含有量に応じて増減する。従って触媒被覆層中の酸化タンタルの好ましい含有率は、必要な酸素又は水素発生過電圧の上昇幅により、更に白金族金属の種類、表面状態、触媒被覆層が形成される弁金属基材の種類や状態により変化する。前記酸化タンタルの機能を発揮させるために酸化タンタルは触媒被覆層中で50モル%を超える量が存在する必要があり(「酸化タンタルが触媒被覆層中で50モル%超で存在する」ことを「酸化タンタルを主とする」という)、その上限は白金族金属の触媒活性等により変化するが通常は95モル%である。つまり触媒被覆層中の酸化タンタルの含有率は50〜95モル%で、より好ましくは60〜90モル%、更に好ましくは70〜90モル%である。
50モル%未満であると、酸素発生の効率が上がってしまい目的とする被処理水処理の効率が下がる可能性が大きくなってしまう。
Thus, tantalum oxide has a function of increasing the oxygen or hydrogen generation overvoltage of the platinum group metal, and this function increases or decreases according to the content of tantalum oxide. Therefore, the preferred content of tantalum oxide in the catalyst coating layer depends on the amount of increase in the required oxygen or hydrogen generation overvoltage, the type of platinum group metal, the surface state, the type of valve metal substrate on which the catalyst coating layer is formed, It changes with the state. In order to exert the function of the tantalum oxide, the tantalum oxide must be present in an amount exceeding 50 mol% in the catalyst coating layer (“Tantalum oxide is present in the catalyst coating layer in an amount exceeding 50 mol%”). The upper limit of the amount varies depending on the catalytic activity of the platinum group metal, but is usually 95 mol%. That is, the content of tantalum oxide in the catalyst coating layer is 50 to 95 mol%, more preferably 60 to 90 mol%, still more preferably 70 to 90 mol%.
If it is less than 50 mol%, the efficiency of oxygen generation is increased, and the possibility of a decrease in the efficiency of the target treated water treatment is increased.

触媒被覆層中の白金族金属は金属として存在することが望ましく、これらの金属つまり金属白金や金属イリジウムが酸化タンタル中に分散して触媒被覆層が形成されることが望ましい。しかし酸化物として存在し得る白金以外の白金族金属は一部酸化物(例えば酸化イリジウムや酸化パラジウム)として酸化タンタルと共に存在しても良い。しかし白金族金属酸化物の量が多くなりすぎると陽極として使用するときの電位が下がって有機物分解である目的反応が進行しにくくなることがある。例えばイリジウムの場合、触媒被覆層中での金属イリジウムと酸化イリジウムのモル比は100:0〜70:30の範囲とすることが望ましい。
触媒被覆層の酸化タンタル以外の成分は通常白金族金属であるが、この他に、白金族金属以外の金属や不純物を含んでいても良く、その量は触媒被覆層全体に対して10モル%を上限とする。
The platinum group metal in the catalyst coating layer is desirably present as a metal, and it is desirable that these metals, that is, metal platinum and metal iridium are dispersed in tantalum oxide to form the catalyst coating layer. However, a platinum group metal other than platinum that may exist as an oxide may be present together with tantalum oxide as an oxide (for example, iridium oxide or palladium oxide). However, if the amount of the platinum group metal oxide is too large, the potential when used as an anode is lowered, and the target reaction, which is decomposition of organic substances, may be difficult to proceed. For example, in the case of iridium, the molar ratio of metal iridium and iridium oxide in the catalyst coating layer is preferably in the range of 100: 0 to 70:30.
Components other than tantalum oxide in the catalyst coating layer are usually platinum group metals, but in addition to these, metals and impurities other than platinum group metals may be included, and the amount thereof is 10 mol% with respect to the entire catalyst coating layer. Is the upper limit.

本発明の水処理用電極では、触媒被覆層における酸化タンタルの量が比較的多く、酸化タンタル自身が導電性を有さないため、触媒被覆層中の白金族金属への通電には工夫が必要である。このためには5価であるタンタルに僅少量の異なった原子価の金属、例えば4価であるチタンを加え、例えば熱分解で酸化物として酸化タンタル中に取り込むことにより通電が可能になる。添付する金属はチタン以外でも良いが、陽極としても陰極としても安定な物質であることが望ましい。
このような構成から成る触媒被覆層を、基材上に担持して水処理用電極とする。
前記基材は、加工が容易であり、しかも陽極として使用した場合にそれ自体極めて優れた耐食性を示し、また陰極として使用した場合にも金属として腐食が起こらない金属や金属合金を使用して形成することが望ましく、本発明では前記性能を有する弁金属を基材材料とする。弁金属には、チタン、タンタル及びニオブなどが含まれる。この弁金属基材は自由な加工が可能であると共に、陽極電位が比較的高く、十分な酸化性を有し、陰極として還元にも十分に耐えられるため、水処理用に特に有効な電極用基材である。
In the electrode for water treatment of the present invention, the amount of tantalum oxide in the catalyst coating layer is relatively large, and tantalum oxide itself does not have conductivity. It is. For this purpose, a small amount of a different valence metal, for example, tetravalent titanium, is added to pentavalent tantalum, and energization is enabled by incorporating the oxide into tantalum oxide as an oxide by, for example, thermal decomposition. The attached metal may be other than titanium, but it is desirable that the metal be a stable material as both an anode and a cathode.
The catalyst coating layer having such a configuration is supported on a base material to form a water treatment electrode.
The base material is easy to process, and exhibits excellent corrosion resistance when used as an anode, and is formed using a metal or metal alloy that does not corrode as a metal when used as a cathode. In the present invention, a valve metal having the above performance is used as a base material. Valve metals include titanium, tantalum, niobium, and the like. This valve metal substrate can be processed freely, has a relatively high anode potential, has sufficient oxidation properties, and can sufficiently withstand reduction as a cathode. It is a substrate.

このような弁金属基材の形状は必要に応じて決めれば良く、平板、穴あき板あるいは編みメッシュやエクスパンドメッシュなどから適宜選択すれば良い。
弁金属基材上に触媒被覆層を形成するためには、触媒被覆層を構成する触媒物質を含む溶液を塗布して熱分解で析出させても良いが、タンタル成分と白金族金属(例えば白金/イリジウム)を分けて交互に焼き付けることでも良い。前者の熱分解では白金以外の白金族金属が酸化物として析出する恐れがあり、これを回避して白金族金属を金属状態で析出させるためには後者の交互焼付けが特に有効である。この場合、最表面は酸化タンタルとして、必要に応じて再加熱などによりある程度の分散処理を行うと良い。
The shape of such a valve metal substrate may be determined as necessary, and may be appropriately selected from flat plates, perforated plates, knitted meshes, expanded meshes, and the like.
In order to form the catalyst coating layer on the valve metal substrate, a solution containing the catalyst substance constituting the catalyst coating layer may be applied and deposited by thermal decomposition. However, a tantalum component and a platinum group metal (for example, platinum) / Iridium) may be divided and fired alternately. In the former thermal decomposition, platinum group metals other than platinum may be precipitated as oxides. In order to avoid this and deposit the platinum group metals in a metal state, the latter alternate baking is particularly effective. In this case, the outermost surface is tantalum oxide, and it is preferable to perform a certain degree of dispersion treatment by reheating or the like as necessary.

このように酸化タンタルと白金族金属を含む触媒被覆層を有する水処理用電極は、活性と有機物分解選択性という面からは優れているが、長期間陽極として使用すると、弁金属基材表面が酸化してしまい、いわゆる不慟体化して電極物質を残したまま通電が出来なくなることがある。経験的に、基材近傍に活性な白金が存在すると、より不慟体化が進み易くなることが知られている。この影響を避けるために、弁金属基材表面にあらかじめ導電性酸化タンタル含有下地層を形成し、この下地層表面に前記触媒被覆層を被覆しても良い。この導電性酸化タンタル含有下地層は酸化タンタル単独でも、タンタルと他の金属例えばチタンの複合酸化物であっても良い。   Thus, a water treatment electrode having a catalyst coating layer containing tantalum oxide and a platinum group metal is excellent in terms of activity and organic substance decomposition selectivity. It may oxidize and become so-called sterilized, making it impossible to conduct electricity while leaving the electrode material. Empirically, it is known that when active platinum is present in the vicinity of the substrate, the sterilization is more likely to proceed. In order to avoid this influence, a conductive tantalum oxide-containing underlayer may be formed in advance on the surface of the valve metal substrate, and the catalyst coating layer may be covered on the underlayer surface. The conductive tantalum oxide-containing underlayer may be tantalum oxide alone or a composite oxide of tantalum and another metal such as titanium.

以上述べた通り、本発明の水処理用電極は、陽極としての酸化作用により被処理水中の塩素イオンを塩素ガスに酸化したり、微生物を酸化的に殺菌したりして被処理水の処理を行う。陰極として使用する場合も、微生物を還元的に殺菌する。
しかし通常の排水処理電解では陰極側のpHがアルカリ側に偏りやすく、陰極表面並びに近傍に沈殿物の生成が起こることが多い。そしてこの沈殿物を除去するために定時的に又は不定期に通電方向を変えている。通電方向を変えるためには電極に担持された電極物質(触媒被覆層)も電流方向の逆転に耐性のあることが必要であり、その点白金は金属として問題なく使えることが明らかになっている。またイリジウム等の他の白金族金属は金属状態であれば全く問題なく、部分的に酸化物であっても前述した通り金属と金属酸化物のモル比が100:0〜70:30の範囲であれば特に問題は生じない。更に酸化タンタルは安定材であり、それ自体は正/負いずれでも安定に存在できる。
As described above, the water treatment electrode of the present invention treats the water to be treated by oxidizing chlorine ions in the water to be treated to chlorine gas or oxidizing the microorganisms by oxidization as an anode. Do. Also when used as a cathode, microorganisms are reductively sterilized.
However, in normal wastewater treatment electrolysis, the pH on the cathode side tends to be biased toward the alkali side, and precipitates are often generated on and near the cathode surface. And in order to remove this deposit, the direction of electricity supply is changed regularly or irregularly. In order to change the direction of energization, the electrode material (catalyst coating layer) carried on the electrode must also be resistant to the reversal of the current direction, and in that respect, it has become clear that platinum can be used as a metal without any problems. . Also, other platinum group metals such as iridium have no problem as long as they are in the metal state, and even if they are partially oxides, the molar ratio of the metal to the metal oxide is in the range of 100: 0 to 70:30 as described above. If there is no particular problem. Furthermore, tantalum oxide is a stabilizing material, and can itself exist stably in either positive or negative.

多孔性弁金属基材上に、本発明の触媒被覆層である陽極、陰極両用の電極物質を被覆した電極をそれぞれ陽極及び陰極として複数個使用して電解槽を構成し、被処理水を電極板面に交差(90°以下30°以上が望ましい)するように流すことによって被処理水を確実に陽極及び陰極の両方に接触させ、被処理水の処理を確実にすることが出来る。特にこれにより陽極生成物を陰極で再度分解して無害化する、あるいはその逆が可能である。例えば被処理水の食塩濃度が100ppm程度ある時には陽極では部分的に有効塩素の発生が起こるが、この有効塩素を陰極で分解できる。これにより通常問題となる活性塩素は陰極でほとんど分解されてしまうために外部にはほとんど出ることが無く、それによってトリハロメタン(THM)などの二次公害の元となる生成物も最小に押さえることが出来る。酸化作用の大きなラジカルを発生させて有機物を分解すること等にも、より有効に使うことが出来る。   An electrolytic cell is constructed by using a plurality of electrodes coated with the anode and cathode electrode materials, which are the catalyst coating layers of the present invention, on the porous valve metal substrate as anodes and cathodes, respectively, and the water to be treated is the electrode. By flowing so as to intersect the plate surface (90 ° or less and preferably 30 ° or more), the water to be treated can be surely brought into contact with both the anode and the cathode, and the treatment of the water to be treated can be ensured. In particular, this makes it possible to decompose the anode product again at the cathode and render it harmless, or vice versa. For example, when the salt concentration of water to be treated is about 100 ppm, effective chlorine is partially generated at the anode, but this effective chlorine can be decomposed at the cathode. As a result, active chlorine, which is usually a problem, is almost decomposed at the cathode, so that it hardly comes out to the outside, thereby minimizing products causing secondary pollution such as trihalomethane (THM). I can do it. It can also be used more effectively for generating radicals with a large oxidizing action to decompose organic substances.

本発明の水処理用電極は、酸化タンタルと白金族金属を含む触媒被覆層を有している。通常の白金族金属は酸素発生や水素発生に適した過電圧を有するが、前記酸化タンタルの存在により白金族金属の過電圧が有機物分解や微生物殺菌に適した電位に移行する。
これにより強い電解酸化作用及び良好な耐腐食性が維持されたまま、有機物やCODの高い廃水の電解水処理に適した電極が提供できる。又この電極は、陰極としても安定に機能する。
前記電極を陽極、陰極の両方に使って定期的又は不定期に電流方向を変えながら電解処理を安定的に行うと、析出物を生じさせずに、特に陽極酸化分解処理が行える。また該電極を陽極及び陰極として組み合わせ、両電極に交差するように被処理水を流すことによってより有効に廃水の処理が行える。特に有機廃水処理やバラスト水の処理に有効である。
The water treatment electrode of the present invention has a catalyst coating layer containing tantalum oxide and a platinum group metal. Ordinary platinum group metals have an overvoltage suitable for oxygen generation and hydrogen generation, but the presence of the tantalum oxide shifts the platinum group metal overvoltage to a potential suitable for organic matter decomposition and microbial sterilization.
As a result, an electrode suitable for the electrolyzed water treatment of organic matter or wastewater with a high COD can be provided while maintaining a strong electrolytic oxidation action and good corrosion resistance. This electrode also functions stably as a cathode.
When the electrode is used as both an anode and a cathode and the electrolytic treatment is stably performed while changing the current direction regularly or irregularly, an anodic oxidative decomposition treatment can be performed without producing precipitates. Further, the waste water can be treated more effectively by combining the electrodes as an anode and a cathode and flowing the water to be treated so as to cross both electrodes. It is particularly effective for organic wastewater treatment and ballast water treatment.

次に本発明を実施形態に基づいて詳細に説明するが、本発明はこれらに限定されるものではない。   Next, although this invention is demonstrated in detail based on embodiment, this invention is not limited to these.

[実施例1]
厚さ1mmのロールがけをしたチタン製エクスパンドメッシュを弁金属基材とし、アルミナサンドを用いて表面をブラスト処理によって粗面化し、これを85℃25%硫酸中にて1時間酸洗処理を行い、次のようにして触媒被覆層を形成した。
タンタルブトキシドのブタノール溶液に、塩化イリジウムのブタノール溶液、並びに塩化白金酸のブタノール溶液を所定割合(タンタル:白金:イリジウム=7:2:1(モル分率))で溶解し、それをブタノールにて希釈して塗布液を作製した。液濃度は全金属合計で0.2モル/lであった。
[Example 1]
A titanium expanded mesh with a thickness of 1 mm is used as a valve metal base, and the surface is roughened by blasting using alumina sand, and this is pickled in 85 ° C and 25% sulfuric acid for 1 hour. Then, a catalyst coating layer was formed as follows.
In a butanol solution of tantalum butoxide, a butanol solution of iridium chloride and a butanol solution of chloroplatinic acid are dissolved at a predetermined ratio (tantalum: platinum: iridium = 7: 2: 1 (molar fraction)), and the resulting solution is dissolved in butanol. A coating solution was prepared by dilution. The liquid concentration was 0.2 mol / l in total for all metals.

この塗布液を前記チタン基材表面に塗布し、60℃で乾燥後520℃マッフル炉内で10分間熱分解を行った。塗布量は約40ml/m−チタンとなるようにした。塗布/熱分解を10回繰り返して金属として15g/mとなる被覆を形成し、これを水処理用電極とした。この金属被覆を、X線回折により定性分析したところ、酸化タンタルはほとんど非晶質であり、それに金属の白金とイリジウム並びに僅かの酸化イリジウムの存在が認められた。
前記水処理用電極を陽極及び陰極として使用して電気分解の試験を行った。本実施例及び以下の実施例及び比較例において、電解電圧が開始時点より10V上昇した時点で、電極の寿命と判断してその寿命を計測した。寿命は陰極時間+陽極時間で表した。
This coating solution was applied to the surface of the titanium substrate, dried at 60 ° C., and then pyrolyzed in a 520 ° C. muffle furnace for 10 minutes. The coating amount was about 40 ml / m 2 -titanium. Coating / pyrolysis was repeated 10 times to form a coating of 15 g / m 2 as a metal, which was used as a water treatment electrode. When this metal coating was qualitatively analyzed by X-ray diffraction, tantalum oxide was almost amorphous, and the presence of metallic platinum and iridium and a small amount of iridium oxide were observed.
An electrolysis test was performed using the water treatment electrode as an anode and a cathode. In this example and the following examples and comparative examples, when the electrolysis voltage increased by 10 V from the start time, the life of the electrode was determined and measured. The lifetime was expressed as cathode time + anode time.

電解液は20%硫酸水溶液とし、温度を10℃とし、電流密度10A/dmで1時間ごとに電流の方向を変えて電解を行った。
電解開始後10分ほどで僅かではあるが生臭い臭気が出てきた。この臭気はオゾンによるものであり、陽極としての酸化作用も通常の金属電極に比較してかなり高いことが分かった。
1000時間の連続運転でも電圧の上昇はなく、安定して電解出来ることがわかった。
また電解後、電解液にペルオキソニ硫酸の生成が認められ、強い酸化作用のあることが分かった。
The electrolytic solution was 20% sulfuric acid aqueous solution, the temperature was 10 ° C., and the current direction was changed every hour at a current density of 10 A / dm 2 .
A slight odor came out about 10 minutes after the start of electrolysis. This odor is due to ozone, and it has been found that the oxidation action as an anode is considerably higher than that of a normal metal electrode.
It was found that even during continuous operation for 1000 hours, there was no increase in voltage and electrolysis could be performed stably.
Moreover, after electrolysis, the production of peroxodisulfuric acid was observed in the electrolytic solution, which proved to have a strong oxidizing action.

[比較例1]
通常の酸素発生用の金属電極である、酸化イリジウム:酸化タンタル=70:30の被覆を、実施例1と同様の条件で実施例1と同じチタン製エクスパンドメッシュを弁金属基材表面に形成した電極を、陽極及び陰極として使用し、実施例1と同様に電解を行った。
初期電圧は実施例1より0.5V低かったが、電解時には臭気の発生はなく、また電解寿命は600から650時間であった。更にペルオキソ二流酸の生成は認められなかった。
[Comparative Example 1]
A coating of iridium oxide: tantalum oxide = 70: 30, which is a normal metal electrode for oxygen generation, was formed on the valve metal substrate surface with the same titanium expanded mesh as in Example 1 under the same conditions as in Example 1. Electrolysis was performed in the same manner as in Example 1 using the electrodes as an anode and a cathode.
Although the initial voltage was 0.5 V lower than that of Example 1, no odor was generated during electrolysis, and the electrolysis life was 600 to 650 hours. Furthermore, the formation of peroxo diacids was not observed.

[実施例2]
実施例1と同じ基材を用いて、酸化タンタル層と白金+イリジウム層を交互に積層して電極を作製した。
まず実施例1と同じ条件で弁金属基材を準備した。
五塩化タンタルを35%塩酸に溶解し、加熱して塩素イオンを塩酸として揮散させ、Ta(OH)C1(5−x)水溶液を作製した。これを10%塩酸にて希釈してタンタル塗布液とした。次いで塩化白金酸と塩化イリジウム酸を白金:イリジウム=90:10(モル比)となるようにイソプロピルアルコールに溶解して白金−イリジウム塗布液を得た。
[Example 2]
Using the same substrate as in Example 1, tantalum oxide layers and platinum + iridium layers were alternately laminated to produce an electrode.
First, a valve metal substrate was prepared under the same conditions as in Example 1.
Tantalum pentachloride was dissolved in 35% hydrochloric acid and heated to volatilize chlorine ions as hydrochloric acid to prepare an aqueous solution of Ta (OH) x C1 (5-x) . This was diluted with 10% hydrochloric acid to obtain a tantalum coating solution. Next, chloroplatinic acid and chloroiridic acid were dissolved in isopropyl alcohol so that platinum: iridium = 90: 10 (molar ratio) to obtain a platinum-iridium coating solution.

両塗布液を使って次のようにコーティングを作製した。
つまり、まずタンタル液を弁金属基材に塗布し、60℃で15分間乾燥後、530℃で10分間熱分解処理を行った。この表面に上記白金−イリジウム液を塗布し、室温で乾燥後、515℃で15分間熱分解を行った。更にこの表面にタンタル液を塗布し、室温で乾燥後、515℃で15分間熱分解を行った。この後タンタルと白金−イリジウムの被覆を交互に繰り返して電極試料を作製した(タンタル:白金:イリジウム=70:27:3(モル比))。
陽極、陰極両方ともここで作製した電極を、アゾ染料によって着色した染料廃水中に入れ、20分ごとに交互に陽/陰を入れ替えて電解を行ったところ、30分ほどで脱色し、透明になった。
A coating was prepared as follows using both coating solutions.
That is, a tantalum solution was first applied to a valve metal substrate, dried at 60 ° C. for 15 minutes, and then pyrolyzed at 530 ° C. for 10 minutes. The platinum-iridium solution was applied to this surface, dried at room temperature, and then pyrolyzed at 515 ° C. for 15 minutes. Further, a tantalum solution was applied to this surface, dried at room temperature, and then pyrolyzed at 515 ° C. for 15 minutes. Thereafter, coating of tantalum and platinum-iridium was alternately repeated to prepare an electrode sample (tantalum: platinum: iridium = 70: 27: 3 (molar ratio)).
Both the anode and cathode were placed in dye wastewater colored with an azo dye and electrolyzed with alternating positive / negative every 20 minutes. became.

[実施例3]
厚さ1mm、開口率50%のロール掛けしたチタン製エクスパンドメッシュを蓚酸で酸洗し、弁金属基材とした。
塗布液1(導電性酸化タンタル含有下地層用)として塩化タンタルに四塩化チタンを1:1(重量比)で混合し10%塩酸で希釈したものを準備した。上層の電極物質(触媒被覆層)用としては実施例1と同様にしてタンタル:白金:イリジウム=80:15:5(モル比)からなる塗布液2を準備した。
[Example 3]
A rolled titanium expanded mesh having a thickness of 1 mm and an aperture ratio of 50% was pickled with oxalic acid to obtain a valve metal substrate.
A coating solution 1 (for a conductive tantalum oxide-containing underlayer) was prepared by mixing tantalum chloride with titanium tetrachloride at 1: 1 (weight ratio) and diluting with 10% hydrochloric acid. For the upper electrode material (catalyst coating layer), a coating solution 2 comprising tantalum: platinum: iridium = 80: 15: 5 (molar ratio) was prepared in the same manner as in Example 1.

まず前記弁金属基材に塗布液1を塗布し、60℃で10分間乾燥後、525℃で15分間熱分解した。この塗布/熱分解を3回行った。しかる後に塗布液2を塗布し、室温で乾燥後、515℃で10分間熱分解を行った。この塗布液2による塗布/熱分解を10回繰り返して水処理用電極を得た。
これにより得られた電極を使用して実施例1と同じ電解液条件で電解試験を行ったところ、オゾン臭は実施例1より強く、オゾンの発生がより盛んであることがわかった。また電解寿命試験では電流密度を20A/dmとした場合に1000時間以上安定に電解できた。
First, coating solution 1 was applied to the valve metal substrate, dried at 60 ° C. for 10 minutes, and then thermally decomposed at 525 ° C. for 15 minutes. This coating / pyrolysis was performed three times. Thereafter, the coating solution 2 was applied, dried at room temperature, and then thermally decomposed at 515 ° C. for 10 minutes. Application / pyrolysis with this coating solution 2 was repeated 10 times to obtain a water treatment electrode.
When the electrode obtained by this was used for the electrolysis test on the same electrolyte solution conditions as Example 1, it turned out that ozone odor is stronger than Example 1 and ozone generation is more active. In the electrolytic life test, stable electrolysis was possible for 1000 hours or more when the current density was 20 A / dm 2 .

[実施例4]
実施例3で作製した水処理用電極を2枚縦方向に平行に並べるようにして組み込んだ電解槽を用意した。電極の並びに対して直角方向に被処理水が流れるようにパイプを取り付け、食塩を10g/l添加した着色廃水を被処理水として流しながら電解を行った。液の方向は当初陽極側から陰極側に流すようにした。
電流密度10A/dmで電解したところ、電解槽出口では被処理水の着色が消え、また被処理水の残留塩素がほぼゼロであること、更に電解槽から出てくる処理済み水中の残留塩素はほぼゼロであった。またTHM(トリハロメタン)の生成の存在も見られなかった。
[Example 4]
An electrolytic cell was prepared in which the two water treatment electrodes prepared in Example 3 were incorporated in parallel in the longitudinal direction. A pipe was attached so that the water to be treated would flow in a direction perpendicular to the arrangement of the electrodes, and electrolysis was performed while flowing colored waste water containing 10 g / l of sodium chloride as the water to be treated. The liquid direction was initially made to flow from the anode side to the cathode side.
When electrolysis was performed at a current density of 10 A / dm 2 , the color of the water to be treated disappeared at the outlet of the electrolytic cell, the residual chlorine in the water to be treated was almost zero, and the residual chlorine in the treated water coming out of the electrolytic cell. Was almost zero. In addition, the presence of THM (trihalomethane) formation was not observed.

[比較例2]
実施例4の電解槽を使用し、電極の並びに対して平行に被処理水が流れるようにパイプを取り付けたこと以外は実施例4と同じ条件で電解を行った。
その結果、被処理水は脱色されたが、残留塩素が約0.5ppm残留し、更にトレース程度ではあるがTHMの存在が認められた。
[Comparative Example 2]
Electrolysis was performed under the same conditions as in Example 4 except that the electrolytic cell of Example 4 was used and a pipe was attached so that the water to be treated flowed in parallel with the arrangement of electrodes.
As a result, although the water to be treated was decolorized, residual chlorine remained at about 0.5 ppm, and further THM was observed although it was about a trace level.

実施例4と比較例2の差の要因は次のように推測できる。
実施例4では、陽極では塩素を発生すると共に染料を分解、脱色を行い、陽極で発生した塩素は陰極まですぐに到達する為、液中の有機物との反応がほとんどなしに陰極に到達して陰極還元により塩素を分解したことによると考えられる。
他方比較例2では、陽極では塩素発生と共に廃水の脱色が行われるが、塩素の一部が陰極に達する前に液中の有機物と反応してTHMが生成すること、更に塩素が、陰極生成物である、苛性アルカリと反応して次亜塩素酸塩を生成し残留塩素として放出されたことによると考えられる。
The cause of the difference between Example 4 and Comparative Example 2 can be estimated as follows.
In Example 4, chlorine was generated at the anode and the dye was decomposed and decolored. Chlorine generated at the anode immediately reached the cathode, so that it almost reached the cathode with little reaction with organic substances in the liquid. This is thought to be due to the decomposition of chlorine by cathodic reduction.
On the other hand, in Comparative Example 2, decolorization of wastewater is performed at the anode along with the generation of chlorine, but THM is produced by reacting with organic substances in the liquid before a part of the chlorine reaches the cathode, and further chlorine is the cathode product. This is considered to be due to the reaction with caustic alkali to form hypochlorite and release it as residual chlorine.

Claims (10)

弁金属基材、及び当該弁金属基材の表面に形成された、酸化タンタルを主とし更に白金族金属を有する触媒被覆層を含んで成ることを特徴とする電解的水処理用電極。   An electrode for electrolytic water treatment, comprising a valve metal substrate and a catalyst coating layer formed mainly on tantalum oxide and further including a platinum group metal, which is formed on the surface of the valve metal substrate. 触媒被覆層中の酸化タンタルの含有量が70モル%以上であることを特徴とする請求項1記載の水処理用電極。   The water treatment electrode according to claim 1, wherein the content of tantalum oxide in the catalyst coating layer is 70 mol% or more. 白金族金属が白金及び/またはイリジウムであることを特徴とする請求項1記載の水処理用電極。   The water treatment electrode according to claim 1, wherein the platinum group metal is platinum and / or iridium. 触媒被覆層を熱分解法によって形成することを特徴とする請求項1記載の水処理用電極。   The water treatment electrode according to claim 1, wherein the catalyst coating layer is formed by a thermal decomposition method. 触媒被覆層と弁金属基材間に、導電性酸化タンタル含有下地層を形成したことを特徴とする請求項1記載の水処理用電極。   2. The electrode for water treatment according to claim 1, wherein a conductive tantalum oxide-containing underlayer is formed between the catalyst coating layer and the valve metal substrate. 導電性酸化タンタル含有下地層がチタンとタンタルの複合酸化物であることを特徴とする請求項5記載の水処理用電極。   6. The water treatment electrode according to claim 5, wherein the conductive tantalum oxide-containing underlayer is a composite oxide of titanium and tantalum. 弁金属がチタンであることを特徴とする請求項1の水処理用電極。   2. The water treatment electrode according to claim 1, wherein the valve metal is titanium. 弁金属基材がチタンエクスパンドメッシュ又はチタン穴あき板であることを特徴とする請求項1記載の水処理用電極。   The electrode for water treatment according to claim 1, wherein the valve metal substrate is a titanium expanded mesh or a titanium perforated plate. 弁金属基材、及び当該弁金属基材の表面に形成された、酸化タンタルを主とし更に白金族金属を有する触媒被覆層を含んで成る電極を、陽極及び陰極として電解槽に収容し、両電極と交差する方向に被処理水を供給して、当該被処理水の電解的水処理を行うことを特徴とする電解的水処理装置。   A valve metal substrate and an electrode formed on the surface of the valve metal substrate and including a catalyst coating layer mainly containing tantalum oxide and further containing a platinum group metal are accommodated in an electrolytic cell as an anode and a cathode. An electrolytic water treatment apparatus characterized in that water to be treated is supplied in a direction intersecting with an electrode to perform electrolytic water treatment of the water to be treated. 両電極の極性を反転させながら水処理を行うことを特徴とする請求項9記載の水処理装置。   The water treatment apparatus according to claim 9, wherein the water treatment is performed while inverting the polarities of both electrodes.
JP2005144870A 2005-05-18 2005-05-18 Electrolytic water treatment electrode Expired - Fee Related JP4975271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144870A JP4975271B2 (en) 2005-05-18 2005-05-18 Electrolytic water treatment electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144870A JP4975271B2 (en) 2005-05-18 2005-05-18 Electrolytic water treatment electrode

Publications (2)

Publication Number Publication Date
JP2006322026A true JP2006322026A (en) 2006-11-30
JP4975271B2 JP4975271B2 (en) 2012-07-11

Family

ID=37541917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144870A Expired - Fee Related JP4975271B2 (en) 2005-05-18 2005-05-18 Electrolytic water treatment electrode

Country Status (1)

Country Link
JP (1) JP4975271B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208434A (en) * 2007-02-27 2008-09-11 Doshisha Electrode for reverse electrolysis
JP2009052069A (en) * 2007-08-24 2009-03-12 Ishifuku Metal Ind Co Ltd Electrode for electrolysis
JP2010001552A (en) * 2008-06-23 2010-01-07 Sanyo Electric Co Ltd Electrode for electrolysis and electrolysis unit
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate
CN106006856A (en) * 2016-07-11 2016-10-12 苏州美源达环保科技股份有限公司 System for treating ammonia nitrogen in ammoniacal copper chloride wastewater through electrolytic catalytic oxidation method
KR20200047948A (en) * 2018-10-28 2020-05-08 주식회사 이노켐텍 Electrode manufacturing method, Electrode module, Apparatus for generating sterilization Gas
JPWO2020217817A1 (en) * 2019-04-26 2020-10-29
JP7396391B2 (en) 2022-03-31 2023-12-12 Toto株式会社 Hypochlorous acid generation electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03957A (en) * 1989-05-27 1991-01-07 Fuji Heavy Ind Ltd Fuel cut device
JPH0353091A (en) * 1989-07-14 1991-03-07 Permascand Ab Electrode
JPH0559580A (en) * 1991-08-30 1993-03-09 Permelec Electrode Ltd Electrode for electrolysis
JPH07299465A (en) * 1994-05-10 1995-11-14 Nippon Shokubai Co Ltd Electrolytic treatment of waste water and anode used therefor
JP2003266073A (en) * 2002-03-13 2003-09-24 Sanyo Electric Co Ltd Apparatus for producing electrolytic water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03957A (en) * 1989-05-27 1991-01-07 Fuji Heavy Ind Ltd Fuel cut device
JPH0353091A (en) * 1989-07-14 1991-03-07 Permascand Ab Electrode
JPH0559580A (en) * 1991-08-30 1993-03-09 Permelec Electrode Ltd Electrode for electrolysis
JPH07299465A (en) * 1994-05-10 1995-11-14 Nippon Shokubai Co Ltd Electrolytic treatment of waste water and anode used therefor
JP2003266073A (en) * 2002-03-13 2003-09-24 Sanyo Electric Co Ltd Apparatus for producing electrolytic water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208434A (en) * 2007-02-27 2008-09-11 Doshisha Electrode for reverse electrolysis
JP2009052069A (en) * 2007-08-24 2009-03-12 Ishifuku Metal Ind Co Ltd Electrode for electrolysis
JP2010001552A (en) * 2008-06-23 2010-01-07 Sanyo Electric Co Ltd Electrode for electrolysis and electrolysis unit
JP2011256431A (en) * 2010-06-09 2011-12-22 Ihi Corp Apparatus for producing perchlorate
CN106006856A (en) * 2016-07-11 2016-10-12 苏州美源达环保科技股份有限公司 System for treating ammonia nitrogen in ammoniacal copper chloride wastewater through electrolytic catalytic oxidation method
KR20200047948A (en) * 2018-10-28 2020-05-08 주식회사 이노켐텍 Electrode manufacturing method, Electrode module, Apparatus for generating sterilization Gas
KR102326697B1 (en) 2018-10-28 2021-11-17 주식회사 이노켐텍 Electrode manufacturing method, Electrode module, Apparatus for generating sterilization Gas
JPWO2020217817A1 (en) * 2019-04-26 2020-10-29
WO2020217817A1 (en) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 Electrode for electrolysis, and method for producing electrode for electrolysis
JP7194911B2 (en) 2019-04-26 2022-12-23 パナソニックIpマネジメント株式会社 Electrode for electrolysis and method for producing electrode for electrolysis
JP7396391B2 (en) 2022-03-31 2023-12-12 Toto株式会社 Hypochlorous acid generation electrode

Also Published As

Publication number Publication date
JP4975271B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
Andrade et al. On the performance of Fe and Fe, F doped Ti–Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater
JP4975271B2 (en) Electrolytic water treatment electrode
Panizza et al. Electrochemical treatment of wastewater containing polyaromatic organic pollutants
Tavares et al. Electrochemical oxidation of methyl red using Ti/Ru0. 3Ti0. 7O2 and Ti/Pt anodes
JP4116949B2 (en) Electrochemical sterilization and sterilization method
US10046989B2 (en) Electrochemical system and method for on-site generation of oxidants at high current density
Zanoni et al. Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes
Rodríguez-Peña et al. New insights about the electrochemical production of ozone
JP2000254650A (en) Water treatment and water treatment device
Li et al. Enhanced treatment ability of membrane technology by integrating an electric field for dye wastewater treatment: a review
Wang et al. Comparison of Ti/Ti4O7, Ti/Ti4O7-PbO2-Ce, and Ti/Ti4O7 nanotube array anodes for electro-oxidation of p-nitrophenol and real wastewater
KR20070012721A (en) Anode for oxygen evolution
Mohan et al. In situ electrocatalytic oxidation of acid violet 12 dye effluent
CA3168177A1 (en) Electrode having polarity capable of being reversed and use thereof
JP2002275671A (en) Method for producing hydrogen peroxide aqueous solution
JP5105406B2 (en) Electrode for reverse electrolysis
KR100553364B1 (en) Metal Mixed Oxide Electrode And Making method of The Same
JP2006322056A (en) Electrode for electrolysis and manufacturing method therefor
EP2089326B1 (en) Treatment system of ships ballast water, offshore petroleum platforms and vessels, in general, through a process in an electrochemical reactor
JP3724096B2 (en) Oxygen generating electrode and manufacturing method thereof
JP3722537B2 (en) Organic sludge oxidation treatment method and equipment
JP3673000B2 (en) Electrolyzer for electrolyzed water production
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
Guo et al. Recent advancements in modified SnO 2-Sb electrodes for electrochemical treatment of wastewater
JPH05115879A (en) Treatment of dyestuff aqueous solution

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees