JP2006321691A - Method for manufacturing silica molded product and method for manufacturing silica glass article by sintering the silica molded product - Google Patents

Method for manufacturing silica molded product and method for manufacturing silica glass article by sintering the silica molded product Download PDF

Info

Publication number
JP2006321691A
JP2006321691A JP2005147462A JP2005147462A JP2006321691A JP 2006321691 A JP2006321691 A JP 2006321691A JP 2005147462 A JP2005147462 A JP 2005147462A JP 2005147462 A JP2005147462 A JP 2005147462A JP 2006321691 A JP2006321691 A JP 2006321691A
Authority
JP
Japan
Prior art keywords
silica
producing
cellulose derivative
molded product
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005147462A
Other languages
Japanese (ja)
Other versions
JP4539850B2 (en
Inventor
Takayuki Imaizumi
孝之 今泉
Akira Fujinoki
朗 藤ノ木
Hiroyuki Watanabe
博行 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2005147462A priority Critical patent/JP4539850B2/en
Publication of JP2006321691A publication Critical patent/JP2006321691A/en
Application granted granted Critical
Publication of JP4539850B2 publication Critical patent/JP4539850B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silica glass article having a complicated shape with good accuracy, at a low cost, and without intrusion of air bubbles. <P>SOLUTION: The method for manufacturing a silica glass article comprises adding and dispersing cellulose derivative powder to a slurry that contains silica fine powder and water and is heated to a temperature higher than the gelling temperature of the cellulose derivative aqueous solution and not higher than 100°C, thereafter cooling it to 10°C or lower, injecting it into a mold heated to a temperature higher than the gelling temperature of the cellulose derivative aqueous solution and not higher than 150°C to manufacture a silica molded product, and subsequently sintering the silica molded product. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シリカ成形体の製造方法及び該シリカ成形体を焼結するシリカガラス製品の製造方法に関する。   The present invention relates to a method for producing a silica molded body and a method for producing a silica glass product by sintering the silica molded body.

従来、シリカガラス製品の簡便な製造方法として、プレス成形法、鋳込み成形法、射出成形法などが挙げられるが、前記プレス成形法では大型形状又は複雑形状の製品が製造できない欠点があった。また、鋳込み成形法にあっては、鋳込み原料の流動性を確保するため有機バインダーを大量に配合し、それが原因で不純物が混入し高純度の製品を製造できない欠点があった。さらに、射出成形法にあっては、特許文献1にみるようにシリカ原料に対して有機バインダーを10〜70質量%と大量に配合することから成形体から有機バインダーを完全に除去することが困難で高純度のシリカガラス製品が製造できない上に、前記有機バインダーに起因するシリカガラス製品の変形やひび割れなどが起こる欠点があった。   Conventionally, as a simple method for producing a silica glass product, there are a press molding method, a cast molding method, an injection molding method, and the like. However, the press molding method has a drawback that a product having a large shape or a complicated shape cannot be produced. Further, the casting molding method has a drawback that a large amount of an organic binder is blended in order to ensure the fluidity of the casting raw material, and impurities are mixed in to cause high purity products. Furthermore, in the injection molding method, as shown in Patent Document 1, it is difficult to completely remove the organic binder from the molded product because the organic binder is blended in a large amount of 10 to 70% by mass with respect to the silica raw material. In addition, high-purity silica glass products cannot be produced, and the silica glass product is deformed or cracked due to the organic binder.

他方、原料がセラミックス粉であるが、セルロースエーテルの熱ゲル化特性を利用しセルロースエーテルをそのゲル化温度以上でセラミックススラリーに混合し、それをゲル化温度以下に冷却した金型内に注入し固化したのち、焼成する製造方法が提案されている(特許文献2)。しかし、その製造方法ではセルロースエーテルが溶解しないまま成形体に混入され、焼結で気化し気泡が混入する欠点があった。
特開平4−349130号公報 特開2000−280210号公報
On the other hand, the raw material is ceramic powder. Utilizing the thermal gelation characteristics of cellulose ether, cellulose ether is mixed with the ceramic slurry above its gelation temperature and poured into a mold cooled to below the gelation temperature. A manufacturing method has been proposed in which solidification is performed after the solidification (Patent Document 2). However, the production method has a drawback that cellulose ether is not dissolved but is mixed into the molded body, vaporized by sintering, and bubbles are mixed therein.
JP-A-4-349130 JP 2000-280210 A

こうした現状に鑑み、本発明者等は、鋭意研究を続けた結果、シリカ微粉と水を含むスラリーをセルロース誘導体水溶液のゲル化温度以上、100℃以下に加熱したのち、セルロース誘導体粉末を添加、分散しそれを10℃以下に冷却したのち、セルロース誘導体水溶液のゲル化温度以上、150℃以下に加熱した型内に射出することで有機バインダーを少なく使用しても良好な複雑な形状のシリカガラス製品が、気泡の混入がなく、精度よく、かつ安価に製造できることを見出して、本発明を完成したものである。すなわち、     In view of the current situation, the present inventors have conducted intensive research. As a result, the slurry containing silica fine powder and water was heated to the gelation temperature of the cellulose derivative aqueous solution above 100 ° C., and then the cellulose derivative powder was added and dispersed. And after cooling it to 10 ° C. or less, it is injected into a mold heated to a temperature not lower than the gelation temperature of the cellulose derivative aqueous solution and not higher than 150 ° C., so that the silica glass product having a complicated shape can be used even when using a small amount of organic binder. However, the present invention has been completed by finding that it can be manufactured accurately and inexpensively without bubbles being mixed therein. That is,

本発明は、複雑な形状のシリカ成形体を精度よく、かつ安価に製造する方法を提供することを目的とする。   An object of this invention is to provide the method of manufacturing the complicated shaped silica molded object accurately and cheaply.

また、本発明は、複雑な形状のシリカガラス製品を気泡の混入がなく透明なシリカガラス製品を製造する方法を提供することを目的とする。   It is another object of the present invention to provide a method for producing a silica glass product having a complicated shape and having no bubbles mixed therein.

上記目的を達成する本発明は、セルロース誘導体水溶液のゲル化温度以上、100℃以下に加熱されたシリカ微粉と水を含むスラリーにセルロース誘導体粉末を添加、分散した後、10℃以下に冷却し、セルロース誘導体水溶液のゲル化温度以上、150℃以下に加熱した型内に射出することを特徴とするシリカ成形体の製造方法及び該シリカ成形体を焼結するシリカガラス製品の製造方法に関する。   The present invention that achieves the above object is to add and disperse the cellulose derivative powder to a slurry containing silica fine powder heated to 100 ° C or lower and a gelling temperature of the cellulose derivative aqueous solution, and then cool to 10 ° C or lower. The present invention relates to a method for producing a silica molded product, which is injected into a mold heated to a gelling temperature of a cellulose derivative aqueous solution or higher and 150 ° C. or lower, and a method for producing a silica glass product for sintering the silica molded product.

本発明で使用するシリカ微粉としては、天然シリカ微粉、合成シリカ微粉などが挙げられる。前記微粉の粒径は0.1〜20μmの範囲にあるのがよい。好ましくは形状が球状であるのがよい。微粉が球状であることで射出が良好に行える。特に合成シリカ微粉であると、その表面に多くの親水性のシラノール基を有しており水と混合すると、シリカ微粉表面のシラノール基が互いに水素結合し、シリカ微粉が三次元の網目構造を形成する上に、配合するセルロース誘導体の未置換状態の水酸基とも水素結合し高い強度を有する成形体が得られ以後の工程をスムーズに行うことができる利点がある。シリカ微粉の粒径が0.1μm未満では、粘度が高くなりセルロース誘導体粉の添加混合が困難となる。また、粒径が20μmを超えると、射出成形機や金型の表面を摩耗し、摩耗かすがシリカ成形体中に混入し汚染して好ましくない。特に、結晶化の原因となるアルカリ金属、アルカリ土類金属、鉄の含有量を50ppm以下とするのがよい。   Examples of the silica fine powder used in the present invention include natural silica fine powder and synthetic silica fine powder. The particle size of the fine powder is preferably in the range of 0.1 to 20 μm. The shape is preferably spherical. Injection can be performed satisfactorily because the fine powder is spherical. In particular, synthetic silica fine powder has many hydrophilic silanol groups on its surface, and when mixed with water, the silanol groups on the surface of the silica fine powder form hydrogen bonds with each other, and the silica fine powder forms a three-dimensional network structure. In addition, there is an advantage that a molded product having high strength can be obtained by hydrogen bonding with an unsubstituted hydroxyl group of the cellulose derivative to be blended, and the subsequent steps can be carried out smoothly. When the particle size of the silica fine powder is less than 0.1 μm, the viscosity becomes high and it becomes difficult to add and mix the cellulose derivative powder. On the other hand, when the particle diameter exceeds 20 μm, the surface of the injection molding machine or the mold is worn, and the worn debris is mixed into the silica molded body and contaminated, which is not preferable. In particular, the content of alkali metals, alkaline earth metals, and iron that cause crystallization is preferably 50 ppm or less.

上記セルロース誘導体粉としては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシメチルセルロースが挙げられ、特に水溶液が2質量%において30,000mPa・s以上となるメチルセルロースがよい。該メチルセルロースを使用することでシリカ微粉と混合するセルロース誘導体粉の量を少なくしても成形性を良好に保つことができる。セルロース誘導体粉の添加量は、シリカ微粉の固形分に対し0.1〜10質量%、好ましくは0.1〜5質量%の範囲がよい。添加量が0.1質量%未満では、十分な成形性を保てず、一方、10質量%を越えると焼結時の収縮率が大きくなり製品に変形やクラックが発生し好ましくない。前記セルロース誘導体粉の水溶液粘度は、JIS K 2283−1993に規定するウベローデ粘度計No.5を用い、20℃における2質量%水溶液粘度として測定した値である。セルロース誘導体粉を含有する混合スラリーには、さらに必要に応じてステアリン酸などの脂肪酸、エチレングリコール、グリセリン、ソルビトールなどの水溶性多価アルコール、それらのプロピレンオキシド、エチレンオキシド又は脂肪酸などの付加物からなる可塑剤を添加し流動性を高めるのがよい。   Examples of the cellulose derivative powder include methylcellulose, hydroxypropylmethylcellulose, and hydroxymethylcellulose. Particularly, methylcellulose having an aqueous solution of 30,000 mPa · s or more at 2% by mass is preferable. By using the methylcellulose, good moldability can be maintained even if the amount of the cellulose derivative powder mixed with the silica fine powder is reduced. The addition amount of the cellulose derivative powder is 0.1 to 10% by mass, preferably 0.1 to 5% by mass with respect to the solid content of the silica fine powder. If the addition amount is less than 0.1% by mass, sufficient moldability cannot be maintained. On the other hand, if it exceeds 10% by mass, the shrinkage rate during sintering increases, and deformation or cracks occur in the product. The aqueous solution viscosity of the cellulose derivative powder was measured according to the Ubbelohde viscometer No. specified in JIS K 2283-1993. 5 is a value measured as a 2 mass% aqueous solution viscosity at 20 ° C. The mixed slurry containing cellulose derivative powder further comprises, if necessary, fatty acids such as stearic acid, water-soluble polyhydric alcohols such as ethylene glycol, glycerin, and sorbitol, and adducts thereof such as propylene oxide, ethylene oxide, or fatty acids. It is better to add a plasticizer to improve fluidity.

本発明の製造方法では、上述のとおりシリカガラス微粉、水を含むスラリーをセルロース誘導体水溶液のゲル化温度以上、100℃以下に加熱し、そこにセルロース誘導体粉を凝集しないように少量ずつ攪拌しながら添加、混合し、冷却し、射出シリンダーに注入する又は射出シリンダー内で冷却し、それをセルロース誘導体水溶液のゲル化温度以上に加熱した成形型内に射出するシリカ成形体を製造する方法である。得られた成形体は、離型後、脱脂処理、純化処理した上で焼結する。これにより高純度で、透明なシリカガラス製品が製造できる。   In the production method of the present invention, as described above, the silica glass fine powder and the slurry containing water are heated to a temperature not lower than the gelation temperature of the cellulose derivative aqueous solution and not higher than 100 ° C., and while stirring little by little so as not to aggregate the cellulose derivative powder. It is a method for producing a silica molded body that is added, mixed, cooled, poured into an injection cylinder or cooled in an injection cylinder, and injected into a mold heated above the gelation temperature of an aqueous cellulose derivative solution. The obtained molded body is degreased and purified after demolding and then sintered. Thereby, a highly pure and transparent silica glass product can be produced.

スラリーの冷却は、10℃以下、1〜120分の範囲で行う。この冷却でスラリーの粘性が上昇し攪拌を中止しても粉末の凝集や沈降を起こすことがない。冷却されたスラリーは次いでセルロース誘導体水溶液のゲル化温度以上、150℃以下、具体的には70〜120℃の温度に加熱した樹脂製又は金属製の成形型内に射出される。   The slurry is cooled in a range of 10 ° C. or less and 1 to 120 minutes. This cooling increases the viscosity of the slurry and does not cause aggregation or sedimentation of the powder even if the stirring is stopped. The cooled slurry is then injected into a resin or metal mold heated to a temperature not lower than the gelation temperature of the cellulose derivative aqueous solution and not higher than 150 ° C., specifically 70 to 120 ° C.

成形型内ではセルロース誘導体を含有するスラリーはゲル化し、水分が蒸発され強固な成形体に形成される。水の蒸発は離型する際に成形体が必要な強度を保つ程度で良く、完全に除去する必要はない。   In the mold, the slurry containing the cellulose derivative is gelled and moisture is evaporated to form a strong molded body. Evaporation of water is sufficient to maintain the required strength of the molded body when releasing the mold, and does not need to be completely removed.

上記脱脂処理は、大気雰囲気下、300〜900℃の温度で、1〜5℃/分の昇温速度で行い、前記温度範囲に達したところで3〜6時間保持し、脱脂処理終了室温にまで放冷される。また、純化処理は、塩素系雰囲気下、500〜1300℃で0.5〜5時間処理するのがよい。この処理でシリカ成形体中の不純物、特にアルカリ金属、アルカリ土類金属が除去され、ガラス化時にシリカガラスのクリストバライトへの転位が抑えられ、製品にクラックによる破損や欠け、或は表面の微細なクラックによる凹凸の発生を起こすことがない。     The degreasing treatment is performed in an air atmosphere at a temperature of 300 to 900 ° C. at a temperature rising rate of 1 to 5 ° C./min. When the temperature reaches the temperature range, the degreasing treatment is held for 3 to 6 hours until the degreasing treatment is completed to room temperature. It is allowed to cool. The purification treatment is preferably carried out at 500 to 1300 ° C. for 0.5 to 5 hours in a chlorine atmosphere. This treatment removes impurities, especially alkali metals and alkaline earth metals, in the silica molded body, suppresses the dislocation of silica glass to cristobalite during vitrification, and causes damage or chipping due to cracks in the product, or fine surface. There is no occurrence of unevenness due to cracks.

本発明の製造方法で製造されたシリカ成形体は1200〜1700℃の温度で5〜30分間、好ましくは減圧下で焼結する。   The silica molded body produced by the production method of the present invention is sintered at a temperature of 1200 to 1700 ° C. for 5 to 30 minutes, preferably under reduced pressure.

以下に本発明について具体的に説明するが、本発明はこれに限定されるものではない。   The present invention will be specifically described below, but the present invention is not limited to this.

実施例1
平均粒径が1.5μmのシリカ微粉を脱イオン水に加え固形分が80質量%のシリカスラリーを調製した。これを80℃に加熱後、重量平均分子量が290,000g/molのメチルセルロースをシリカ微粉固形分に対し5質量%を少量ずつ添加、混合した。得られたメチルセルロース含有シリカスラリーを射出シリンダーに充填し5℃で10分間冷却した。この冷却したメチルセルロース含有シリカスラリーをあらかじめ80℃に加熱した金型へ射出し、1分間保持後離型した。得られた成形体を酸素雰囲気下、600℃で20時間脱脂処理後、塩化水素雰囲気下、1200℃で純化処理を行った。次いで13.3Paにおいて1450℃で10分間焼結処理を行い、10×10×100mmの透明なシリカガラスブロックを得た。このガラスブロックの平均気泡密度は0.1個/cm3未満で、収縮率は8%であった。
Example 1
Silica fine powder having an average particle size of 1.5 μm was added to deionized water to prepare a silica slurry having a solid content of 80% by mass. After heating this to 80 degreeC, 5 mass% of methylcellulose whose weight average molecular weight is 290,000 g / mol was added little by little with respect to the silica fine powder solid content, and was mixed. The obtained methylcellulose-containing silica slurry was filled in an injection cylinder and cooled at 5 ° C. for 10 minutes. The cooled methylcellulose-containing silica slurry was injected into a mold heated to 80 ° C., held for 1 minute, and then released. The obtained molded body was degreased at 600 ° C. for 20 hours in an oxygen atmosphere, and then purified at 1200 ° C. in a hydrogen chloride atmosphere. Subsequently, sintering treatment was performed at 1450 ° C. for 10 minutes at 13.3 Pa to obtain a 10 × 10 × 100 mm transparent silica glass block. This glass block had an average cell density of less than 0.1 / cm 3 and a shrinkage rate of 8%.

実施例2
実施例1において、重量平均分子量が400,000g/molのメチルセルロース1質量%を用いた以外、実施例1と同様にして10×10×100mmの透明シリカガラスブロックを得た。このガラスブロックの平均気泡密度は0.1個/cm3未満で、収縮率は5%であった。
Example 2
A transparent silica glass block having a size of 10 × 10 × 100 mm was obtained in the same manner as in Example 1, except that 1% by mass of methylcellulose having a weight average molecular weight of 400,000 g / mol was used. This glass block had an average cell density of less than 0.1 / cm 3 and a shrinkage of 5%.

比較例1
実施例1において、射出シリンダー内での冷却を20℃とした以外、実施例1と同様にして射出成形したが成形体強度が弱く良好な成形体を得ることができなかった。
Comparative Example 1
In Example 1, injection molding was carried out in the same manner as in Example 1 except that the cooling in the injection cylinder was set to 20 ° C. However, the strength of the molded product was weak and a good molded product could not be obtained.

比較例2
実施例1において、射出シリンダー内での冷却を50℃、メチルセルロースの重量平均分子量を700,000g/molとした以外、実施例1と同様にして10×10×100mmの透明シリカガラスブロックを得た。得られたシリカガラスブロックには、大きな気泡が存在する上に、平均気泡密度が1.2個/cm3であった。
Comparative Example 2
In Example 1, a transparent silica glass block of 10 × 10 × 100 mm was obtained in the same manner as in Example 1 except that cooling in the injection cylinder was 50 ° C. and the weight average molecular weight of methylcellulose was 700,000 g / mol. . The resulting silica glass block had large bubbles and an average cell density of 1.2 / cm 3 .

本発明の製造方法では、複雑な形状のシリカガラス製品を精度よく、かつ安価に気泡の混入もなく製造でき工業的に有用である。




















The production method of the present invention is industrially useful because a silica glass product having a complicated shape can be produced accurately and inexpensively without mixing of bubbles.




















Claims (10)

セルロース誘導体水溶液のゲル化温度以上、100℃以下に加熱されたシリカ微粉と水を含むスラリーにセルロース誘導体粉末を添加、分散した後、10℃以下に冷却し、セルロース誘導体水溶液のゲル化温度以上、150℃以下に加熱した型内に射出することを特徴とするシリカ成形体の製造方法。 More than the gelling temperature of the cellulose derivative aqueous solution, after adding and dispersing the cellulose derivative powder to the slurry containing silica fine powder and water heated to 100 ° C or lower, cooled to 10 ° C or lower, and above the gelling temperature of the cellulose derivative aqueous solution, A method for producing a silica molded body, characterized by being injected into a mold heated to 150 ° C or lower. スラリーに含まれるシリカ微粉が固形分で40〜85質量%あることを特徴とする請求項1記載のシリカ成形体の製造方法。 The method for producing a silica molded article according to claim 1, wherein the silica fine powder contained in the slurry is 40 to 85 mass% in solid content. シリカ微粉が固形分で70〜85質量%であることを特徴とする請求項2記載のシリカ成形体の製造方法 The method for producing a silica molded article according to claim 2, wherein the silica fine powder is 70 to 85 mass% in solid content. 添加するセルロース誘導体がシリカ微粉の固形分に対して0.1〜10質量%であることを特徴とする請求項1記載のシリカ成形体の製造方法。 The method for producing a silica molded article according to claim 1, wherein the cellulose derivative to be added is 0.1 to 10% by mass relative to the solid content of the silica fine powder. セルロース誘導体がメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシメチルセルロースから選ばれる少なくとも1種類であることを特徴とする請求項1ないし4のいずれか1項記載のシリカ成形体の製造方法。 The method for producing a silica molded article according to any one of claims 1 to 4, wherein the cellulose derivative is at least one selected from methylcellulose, hydroxypropylmethylcellulose, and hydroxymethylcellulose. セルロース誘導体の分子量が重量平均分子量で190000〜530000g/molであることを特徴とする請求項4又は5記載のシリカ成形体の製造方法。 6. The method for producing a silica molded article according to claim 4, wherein the molecular weight of the cellulose derivative is 190000 to 530000 g / mol in terms of weight average molecular weight. 請求項1ないし6のいずれか1項記載のシリカ成形体を1200〜1700℃の温度で焼結することを特徴とするシリカガラス製品の製造方法。 A method for producing a silica glass product, comprising sintering the silica molded body according to any one of claims 1 to 6 at a temperature of 1200 to 1700 ° C. シリカ成形体の焼結前に脱脂処理、純化処理をすることを特徴とする請求項7記載のシリカガラス製品の製造方法。 The method for producing a silica glass product according to claim 7, wherein a degreasing treatment and a purification treatment are performed before sintering the silica compact. シリカ成形体の脱脂処理を大気雰囲気下、温度300〜900℃で行うことを特徴とする請求項8記載のシリカガラス製品の製造方法。 The method for producing a silica glass product according to claim 8, wherein the degreasing treatment of the silica molded body is performed at a temperature of 300 to 900 ° C in an air atmosphere. シリカ成形体の純化処理を塩素系雰囲気下、500〜1300℃で行うことを特徴とする請求項8記載のシリカガラス製品の製造方法。


























The method for producing a silica glass product according to claim 8, wherein the purification treatment of the silica molded body is performed at 500 to 1300 ° C. in a chlorine atmosphere.


























JP2005147462A 2005-05-20 2005-05-20 Method for producing silica molded body and method for producing silica glass product for sintering the silica molded body Expired - Fee Related JP4539850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005147462A JP4539850B2 (en) 2005-05-20 2005-05-20 Method for producing silica molded body and method for producing silica glass product for sintering the silica molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005147462A JP4539850B2 (en) 2005-05-20 2005-05-20 Method for producing silica molded body and method for producing silica glass product for sintering the silica molded body

Publications (2)

Publication Number Publication Date
JP2006321691A true JP2006321691A (en) 2006-11-30
JP4539850B2 JP4539850B2 (en) 2010-09-08

Family

ID=37541628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005147462A Expired - Fee Related JP4539850B2 (en) 2005-05-20 2005-05-20 Method for producing silica molded body and method for producing silica glass product for sintering the silica molded body

Country Status (1)

Country Link
JP (1) JP4539850B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203573A (en) * 2017-06-05 2018-12-27 信越化学工業株式会社 Transparent silica glass and method for producing the same
US10710918B1 (en) 2018-02-19 2020-07-14 Owens-Brockway Glass Container Inc. Method of manufacturing a hollow glass article having a container shape
KR20210057220A (en) 2016-06-01 2021-05-20 신에쯔 세끼에이 가부시키가이샤 Silica glass member for hermetic sealing of ultraviolet smd led element and method for manufacturing quarts glass member for ultraviolet led
CN113277715A (en) * 2021-04-23 2021-08-20 华南师范大学 Method for manufacturing quartz glass device with complex structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194702A (en) * 1984-10-15 1986-05-13 ユケン工業株式会社 Method of molding ceramic product
JPH0497940A (en) * 1990-08-14 1992-03-30 Dow Chem Co:The Production of inorganic powder slurry
JPH04349130A (en) * 1991-05-27 1992-12-03 Nitto Chem Ind Co Ltd Production of quartz glass molded body
JPH09169572A (en) * 1995-12-20 1997-06-30 Kyocera Corp Composition for extrusion molding
JPH11199253A (en) * 1997-10-29 1999-07-27 Samsung Electron Co Ltd Silica glass composition
JP2001214203A (en) * 2000-01-31 2001-08-07 Shimizu Shokuhin Kk Binder used in molding of metal powder or ceramic powder and molding method using the same
JP2004203639A (en) * 2002-12-24 2004-07-22 Tosoh Corp Formed blank product of silica glass, its polished product, and method of manufacturing them
JP2006315910A (en) * 2005-05-12 2006-11-24 Shinetsu Quartz Prod Co Ltd Method for manufacturing silica glass article and silica glass article obtained by the method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194702A (en) * 1984-10-15 1986-05-13 ユケン工業株式会社 Method of molding ceramic product
JPH0497940A (en) * 1990-08-14 1992-03-30 Dow Chem Co:The Production of inorganic powder slurry
JPH04349130A (en) * 1991-05-27 1992-12-03 Nitto Chem Ind Co Ltd Production of quartz glass molded body
JPH09169572A (en) * 1995-12-20 1997-06-30 Kyocera Corp Composition for extrusion molding
JPH11199253A (en) * 1997-10-29 1999-07-27 Samsung Electron Co Ltd Silica glass composition
JP2001214203A (en) * 2000-01-31 2001-08-07 Shimizu Shokuhin Kk Binder used in molding of metal powder or ceramic powder and molding method using the same
JP2004203639A (en) * 2002-12-24 2004-07-22 Tosoh Corp Formed blank product of silica glass, its polished product, and method of manufacturing them
JP2006315910A (en) * 2005-05-12 2006-11-24 Shinetsu Quartz Prod Co Ltd Method for manufacturing silica glass article and silica glass article obtained by the method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210057220A (en) 2016-06-01 2021-05-20 신에쯔 세끼에이 가부시키가이샤 Silica glass member for hermetic sealing of ultraviolet smd led element and method for manufacturing quarts glass member for ultraviolet led
JP2018203573A (en) * 2017-06-05 2018-12-27 信越化学工業株式会社 Transparent silica glass and method for producing the same
US10710918B1 (en) 2018-02-19 2020-07-14 Owens-Brockway Glass Container Inc. Method of manufacturing a hollow glass article having a container shape
CN113277715A (en) * 2021-04-23 2021-08-20 华南师范大学 Method for manufacturing quartz glass device with complex structure
CN113277715B (en) * 2021-04-23 2023-10-20 华南师范大学 Method for manufacturing quartz glass device with complex structure

Also Published As

Publication number Publication date
JP4539850B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
US7790078B2 (en) Process for producing silica glass product
CN102898141B (en) Preparation method of high-heat-conduction aluminum nitride ceramic shaped part
CN105669208A (en) Phenolic resin coated ceramic powder for laser 3D printing and preparation method thereof
US5468285A (en) Ceramic core for investment casting and method for preparation of the same
JP4539850B2 (en) Method for producing silica molded body and method for producing silica glass product for sintering the silica molded body
CN108002843A (en) A kind of preparation method of the high-precision porous silicon nitride complicated shape part based on lotion
CN110668802A (en) Green preparation method of light high-strength cordierite porous ceramic and filter
JP5177944B2 (en) A method for producing a silica glass article.
JP5919190B2 (en) Aluminum nitride substrate for circuit board and manufacturing method thereof
CN104072142A (en) Preparation method of oxide combined SiC porous ceramic
JP4605729B2 (en) Translucent ceramic body and method for producing the same
JP2006232582A (en) Method for producing transparent silica glass product
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
JPH04349130A (en) Production of quartz glass molded body
CN100522415C (en) Soluble ceramic core for metal casting
CN113149698A (en) Magnesium oxide ceramic core with good dissolution collapsibility and preparation method thereof
CN101362190B (en) Composite curing method of sodium silicate binder
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JPH05200479A (en) Ceramic core for precision casting
CN114101593B (en) High-collapsibility recyclable silica-based ceramic core and preparation method and application thereof
JPH1121139A (en) Production of foamed quartz glass
TWI572660B (en) A powdered water soluble mandrel mold material and components thereof
JPH04285141A (en) Manufacture of ferrous sintered body
CN116332648A (en) Preparation method of rare earth ion doped super-long transparent ceramic optical fiber
KR100824985B1 (en) A composition for transparent silica glass and a method of preparing silica glass using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

R150 Certificate of patent or registration of utility model

Ref document number: 4539850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees