JP2006320954A - Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy - Google Patents

Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy Download PDF

Info

Publication number
JP2006320954A
JP2006320954A JP2005148571A JP2005148571A JP2006320954A JP 2006320954 A JP2006320954 A JP 2006320954A JP 2005148571 A JP2005148571 A JP 2005148571A JP 2005148571 A JP2005148571 A JP 2005148571A JP 2006320954 A JP2006320954 A JP 2006320954A
Authority
JP
Japan
Prior art keywords
based alloy
iron
aluminum
solidified
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005148571A
Other languages
Japanese (ja)
Inventor
Koichiro Oka
紘一郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichirin Co Ltd
Original Assignee
Nichirin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichirin Co Ltd filed Critical Nichirin Co Ltd
Priority to JP2005148571A priority Critical patent/JP2006320954A/en
Publication of JP2006320954A publication Critical patent/JP2006320954A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a body joined by welding dissimilar metal members, which body can get merits, such as excellent joining strength and high productivity substantially equal to those of a body joined by welding similar property members, by completely eliminating disadvantages and problems in prior arts for joining a ferrous alloy member and an aluminum alloy member, such as conventional steel and 5000 series aluminum alloy. <P>SOLUTION: In the body joined by welding dissimilar metal members, the ferrous alloy member 1 and the aluminum alloy member 2 are welded by the heat input from the side of the ferrous alloy member 1. The body joined by welding the dissimilar metal members comprises a welded and solidified portion which has been continuously and integrally composed of a melted and solidified ferrous alloy portion B melted and solidified in the ferrous alloy member 1, a melted and solidified ferrous alloy portion A melted and solidified in the aluminum alloy member 2, and a melted and solidified aluminum alloy portion G melted and solidified in the aluminum alloy member 2, wherein the melted and solidified ferrous alloy portion A has a plurality of projections H on its surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄系合金部材とアルミニウム系合金部材とを溶接により接合して得られる接合体に関し、特にその溶接部の接合強度に優れた異種金属溶接接合体に関するものである。   The present invention relates to a joined body obtained by joining an iron-based alloy member and an aluminum-based alloy member by welding, and more particularly to a dissimilar metal welded joint having excellent joint strength at a welded portion thereof.

近年、地球環境改善のためコストパフォーマンスのある自動車の軽量化による燃費改善とリサイクル性が強く求められている。   In recent years, there has been a strong demand for improved fuel efficiency and recyclability by reducing the weight of cost-effective automobiles in order to improve the global environment.

アルミニウム(以下、「アルミ」と略称することがある。)の比重は鋼の比重7.8に対して2.7と小さく、耐食性、リサイクル性に優れ、比強度が鋼の2倍程度と高く、押出工法により複雑な形状の素材を経済的に得られることなどの特徴を有しており、自動車の軽量化に望ましい金属である。反面、アルミは鋼に比べて縦弾性係数が約1/3、強度が1/2以下と小さく、熱伝導性が良く(熱伝導率で約3倍)、凝固収縮率が大きいため溶接が鋼より難しく、鋼より材料コストが高いなど車の素材として使用し難い面も有している。   The specific gravity of aluminum (hereinafter may be abbreviated as “aluminum”) is as small as 2.7 compared to the specific gravity of steel of 7.8, excellent in corrosion resistance and recyclability, and the specific strength is as high as twice that of steel. It is a desirable metal for reducing the weight of automobiles because it has features such as the ability to economically obtain a material having a complicated shape by an extrusion method. Aluminum, on the other hand, has a longitudinal elastic modulus of about 1/3, a strength of 1/2 or less, good thermal conductivity (about 3 times the thermal conductivity), and high solidification shrinkage. It is more difficult to use as a car material such as higher material cost than steel.

したがって、鋼とアルミの各々の利点を活かしたハイブリッド化ができれば、自動車が求めているニーズにマッチした対応できることになる。   Therefore, if it is possible to make a hybrid using the advantages of steel and aluminum, it will be possible to meet the needs of automobiles.

このハイブリッド化を可能にするためには接合特性に優れた接合技術が必須になる。   In order to enable this hybridization, a bonding technique with excellent bonding characteristics is essential.

ところが、鉄系合金とアルミ系合金とを溶解して直接接合すると脆い金属間化合物を生成し、そのために十分な接合強度が得られず、実用化が極めて難しかった。このため、マグネシウムを含む5000系のアルミ合金が使用し難いロウ付け法・摩擦圧接法、あるいは部材同士を機械的に接合するため、接合材の形状、生産性、接合付帯設備などに制約がつくメカニカル接合法、使用対象部材の制約が大きいインサート材接合法が実用化されてきた。   However, when an iron-based alloy and an aluminum-based alloy are melted and directly bonded, a brittle intermetallic compound is formed, and therefore, a sufficient bonding strength cannot be obtained, so that practical application is extremely difficult. For this reason, it is difficult to use a 5000 series aluminum alloy containing magnesium, and the brazing method, friction welding method, or members are mechanically joined to each other, so the shape of the joining material, the productivity, and the incidental equipment are restricted. The mechanical joining method and the insert material joining method with great restrictions on the members to be used have been put into practical use.

しかしこれらの接合法はいずれも以下のような不利や問題を有しており、その制約が多く、そのため鋼とアルミの各々の特徴を活かしたハイブリッド化がなかなか進展できなかった。   However, each of these joining methods has the following disadvantages and problems, and there are many limitations, so that it has been difficult to make a hybrid using the characteristics of steel and aluminum.

(メカニカル接合法)
ボルト接合、リベット接合、ネジ接合、メカニカルクリンチ、ヘミング、メカニカル成形接合など、部材同士を機械的に接合する方法である。しかし、この方法は、接合部品の形状制約、接合精度、生産性、および汎用性などの面で同質材料(鋼同士など)の溶接より一般的に劣る。
(Mechanical joining method)
This is a method of mechanically joining members together such as bolt joining, rivet joining, screw joining, mechanical clinch, hemming, and mechanical molding joining. However, this method is generally inferior to welding of homogeneous materials (such as steels) in terms of shape constraints, joining accuracy, productivity, and versatility of joined parts.

(ロウ付け法)
部材同士を媒介となるロウ材を溶かして接合する方法である。この方法は鋼とアルミの接合法としても提案(特許文献1など)されてはいるが、フラックスにより鋼、アルミの酸化皮膜を除去し、母材を溶解することなく、両金属の活性面とロウ材とで適切な化合物を生成することが必要になる。この適切な化合物を得るためロウ材の材料、接合品の材質・形状、接合強度、接合品質の信頼性に制約が付される。したがって、接合の作業性、生産性、汎用性はやはり、同質材料(鋼同士など)の溶接より一般的に不利を伴う。
(Brazing method)
In this method, the brazing material that serves as a medium between the members is melted and joined. Although this method has also been proposed as a method for joining steel and aluminum (Patent Document 1, etc.), the active surface of both metals is removed without removing the oxide film of steel and aluminum by flux and dissolving the base metal. It is necessary to produce an appropriate compound with the brazing material. In order to obtain this appropriate compound, restrictions are imposed on the reliability of the brazing material, the material / shape of the bonded product, the bonding strength, and the bonding quality. Therefore, the workability, productivity and versatility of joining are generally accompanied by disadvantages compared to welding of homogeneous materials (such as steel).

(摩擦圧接法)
部材同士を加圧しながら回転させ、その際の摺動に伴う摩擦熱を利用した固相接合である。しかし、この方法は加圧回転が必要なことから接合部品に形状制約があり、接合で生じるバリの処理が必要なこと、ビード溶接のような長手方向の溶接が難しいことやMg含有アルミ合金(5000系)の場合は酸化物(MgO)の発生により溶接が困難になるなど作業性、汎用性、生産性の面でやはり同質材料(鋼同士など)の溶接より一般的に劣る。
(Friction welding method)
This is solid phase bonding using the friction heat generated by sliding the members while applying pressure to each other. However, since this method requires pressure rotation, there are restrictions on the shape of the joining parts, it is necessary to treat the burrs generated by joining, the longitudinal welding such as bead welding is difficult, and the Mg-containing aluminum alloy ( 5000 type) is generally inferior to welding of homogeneous materials (such as steel) in terms of workability, versatility, and productivity, such as difficulty in welding due to generation of oxide (MgO).

(インサート材接合法)
部材同士間にクラッド材をインサートしてスポット溶接などによって接合する方法である。しかし、この方法はクラッド材のインサートに伴う部品形状に制約が付されることと、作業性に劣ることおよびコスト面の課題を有し、やはり同質材料(鋼同士など)の溶接より一般的に劣るものである。
特開平5−111757号
(Insert material joining method)
In this method, a clad material is inserted between members and joined by spot welding or the like. However, this method has restrictions on the part shape associated with the insert of the clad material, inferior workability and cost problems, and is generally more common than welding of homogeneous materials (such as steel). It is inferior.
JP-A-5-111757

本発明は、上述した従来の鋼と5000系アルミニウム合金など鉄系合金部材とアルミニウム系合金部材との接合技術の背景に鑑み、これらの不利や問題点を全面的に解消し、同質部材同士の溶接と実質的に変わらない優れた接合強度と高い生産性などの利点を享受し得る画期的な異種金属接合体ならびにその接合技術の開発と実用化をその課題としてなされたものである。   The present invention eliminates these disadvantages and problems entirely in view of the background of the joining technique of the above-described conventional steel and an iron-based alloy member such as a 5000-series aluminum alloy and an aluminum-based alloy member, and The challenge was to develop and put to practical use the innovative dissimilar metal joints that can enjoy the advantages such as excellent joint strength and high productivity that are substantially the same as welding.

本発明はこのような課題の解決のために完成されたものであって、その要旨とする特徴は以下のとおりである。   The present invention has been completed to solve such a problem, and the gist of the present invention is as follows.

(1)鉄系合金部材とアルミニウム系合金部材とが鉄系合金部材側からの入熱により溶接された異種金属溶接接合体であって、前記鉄系合金部材において溶解凝固した鉄系合金溶解凝固部と、前記アルミ合金部材に溶け込んで凝固した鉄系合金溶け込み凝固部と、前記アルミニウム系合金部材において溶解凝固したアルミニウム系合金溶解凝固部とが連続的に一体に構成されてなる溶接凝固部を有するとともに、前記鉄系合金溶け込み凝固部がその表面に複数の突起を有することを特徴とする異種金属溶接接合体。 (1) An iron-based alloy member and an aluminum-based alloy member are welded joints of dissimilar metals welded by heat input from the iron-based alloy member side, and the iron-based alloy melted and solidified in the iron-based alloy member A welded solidified portion in which an iron-based alloy melt-solidified portion melted and solidified in the aluminum alloy member and an aluminum-based alloy melt-solidified portion melted and solidified in the aluminum-based alloy member are integrally formed. And a dissimilar metal welded joint, wherein the iron alloy melt-solidified portion has a plurality of protrusions on the surface thereof.

(2)前記突起の高さが10〜150μmである請求項1に記載の異種金属溶接接合体。 (2) The dissimilar metal welded joint according to claim 1, wherein the height of the protrusion is 10 to 150 μm.

本発明によれば、優れた接合強度を備えた鉄系合金部材とアルミ系合金部材の異種金属接合体を提供することができる。この溶接法は鉄系合金とアルミ系合金とが直接接合できるため高い生産性を実現でき、かつ強度部材用の5000系アルミ合金の接合も可能になることより、適用対象部材が拡がり、かつ接合部材強度の向上に繋がる。このように本発明はこの種技術分野における実用性の面で顕著な効果を提供する。   ADVANTAGE OF THE INVENTION According to this invention, the dissimilar metal joining body of the iron-type alloy member and the aluminum-type alloy member provided with the outstanding joining strength can be provided. This welding method can realize high productivity because iron-based alloy and aluminum-based alloy can be directly bonded, and also enables bonding of 5000-based aluminum alloy for strength members. It leads to improvement of member strength. Thus, the present invention provides a remarkable effect in terms of practicality in this kind of technical field.

本発明者は鋼などを素材とする鉄系合金部材と5000系アルミ合金を素材とするアルミ系合金部材の接合について、従来から困難とされてきた溶接法を見直し、実現の可能性があるかどうかを改めて試みることにした。そこで、各種の溶接実験、検討を進めた結果、レーザ溶接などの入熱密度ならびにアスペクト比の高い溶接法を利用して、鉄系合金部材側から入熱して、主としてアルミ系合金部材側から急速に抜熱、冷却することで接合部を急冷凝固させることにより、両部材の接合部を鉄にアルミが過飽和に固溶した過飽和固溶体組織として接合強度を高めることができることを確認し、先に特許出願(特願2004−213426)を行った。   The present inventor has reviewed the welding method, which has been considered difficult in the past, for the joining of iron-based alloy members made of steel or the like and aluminum-based alloy members made of a 5000-series aluminum alloy, and is there a possibility of realization? I decided to try again. Therefore, as a result of various welding experiments and examinations, heat was input from the iron-based alloy member side using a welding method with high heat input density and aspect ratio such as laser welding, and mainly from the aluminum-based alloy member side. It has been confirmed that the joint strength can be increased as a supersaturated solid solution structure in which aluminum is supersaturated with iron in the joint part of both members by rapidly solidifying the joint part by removing heat and cooling to An application (Japanese Patent Application No. 2004-213426) was filed.

さらに継続して実験を行い、これらの結果を総合的に解析したところ、鉄系合金部材側から入熱により溶解し、アルミ系合金部材側からの抜熱、急冷により凝固した鉄系合金部材の領域における鉄系合金の溶解凝固部(鉄系合金溶解凝固部)と、鉄系合金部材の領域で同様に溶解したのちアルミ系合金部材の領域に溶け込んで同様に凝固した鉄系合金の溶け込み凝固部(鉄系合金溶け込み凝固部)とによって構成された溶接凝固部(鉄系合金溶接凝固部)のマクロな凝固プロフィールがその接合強度や品質に重要な影響を与えることを解明し、別途特許出願を行った(特願2004−324027)。   Further experiments were conducted and these results were comprehensively analyzed. As a result, the iron alloy member melted by heat input from the iron alloy member side and solidified by heat removal from the aluminum alloy member side and rapid cooling. The melting and solidification part of the iron-based alloy in the region (iron-based alloy melting and solidification part) and the melting and solidification of the iron-based alloy solidified in the same way after melting in the region of the iron-based alloy member and then in the region of the aluminum-based alloy member Clarified that the macroscopic solidification profile of the weld solidification part (iron alloy weld solidification part) composed of the steel part (iron alloy penetration solidification part) has an important influence on the joint strength and quality, and applied for a separate patent (Japanese Patent Application No. 2004-324027).

そして、上記実験結果についてさらに詳細な解析を行ったところ、上記マクロな凝固プロフィールのみならず、鉄系合金溶け込み凝固部表面のミクロな凝固プロフィールもその接合強度の向上に重要な役割を担っていることが分かった。   And when the further detailed analysis was carried out about the above-mentioned experimental result, not only the above-mentioned macro solidification profile but also the micro solidification profile of the iron system alloy penetration solidification part surface plays an important role in improving the joint strength. I understood that.

さらには、溶解した鉄系合金がアルミ系合金部材に溶け込んで凝固し鉄系合金溶け込み凝固部を形成する際に、その近傍のアルミ系合金も溶解し凝固してアルミニウム系合金凝固部を形成するが、このアルミニウム系合金凝固部がアルミ系合金部材側からの抜熱、急冷により微細化した結晶粒からなる組織を有することが、上述した鉄にアルミが過飽和に固溶した過飽和固溶体組織や鉄系合金溶接凝固部のマクロおよびミクロ凝固プロフィールともあいまって接合体の接合強度や品質に重要な影響を与えることを解明し、本発明を完成させるに至った。   Furthermore, when the molten iron-based alloy melts and solidifies in the aluminum-based alloy member to form the iron-based alloy melted solidified portion, the aluminum-based alloy in the vicinity also melts and solidifies to form the aluminum-based alloy solidified portion. However, the solidified part of the aluminum-based alloy has a structure composed of crystal grains refined by heat removal from the aluminum-based alloy member side and rapid cooling. The present invention has been completed by elucidating that it has an important influence on the joint strength and quality of the joined body in combination with the macro and micro solidification profiles of the welded solidified zone of the alloy.

図1に本願発明に係る溶接接合体の模式的な断面図を示している。同図(a)は溶接接合体の全体断面図であり、(b)は接合部近傍を拡大した部分断面図である。ここにおいて、1は鉄系合金部材、2はアルミ系合金部材であり、3は両部材の接合面である。この鉄系合金部材1とアルミ系合金部材2にかけてワインカップ状を呈した部分は、本接合体の溶接により溶解、再凝固して形成された溶接凝固部(以下、単に「凝固部」と略称することがある。)を示している。   FIG. 1 shows a schematic cross-sectional view of a welded joint according to the present invention. FIG. 4A is an overall cross-sectional view of the welded joint, and FIG. 4B is an enlarged partial cross-sectional view of the vicinity of the joint. Here, 1 is an iron-based alloy member, 2 is an aluminum-based alloy member, and 3 is a joint surface of both members. A portion having a wine cup shape between the iron-based alloy member 1 and the aluminum-based alloy member 2 is a welded solidified portion formed by melting and re-solidifying by welding of this joined body (hereinafter simply referred to as “solidified portion”). It may be.)

この溶接凝固部は、鉄系合金部材1の領域において鉄系合金がそのまま溶解、凝固したカップ部に相当する鉄系合金溶解凝固部Bと、鉄系合金部材1の領域で溶解した鉄系合金がその後にアルミ系合金部材2の領域に溶け込んで凝固した把持部に相当する砲弾状の鉄系合金溶け込み凝固部Aと、上記溶解した鉄系合金が侵入したことによりいったん溶解しその後凝固した、上記砲弾状の鉄系合金溶け込み凝固部Aを包み込むアルミニウム系溶解凝固部Gとが、接合面3を貫通し、順次連続した状態で一体的に形成されたものである。   The welded solidified portion includes an iron-based alloy melt-solidified portion B corresponding to a cup portion in which the iron-based alloy is melted and solidified in the region of the iron-based alloy member 1 and an iron-based alloy melted in the region of the iron-based alloy member 1. Is then melted and solidified once the bullet-like iron-based alloy infiltrated and solidified portion A corresponding to the gripped portion that has melted and solidified in the region of the aluminum-based alloy member 2 and the melted iron-based alloy invaded. The aluminum-based melted and solidified portion G that wraps around the shell-shaped iron-based alloy melted and solidified portion A is formed integrally through the joint surface 3 in a continuous state.

そして、鉄系合金溶け込み凝固部Aはその表面に複数の突起Hを有し、これらの突起Hはアルミ系溶解凝固部Gに食い込んでいる。   The iron-based alloy melt-solidified portion A has a plurality of protrusions H on its surface, and these protrusions H bite into the aluminum-based melt-solidified portion G.

鉄系合金溶解凝固部Bは実質的に鉄系合金の固溶体相であり、鉄系合金溶け込み凝固部Aは鉄系合金にアルミ系合金のアルミが5〜40%過飽和に固溶した過飽和固溶体相となっており、アルミの固溶量はアルミ系合金部材との境界面近傍で急激に高くなっている。そして、アルミニウム系合金溶解凝固部Gは実質的にアルミ系合金である。いずれも、EPMAの面分析、AES分析の結果などにより確認されている。鉄系合金溶け込み凝固部Aとアルミニウム系溶解凝固部Gとは鉄系合金部材1とアルミ系合金部材2との実際の溶接接合部となり、その高い接合強度を維持する上で重要な役割を担っている。この接合部には接合強度を著しく低下させる原因となる脆い金属間化合物は実質的に存在しないか、または非常に少ない。この事実もAES分析で確かめられている。   The iron-based alloy melted and solidified part B is substantially a solid solution phase of the iron-based alloy, and the iron-based alloy melted and solidified part A is a supersaturated solid solution phase in which aluminum of the aluminum-based alloy is solid-solved to 5-40% supersaturated in the iron-based alloy. Thus, the solid solution amount of aluminum is rapidly increased in the vicinity of the interface with the aluminum-based alloy member. The aluminum alloy melting and solidifying portion G is substantially an aluminum alloy. Both are confirmed by the results of EPMA surface analysis, AES analysis, and the like. The iron-based alloy penetration solidified portion A and the aluminum-based molten solidified portion G become actual welded joints between the iron-based alloy member 1 and the aluminum-based alloy member 2, and play an important role in maintaining the high joint strength. ing. There are substantially no or very few brittle intermetallic compounds in the joint that cause a significant reduction in joint strength. This fact is also confirmed by AES analysis.

また、アルミニウム系合金溶解凝固部Gを介して砲弾状にアルミ系合金部材2に食い込んだ鉄系合金溶接接合部(A+B)は砲弾状部分全体の1次アンカー効果と、さらにこの砲弾状部の外面(鉄系合金溶け込み凝固部Aの表面)に形成された複数の突起Hからなる微細な凹凸部がアルミニウム系合金溶解凝固部Gを介してアルミ系合金部材2の内面に食い込んで生じた2次アンカー効果の両方の作用によりその接合強度が一層高められている。   Further, the iron-based alloy welded joint (A + B) that bites into the aluminum-based alloy member 2 in a bullet shape via the aluminum-based alloy melting and solidifying portion G has a primary anchor effect of the entire bullet-shaped portion, and further, A fine uneven portion formed by a plurality of protrusions H formed on the outer surface (the surface of the iron-based alloy melt-solidified portion A) bites into the inner surface of the aluminum-based alloy member 2 through the aluminum-based alloy melt-solidified portion G 2 The joint strength is further enhanced by both actions of the next anchor effect.

上記2次アンカー効果を効果的に発揮させるため、鉄系合金溶け込み凝固部A表面のミクロな凝固プロファイルを以下のようにすると良い(図1(b)参照)。   In order to effectively exhibit the secondary anchor effect, the micro solidification profile of the surface of the iron-based alloy melted solidified portion A is preferably as follows (see FIG. 1B).

すなわち、突起Hの高さhは、小さすぎると2次アンカー効果が十分に発揮できず、逆に大き過ぎると鉄系合金の溶解量が増加しすぎて冷却速度が低下しアルミ系合金溶解凝固部Gの組織の微細化が阻害されるとともにアルミ熱影響部が拡大し却って強度が低下するおそれが高まるため、10〜150μm、さらには20〜100μmとするのが好ましい。   In other words, if the height h of the protrusion H is too small, the secondary anchor effect cannot be sufficiently exerted. On the other hand, if the height h is too large, the amount of dissolution of the iron-based alloy increases excessively and the cooling rate decreases, so Since the refinement of the structure of the part G is hindered and the aluminum heat-affected zone expands and there is a risk that the strength will decrease, the thickness is preferably 10 to 150 μm, more preferably 20 to 100 μm.

また、突起Hの幅dは、特に限定されないが、その高さhの0.2〜5倍、さらには0.5〜2倍程度とするのが好ましい。   The width d of the protrusion H is not particularly limited, but is preferably about 0.2 to 5 times, more preferably about 0.5 to 2 times the height h.

また、鉄系合金溶け込み凝固部A表面における突起Hの個数は、特に限定されないが、接合部断面上において鉄系合金溶け込み凝固部A表面1mm当たり4〜50個程度とするのが好ましい。   The number of protrusions H on the surface of the iron-based alloy melt-solidified portion A is not particularly limited, but is preferably about 4 to 50 per 1 mm of the surface of the iron-based alloy melt-solidified portion A on the cross section of the joint.

また、上記1次アンカー効果を効果的に発揮させるため、溶接凝固部のマクロな凝固プロファイルは以下のようにすると良い(図1(a)参照)。   In order to effectively exhibit the primary anchor effect, the macro solidification profile of the weld solidified portion is preferably as follows (see FIG. 1A).

すなわち、鉄系合金溶解凝固部Bの断面積S2が鉄系合金溶け込み凝固部Aの断面積S1の2.5〜14倍であること、すなわち、S2/S1=2.5〜14の関係を満たすことが望ましい。   That is, the cross-sectional area S2 of the iron-based alloy melting and solidifying part B is 2.5 to 14 times the cross-sectional area S1 of the iron-based alloy melting and solidifying part A, that is, the relationship of S2 / S1 = 2.5 to 14 is satisfied. It is desirable to satisfy.

このS2/S1が2.5未満の条件になると、入熱が不足し、鉄系合金部材1およびアルミ系合金部材2における必要な鉄系合金の溶解量とアルミ系合金に対する溶け込み量を十分に確保できず、鉄系合金にアルミ系合金のアルミが5〜40%過飽和に固溶した過飽和固溶体相の急冷凝固組織からなる砲弾状の溶け込み凝固部Aの形成が不十分となりやすい。その結果、鉄系合金部材1とアルミ系合金部材2との接合が不能(未接合)となったり、接合不良が生じ、十分な接合強度を得ることができなくなるおそれが高まる。   When this S2 / S1 is less than 2.5, the heat input becomes insufficient, and the necessary amount of dissolution of the iron-based alloy and the amount of penetration into the aluminum-based alloy in the iron-based alloy member 1 and the aluminum-based alloy member 2 are sufficient. It cannot be ensured, and the formation of the shell-like melt-solidified portion A composed of a rapidly solidified structure of a supersaturated solid solution phase in which aluminum of an aluminum-based alloy is solid-dissolved in an iron-based alloy at 5 to 40% supersaturation tends to be insufficient. As a result, there is an increased possibility that the iron-based alloy member 1 and the aluminum-based alloy member 2 cannot be joined (unjoined), or a joining failure occurs, and sufficient joining strength cannot be obtained.

いっぽう、S2/S1が14を超える条件では、入熱過剰な状態であり、アルミ系合金部材2における鉄系合金(鋼)の溶解幅(表面幅)及び溶解量が大きくなり過ぎて、このため過剰な金属蒸気の発生により、突沸現象が生じるなどしてアルミ系合金に対する溶け込み量が不安定となり、やはり前記砲弾状の溶け込み凝固部Aを十分に形成させることができなくなるおそれが高まる。   On the other hand, when S2 / S1 exceeds 14, the heat input is excessive, and the melting width (surface width) and the melting amount of the iron-based alloy (steel) in the aluminum-based alloy member 2 become too large. Due to the generation of excessive metal vapor, a bumping phenomenon occurs and the amount of penetration into the aluminum-based alloy becomes unstable, and there is a high possibility that the shell-like melted solidified portion A cannot be sufficiently formed.

また、上記条件に加え、鉄系合金溶解凝固部Bの表面幅(溶解幅)Dが1.9〜2.8mmであることが好ましい。   In addition to the above conditions, the surface width (dissolution width) D of the iron-based alloy melting and solidifying part B is preferably 1.9 to 2.8 mm.

このDが1.9mm未満の発生するケースは2つある。そのひとつは入熱が不足し、アルミ系合金部材2側に食い込ませて接合強度を得るための十分な溶け込み凝固部Aを形成する鉄系合金の溶湯量を十分に確保できないケースである。この場合、鉄系合金溶湯量が少ないため、鉄系合金とアルミの接合界面の長さが短く、鋼の凝固収縮によって接合界面が剥離し易くなるとともに鉄系合金の食い込みによるアンカー効果が得られにくくなる。もうひとつのケースは単位面積当りの入熱量が過剰な場合である。この場合は過剰な金属蒸気の発生によりキーホールを開放型に維持しにくく、突沸異常や気泡巻き込みが頻発するおそれが高まる。また入熱面の鉄系合金(鋼)の溶解幅(表面幅)が狭いため、アルミ系合金部材2側に食い込んだ溶け込み凝固部Aの体積減少に伴う凹み異常が発生しやすくなる。   There are two cases where D is less than 1.9 mm. One of them is a case where heat input is insufficient, and a sufficient amount of molten iron-based alloy that forms a solidified solidified portion A enough to get into the aluminum-based alloy member 2 side and obtain bonding strength cannot be secured. In this case, since the amount of molten iron-based alloy is small, the length of the bonded interface between the iron-based alloy and aluminum is short, and the bonded interface is easily peeled off due to solidification shrinkage of the steel, and the anchor effect due to the penetration of the iron-based alloy is obtained. It becomes difficult. The other case is when the heat input per unit area is excessive. In this case, the generation of excessive metal vapor makes it difficult to keep the keyhole open, and the risk of frequent bumping and bubble entrainment increases. Further, since the melting width (surface width) of the iron-based alloy (steel) on the heat input surface is narrow, a dent abnormality is likely to occur due to a decrease in the volume of the melted solidified portion A that has digged into the aluminum-based alloy member 2 side.

いっぽう、Dが2.8mmを越えるケースは入熱が過剰で、アルミ系合金部材2側に食い込む鉄系合金溶湯量が多過ぎて、冷却速度が遅くなり、安定して鉄系合金にアルミ系合金のアルミが5〜40%過飽和に固溶した過飽和固溶体相を主体とする急冷凝固組織が得にくくなる。前記砲弾状の溶け込み凝固部Aの1次および2次アンカー効果により、接合強度は得られるが入熱過剰による突沸異常や気泡巻き込み不良、凝固後の凹み異常、溶融鉄の凝固速度が遅くなるため鉄系合金とアルミとの界面における組織が熱影響を受けて強度が低下するなど接合品質が悪化するおそれが高まる。   On the other hand, in cases where D exceeds 2.8 mm, the heat input is excessive, the amount of molten iron alloy that bites into the aluminum alloy member 2 side is too much, the cooling rate becomes slow, and the iron alloy is stably added to the aluminum alloy. It becomes difficult to obtain a rapidly solidified structure mainly composed of a supersaturated solid solution phase in which aluminum of the alloy is solid-solved to 5 to 40% supersaturated. Due to the primary and secondary anchoring effects of the shell-like melted and solidified portion A, a bonding strength can be obtained, however, abnormal boiling due to excessive heat input, defective bubble entrapment, abnormal dents after solidification, and the solidification rate of molten iron becomes slow. There is an increased risk that the structure at the interface between the iron-based alloy and aluminum is affected by heat and the strength of the joint is deteriorated, for example, the strength is lowered.

さらに、鉄系合金溶け込み凝固部Aの深さEが0.2mm以上であることが好ましい。   Furthermore, it is preferable that the depth E of the iron alloy melted and solidified portion A is 0.2 mm or more.

鉄系合金の溶け込み深さが小さくなれば、鉄系合金とアルミ系合金の接合界面の長さが短くなり、アルミ系合金による抜熱効果の減少による接合部組織の強度劣化と鋼凝固収縮応力による接合界面の剥離が生じる。特に鋼のような鉄系合金とアルミ系合金とではその融点差が1000℃程度と著しいため、鋼が凝固してからアルミが凝固を終えるまで時間がかかれば、接合界面に脆化層を生じ、接合部剥離が多発する。したがって、鋼の溶け込み深さが0.2mm未満では接合部剥離が発生しやすくなる。   If the penetration depth of the iron-based alloy is reduced, the length of the joint interface between the iron-based alloy and the aluminum-based alloy is shortened, and the strength deterioration of the joint structure and the steel solidification shrinkage stress due to the reduction of the heat removal effect by the aluminum-based alloy. Separation of the bonding interface due to. In particular, the difference in melting point between an iron-based alloy such as steel and an aluminum-based alloy is as great as about 1000 ° C. Therefore, if it takes a long time from the solidification of the steel to the solidification of the aluminum, a brittle layer is formed at the joint interface. , Bonding peeling frequently occurs. Therefore, when the penetration depth of steel is less than 0.2 mm, peeling of the joint portion is likely to occur.

また、アルミニウム系溶解凝固部Gが微細組織で構成されることにより、さらに具体的には粒径3μm以下の結晶粒で構成されることで最大限の接合強度と耐食性を確保することができる。   Further, the aluminum-based melted and solidified portion G is composed of a fine structure, and more specifically, it is composed of crystal grains having a grain size of 3 μm or less, thereby ensuring the maximum bonding strength and corrosion resistance.

すなわち、アルミニウム系溶解凝固部Gの結晶粒を3μm以下とすることにより、当該部位の材料特性(強度および耐食性)が母材であるアルミ系合金部材2の1.5倍以上に向上する(伊藤清文:「JRCM REPORT/アルミニウム系スーパーメタルの研究開発(終了報告)」,JRCM NEWS,No.190,2002年8月,p.2〜3参照)。この結果、上記鉄系合金溶接接合部(A+B)による1次アンカー効果および突起Hによる2次アンカー効果とあいまって接合強度をより高めるとともに、異種材料間で発生しやすい電食反応にも耐えうる耐食性を確保できる。   That is, by setting the crystal grains of the aluminum-based melted and solidified portion G to 3 μm or less, the material properties (strength and corrosion resistance) of the portion are improved to 1.5 times or more of the aluminum-based alloy member 2 that is the base material (Ito Kiyofumi: “JRCM REPORT / Aluminum-based Supermetal Research and Development (end report)”, JRCM NEWS, No. 190, August 2002, p. As a result, combined with the primary anchor effect by the iron-based alloy welded joint (A + B) and the secondary anchor effect by the protrusions H, it is possible to further increase the joint strength and to withstand the galvanic corrosion reaction that easily occurs between different materials. Corrosion resistance can be secured.

さらに、アルミニウム系溶解凝固部Gの厚みは30〜100μmとするのが好ましい。30μm未満では接合部を引き剥がそうとする力が働いたときに砲弾状の鉄系合金溶接接合部(A+B)を支持する力が不足するおそれが高くなり、いっぽう、100μmを超えるとアルミ系合金の溶解量が増えてアルミ系合金部材2中の熱影響部が拡大して母材強度が低下するおそれが高くなるためである。   Furthermore, the thickness of the aluminum-based melted and solidified part G is preferably 30 to 100 μm. If the force is less than 30 μm, the force to support the shell-shaped iron alloy welded joint (A + B) will be insufficient when the force to peel the joint is applied. On the other hand, if it exceeds 100 μm, the aluminum alloy This is because there is an increased possibility that the heat-affected zone in the aluminum-based alloy member 2 will expand and the base material strength will decrease.

次に本発明接合体の製作に際しての好ましい溶接条件などについて述べる。   Next, preferable welding conditions and the like for manufacturing the joined body of the present invention will be described.

まず、溶接方法としては炭酸ガスレーザ溶接、YAGレーザ溶接などのレーザ溶接法を採用することが有利である。このレーザ溶接法はアーク溶接法などと異なり、入熱密度(106W/cm2以上)が非常に高く、アスペクト比(溶け込み深さ/溶け込み幅)が極めて高い溶接ビードが得られる特徴がある。したがって、鉄系合金とアルミ系合金の接合部の溶け込み幅を小さくした状態で溶解接合に十分な入熱を瞬時に行うことができるため、入熱後の冷却が急速(冷却速度:103K/s以上)に進行し(「自己冷却」と呼ばれる。)、接合部を急冷凝固させることができ、これにより接合部において、鉄系合金側で0.1μm〜10μm程度の微細な急冷凝固組織でかつ過飽和固溶体相を得るとともに、アルミ系合金側で3μm以下の微細な急冷凝固組織を得ることができるのである。ちなみに、冷却速度をさらに上昇させて104K/s程度以上とすると、金属組織はアモルファス化する可能性が高くなり、さらに接合強度の上昇、耐腐食性の向上が期待できる。 First, it is advantageous to employ a laser welding method such as carbon dioxide laser welding or YAG laser welding as the welding method. Unlike the arc welding method, this laser welding method is characterized in that a weld bead having a very high heat input density (10 6 W / cm 2 or more) and an extremely high aspect ratio (penetration depth / penetration width) can be obtained. . Therefore, heat input sufficient for melting and joining can be instantaneously performed with the penetration width of the joining portion of the iron-based alloy and the aluminum-based alloy reduced, so that the cooling after the heat input is rapid (cooling rate: 10 3 K). / S)) (referred to as “self-cooling”), and the joint can be rapidly solidified, whereby a fine rapid solidification structure of about 0.1 μm to 10 μm on the iron-based alloy side at the joint. In addition, a supersaturated solid solution phase can be obtained, and a fine rapidly solidified structure of 3 μm or less can be obtained on the aluminum alloy side. Incidentally, if the cooling rate is further increased to about 10 4 K / s or more, there is a high possibility that the metal structure becomes amorphous, and an increase in joint strength and improvement in corrosion resistance can be expected.

また、このレーザ溶接によって鉄系合金部材1とアルミ系合金部材2を溶接する場合は、その入熱を、熱反射の少なく、アルミより比重が大きくその自重をうまく利用して溶湯を食い込ませて上記鉄系合金溶け込み凝固部を容易に形成することが可能な、鉄系合金側から行うことが良い。   In addition, when the iron-based alloy member 1 and the aluminum-based alloy member 2 are welded by this laser welding, the heat input is less heat-reflected, the specific gravity is larger than that of aluminum, and the own weight is used to make the molten metal penetrate. It is good to carry out from the iron-based alloy side where the iron-based alloy melted and solidified portion can be easily formed.

十分な接合強度が得られるレーザ溶接条件は基本的には高エネルギー密度で鉄側から安定的に入熱し、比較的広い溶解幅を確保しながら溶解した十分の量の鉄を短時間にアルミ側に適量砲弾状に食い込ませ、これにより前述した1次と2次の両方のアンカー効果を発揮する図1の鉄系合金溶け込み凝固部Aの形成を可能にすることである。この条件を満たすために、図2に示すように、まず、鉄系合金部材(1)側からレーザ光(R)を照射して入熱を行い、溶融鉄(M)の内側に生成されたキーホール(K)内に金属蒸気(V)が封じ込められないようにし、この蒸気(V)による突沸を防ぐことが必要になる。また溶融鉄(M)が飛び散らないよう入熱を調整する必要がある。溶融鉄(M)がアルミ合金部材(2)に差し込むことにより凝固後鉄側表面に引けによる凹みが発生しやすい。凝固表面の過度な凹み発生を防ぐためには、入熱は溶接深さ方向だけでなく、凝固時に入熱周辺から溶融鉄(M)量を補充するため、幅方向にも行う必要がある。この幅方向の入熱はキーホール(K)生成に伴って得られる金属蒸気(V)を鉄表面上すなわちキーホール(K)の上方近傍でプラズマ発光させて、ここに発生したプラズマ雲(P)を継続的に維持させることが重要となる。なお、金属蒸気(V)をより発散させやすくするため、レーザ溶接に代えて、鉄系合金部材(1)表面を加熱する別の入熱手段を備えたレーザ・アークハイブリッド溶接を採用するのも有力な方法である。ハイブリッド溶接を用いれば上記溶融鉄(M)量の補充がより効率的に行われるので上記鉄側表面の凹み発生をさらに緩和する効果も得られる。   Laser welding conditions that provide sufficient bonding strength are basically high energy density, stable heat input from the iron side, and a sufficient amount of iron melted in a short time while securing a relatively wide melting width. 1 to allow the formation of the iron alloy melted and solidified portion A of FIG. 1 that exhibits both the primary and secondary anchor effects described above. In order to satisfy this condition, as shown in FIG. 2, first, the laser beam (R) is irradiated from the iron-based alloy member (1) side to perform heat input, and is generated inside the molten iron (M). It is necessary to prevent the metal vapor (V) from being contained in the keyhole (K) and to prevent bumping by the vapor (V). Moreover, it is necessary to adjust heat input so that molten iron (M) does not scatter. When the molten iron (M) is inserted into the aluminum alloy member (2), a dent due to shrinkage tends to occur on the iron side surface after solidification. In order to prevent the occurrence of excessive dents on the solidified surface, the heat input needs to be performed not only in the welding depth direction but also in the width direction in order to supplement the amount of molten iron (M) from around the heat input during solidification. The heat input in the width direction causes the metal vapor (V) obtained with the generation of the keyhole (K) to emit plasma on the iron surface, that is, near the upper side of the keyhole (K), and a plasma cloud (P ) Is important to maintain continuously. In order to make metal vapor (V) easier to diverge, instead of laser welding, laser / arc hybrid welding provided with another heat input means for heating the surface of the iron-based alloy member (1) may be adopted. It is a powerful method. If hybrid welding is used, the amount of molten iron (M) is replenished more efficiently, so that the effect of further mitigating the occurrence of dents on the iron-side surface can be obtained.

そして、さらに優れた接合強度を得るために、接合部の冷却速度を103K/s以上に高めて、自己冷却によりアルミ系合金溶解凝固部Gを3μm以下の結晶粒からなる微細組織にする必要がある。接合部の冷却速度を高める手段としては、溶接速度の上昇、接合部材の質量増加による抜熱量の増加等の手段がある。しかしながら、溶接速度を上昇させるには単位時間当たりの入熱量を増加する必要があり上記溶融鉄(M)の突沸等の問題が生じるおそれがある。また、鉄系合金部材の質量を増加させるために例えばその厚みを増すと鉄系合金部材を貫通させるために溶接速度を低下させる必要があるので、却って冷却速度が低下する可能性が高く、厚みの代わりに幅や長さを増加させても鉄系合金は熱伝導率がそれほど高くないので十分な冷却速度が得られない。したがって、鉄系合金部材よりも熱伝導度が格段に高いアルミ系合金部材の質量を増加させる(すなわち、厚み、幅、長さのいずれか1つ以上を増加させる)のが最も効果的である。 Then, in order to obtain a further excellent bonding strength, the cooling rate of the bonded portion is increased to 10 3 K / s or more, and the aluminum-based alloy melt-solidified portion G is made into a microstructure composed of crystal grains of 3 μm or less by self-cooling. There is a need. Means for increasing the cooling rate of the joint include means such as an increase in welding speed and an increase in heat removal due to an increase in mass of the joining member. However, in order to increase the welding speed, it is necessary to increase the heat input per unit time, which may cause problems such as bumping of the molten iron (M). In addition, in order to increase the mass of the iron-based alloy member, for example, if the thickness is increased, it is necessary to decrease the welding speed in order to penetrate the iron-based alloy member. Even if the width and length are increased instead of the iron alloy, the heat conductivity of the iron-based alloy is not so high, so that a sufficient cooling rate cannot be obtained. Therefore, it is most effective to increase the mass of the aluminum-based alloy member that has a remarkably higher thermal conductivity than the iron-based alloy member (that is, increase one or more of thickness, width, and length). .

炭酸ガスレーザ溶接を用いて本発明接合体を製作する具体的な溶接条件としては、入熱の出力を700〜775Wとし、溶接速度を375〜400mm/分とすることが推奨される。   As specific welding conditions for producing the joined body of the present invention using carbon dioxide laser welding, it is recommended that the heat input is 700 to 775 W and the welding speed is 375 to 400 mm / min.

以下に、鋼とアルミの良好な溶解接合品質が得られる本発明を実施例に基づいて詳述する。   Hereinafter, the present invention that provides good melt-bonding quality of steel and aluminum will be described in detail based on examples.

ステンレス管(SUS304,SUS316L)にアルミ棒またはアルミ管(A3003,A5052)を圧入したサンプルをレーザ溶接機(松下溶接システム社製YB−L150A8,ノズル径φ4またはφ5、溶接速度:400mm/分、出力形態:CW)を用いてステンレスパイプ側からレーザを照射し、溶接接合した。そしてこれらステンレス−アルミ接合体の接合強度および接合品質ならびにアルミ系合金溶解凝固部の結晶粒径および厚みを調査した結果を表1に示す。なお、接合強度および接合品質の評価基準は下記のとおりである。   A sample in which an aluminum rod or aluminum tube (A3003, A5052) is press-fitted into a stainless steel tube (SUS304, SUS316L) is a laser welding machine (YB-L150A8 manufactured by Matsushita Welding Systems Co., Ltd., nozzle diameter φ4 or φ5, welding speed: 400 mm / min, output) Laser was irradiated from the stainless steel pipe side using a form: CW) and welded. Table 1 shows the results of investigating the bonding strength and bonding quality of these stainless steel-aluminum bonded bodies and the crystal grain size and thickness of the aluminum alloy melt-solidified portion. In addition, the evaluation criteria of joining strength and joining quality are as follows.

[接合強度]
◎:母材破断、○:継ぎ手効率75%以上、△:継ぎ手効率20%以上、75%未満、×:未接合または継ぎ手効率20%未満。
[Joint strength]
A: Breakage of base material, B: Joint efficiency of 75% or more, B: Joint efficiency of 20% or more and less than 75%, X: Unjoined or joint efficiency of less than 20%.

[接合品質]
◎:接合界面が連続した特異組織からなり、かつ気泡欠陥、凹み異常、引け異常がないもの、○:接合界面が連続した特異組織からなるが、微小な気泡、凹み、引けの欠陥を有するもの、△:部分的に接合界面が特異組織からなるもの、×:未接合または接合界面が脆い化合物からなるもの。
[Joint quality]
A: Bonding interface consists of a continuous specific structure, and there is no bubble defect, dent abnormality, or shrinkage abnormality. B: Bonding interface consists of a continuous specific structure, but has minute bubbles, dents, or shrinkage defects. , Δ: partially bonded interface is made of a specific structure, x: unbonded or bonded interface is made of a brittle compound.

表1の実験結果から、鉄系合金溶解凝固部表面に複数の突起を有する実施例(No.1〜5、11、12、15、16)については、No.5を除いて接合界面が良好で、引張試験においてすべて母材破断に至っており、優れた接合強度と接合品質を有していることが分かる。また、No.5は母材破断するほどの接合強度は得られていないものの、溶接が簡単にできることを考慮すればスポット溶接には適するものである。   From the experimental results shown in Table 1, the examples (No. 1-5, 11, 12, 15, 16) having a plurality of protrusions on the surface of the iron-based alloy melted and solidified part are No. It can be seen that, except for 5, the bonding interface is good, and the base material is all broken in the tensile test and has excellent bonding strength and bonding quality. No. No. 5 is suitable for spot welding in consideration of the fact that welding can be easily performed although the joining strength to the extent that the base metal breaks is not obtained.

いっぽう、未接合等のため突起の有無の観察が不能または不実施であった比較例(No.6〜10、13,14,17)においてはそのほとんどが接合強度および接合品質ともに不良な結果を示した。   On the other hand, in the comparative examples (No. 6 to 10, 13, 14, and 17) in which the observation of the presence or absence of protrusions was not possible or was not performed due to non-bonding or the like, most of the results showed poor bonding strength and bonding quality. Indicated.

以下に、接合強度および接合品質とも良好であった実施例2の溶接接合体について、接合部をEPMAでAl面分析した結果を示す。   The results of the Al surface analysis of the welded portion by EPMA for the welded joint of Example 2 in which both the joint strength and the joint quality were good are shown below.

図3に示すように、マクロ的に見て砲弾状の鉄系合金溶解凝固部がアルミ部材に食い込むとともに、この鉄系合金溶解凝固部の表面には数十μm〜100μm程度の高さの突起が多数存在し、ミクロ的に見てもこれら多数の突起がアルミ部材に食い込み、接合強度をより高めているのが分かる。
As shown in FIG. 3, the shell-like iron-based alloy melting and solidifying portion macroscopically cuts into the aluminum member, and the iron-based alloy melting and solidifying portion has a projection of several tens to 100 μm in height on the surface. It can be seen that even when viewed microscopically, these numerous protrusions bite into the aluminum member, further increasing the bonding strength.

本発明に係る溶接接合体の模式的な断面図であり、(a)は全体断面図、(b)は接合部近傍の拡大部分断面図である。It is typical sectional drawing of the welding joined body which concerns on this invention, (a) is whole sectional drawing, (b) is an expanded partial sectional view of a joining part vicinity. 本発明におけるレーザ溶接による鉄系合金部材とアルミ系合金部材の接合時の状態を示す模式図である。It is a schematic diagram which shows the state at the time of joining of the iron-type alloy member and aluminum-type alloy member by the laser welding in this invention. 実施例における接合部のEPMA面分析によるAl分布を示す断面図である。It is sectional drawing which shows Al distribution by the EPMA surface analysis of the junction part in an Example.

符号の説明Explanation of symbols

1:鉄系合金部材 2:アルミニウム系合金部材 3:接合面
A:鉄系合金溶け込み凝固部 B:鉄系合金溶解凝固部
C:鉄系合金溶け込み表面幅 D:鉄系合金溶解凝固部の表面幅
E:鉄系合金溶け込み凝固部の深さ F:鉄系合金部材の板厚
G:アルミニウム系合金溶解凝固部 H:突起
R:レーザ光 M:溶融鉄 K:キーホール V:金属蒸気
P:プラズマ雲
h:突起の高さ d:突起の幅

1: Iron-based alloy member 2: Aluminum-based alloy member 3: Bonding surface A: Iron-based alloy melting solidified portion B: Iron-based alloy melting solidified portion C: Iron-based alloy melting solidified portion D: Surface of iron-based alloy molten solidified portion Width E: Depth of iron alloy melted and solidified part F: Plate thickness of iron alloy member G: Aluminum alloy melted and solidified part H: Protrusion R: Laser beam M: Molten iron K: Keyhole V: Metal vapor P: Plasma cloud h: Height of protrusion d: Width of protrusion

Claims (2)

鉄系合金部材とアルミニウム系合金部材とが鉄系合金部材側からの入熱により溶接された異種金属溶接接合体であって、前記鉄系合金部材において溶解凝固した鉄系合金溶解凝固部と、前記アルミ合金部材に溶け込んで凝固した鉄系合金溶け込み凝固部と、前記アルミニウム系合金部材において溶解凝固したアルミニウム系合金溶解凝固部とが順次連続して一体に構成されてなる溶接凝固部を有するとともに、前記鉄系合金溶け込み凝固部がその表面に複数の突起を有することを特徴とする異種金属溶接接合体。   An iron-based alloy member and an aluminum-based alloy member are dissimilar metal welded joints welded by heat input from the iron-based alloy member side, and the iron-based alloy melted and solidified portion melted and solidified in the iron-based alloy member; An iron-based alloy melt-solidified portion melted and solidified in the aluminum alloy member and an aluminum-based alloy melt-solidified portion melted and solidified in the aluminum alloy member, and a welded solidified portion that is integrally formed sequentially and integrally The dissimilar metal welded joint, wherein the iron alloy melted and solidified portion has a plurality of protrusions on the surface thereof. 前記突起の高さが10〜150μmである請求項1に記載の異種金属溶接接合体。

The dissimilar metal welded joint according to claim 1, wherein a height of the protrusion is 10 to 150 μm.

JP2005148571A 2005-05-20 2005-05-20 Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy Pending JP2006320954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148571A JP2006320954A (en) 2005-05-20 2005-05-20 Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148571A JP2006320954A (en) 2005-05-20 2005-05-20 Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy

Publications (1)

Publication Number Publication Date
JP2006320954A true JP2006320954A (en) 2006-11-30

Family

ID=37540997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148571A Pending JP2006320954A (en) 2005-05-20 2005-05-20 Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy

Country Status (1)

Country Link
JP (1) JP2006320954A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059752A2 (en) * 2007-11-07 2009-05-14 Solarion Ag Method and means for connecting thin metal layers
CN106312315A (en) * 2015-07-03 2017-01-11 (株)星宇Hitech Method for joining different kinds of plates
JP2020089919A (en) * 2015-09-15 2020-06-11 パナソニックIpマネジメント株式会社 Metal member weld structure and welding method
CN113199147A (en) * 2021-04-21 2021-08-03 上海工程技术大学 Laser deep melting spot welding process for aluminum/steel dissimilar metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042053A (en) * 2002-07-09 2004-02-12 Toyota Motor Corp Joining method of different metal material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042053A (en) * 2002-07-09 2004-02-12 Toyota Motor Corp Joining method of different metal material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059752A2 (en) * 2007-11-07 2009-05-14 Solarion Ag Method and means for connecting thin metal layers
WO2009059752A3 (en) * 2007-11-07 2009-12-03 Solarion Ag Method and means for connecting thin metal layers
CN106312315A (en) * 2015-07-03 2017-01-11 (株)星宇Hitech Method for joining different kinds of plates
US9889526B2 (en) 2015-07-03 2018-02-13 Sungwoo Hitech Co., Ltd. Laser welding method for welding dissimilar metal plates
JP2020089919A (en) * 2015-09-15 2020-06-11 パナソニックIpマネジメント株式会社 Metal member weld structure and welding method
CN113199147A (en) * 2021-04-21 2021-08-03 上海工程技术大学 Laser deep melting spot welding process for aluminum/steel dissimilar metal

Similar Documents

Publication Publication Date Title
JP5187712B2 (en) Joining method
JP5326862B2 (en) Dissimilar metal joining method of magnesium alloy and steel
JP4591547B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
Czerwinski Welding and joining of magnesium alloys
JP2006239734A (en) Weld joint and method for forming the same
JP5098792B2 (en) Dissimilar metal joining method of magnesium alloy and steel
JP4941876B2 (en) Method and structure for joining dissimilar metals by resistance welding
JP6984646B2 (en) Laser brazing method and lap joint member manufacturing method
Wang et al. Influence of beam current on microstructures and mechanical properties of electron beam welding-brazed aluminum-steel joints with an Al5Si filler wire
JP4438691B2 (en) Dissimilar material joint and weld joint method in which iron material and aluminum material are joined
JP2006320954A (en) Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP2007136525A (en) Method for joining dissimilar materials
JP4978121B2 (en) Butt joining method of metal plates
JP2006224147A (en) Method for joining different materials and filler metal therefor
WO2021210322A1 (en) Arc spot welding method for joining dissimilar materials
JP4178134B2 (en) Method of joining an iron-based alloy member and an aluminum-based alloy member
JP2006130541A (en) Different metal joined member joined by welding ferrous alloy member and aluminum alloy member
JP6435533B2 (en) Friction stir welding method for metal materials
JP2006150439A (en) Steel material-aluminum material welded joint, and welding method therefor
JP2010099672A (en) Method of joining different kind of metal between casting product and sheet, and joining structure of different kind of metal thereby
JP2006320953A (en) Body joined by welding dissimilar metal members made of ferrous alloy and aluminum alloy
JP2008155226A (en) Laser lap weld joint of steel plate, and method for laser lap welding
JP2009056492A (en) Dissimilar material connecting body and manufacturing method of the same
JP2021164943A (en) Friction stir joining method for aluminum alloy plate and steel plate
JP5674355B2 (en) Welding method of aluminum material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221