JP2006319021A - Deflector, manufacturing method therefor, and charged particle beam drawing device using the same - Google Patents

Deflector, manufacturing method therefor, and charged particle beam drawing device using the same Download PDF

Info

Publication number
JP2006319021A
JP2006319021A JP2005138147A JP2005138147A JP2006319021A JP 2006319021 A JP2006319021 A JP 2006319021A JP 2005138147 A JP2005138147 A JP 2005138147A JP 2005138147 A JP2005138147 A JP 2005138147A JP 2006319021 A JP2006319021 A JP 2006319021A
Authority
JP
Japan
Prior art keywords
deflector
electrodes
pair
charged particle
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005138147A
Other languages
Japanese (ja)
Other versions
JP4627454B2 (en
Inventor
Yoshinori Nakayama
義則 中山
Akiyoshi Tanimoto
明佳 谷本
Takanori Aono
宇紀 青野
Masatoshi Kanamaru
昌敏 金丸
Yasuhiro Yoshimura
保廣 吉村
Futoshi Hirose
太 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Canon Inc
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Canon Inc, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005138147A priority Critical patent/JP4627454B2/en
Publication of JP2006319021A publication Critical patent/JP2006319021A/en
Application granted granted Critical
Publication of JP4627454B2 publication Critical patent/JP4627454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle beam drawing technique using a deflector capable of highly precise beam deflection with less beam fluctuation in application to a charged particle beam drawing device. <P>SOLUTION: According to the deflector, a pair of electrodes 3, 19 are arranged in counter to each other on the side wall of a through-hole 2 formed on a board, and voltages having different polarities are applied to the paired electrodes 3, 19, respectively, to deflect a charged particle beam 5 passing through the through-hole 2. The side wall of the through-hole 2 is of a polyhedron or curved faces including two or more pairs of parallel faces perpendicular to the surface of the board, and each of the paired electrodes 3, 19 are formed to be continuous with a plurality of faces of the polyhedron or curved faces. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体集積回路などの製造プロセスに用いられる荷電粒子線描画技術に係り、特に、高精度な荷電粒子ビーム描画装置用の偏向器およびその作製方法に関する。   The present invention relates to a charged particle beam drawing technique used in a manufacturing process of a semiconductor integrated circuit or the like, and more particularly to a deflector for a highly accurate charged particle beam drawing apparatus and a manufacturing method thereof.

荷電粒子ビーム描画装置の一例としての従来の電子ビーム描画装置の偏向器は、「安田 洋:応用物理63、1135(1994)」に提案されている。図4は、電子ビーム描画装置の電子銃側からみた従来の偏向器を示す。すなわち、図に示すように、対向した第1の電極6と第2の電極17とが矩形の貫通孔2の1対の平行面に形成されており、他の平行面は絶縁膜が形成されている。   A deflector of a conventional electron beam lithography system as an example of a charged particle beam lithography system has been proposed in “Hiroshi Yasuda: Applied Physics 63, 1135 (1994)”. FIG. 4 shows a conventional deflector viewed from the electron gun side of the electron beam drawing apparatus. That is, as shown in the figure, the first electrode 6 and the second electrode 17 facing each other are formed on a pair of parallel surfaces of the rectangular through hole 2, and an insulating film is formed on the other parallel surfaces. ing.

この第1、第2の電極にそれぞれ異なる電圧を印加することにより、矩形中心を通過する電子ビームの偏向を行なう。この偏向により、試料上への照射ON/OFFを制御することで任意のパターン形成を可能にしている。   By applying different voltages to the first and second electrodes, the electron beam passing through the center of the rectangle is deflected. By this deflection, an arbitrary pattern can be formed by controlling irradiation ON / OFF on the sample.

安田 洋:応用物理63、1135(1994)Hiroshi Yasuda: Applied Physics 63, 1135 (1994)

電子ビーム描画装置において、描画精度を向上するためにはビーム位置を制御するための偏向器の安定稼動が必須となる。荷電粒子である電子ビームが通過する空間に絶縁物が配置されていると絶縁物が帯電され、その帯電によりビーム位置に変動を生じる。   In an electron beam drawing apparatus, in order to improve drawing accuracy, stable operation of a deflector for controlling the beam position is essential. If an insulator is disposed in a space through which an electron beam, which is a charged particle, passes, the insulator is charged and the beam position varies due to the charging.

一方、ビーム位置を制御する偏向器は上述した対向電極を用いるが、この電極同士は異なる電圧を印加させるために互いに絶縁する必要がある。このため、偏向器の絶縁領域の影響をできるだけ少なくすることが必要である。特に、マルチビームの装置では、偏向器の小型化が必須であるので、この問題はいっそう厳しいものとなる。   On the other hand, the above-described counter electrode is used as a deflector for controlling the beam position, but the electrodes need to be insulated from each other in order to apply different voltages. For this reason, it is necessary to minimize the influence of the insulating region of the deflector. In particular, in a multi-beam apparatus, the size of the deflector must be reduced, and this problem becomes even more severe.

本発明の目的は、荷電粒子ビーム描画装置におけるビーム変動の少ない高精度なビーム偏向が可能な偏向器による荷電粒子ビーム描画技術を提供することにある。   An object of the present invention is to provide a charged particle beam writing technique using a deflector capable of highly accurate beam deflection with little beam fluctuation in a charged particle beam writing apparatus.

上記目的を達成するために、本発明では、偏向器の1対の対向電極の形状において、1対の電極間を電気的に分離するための切断箇所を、貫通孔内を通過するビームからできる限り離し、かつ見えない位置に設定する構造としている。また、この対向電極は、互いに平行な位置関係で、かつ、電極断面形状が、貫通孔の中心に対して互いに回転対称となっていることから、この対向電極間に形成される電場において広い一様領域を実現でき、帯電の影響が少なく、かつ良好な偏向特性が達成される。   In order to achieve the above object, in the present invention, in the shape of a pair of counter electrodes of a deflector, a cutting point for electrically separating a pair of electrodes can be formed from a beam passing through a through hole. The structure is set as far as possible and invisible. In addition, since the counter electrodes are in a positional relationship parallel to each other and the electrode cross-sectional shapes are rotationally symmetric with respect to the center of the through hole, a wide electric field is formed in the electric field formed between the counter electrodes. Can be realized, the influence of charging is small, and good deflection characteristics are achieved.

本発明による偏向器は、特に、貫通口の側壁に形成した対向電極構造に適しており、その形成には微細加工が可能なシリコン基板を用い、前記貫通口の形成に平滑かつ垂直な壁面加工が可能なドライエッチング法を含む工程と、前記電極の形成に薄膜で均一な電導膜形成が可能なスパッタリング法と蒸着法のいずれかを含む工程とを用いることにより作製できる。   The deflector according to the present invention is particularly suitable for the counter electrode structure formed on the side wall of the through hole, and uses a silicon substrate capable of microfabrication for the formation, and smooth and vertical wall surface processing for the formation of the through hole. It can be manufactured by using a process including a dry etching method capable of forming a thin film and a process including any one of a sputtering method and a vapor deposition method capable of forming a thin and uniform conductive film for forming the electrode.

また、本発明による偏向器は、上記作製方法によって小型化が可能なので、特に、マルチビームの電子ビーム描画装置に適している。マルチビームの電子ビーム描画装置では、上記偏向器を二次元に配列させ、それぞれに配線をつなぎ個別に電圧印加を制御することで、複数の電子ビームを独立に偏向制御することが可能となり、高精度かつ高速描画が実現できる。   In addition, the deflector according to the present invention can be reduced in size by the above manufacturing method, and is particularly suitable for a multi-beam electron beam drawing apparatus. In a multi-beam electron beam lithography system, it is possible to independently control the deflection of a plurality of electron beams by arranging the deflectors in two dimensions, connecting wires to each of them, and controlling voltage application individually. Accurate and high-speed drawing can be realized.

以下に、本発明の代表的な構成例を列挙する。   Below, the typical structural example of this invention is enumerated.

(1)基板に形成された貫通孔の側壁に一対の電極を対向して設け、前記1対の電極のそれぞれが互いに異なる電圧を印加することにより、前記貫通口内を通過する荷電粒子ビームを偏向せしめる偏向器において、前記貫通口の側壁が、前記基板表面に垂直な2対以上の平行面対を含んだ多面体または曲面をなし、かつ、前記1対の電極の各々が、前記多面体または曲面の複数の面の表面に連続的に構成されていることを特徴とする。   (1) A pair of electrodes are provided facing each other on the side wall of the through hole formed in the substrate, and each of the pair of electrodes applies a different voltage to deflect the charged particle beam passing through the through hole. In the deflecting device, the side wall of the through-hole forms a polyhedron or a curved surface including two or more pairs of parallel surfaces perpendicular to the substrate surface, and each of the pair of electrodes is formed of the polyhedral or curved surface. It is characterized by being continuously formed on a plurality of surfaces.

(2)前記(1)の偏向器において、前記側壁には、前記1対の電極間を電気的に分離するための切断箇所を有し、かつ、前記切断箇所は、通過する前記荷電粒子ビームから隔離された位置に設置されていることを特徴とする。   (2) In the deflector according to (1), the side wall has a cut portion for electrically separating the pair of electrodes, and the cut portion passes through the charged particle beam passing through the deflector. It is installed in the position isolated from.

(3)前記(1)又は(2)の偏向器において、前記貫通口の側壁に対向して形成された一対の電極の前記基板表面に水平な断面形状が、互いに前記貫通口の中心に対して回転対称に形成されていることを特徴とする。   (3) In the deflector of (1) or (2), a cross-sectional shape horizontal to the substrate surface of the pair of electrodes formed to face the side wall of the through-hole is mutually opposite to the center of the through-hole. It is characterized by being formed in rotational symmetry.

(4)基板に形成された貫通孔の側壁に一対の電極を対向して設け、前記1対の電極のそれぞれが互いに異なる電圧を印加することにより、前記貫通口内を通過する荷電粒子線を偏向せしめる偏向器において、前記貫通孔の側壁は、前記対向する面を異なった向きで複数有する1対の連続面からなり、かつ、前記1対の連続面のそれぞれに電気的に接続された電極が形成されていることを特徴とする。   (4) A pair of electrodes are provided facing each other on the side wall of the through hole formed in the substrate, and each of the pair of electrodes applies a different voltage to deflect the charged particle beam passing through the through hole. In the deflecting device, the side wall of the through hole is formed of a pair of continuous surfaces having a plurality of opposing surfaces in different directions, and electrodes electrically connected to each of the pair of continuous surfaces are provided. It is formed.

(5)前記(4)の偏向器において、前記電極の折れ曲がり角度の総和が90度以上であることを特徴とする。   (5) The deflector of (4) is characterized in that the total bending angle of the electrodes is 90 degrees or more.

(6)前記(4)又は(5)の偏向器において、前記電極の前記基板表面に水平な断面形状が、前記対向する電極の中心に対して、互いに回転対称に構成されていることを特徴とする。   (6) In the deflector of (4) or (5), the cross-sectional shape of the electrode horizontal to the substrate surface is configured to be rotationally symmetric with respect to the center of the opposing electrode. And

(7)基板内に形成した貫通孔の側壁に一対の電極を対向せしめて、前記貫通口内を通過する荷電粒子ビームを偏向する偏向器の作製方法において、前記基板にシリコン基板を用い、ドライエッチング法により、前記貫通口の側壁に前記基板表面に垂直な2対以上の平行面対を含んだ多面体または曲面を形成する工程と、かつ、スパッタリング法または蒸着法を用いて、前記1対の電極の各々を、前記多面体または曲面の複数の面の表面に連続的に形成する工程とを有することを特徴とする。   (7) In a method of manufacturing a deflector in which a pair of electrodes are opposed to a side wall of a through-hole formed in a substrate to deflect a charged particle beam passing through the through-hole, a silicon substrate is used as the substrate, and dry etching is performed. Forming the polyhedron or curved surface including two or more parallel plane pairs perpendicular to the substrate surface on the side wall of the through-hole, and using the sputtering method or the vapor deposition method, the pair of electrodes Each of which is continuously formed on the surface of a plurality of faces of the polyhedron or curved surface.

(8)荷電粒子ビームを偏向器および対物レンズを通して試料上に照射し走査して、前記試料上に所望のパターンを形成する電子光学系を有する荷電粒子ビーム描画装置において、前記偏向器が、基板に形成された貫通口の側壁に一対の電極を対向して設け、前記貫通口の側壁が、前記基板表面に垂直な2対以上の平行面対を含んだ多面体または曲面からなり、かつ、前記対向する電極の各々が、前記多面体または曲面の複数の面の表面に連続的に形成されていることを特徴とする。   (8) In a charged particle beam writing apparatus having an electron optical system that forms a desired pattern on a sample by irradiating the sample with a charged particle beam through a deflector and an objective lens and scanning the sample. A pair of electrodes are provided opposite to the side wall of the through-hole formed in the side wall, and the side wall of the through-hole is formed of a polyhedron or a curved surface including two or more parallel plane pairs perpendicular to the substrate surface, and Each of the opposing electrodes is continuously formed on the surface of the polyhedron or a plurality of curved surfaces.

(9)前記(8)の荷電粒子ビーム描画装置において、前記偏向器は、前記側壁に前記1対の電極間を電気的に分離するための切断箇所を有し、かつ、前記切断箇所は、通過する前記荷電粒子ビームから隔離された位置に設置されていることを特徴とする。   (9) In the charged particle beam drawing apparatus according to (8), the deflector has a cutting point for electrically separating the pair of electrodes on the side wall, and the cutting point is: It is installed in the position isolated from the said charged particle beam to pass.

(10)前記(8)又は(9)の荷電粒子ビーム描画装置において、前記荷電粒子ビームが複数の荷電粒子ビームからなり、かつ、前記偏向器が前記複数の荷電粒子ビームの配列に対応して複数配列されていることを特徴とする。   (10) In the charged particle beam drawing apparatus according to (8) or (9), the charged particle beam includes a plurality of charged particle beams, and the deflector corresponds to the arrangement of the plurality of charged particle beams. It is characterized by being arranged in multiple numbers.

(11)基板に形成された貫通孔の側壁に対向して設置された一対の電極を有し、前記1対の電極のそれぞれに異なる極性の電圧を印加することにより、前記貫通口内を通過する荷電粒子ビームを偏向せしめる偏向器において、前記貫通口の側壁が、前記基板表面に垂直な2対以上の平行面対を含む構造を有し、前記1対の電極の各々が、前記2対以上の平行面対の各表面にわたって連続的に形成されてなり、かつ、前記側壁には、前記1対の電極間を電気的に分離するための切断箇所を有し、前記切断箇所は、通過する前記荷電粒子ビームから隔離された位置に設置され、前記1対の電極の前記基板表面に水平な断面形状が、対向する前記1対の電極の中心に対して、互いに回転対称に構成されていることを特徴とする。   (11) It has a pair of electrodes installed facing the side wall of the through hole formed in the substrate, and passes through the through hole by applying a voltage having a different polarity to each of the pair of electrodes. In the deflector for deflecting a charged particle beam, the side wall of the through hole has a structure including two or more pairs of parallel planes perpendicular to the substrate surface, and each of the pair of electrodes includes the two or more pairs. Are formed continuously over each surface of a pair of parallel planes, and the side wall has a cutting point for electrically separating the pair of electrodes, and the cutting point passes therethrough. The cross-sectional shape that is installed at a position isolated from the charged particle beam and is horizontal to the substrate surface of the pair of electrodes is configured to be rotationally symmetric with respect to the center of the pair of electrodes facing each other. It is characterized by that.

本発明によれば、荷電粒子ビーム描画装置の安定した偏向器を実現でき描画精度の向上が達成出来る。特に、偏向器の小型化が必要となるマルチ電子ビーム描画装置に有効である。   According to the present invention, a stable deflector of a charged particle beam drawing apparatus can be realized and an improvement in drawing accuracy can be achieved. In particular, it is effective for a multi-electron beam drawing apparatus that requires a deflector to be miniaturized.

以下、本発明の実施例について、図面を参照して詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1)
図3に、本実施例に用いるマルチ電子ビーム描画装置の構成を示す。
Example 1
FIG. 3 shows the configuration of a multi-electron beam drawing apparatus used in this embodiment.

電子銃(電子源)110から放出された電子ビーム111を、コンデンサレンズ112を通して平行ビームとし、複数の穴の空いたアパーチャ−アレイ113により複数のポイントビームに分離され、その後段にあるレンズアレイ114によりポイントビームの中間像116に結像される。複数のポイントビームは、個別にオンオフ可能なようにブランカーアレイ115、ブランキング絞り119が設けられている。   An electron beam 111 emitted from an electron gun (electron source) 110 is converted into a parallel beam through a condenser lens 112, separated into a plurality of point beams by an aperture array 113 having a plurality of holes, and a lens array 114 in the subsequent stage. Is formed on the intermediate image 116 of the point beam. A plurality of point beams are provided with a blanker array 115 and a blanking stop 119 so that they can be individually turned on and off.

このようにして形成されたマルチポイントビームは、第1投影レンズ118と第2投影レンズ121からなるダブレットレンズ122により縮小されて、試料124上に結像される。マルチビーム間には距離があるために実質的に物面での電子ビームの最大距離より瞳像での電子ビームの最大距離が長い大面積転写となっている。   The multipoint beam thus formed is reduced by the doublet lens 122 including the first projection lens 118 and the second projection lens 121 and is imaged on the sample 124. Since there is a distance between the multi-beams, large-area transfer is performed in which the maximum distance of the electron beam in the pupil image is substantially longer than the maximum distance of the electron beam on the object surface.

ダブレットレンズ122の物面と像面との間には、高速用の偏向器120と低速用の偏向器128があり、試料124上での描画位置を規定する。ステージ125上には電子ビーム位置検出用のマーク126があり、ステージ125の位置を計測するレーザ干渉計(図示してない)と反射電子検出器123を用いることで電子ビームの位置を測定することが出来る。   Between the object surface and the image plane of the doublet lens 122, there are a high-speed deflector 120 and a low-speed deflector 128, which define the drawing position on the sample 124. An electron beam position detection mark 126 is provided on the stage 125, and the position of the electron beam is measured by using a laser interferometer (not shown) that measures the position of the stage 125 and the reflected electron detector 123. I can do it.

また、ダブレットレンズ122の1つ目のレンズである第1投影レンズ118の上方にはアライナー117が2段構成で設けられており、連動させることによりレンズへの電子ビームの入射角度と入射位置を調整できる。アライナー117はアライナー制御回路104により、ダブレットレンズ122はレンズ制御回路105により駆動される。本実施例では、具体的には電流が供給されることになる。各電流の設定値は、中央制御部101から与えられる情報により決められている。同様に、フォーカス制御回路102とブランキング回路103は、電圧を供給することで対応する光学素子、レンズアレイ114とブランカーアレイ115とを、それぞれ動作させている。これらの設定値も中央制御部101から与えられる情報により決められている。   Further, an aligner 117 is provided in a two-stage configuration above the first projection lens 118, which is the first lens of the doublet lens 122, and the angle and position of the electron beam incident on the lens can be adjusted by interlocking. Can be adjusted. The aligner 117 is driven by the aligner control circuit 104, and the doublet lens 122 is driven by the lens control circuit 105. In the present embodiment, specifically, a current is supplied. The set value of each current is determined by information given from the central control unit 101. Similarly, the focus control circuit 102 and the blanking circuit 103 operate the corresponding optical elements, the lens array 114 and the blanker array 115 by supplying a voltage, respectively. These set values are also determined by information given from the central control unit 101.

この中央制御部101は、信号処理回路107やステージ制御回路108から得られる情報も利用してレンズやアライナーの動作量を決める計算も行っている。また、本装置には、これらの機能を活用して、励磁変化の設定、電子ビーム位置の変化量の表示、或いはアライナーやレンズ励磁(電流量)の再設定を行う画面を有する表示装置109を有している。描画の際は、描画パターンデータ部129からの制御信号に基づき中央制御部101により電子ビーム111が制御されウェーハ124上に描画される。中央制御部101内では描画パターンデータを各パラメータ格納部を通して各制御回路に信号を振り分けて制御する他に、信号処理回路107やステージ制御回路108、および記憶部と波形解析部(図示してない)から得られる情報も利用して中央演算部でレンズやアライナーおよび偏向器やブランキングの動作校正量を決める計算も行っている。これらの校正値は校正パラメータ記憶部に格納され、この校正パラメータを参照して描画が実行される。   The central control unit 101 also uses the information obtained from the signal processing circuit 107 and the stage control circuit 108 to perform calculations for determining the movement amounts of the lens and aligner. Further, the present apparatus has a display device 109 having a screen for setting excitation change, displaying the change amount of the electron beam position, or resetting the aligner and lens excitation (current amount) by utilizing these functions. Have. At the time of drawing, the electron beam 111 is controlled by the central control unit 101 based on a control signal from the drawing pattern data unit 129 and drawn on the wafer 124. In the central control unit 101, in addition to controlling the drawing pattern data by distributing the signal to each control circuit through each parameter storage unit, the signal processing circuit 107, the stage control circuit 108, the storage unit and the waveform analysis unit (not shown) ) Is also used to calculate the lens, aligner, deflector, and blanking operation calibration amount in the central processing unit. These calibration values are stored in the calibration parameter storage unit, and drawing is executed with reference to the calibration parameters.

従来は、ブランカーアレイ115として、複数のポイントビームについてそれぞれの偏向器が、図4、図5に示すように、貫通口2の対向側壁に第1の電極6と第2の電極17で構成されていた。図4は、電子ビーム描画装置の電子銃側からみた従来の偏向器を示し、図5は、そのB−B'断面図を示す。   Conventionally, as the blanker array 115, each deflector for a plurality of point beams is configured with a first electrode 6 and a second electrode 17 on the opposite side wall of the through-hole 2 as shown in FIGS. 4 and 5. It was. FIG. 4 shows a conventional deflector viewed from the electron gun side of the electron beam drawing apparatus, and FIG. 5 shows a cross-sectional view taken along the line BB ′.

それぞれの電極にブランキング回路103より、配線4を介してそれぞれ+5V、−5Vの電圧を印加することによりビーム5を偏向し、試料124上へのビームのON/OFFを制御していた。しかし、これらの電極の隣接面18は、電極間の絶縁を保つために表面が酸化膜1で構成されている。この酸化膜の表面電位が小さい場合には、上記第1の電極と第2の電極で形成される電極間の空間の電界分布は安定しているが、ビーム調整時や使用中のビーム異常変動によりビーム5がこの酸化膜18に照射されるために酸化膜表面が100V以上に帯電してしまう。そのために、上記第1の電極6と第2の電極17で形成される電極間の空間の電界分布がこの帯電の電界で決定されてしまい、それぞれの電極にブランキング回路103より+5V、−5Vの電圧を印加してもビーム偏向制御ができず、酸化膜の帯電場所と帯電量によりある偏向器では試料上124でビームが常にONに、他の偏向器では試料上でビームが常にOFFになってしまう。この問題を解決する方法として、図4の酸化膜領域18に第3、第4の電極を形成して電気的に接地する方法が考えられるが、これらの電極への配線が必要になるので偏向器を多数並べるブランカーアレイ115では作製が困難であり、また、これらの電極と第1、第2の電極間の絶縁のための酸化膜領域が必要であるので上記帯電の問題は解決されない。   The beam 5 is deflected by applying a voltage of +5 V and −5 V to the respective electrodes from the blanking circuit 103 via the wiring 4 to control ON / OFF of the beam on the sample 124. However, the adjacent surfaces 18 of these electrodes are composed of the oxide film 1 in order to maintain insulation between the electrodes. When the surface potential of the oxide film is small, the electric field distribution in the space formed by the first electrode and the second electrode is stable, but abnormal beam fluctuation during beam adjustment or in use As a result, the oxide film 18 is irradiated with the beam 5, so that the surface of the oxide film is charged to 100 V or more. Therefore, the electric field distribution in the space between the electrodes formed by the first electrode 6 and the second electrode 17 is determined by the electric field of this charging, and each electrode is supplied with + 5V and −5V by the blanking circuit 103. The beam deflection control cannot be performed even if the voltage is applied, and the beam is always on on the sample 124 in some deflectors depending on the charging location and charge amount of the oxide film, and the beam is always off on the sample in other deflectors. turn into. As a method for solving this problem, a method of forming the third and fourth electrodes in the oxide film region 18 of FIG. 4 and electrically grounding them can be considered. However, since wiring to these electrodes is required, deflection is required. The blanker array 115 in which a large number of vessels are arranged is difficult to manufacture, and an oxide film region for insulation between these electrodes and the first and second electrodes is necessary, so that the problem of charging cannot be solved.

本発明では、ブランカーアレイ115としてそれぞれの偏向器が、図1、図2に示すように、偏向器の貫通口1が2対の平行面を含んだ四面と二曲面からなり、かつ対向電極の各々が二面の表面に連続的に形成された第1の電極3と第2の電極19で構成されている。図1は、電子ビーム描画装置の電子銃側からみた本発明の偏向器を示し、図2は、そのA−A'断面図を示す。   In the present invention, as shown in FIGS. 1 and 2, each deflector as the blanker array 115 includes a deflector through-hole 1 having four surfaces and two curved surfaces including two parallel surfaces, and a counter electrode. Each is composed of a first electrode 3 and a second electrode 19 which are continuously formed on two surfaces. FIG. 1 shows the deflector of the present invention as viewed from the electron gun side of the electron beam drawing apparatus, and FIG. 2 shows a cross-sectional view taken along the line AA ′.

貫通口が2対の平行面を含んだ四面と二曲面からなり、内角が180度以上の箇所が2箇所あり、第1の電極と第2の電極の電極間は2箇所の切断箇所20、21を有しており、その切断面には酸化膜が露出している。また、ひとつあたりの電極の折れ曲がり角度の総和は90度である。そして、それぞれの電極にブランキング回路103より、配線4を介してそれぞれ+5V、−5Vの電圧を印加することによりビーム5を偏向し、試料124上へのビームのON/OFFを制御ができる。   The through-hole is composed of four surfaces including two parallel surfaces and two curved surfaces, and there are two locations where the internal angle is 180 degrees or more, and there are two cut locations 20 between the electrodes of the first electrode and the second electrode, 21 and an oxide film is exposed on the cut surface. Further, the total bending angle of the electrodes per one is 90 degrees. The beam 5 is deflected by applying voltages of +5 V and −5 V to the respective electrodes from the blanking circuit 103 via the wiring 4, respectively, and ON / OFF of the beam on the sample 124 can be controlled.

そして、本発明では、偏向器の対向電極の形状において、1対の電極間を電気的に分離するための切断箇所20、21を、貫通孔内を通過するビームからできる限り離し、かつ見えない位置に設定する構造としている。このため、ビーム調整時や使用中のビーム異常変動が発生したときでも酸化膜領域がビーム5に対して陰になる位置に配置されているので、ビームが第1、第2の電極3、19のいずれかにあたり酸化膜表面が帯電することはなく、安定したビームON/OFF制御が可能である。また、この対向電極3、19は互いに平行な位置関係でかつ電極断面形状が互いに回転対称となっていることから、この対向電極間に形成される電場において広い一様領域を実現できるので、ビーム位置5がこの平行電極間の空間のどの位置でも安定したビームON/OFF制御が可能である。このようにして、本発明の偏向器では、帯電の影響が少なく、かつ良好な偏向特性が達成される。   And in this invention, in the shape of the counter electrode of a deflector, the cutting | disconnection locations 20 and 21 for electrically separating between a pair of electrodes are separated as much as possible from the beam which passes through the inside of a through-hole, and cannot be seen. The structure is set to the position. For this reason, since the oxide film region is arranged at a position that is shaded with respect to the beam 5 even when the beam is abnormally adjusted during beam adjustment or in use, the beam is arranged in the first and second electrodes 3 and 19. Therefore, the surface of the oxide film is not charged and stable beam ON / OFF control is possible. In addition, since the counter electrodes 3 and 19 are in a positional relationship parallel to each other and the cross-sectional shapes of the electrodes are rotationally symmetric with each other, a wide uniform region can be realized in the electric field formed between the counter electrodes. Stable beam ON / OFF control can be performed at any position 5 in the space between the parallel electrodes. Thus, in the deflector of the present invention, the influence of charging is small and good deflection characteristics are achieved.

このように良好な特性の偏向器の電極形状としては、2対の平行面以外は多面体もしくは曲面でも良い。例えば、図6および図7に示すような形状でも、本発明による効果は同じである。図6は、電子ビーム描画装置の電子銃側からみた偏向器を示し、図7は、そのC−C'断面図を示す。いずれの形状でも貫通口2の多面体または曲面の内角が180度以上の箇所が2箇所以上で、かつ対向電極が2箇所の切断箇所23、24を有している。また、電気的に接続されたひとつあたりの電極3または電極22の折れ曲がり角度の総和が90度以上である。   The electrode shape of the deflector having such good characteristics may be a polyhedron or a curved surface other than two pairs of parallel surfaces. For example, the effects of the present invention are the same even in the shapes shown in FIGS. FIG. 6 shows a deflector viewed from the electron gun side of the electron beam drawing apparatus, and FIG. 7 shows a CC ′ cross-sectional view thereof. In any shape, the polyhedron or curved surface of the through-hole 2 has two or more locations where the internal angle of the curved surface is 180 degrees or more, and the counter electrode has two cut locations 23 and 24. Moreover, the sum total of the bending angles of the electrode 3 or the electrode 22 per one electrically connected is 90 degrees or more.

(実施例2)
次に、本発明である偏向器の作製方法について、図8(a)〜(f)、図9および図10を用いて説明する。
(Example 2)
Next, the manufacturing method of the deflector which is this invention is demonstrated using FIG. 8 (a)-(f), FIG. 9, and FIG.

まず、図10に示すフローにより、ステップ(a)においてシリコン基板8(図8(a))をドライエッチングして、ステップ(b)において縦80μm、横30μm、深さ200μmの貫通口9を作製する(図8(b))。次に、ステップ(c)においてこの基板の表面を酸化して酸化膜10を形成する(図8(c))。次に、ステップ(d)において、基板表面および裏面にフィルム状のレジスト11を付着させ露光現像により貫通口の一部にフィルム状のレジスト開口部12を作る(図8(d))。次に、ステップ(e)において、この基板の表面および裏面から金をスパッタ法により成膜し、表面の配線14と貫通口内の2対の平行面に金の薄膜13を形成する(図8(e))。フィルム状のレジストを剥離後、さらに、ステップ(f)において、この基板を金の無電解めっきにより金の薄膜部および表面の配線に金のめっき膜15、16を形成し、金の膜厚を500nmとした(図8(f))。   First, according to the flow shown in FIG. 10, the silicon substrate 8 (FIG. 8A) is dry-etched in the step (a), and the through-hole 9 having a length of 80 μm, a width of 30 μm, and a depth of 200 μm is produced in the step (b). (FIG. 8B). Next, in step (c), the surface of the substrate is oxidized to form an oxide film 10 (FIG. 8C). Next, in step (d), a film-like resist 11 is attached to the front and back surfaces of the substrate, and a film-like resist opening 12 is formed in a part of the through-hole by exposure and development (FIG. 8 (d)). Next, in step (e), gold is deposited from the front and back surfaces of the substrate by sputtering, and a gold thin film 13 is formed on the two wirings parallel to the front surface wiring 14 and the through hole (FIG. 8 ( e)). After removing the film resist, in step (f), gold plating films 15 and 16 are formed on the gold thin film portion and the surface wiring by performing electroless plating on the substrate. The thickness was set to 500 nm (FIG. 8 (f)).

このようにして、貫通口内の2対以上の平行面からなる電極の形成が実現できる。ドライエッチング時に基板上に複数の貫通口9を設けておけば、図9に示すように、複数のビーム5を個別に偏向することができ、マルチ電子ビーム描画装置用のブランカーアレイ115の作製が可能である。   In this way, it is possible to form an electrode composed of two or more parallel surfaces in the through hole. If a plurality of through-holes 9 are provided on the substrate at the time of dry etching, a plurality of beams 5 can be individually deflected as shown in FIG. 9, and a blanker array 115 for a multi-electron beam drawing apparatus can be manufactured. Is possible.

以上の実施例では、電子ビーム描画装置への適用例について述べたが、イオン等を用いた荷電粒子ビーム描画装置でも同じ効果が得られる。   In the above embodiment, the application example to the electron beam lithography apparatus has been described. However, the same effect can be obtained by a charged particle beam lithography apparatus using ions or the like.

以上のように、本発明によれば、荷電粒子ビーム描画装置の安定した偏向器を実現でき描画精度の向上が達成出来る。特に、偏向器の小型化が必要となるマルチ電子ビーム描画装置に有効である。   As described above, according to the present invention, a stable deflector of the charged particle beam drawing apparatus can be realized, and the drawing accuracy can be improved. In particular, it is effective for a multi-electron beam drawing apparatus that requires a deflector to be miniaturized.

本発明の偏向器の一実施例を説明する図。The figure explaining one Example of the deflector of this invention. 図1の偏向器のA−A'断面を示す図。The figure which shows the AA 'cross section of the deflector of FIG. 本発明の実施例1における装置構成を説明する図。BRIEF DESCRIPTION OF THE DRAWINGS The figure explaining the apparatus structure in Example 1 of this invention. 従来の偏向器を説明する図。The figure explaining the conventional deflector. 図5のB−B'断面を示す図。The figure which shows the BB 'cross section of FIG. 本発明の偏向器の別の構成例を示す図。The figure which shows another structural example of the deflector of this invention. 図6のC−C'断面を示す図。The figure which shows the CC 'cross section of FIG. 本発明の偏向器の作製方法(1)を説明する図。The figure explaining the manufacturing method (1) of the deflector of this invention. 本発明の偏向器の作製方法(2)を説明する図The figure explaining the manufacturing method (2) of the deflector of this invention 本発明の偏向器の作製方法(3)を説明する図The figure explaining the manufacturing method (3) of the deflector of this invention 本発明の偏向器の作製方法(4)を説明する図The figure explaining the manufacturing method (4) of the deflector of this invention 本発明の偏向器の作製方法(5)を説明する図The figure explaining the manufacturing method (5) of the deflector of this invention 本発明の偏向器の作製方法(6)を説明する図The figure explaining the manufacturing method (6) of the deflector of this invention 本発明のマルチビーム対応の偏向器を示す図。The figure which shows the deflector corresponding to the multi-beam of this invention. 本発明の偏向器の作製フローを説明する図。The figure explaining the manufacture flow of the deflector of this invention.

符号の説明Explanation of symbols

1、10…酸化膜、2、9…貫通口、3、6、15、17、19、22…電極、4、14、16…配線、5、111…電子ビーム、7、8…シリコン基板、11…レジスト、12…マスク開口、13…金薄膜、15…金めっき膜、18、20、21、23、24…電極切断部、101…中央制御部、102…フォーカス制御回路、103…ブランキング回路、104…アライナー制御回路、105…レンズ制御回路、106…偏向制御回路、107…信号処理回路、108…ステージ制御回路、109…表示装置、110…電子銃、112…コンデンサレンズ、113…アパーチャーアレイ、114…レンズアレイ、115…ブランカーアレイ、116…中間像、117…アライナー、118…第1投影レンズ、119…ブランキング絞り、120…高速用の偏向器、121…第2投影レンズ、122…ダブレットレンズ、123…電子検出器、124…試料、125…ステージ、126…マーク、128…低速用の偏向器、129…描画パターンデータ部。   DESCRIPTION OF SYMBOLS 1, 10 ... Oxide film, 2, 9 ... Through-hole 3, 6, 15, 17, 19, 22 ... Electrode 4, 14, 16 ... Wiring 5, 111 ... Electron beam, 7, 8 ... Silicon substrate, DESCRIPTION OF SYMBOLS 11 ... Resist, 12 ... Mask opening, 13 ... Gold thin film, 15 ... Gold plating film, 18, 20, 21, 23, 24 ... Electrode cutting part, 101 ... Central control part, 102 ... Focus control circuit, 103 ... Blanking Circuits 104: Aligner control circuit 105 ... Lens control circuit 106 ... Deflection control circuit 107 ... Signal processing circuit 108 ... Stage control circuit 109 ... Display device 110 110 Electron gun 112 112 Condenser lens 113 Aperture Array 114 114 lens array 115 blanker array 116 intermediate image 117 aligner 118 first projection lens 119 blanking stop DESCRIPTION OF SYMBOLS 20 ... High-speed deflector, 121 ... 2nd projection lens, 122 ... Doublet lens, 123 ... Electron detector, 124 ... Sample, 125 ... Stage, 126 ... Mark, 128 ... Low-speed deflector, 129 ... Drawing pattern Data part.

Claims (11)

基板に形成された貫通孔の側壁に一対の電極を対向して設け、前記1対の電極のそれぞれが互いに異なる電圧を印加することにより、前記貫通口内を通過する荷電粒子ビームを偏向せしめる偏向器において、前記貫通口の側壁が、前記基板表面に垂直な2対以上の平行面対を含んだ多面体または曲面をなし、かつ、前記1対の電極の各々が、前記多面体または曲面の複数の面の表面に連続的に構成されていることを特徴とする偏向器。   A deflector that deflects a charged particle beam passing through the through-hole by providing a pair of electrodes facing each other on the side wall of the through-hole formed in the substrate and applying a different voltage to each of the pair of electrodes. The through hole has a polyhedron or curved surface including two or more pairs of parallel surfaces perpendicular to the substrate surface, and each of the pair of electrodes is a plurality of surfaces of the polyhedron or curved surface. A deflector characterized in that the deflector is continuously formed on the surface. 請求項1に記載の偏向器において、前記側壁には、前記1対の電極間を電気的に分離するための切断箇所を有し、かつ、前記切断箇所は、通過する前記荷電粒子ビームから隔離された位置に設置されていることを特徴とする偏向器。   2. The deflector according to claim 1, wherein the side wall has a cutting portion for electrically separating the pair of electrodes, and the cutting portion is isolated from the charged particle beam passing therethrough. A deflector characterized in that the deflector is installed at a fixed position. 請求項1又は2に記載の偏向器において、前記貫通口の側壁に対向して形成された一対の電極の前記基板表面に水平な断面形状が、互いに前記貫通口の中心に対して回転対称に形成されていることを特徴とする偏向器。   3. The deflector according to claim 1, wherein a cross-sectional shape horizontal to the substrate surface of the pair of electrodes formed to face the side wall of the through hole is rotationally symmetrical with respect to the center of the through hole. A deflector characterized by being formed. 基板に形成された貫通孔の側壁に一対の電極を対向して設け、前記1対の電極のそれぞれが互いに異なる電圧を印加することにより、前記貫通口内を通過する荷電粒子線を偏向せしめる偏向器において、前記貫通孔の側壁は、前記対向する面を異なった向きで複数有する1対の連続面からなり、かつ、前記1対の連続面のそれぞれに電気的に接続された電極が形成されていることを特徴とする偏向器。   A deflector for deflecting a charged particle beam passing through the through-hole by providing a pair of electrodes facing each other on a side wall of a through-hole formed in the substrate and applying a different voltage to each of the pair of electrodes. The through-holes are formed of a pair of continuous surfaces having a plurality of opposing surfaces in different directions, and electrodes electrically connected to each of the pair of continuous surfaces are formed. A deflector characterized by having 請求項4に記載の偏向器において、前記電極の折れ曲がり角度の総和が90度以上であることを特徴とする偏向器。   5. The deflector according to claim 4, wherein a sum of bending angles of the electrodes is 90 degrees or more. 請求項4又は5に記載の偏向器において、前記電極の前記基板表面に水平な断面形状が、前記対向する電極の中心に対して、互いに回転対称に構成されていることを特徴とする偏向器。   6. The deflector according to claim 4, wherein a cross-sectional shape of the electrode horizontal to the substrate surface is rotationally symmetrical with respect to the center of the opposing electrode. . 基板内に形成した貫通孔の側壁に一対の電極を対向せしめて、前記貫通口内を通過する荷電粒子ビームを偏向する偏向器の作製方法において、前記基板にシリコン基板を用い、ドライエッチング法により、前記貫通口の側壁に前記基板表面に垂直な2対以上の平行面対を含んだ多面体または曲面を形成する工程と、かつ、スパッタリング法または蒸着法を用いて、前記1対の電極の各々を、前記多面体または曲面の複数の面の表面に連続的に形成する工程とを有することを特徴とする偏向器の作製方法。   In a method for manufacturing a deflector that deflects a charged particle beam passing through the through-hole by causing a pair of electrodes to face a side wall of a through-hole formed in the substrate, a silicon substrate is used as the substrate, and a dry etching method is used. Forming a polyhedron or curved surface including two or more parallel plane pairs perpendicular to the substrate surface on the side wall of the through-hole, and using a sputtering method or a vapor deposition method, And a step of continuously forming the surface of a plurality of surfaces of the polyhedron or the curved surface. 荷電粒子ビームを偏向器および対物レンズを通して試料上に照射し走査して、前記試料上に所望のパターンを形成する電子光学系を有する荷電粒子ビーム描画装置において、前記偏向器が、基板に形成された貫通口の側壁に一対の電極を対向して設け、前記貫通口の側壁が、前記基板表面に垂直な2対以上の平行面対を含んだ多面体または曲面からなり、かつ、前記対向する電極の各々が、前記多面体または曲面の複数の面の表面に連続的に形成されていることを特徴とする荷電粒子ビーム描画装置。   In a charged particle beam drawing apparatus having an electron optical system that forms a desired pattern on a sample by irradiating the sample with a charged particle beam through a deflector and an objective lens and scanning the sample, the deflector is formed on a substrate. A pair of electrodes are provided opposite to the side wall of the through-hole, and the side wall of the through-hole is formed of a polyhedron or curved surface including two or more parallel plane pairs perpendicular to the substrate surface, and the opposing electrode Are each continuously formed on the surface of a plurality of faces of the polyhedron or curved surface. 請求項8に記載の荷電粒子ビーム描画装置において、前記偏向器は、前記側壁に前記1対の電極間を電気的に分離するための切断箇所を有し、かつ、前記切断箇所は、通過する前記荷電粒子ビームから隔離された位置に設置されていることを特徴とする荷電粒子ビーム描画装置。   9. The charged particle beam drawing apparatus according to claim 8, wherein the deflector has a cutting portion for electrically separating the pair of electrodes on the side wall, and the cutting portion passes. A charged particle beam drawing apparatus, wherein the charged particle beam writing apparatus is installed at a position isolated from the charged particle beam. 請求項8又は9に記載の荷電粒子ビーム描画装置において、前記荷電粒子ビームが複数の荷電粒子ビームからなり、かつ、前記偏向器が前記複数の荷電粒子ビームの配列に対応して複数配列されていることを特徴とする荷電粒子ビーム描画装置。   10. The charged particle beam drawing apparatus according to claim 8, wherein the charged particle beam comprises a plurality of charged particle beams, and a plurality of the deflectors are arranged corresponding to the arrangement of the plurality of charged particle beams. A charged particle beam drawing apparatus. 基板に形成された貫通孔の側壁に対向して設置された一対の電極を有し、前記1対の電極のそれぞれに異なる極性の電圧を印加することにより、前記貫通口内を通過する荷電粒子ビームを偏向せしめる偏向器において、前記貫通口の側壁が、前記基板表面に垂直な2対以上の平行面対を含む構造を有し、前記1対の電極の各々が、前記2対以上の平行面対の各表面にわたって連続的に形成されてなり、かつ、前記側壁には、前記1対の電極間を電気的に分離するための切断箇所を有し、前記切断箇所は、通過する前記荷電粒子ビームから隔離された位置に設置され、前記1対の電極の前記基板表面に水平な断面形状が、対向する前記1対の電極の中心に対して、互いに回転対称に構成されていることを特徴とする偏向器。   A charged particle beam having a pair of electrodes disposed opposite to the side wall of the through hole formed in the substrate, and passing through the through hole by applying a voltage having a different polarity to each of the pair of electrodes. The side wall of the through-hole has a structure including two or more pairs of parallel surfaces perpendicular to the substrate surface, and each of the pair of electrodes is composed of the two or more pairs of parallel surfaces. It is formed continuously over each surface of a pair, and the side wall has a cutting point for electrically separating the pair of electrodes, and the cutting point passes through the charged particles that pass therethrough. A cross-sectional shape that is installed at a position isolated from a beam and is horizontal to the substrate surface of the pair of electrodes is configured to be rotationally symmetric with respect to the center of the pair of electrodes facing each other. And deflector.
JP2005138147A 2005-05-11 2005-05-11 Deflector and multi-charged particle beam writing apparatus using the same Active JP4627454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005138147A JP4627454B2 (en) 2005-05-11 2005-05-11 Deflector and multi-charged particle beam writing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005138147A JP4627454B2 (en) 2005-05-11 2005-05-11 Deflector and multi-charged particle beam writing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006319021A true JP2006319021A (en) 2006-11-24
JP4627454B2 JP4627454B2 (en) 2011-02-09

Family

ID=37539442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005138147A Active JP4627454B2 (en) 2005-05-11 2005-05-11 Deflector and multi-charged particle beam writing apparatus using the same

Country Status (1)

Country Link
JP (1) JP4627454B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118536A (en) * 1999-10-19 2001-04-27 Nikon Corp Charged particle beam control element and charged particle beam apparatus
WO2002001597A1 (en) * 2000-06-27 2002-01-03 Ebara Corporation Charged particle beam inspection apparatus and method for fabricating device using that inspection apparatus
JP2003028999A (en) * 2001-07-11 2003-01-29 Ebara Corp Charged particle beam controller, charged particle beam optical device using the same, charge particle beam defect inspection device and control method for charged particle beam
JP2004282038A (en) * 2003-02-28 2004-10-07 Canon Inc Deflector, method for producing deflector, and charged particle beam exposure device using deflector
JP2005149819A (en) * 2003-11-13 2005-06-09 Canon Inc Deflector, manufacturing method of electrode, and charged particle beam exposing device using the deflector
JP2006013389A (en) * 2004-06-29 2006-01-12 Canon Inc Electrode using conductive film and manufacturing method thereof
JP2006054240A (en) * 2004-08-10 2006-02-23 Hitachi High-Technologies Corp Method of manufacturing device for multi-electron beam lithographic equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118536A (en) * 1999-10-19 2001-04-27 Nikon Corp Charged particle beam control element and charged particle beam apparatus
WO2002001597A1 (en) * 2000-06-27 2002-01-03 Ebara Corporation Charged particle beam inspection apparatus and method for fabricating device using that inspection apparatus
JP2003028999A (en) * 2001-07-11 2003-01-29 Ebara Corp Charged particle beam controller, charged particle beam optical device using the same, charge particle beam defect inspection device and control method for charged particle beam
JP2004282038A (en) * 2003-02-28 2004-10-07 Canon Inc Deflector, method for producing deflector, and charged particle beam exposure device using deflector
JP2005149819A (en) * 2003-11-13 2005-06-09 Canon Inc Deflector, manufacturing method of electrode, and charged particle beam exposing device using the deflector
JP2006013389A (en) * 2004-06-29 2006-01-12 Canon Inc Electrode using conductive film and manufacturing method thereof
JP2006054240A (en) * 2004-08-10 2006-02-23 Hitachi High-Technologies Corp Method of manufacturing device for multi-electron beam lithographic equipment

Also Published As

Publication number Publication date
JP4627454B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP5475155B2 (en) Projection lens construction
TWI582816B (en) Charged particle multi-beamlet apparatus and method for influencing and/or controlling the trajectory of charged particle beamlets therein
JP5408674B2 (en) Projection lens construction
US8089056B2 (en) Projection lens arrangement
US8502176B2 (en) Imaging system
TWI546840B (en) Charged particle system comprising a manipulator device for manipulation of one or more charged particle beams
US20120091358A1 (en) Projection lens arrangement
JP2002319532A (en) Charged particle beam aligner, manufacturing method of device, and charged particle beam application device
US9330881B2 (en) Blanking device for multi charged particle beams, and multi charged particle beam writing apparatus
JP2008521188A (en) Focusing mask
JP2016054285A (en) Blanking device for multiple charged particle beam and multiple charged particle beam drawing device
JP2013008534A (en) Electrode for charged particle beam lens
JP4627454B2 (en) Deflector and multi-charged particle beam writing apparatus using the same
JP3014380B2 (en) System and method for directly writing patterns using multiple variable shaped electronic beams
JP4076834B2 (en) Deflector, deflector manufacturing method, and charged particle beam exposure apparatus
JP4455846B2 (en) Electrode substrate and manufacturing method thereof, deflector using the electrode substrate, and charged particle beam exposure apparatus using the deflector
JP4673170B2 (en) Device for multi-electron beam drawing apparatus and manufacturing method thereof
JP2907220B2 (en) Electron beam exposure equipment
NL2002031C (en) Patterned beamlet system.
TW202137262A (en) Beam blanking device for a multi-beamlet charged particle beam apparatus
GB2459279A (en) A projection system for charged particle multi-beams
JP2008034498A (en) Deflector, exposure equipment, and device manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4627454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250