JP2006314982A - Method for highly utilizing woody or herbaceous biomass while utilizing gypsum-containing residue and strongly-acid residue effectively - Google Patents

Method for highly utilizing woody or herbaceous biomass while utilizing gypsum-containing residue and strongly-acid residue effectively Download PDF

Info

Publication number
JP2006314982A
JP2006314982A JP2005170114A JP2005170114A JP2006314982A JP 2006314982 A JP2006314982 A JP 2006314982A JP 2005170114 A JP2005170114 A JP 2005170114A JP 2005170114 A JP2005170114 A JP 2005170114A JP 2006314982 A JP2006314982 A JP 2006314982A
Authority
JP
Japan
Prior art keywords
soil
biomass
liquid
woody
saccharified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005170114A
Other languages
Japanese (ja)
Inventor
Toru Ueda
徹 植田
Yuichi Ishikawa
祐一 石川
Satoshi Matsumoto
聰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005170114A priority Critical patent/JP2006314982A/en
Publication of JP2006314982A publication Critical patent/JP2006314982A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Fuel Cell (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively utilizing woody or herbaceous biomass such as a rice straw and a large quantity of residues to be generated at a sulfuric acid saccharification step. <P>SOLUTION: The method for highly utilizing woody or herbaceous biomass comprises: a case (1) that a saccharified liquid is used as it is in a glucose fuel cell to generate electricity or bacteria are planted and cultured in the saccharified liquid to produce a useful material and gypsum-containing biomass residues to be generated by neutralizing the saccharified liquid and subjecting the neutralized saccharified liquid to solid-liquid separation are used for a soil conditioner, a turbid water controlling material, a minute soil spillage controlling material, a base stock for compost, a building gypsum material or the like; a case (2) that xylosedehydrogenase in the saccharified liquid of the case (1) is immobilized on an electrode of a fuel cell; a case (3) that strongly-acid biomass residues to be generated after woody or herbaceous biomass is saccharified by sulfuric acid are used as they are for a conditioner of alkaline soil or a neutralizer of alkaline waste; and a case (4) that fertilizer, the soil conditioner, a probiotics agent, single cell protein (SCP) or the like is produced by using the residue and fermented liquid to be generated when a valuable material in the liquid portion, which is obtained when the neutralized saccharified liquid is subjected to solid-liquid separation in the case (1), is fermented, separated and extracted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、稲藁等の木質・草本系廃棄物を硫酸糖化した後に発生する強酸性残渣、若しくは糖化物を生石灰等で中和した後に発生する石膏含有残渣を、アルカリ土壌改良材、濁水抑制材、微細土壌流出抑制材、堆肥化素材、建築用素材として有効利用する事を前提とした上で、糖化液中のグルコース及びキシロースを用いて燃料電池発電を行うか、若しくは有機酸、エタノール、アミノ酸等の様々な有価物を発酵生産する資源循環技術分野に関する。  The present invention provides a strongly acidic residue generated after saccharification of woody and herbaceous waste such as rice straw, or a gypsum-containing residue generated after neutralization of saccharified product with quick lime, etc. On the premise of effective use as wood, fine soil runoff control material, composting material, building material, or fuel cell power generation using glucose and xylose in saccharified liquid, or organic acid, ethanol, The present invention relates to a resource recycling technology field in which various valuable materials such as amino acids are produced by fermentation.

環境技術は様々な分野の技術から成立している事が特徴であるが、各分野の各々の技術を有機的に結合させシステム全体として機能できるよう考えられているケースは必ずしも多くない。例えば、燃料電池分野では数年前からグルコース燃料電池が開発され体内埋め込み型機器の微小電源として使われているだけでなく(文献:「血液で発電する電池を開発、体内埋め込み医療具に利用」読売新聞、2005.5.13)、最近では廃木材等を用いた発電システムも提案されている(文献:谷口功、「グルコース酸化用機能性電極の開発とグルコース−空気電池の作製」月刊エコインダストリー、Vol.10,No.4,p36−45、2005)が、廃木材等の木質・草本系の廃棄物バイオマスを糖化するコストが高く採算が合わないために、事実上、使えない状態にある。また、同様にグルコースから生分解性プラスチック用乳酸・コハク酸、エタノール等の有価物に転換する発酵技術は確立されている(文献:今中忠行、加藤千明、加藤暢夫、倉根隆一郎、西山徹、矢木修身、『微生物利用の大展開.』、株式会社エヌ・ティー・エス、2002)が、やはり廃木材・稲藁等の木質・草本系の廃棄物バイオマスを糖化するコストが高く採算が合わないため、現時点で木質・草本系バイオマスは火力発電や堆肥以外では十分には使われていない。
その一方で木質・草本系バイオマスである例えば稲藁には45%ものセルロースが含まれている(文献:山地憲治、小木知子、湯川英明、酒井正康、渡邊裕、遠藤真弘、正田剛、横山伸也、大内健二、杉浦純、美濃輪智朗、木田建次、小寺栄、『バイオマスエネルギーの特性とエネルギー変換・利用技術 地域特性にあった技術選定・最適プロセスの構築から事業採算性・市場展望まで』、株式会社エヌ・ティー・エス、2002)。セルロースは澱粉と同じくグルコース・ポリマーでありモノマーに分解さえしてしまえば、同じくグルコースポリマーである澱粉を15%含むジャガイモよりもむしろグルコース・リッチであるという貴重な資源性を十分に活用できていない。
本発明は以上の背景に鑑み行われたもので、稲藁・廃木材等の木質・草本系の廃棄物バイオマスを糖化するコストを、糖化ステップで発生する廃棄物を有価物(土壌改良材、濁水抑制材、微細土壌流出抑制材、堆肥化素材、若しくは建築用石膏資材)に転換する事によって糖化コストをゼロ若しくは逆に黒字にし、糖化コストのために今まで使えなかった廃木材・稲藁等の木質・草本系の廃棄物バイオマス中のグルコース資源を「グルコース燃料電池による発電」や生分解性プラスチック用有機酸やエタノール等の有価物に発酵転換させる事を可能としたものである。
Environmental technology is characterized by being composed of technologies in various fields, but there are not always many cases where each technology in each field is organically combined to function as a whole system. For example, in the field of fuel cells, glucose fuel cells have been developed for several years and not only used as a micro power source for implantable devices (reference: “Developing a battery that generates electricity using blood and using it for implantable medical devices”) (Yomiuri Shimbun, 2005.5.13), and recently, a power generation system using waste wood has been proposed (Reference: Isao Taniguchi, “Development of functional electrode for glucose oxidation and production of glucose-air battery” Monthly Eco Industry, Vol. 10, No. 4, p36-45, 2005) is virtually unusable due to the high cost of saccharification of woody and herbaceous waste biomass such as waste wood, which is not profitable. is there. Similarly, fermentation technologies have been established to convert glucose into valuable materials such as lactic acid, succinic acid and ethanol for biodegradable plastics (literature: Tadayuki Imanaka, Chiaki Kato, Ikuo Kato, Ryuichiro Kurane, Toru Nishiyama). , Osamu Yagi, “Large Development of Microorganism Utilization”, NTS Corporation, 2002) is still profitable because of the high cost of saccharifying woody and herbaceous waste biomass such as waste wood and rice straw. At the moment, woody and herbaceous biomass is not fully used except for thermal power generation and compost.
On the other hand, woody and herbaceous biomass, such as rice straw, contains 45% cellulose (Reference: Kenji Yamachi, Tomoko Ogi, Hideaki Yukawa, Masayasu Sakai, Hiroshi Watanabe, Masahiro Endo, Go Masada, Shinya Yokoyama) , Kenji Ouchi, Jun Sugiura, Tomoro Minowa, Kenji Kida, Sakae Kodera, “Characteristics of biomass energy and energy conversion / use technology From technology selection / construction of optimum process to business profitability / market prospect” , NTS Corporation, 2002). Cellulose, like starch, is a glucose polymer, and once it breaks down into monomers, it cannot fully exploit the valuable resource of being rich in glucose rather than potatoes containing 15% starch, which is also a glucose polymer. .
The present invention has been made in view of the above background, and the cost of saccharifying woody and herbaceous waste biomass such as rice straw and waste wood, the waste generated in the saccharification step as a valuable resource (soil improvement material, Waste timber and rice straw that could not be used up until now due to saccharification costs, by switching to muddy water control materials, fine soil runoff control materials, composting materials, or gypsum materials for construction. It is possible to convert the glucose resources in woody and herbaceous waste biomass such as “power generation by glucose fuel cell” and fermentation conversion to valuable materials such as organic acids for biodegradable plastics and ethanol.

本発明は、稲藁等の木質・草本系バイオマスに大量に含まれるグルコース、キシロースを用いた各種発酵産業や燃料電池発電を可能にするために、木質・草本系バイオマスの硫酸糖化過程で発生する残渣をアルカリ土壌改良材、濁水抑制材、微細土壌流出抑制材、堆肥化素材、建築用素材のいずれかとして有効利用する方法を提供する事を目的とする。  The present invention occurs in the saccharification process of woody / herbaceous biomass to enable various fermentation industries and fuel cell power generation using glucose and xylose contained in large quantities in woody / herbaceous biomass such as rice straw. The object is to provide a method for effectively using the residue as one of an alkaline soil improving material, a muddy water suppressing material, a fine soil runoff suppressing material, a composting material, and a building material.

上記目的を達成するため、(1)稲藁、麦藁、廃木材、堤防刈草等の木質・草本系バイオマスを必要に応じて粉砕後、硫酸糖化した上で酸化カルシウム(若しくは炭酸カルシウム)で中和して得た(セルロース及びヘミセルロース由来の)グルコース及びキシロースを大量に含む糖化液を、そのままグルコース燃料電池による発電に用いるか、若しくは、当該糖化液に、乳酸・コハク酸等有機酸産生菌、有機酸及びエタノール産生酵母、アミノ酸発酵菌、イノシン等核酸発酵菌、微生物蛋白(SCP)関係菌、抗生物質等生理活性物質産生菌、生理活性蛋白・ペプチド生産菌、産業用酵素産生菌、植物成長促進微生物(PGPR、菌根菌、窒素固定菌)のいずれかを植菌し培養する事によって各種有機酸、エタノール、アミノ酸、イノシン等核酸、抗生物質等生理活性物質、生理活性蛋白・ペプチド、産業用酵素、微生物蛋白(SCP)、プロバイオティクス剤、生物肥料のいずれかの生産を行うと同時に、中和後の固液分離によって発生する石膏を含むバイオマス残渣を、塩類集積土壌・アルカリ土壌等用の土壌改良材、濁水抑制材、微細土壌流出抑制材、堆肥化素材、若しくは建築用石膏資材等として活用する事を特徴とする資源循環方法、(2)1において、木質・草本系バイオマス糖化液を電力に変えるにあたりグルコースだけでなくキシロースからも電力発生可能にするためにキシロースデヒドロゲナーゼが電極(炭素電極等)に固定化された燃料電池を用いる資源循環方法、(3)1、2において、木質・草本系バイオマスを硫酸糖化後に発生した強酸性バイオマス残渣を中和せず、そのままアルカリ土壌改良剤、若しくはアルカリ廃棄物の中和剤として用いる資源循環方法、(4)1〜3において固液分離後の液体部分の有価物発酵後に各々の有価物を分離抽出した後に生じる残渣、若しくは発酵液を用いて肥料、土壌改良材、プロバイオティクス剤、微生物タンパク(SCP)等を製造する方法の計4技術を適用すればよい。  In order to achieve the above objectives, (1) after pulverizing woody and herbaceous biomass such as rice straw, wheat straw, waste wood, dike grass, etc., if necessary, neutralized with calcium oxide (or calcium carbonate) The saccharified solution containing a large amount of glucose and xylose (derived from cellulose and hemicellulose) obtained as described above is used as it is for power generation by a glucose fuel cell, or an organic acid producing bacterium such as lactic acid and succinic acid is used as the saccharified solution. Acid and ethanol producing yeast, amino acid fermenting bacteria, nucleic acid fermenting bacteria such as inosine, microbial protein (SCP) related bacteria, bioactive substance producing bacteria such as antibiotics, bioactive protein / peptide producing bacteria, industrial enzyme producing bacteria, plant growth promotion By inoculating and culturing any of the microorganisms (PGPR, mycorrhizal fungi, nitrogen-fixing fungi), various organic acids, ethanol, amino acids, inosine, etc. Production of any of the following: bioactive substances such as acids, antibiotics, bioactive proteins / peptides, industrial enzymes, microbial proteins (SCP), probiotic agents, and biological fertilizers, and at the same time by solid-liquid separation after neutralization Biomass residue containing generated gypsum is used as soil improvement material for salt accumulation soil, alkaline soil, etc., muddy water suppression material, fine soil runoff suppression material, composting material, or gypsum material for construction In the resource recycling method, (2) 1, xylose dehydrogenase was immobilized on an electrode (carbon electrode, etc.) in order to enable generation of power from not only glucose but also xylose in converting woody / herbaceous biomass saccharified liquid into electricity. In the resource recycling method using fuel cells, (3) 1 and 2, strongly acidic biomass residues generated after saccharification of woody and herbaceous biomass Recycling method used as an alkaline soil improver or an alkaline waste neutralizer as it is without neutralizing, and (4) 1-3, each valuable material after fermentation of the valuable material in the liquid part after solid-liquid separation A total of four techniques, that is, a method for producing a fertilizer, a soil improvement material, a probiotic agent, a microbial protein (SCP), or the like, using a residue generated after separation and extraction or a fermented liquid may be applied.

本発明を適用すれば、高い糖化コストのために、従来、十分に活用されていなかった木質・草本系バイオマスのグルコース資源を生分解性プラスチック用乳酸・コハク酸、エタノール等の有価物に転換する事が可能となるだけでなく、硫酸糖化過程で発生する残渣をアルカリ土壌改良材、濁水抑制材、微細土壌流出抑制材、堆肥化素材、建築用素材として有効活用する事が可能となるそれによって、廃棄物処理の面でも地域雇用創出の面でも石油資源節約の面でも、そして二酸化炭素排出抑制の面でも社会貢献を行う事が可能となろう。  By applying the present invention, due to high saccharification costs, the glucose resources of woody and herbaceous biomass, which have not been fully utilized in the past, are converted into valuable resources such as lactic acid, succinic acid and ethanol for biodegradable plastics. It is possible not only to make it possible, but also to effectively use the residue generated during the saccharification process as an alkaline soil improvement material, muddy water control material, fine soil runoff control material, composting material, and building material. It will be possible to make social contributions in terms of waste disposal, local job creation, oil resource conservation, and carbon dioxide emission control.

以下、本発明を実施するための最良の形態を説明する。まず、稲藁、麦藁、廃木材、堤防刈草等の木質・草本系バイオマスを必要に応じて粉砕後、硫酸糖化する。硫酸糖化方法は濃硫酸法でも希硫酸法でもよい。ただ糖化後の残渣を石膏ボード等の建築用資材として再利用する場合は希硫酸法では石膏生産量が少なく後で石膏を別途添加せねばならない状況になるので効率的ではなく硫酸の消費量が多い濃硫酸法の方が良い。その一方で糖化後の残渣を塩類集積土壌・アルカリ土壌等用の土壌改良材、濁水抑制材、微細土壌流出抑制材、堆肥化素材として再利用する場合はバイオマス残渣の割合が石膏量よりも多い方が望ましいので希硫酸法を選択するのが望ましい。なお、この硫酸糖化過程で発生するバイオマス残渣は(グルコースポリマーである)セルロースや(キシロースポリマー)であるキシロースが除かれ、リグニン及びその部分分解物の割合が高まった状況になっているものと推測される。  Hereinafter, the best mode for carrying out the present invention will be described. First, woody and herbaceous biomass such as rice straw, wheat straw, waste wood, and dike mowing grass are pulverized and saccharified as necessary. The sulfuric acid saccharification method may be a concentrated sulfuric acid method or a diluted sulfuric acid method. However, if the residue after saccharification is reused as a building material such as gypsum board, the dilute sulfuric acid method has a low gypsum production volume, and it is necessary to add gypsum separately later. Many concentrated sulfuric acid methods are better. On the other hand, when the residue after saccharification is reused as soil conditioner for salt accumulation soil / alkaline soil, muddy water suppression material, fine soil runoff suppression material, composting material, the ratio of biomass residue is more than the amount of gypsum Therefore, it is desirable to select the dilute sulfuric acid method. The biomass residue generated in the saccharification process of sulfate is presumed that cellulose (which is a glucose polymer) and xylose (which is a xylose polymer) are removed, and the ratio of lignin and its partially decomposed product is increased. Is done.

濃硫酸法、希硫酸法のいずれにせよ硫酸糖化した後、中和せずに固液分離して得たバイオマス残渣は強酸性の硫酸を含むが、それをそのまま強度のアルカリ土壌や非ナトリウム型の塩類集積土壌の土壌改良材に用いるのが望ましい。と言うのは石膏(硫酸カルシウム)では強度にアルカリ化が進行した土壌では作用しにくいだけでなく、ナトリウム型でない塩類集積土壌にはカルシウムイオンは作用しにくいからである。実際、メキシコでアルカリ化が進行している農地では石膏ではなく硫酸を施用してpHをコントロールしているケースも報告されている(文献:遠藤常嘉、山本定博、本名俊正、高島雅子、飯村康二、ラウル・ロペス、マリオ・ペンソン、「メキシコ・バハカリフォルニア半島中央部に分布する潅漑農地の塩類動態」、日本土壌肥料学会雑誌、第71巻、第1号、p.18−26、2000)。しかしながら、液体である硫酸を農地に入れた場合、雨水や潅漑水等で添加した硫酸が洗い流されやすく地下水汚染等の二次汚染が懸念される。そういった場合、上で述べた「硫酸を含んだバイオマス残渣」を土壌のアルカリ度の進行状況にあわせ施用量を調節して農地に投入する方向性は有効に働くであろう。そういった意味で木質・草本系バイオマスを硫酸糖化後にすぐ固液分離し、あえて中和しないバイオマス残渣は、そのままで(アルカリ土壌及び非ナトリウム型の塩類集積土壌用の)土壌改良材として活用できるものと考えられる。なお、本資材を農耕地に施用する際に注意せねばならない事は本資材のC/N比が非常に高いという点である。従って作物が窒素飢餓を引き起こさぬように糞尿などの窒素源を同時に添加する事が必要であろう。ところで、以上述べてきたこの方法論をとる場合は硫酸糖化後に固液分離した後で液体部分(すなわち糖化液)を生石灰等で中和し、次の発酵生産ステップに進める事になる。  Biomass residue obtained by solid-liquid separation without neutralization after sulfuric acid saccharification by either concentrated sulfuric acid method or dilute sulfuric acid method contains strongly acidic sulfuric acid, but it remains as it is in strong alkaline soil or non-sodium type It is desirable to use it as a soil amendment for salt accumulation soils. This is because gypsum (calcium sulfate) is not only less effective in soils that have been strongly alkalized, but calcium ions are less effective in non-sodium salt accumulation soils. In fact, it has been reported that the pH is controlled by applying sulfuric acid instead of gypsum in agricultural land where alkalinization is progressing in Mexico (reference: Endo Tsuneyoshi, Yamamoto Sadahiro, Honna Toshimasa, Takashima Masako, Koji Iimura, Raoul Lopez, Mario Penson, “Salt dynamics of irrigated farmland in the central part of the Baja California Peninsula, Mexico”, Journal of Japanese Society of Soil Fertilizer, Vol. 71, No. 1, p. 18-26, 2000 ). However, when sulfuric acid, which is a liquid, is put into farmland, the sulfuric acid added by rainwater, irrigation water, etc. is easily washed away and there is a concern about secondary pollution such as groundwater contamination. In such a case, the direction of applying the above-mentioned “biomass residue containing sulfuric acid” to the farmland by adjusting the application amount according to the progress of the alkalinity of the soil will work effectively. In this sense, woody and herbaceous biomass is solid-liquid separated immediately after saccharification, and the biomass residue that is not neutralized can be used as it is as a soil conditioner (for alkaline soil and non-sodium salt accumulation soil). Conceivable. In addition, it should be noted when applying this material to agricultural land that the C / N ratio of this material is very high. Therefore, it may be necessary to simultaneously add a nitrogen source such as manure so that the crop does not cause nitrogen starvation. By the way, when taking this method described above, after solid-liquid separation after sulfate saccharification, the liquid part (that is, saccharified solution) is neutralized with quicklime and the like, and it proceeds to the next fermentation production step.

次に木質。草本系バイオマスを硫酸糖化した後、中和せずに固液分離して得たバイオマス残渣を石膏系資材として活用する場合の方法論について説明する。この場合はバイオマスを硫酸糖化した後に固液分離する前に生石灰等で中和するのが望ましい。そうしないと固体部分と液体部分の双方で別々に中和ステップが入るので製造コストがかかるためである。中和は生石灰が望ましいが、石灰でも良い。その場合は水産業で出る貝殻等の廃棄物が活用可能である。ただ炭酸カルシウムで中和する場合、弱アルカリであるため強酸の硫酸を中和するには相当の時間と量が必要となる。そういった意味で水に溶ければ強アルカリの水酸化カルシウムになる生石灰の方が扱いやすいだろう。また炭酸カルシウムの場合は中和の過程で二酸化炭素が発生するので二酸化炭素排出権市場での競争力は低下する。中和し固液分離を行った後に発生したバイオマス残渣は中和の過程で発生した硫酸カルシウム、すなわち石膏が混ざっている状態になっている。前述したように濃硫酸法を用いた場合はこの石膏の割合が希硫酸法の場合よりも多くなっており、その場合は残渣が含まれたままで建築用石膏ボードとして活用するのが望ましい。建築資材として用いるならば石膏の中に一定割合でバイオマス残渣が混ざっていても性能に大きな影響が出るものではなく特にグリーン購入法の適用を受ければ市場で流通可能であろう。また石膏に一定割合で混ざったバイオマス残渣が建築素材に保水性や保温性などの何らかの機能を持たせる可能性もあり今後検討していく必要がある。  Next is wood. A methodology for utilizing a biomass residue obtained by saccharifying herbaceous biomass and then solid-liquid separation without neutralization as a gypsum-based material will be described. In this case, it is desirable to neutralize the biomass with quick lime or the like after saccharification of the biomass and before solid-liquid separation. Otherwise, the neutralization step is separately entered in both the solid part and the liquid part, and thus the manufacturing cost is increased. The neutralization is preferably quick lime, but lime may also be used. In that case, waste such as shells from the fishery industry can be used. However, when neutralizing with calcium carbonate, since it is a weak alkali, considerable time and amount are required to neutralize the sulfuric acid of a strong acid. In that sense, quick lime that becomes strong alkali calcium hydroxide will be easier to handle if it is soluble in water. In the case of calcium carbonate, carbon dioxide is generated in the process of neutralization, so the competitiveness in the carbon dioxide emission rights market is reduced. The biomass residue generated after neutralization and solid-liquid separation is in a state where calcium sulfate generated during the neutralization process, that is, gypsum is mixed. As described above, when the concentrated sulfuric acid method is used, the ratio of this gypsum is higher than that in the case of the diluted sulfuric acid method. In that case, it is desirable to use the gypsum board as a building with a residue remaining. If it is used as a building material, even if a certain percentage of biomass residue is mixed in gypsum, the performance will not be greatly affected, and if it is subject to the Green Purchasing Law, it can be distributed in the market. In addition, biomass residue mixed in a certain percentage of gypsum may give the building material some kind of function such as water retention and heat retention.

なお硫酸カルシウム(すなわち石膏)はナトリウム系塩類集積土壌等に対する有効な土壌改良材であり土壌の物理性が改善できる事が知られているので、「石膏系土壌改良材」としてそのまま資源化する事も可能である。硫酸カルシウムによるナトリウム土壌の改良効果自体は1950年代に米国で開発された後(文献:U.S.Salinity Labo.Staff、Diagnosis and Improvement of Saline and Alkali Soils.U.S.Dept.Agri.Handbook.60:48−54.1953)、世界中で用いられ近年では松本らによる中国河北省でのポプラ植林におけるアルカリ土壌改良でも用いられている(文献:松本聰,中野圭一,雷玉平,石川祐一.「中国河北省九連城地域のアルカリ土壌改良と植林」、日本土壌肥料学会講演要旨集.50:163、2004)。塩類集積土壌・アルカリ土壌に対する土壌改良の基本は土壌のナトリウムコロイドをカルシウムイオンで置換し、構造性の優れたカルシウムコロイドを生成させると共に、土壌pHを低下させることにある。この場合、ナトリウムイオンとの置換を着実に行わせるには、溶解度積定数の低いカルシウム塩を用いることが重要で、難溶性塩である硫酸カルシウム(2水塩)が有効に働く事が報告されているが(文献:松本聰、日本農芸化学会シンポジウム「地球環境の再生へ向けて」世界の問題土壌とその再生への要素技術の開発、2004)、現時点では十分には普及していないためもあり、中国、オーストラリアをはじめ世界各国で塩類集積による土壌荒廃が問題となっている事を考えれば、本資材が我が国の新たな輸出品に加わる可能性もあろう。また必要ならば本資材に窒素源を別途添加しC/N比を整えて肥料化、堆肥化する事も可能と考えられる。なお、その場合の窒素源として糞尿を用いれば資源循環上、更に望ましいだろう。また肥料として用いる場合はカルシウムが特に豊富な肥料としての機能性を持つ側面もあり有効利用が望まれる。  Calcium sulfate (ie, gypsum) is an effective soil improver for sodium-based salt accumulation soils, etc., and it is known that the physical properties of the soil can be improved. Is also possible. The improvement effect on sodium soil by calcium sulfate was developed in the United States in the 1950s (Reference: US Salinity Lab. Staff, Diagnosis and Improvement of Saline and Alkali Solis. US Dep. Agri. 60: 48-54.1953), used in the improvement of alkaline soil in poplar afforestation in Hebei Province, China by Matsumoto et al. (Reference: Satoshi Matsumoto, Seiichi Nakano, Ryuhei Rai, Yuichi Ishikawa "Alkali soil improvement and plantation in Kulian Castle area, Hebei Province, China", Abstracts of the Japanese Society of Soil Fertilizer, 50: 163, 2004). The basics of soil improvement for salt-accumulated soil / alkaline soil are to replace the sodium colloid in the soil with calcium ions to produce a calcium colloid with excellent structure and to lower the soil pH. In this case, it is important to use a calcium salt with a low solubility product constant in order to steadily replace sodium ions, and it has been reported that calcium sulfate (dihydrate), which is a poorly soluble salt, works effectively. (Reference: Atsushi Matsumoto, Symposium of the Japanese Society of Agricultural Chemistry “Toward the Restoration of the Global Environment” Development of the world's problem soil and elemental technologies for its regeneration, 2004). Therefore, considering the fact that soil devastation due to salt accumulation is a problem in China, Australia and other countries around the world, this material may be added to Japan's new exports. If necessary, it is also possible to add a nitrogen source to this material and adjust the C / N ratio to make it a fertilizer or compost. In this case, it would be more desirable in terms of resource circulation if manure is used as the nitrogen source. In addition, when used as a fertilizer, there is an aspect of having functionality as a fertilizer that is particularly rich in calcium, and effective utilization is desired.

ところで秋田県においては農業用排水に代掻きに起因するSS(浮遊懸濁物)が大量に含まれ八郎潟残存湖水質問題の主因になっていると報告されている(文献:近藤正、「水の循環・利用・汚濁機構と定量評価」、平成11〜13年度科学研究費補助金研究成果報告書「限界閉鎖系水圏環境における環境保全型農法の高度化と測定評価に関する研究」、p.34)が、石膏に含まれるカルシウムイオンはSSの分散を抑止する効果もあるので、実施例でモデル実験結果を示したが、そのようなケースでは本資材を施用する事によって水質問題を軽減できる可能性も考えられる。このカルシウムイオンによる土壌分散抑止効果を活用した本残渣資材を今後、濁水抑制材、微細土壌流出抑制材として、国内外の土木現場において幅広く利用する事が可能であろう。  By the way, in Akita Prefecture, it is reported that agricultural wastewater contains a large amount of SS (floating suspension) due to scratching, and is a major cause of Hachirogata residual lake water quality problem (reference: Tadashi Kondo, “Water Circulation / use / contamination mechanism and quantitative evaluation ”,“ Research on the advancement and measurement evaluation of environmental conservation type farming in marginal closed hydrosphere environment ”, p. 34) However, since calcium ions contained in gypsum also have the effect of inhibiting the dispersion of SS, the results of model experiments were shown in the examples, but in such cases, the possibility of reducing water quality problems by applying this material Is also possible. In the future, it will be possible to use this residue material, which utilizes the soil dispersion suppression effect of calcium ions, in a wide range of civil engineering sites in Japan and overseas as a muddy water control material and a fine soil runoff control material.

次に硫酸糖化後に中和した糖化液の活用方法について述べる。ここで得られた糖化液の組成は用いたバイオマスの組成によって異なるが、例えば稲藁の場合は元々セルロース45%、ヘミセルロース30%、その他リグニン等25%という組成であるので(文献:山地憲治、小木知子、湯川英明、酒井正康、渡邊裕、遠藤真弘、正田剛、横山伸也、大内健二、杉浦純、美濃輪智朗、木田建次、小寺栄、『バイオマスエネルギーの特性とエネルギー変換・利用技術 地域特性にあった技術選定・最適プロセスの構築から事業採算性・市場展望まで』、株式会社エヌ・ティー・エス、2002)、糖化液にはセルロース由来のグルコースが45%、ヘミセルロース由来のキシロースが30%の他様々な抽出物が含まれた液体が得られる事になる。驚くべき事にこの糖化液のグルコース量はトヨタ自動車株式会社が生分解性プラスチック用乳酸の生産のために利用しているサツマイモ(グルコースポリマーである澱粉含量20%)より多く、稲藁という廃棄物であるのにも関わらず、サツマイモよりもむしろ乳酸発酵に適している成分になっている。  Next, a method for utilizing the saccharified solution neutralized after saccharification with sulfate will be described. The composition of the saccharified solution obtained here varies depending on the composition of the biomass used. For example, in the case of rice straw, the composition is originally 45% cellulose, 30% hemicellulose, and 25% other lignin (reference: Kenji Yamaji, Tomoko Ogi, Hideaki Yukawa, Masayasu Sakai, Hiroshi Watanabe, Masahiro Endo, Takeshi Masada, Shinya Yokoyama, Kenji Ouchi, Jun Sugiura, Chiro Minowa, Kenji Kida, Sakae Kodera, Biomass Energy Characteristics and Energy Conversion and Utilization Technology Region From technology selection according to characteristics and construction of optimum processes to business profitability and market prospects, NTS Corporation, 2002), the saccharified solution contains 45% cellulose-derived glucose and 30 hemicellulose-derived xylose. % And various other extracts are obtained. Surprisingly, the amount of glucose in this saccharified solution is higher than the sweet potato (20% starch content of glucose polymer) that Toyota Motor Corporation uses to produce lactic acid for biodegradable plastics. Nevertheless, it is a component suitable for lactic acid fermentation rather than sweet potato.

実際、発明者らは酵母Kluyveromyces thermotoleransを小麦ふすま糖化液に植菌し3日間、25℃で静置培養したところ稲藁1kgあたりの乳酸生産量31.3±3.3gにも昇っている事が確認できている。また乳酸だけでなく(乳酸と同時に同じく生分解性プラスチックの材料となる)コハク酸も21.6±3.7gも生産できていた。この数値は驚くべき事にジャガイモ可食部からの乳酸生産収率(モンサント社の乳酸転換実質効率を当てはめた場合)と大きくは変わらないが、乳酸・コハク酸生産のための最適化条件(培養日数、pH、温度、酸素条件、栄養条件等)を検討していない段階での数値であるから、今後、更に生産量は改善できる事が期待される。従って簡単な実験であるが本実験結果一つとっても生分解性プラスチックを製造するに当たって今後は貴重な農作物可食部を使う理由がなくなる事が予想できる。農業系廃棄物で十分であろう。  In fact, the inventors inoculated the yeast Kluyveromyces thermotolerans in a wheat bran saccharified solution and allowed to stand at 25 ° C. for 3 days. As a result, the amount of lactic acid produced per kg of rice straw increased to 31.3 ± 3.3 g. Is confirmed. In addition to lactic acid, 21.6 ± 3.7 g of succinic acid (which is also a biodegradable plastic material simultaneously with lactic acid) could be produced. Surprisingly, this figure is not much different from the lactic acid production yield from the edible portion of potato (when applying the actual lactic acid conversion efficiency of Monsanto), but optimized conditions for lactic acid / succinic acid production (culture The number of days, pH, temperature, oxygen condition, nutrient condition, etc.) is a numerical value at the stage where it is not studied, and it is expected that the production volume can be further improved in the future. Therefore, although it is a simple experiment, it can be expected that there will be no reason to use a valuable crop edible part in the future in producing a biodegradable plastic. Agricultural waste will be sufficient.

なおここで用いた酵母は醸造用酵母でありエタノール発酵出来る事も知られている。現在、ブラジルやアメリカ合衆国ではトウモロコシやサトウキビの可食部をエタノール発酵させて得たエタノールで自動車燃料(ガソホール)の一部を賄っているだけでなく、エタノールは燃料電池の水素供給源としても機能する事が知られている。従って、本小麦廃棄物糖化液に適当な株の酵母を植菌し培養する事によって生分解性プラスチック製造に必要な乳酸・コハク酸等の「素材」だけでなく、燃料電池用水素供給源やガソホールとして利用可能なエタノール等の「エネルギー」も同時生産する事が可能となる。  In addition, it is known that the yeast used here is a yeast for brewing and can be subjected to ethanol fermentation. Currently, in Brazil and the United States, ethanol not only covers a part of automobile fuel (gasohol) by ethanol fermentation of corn and sugarcane edible parts, but ethanol also functions as a hydrogen source for fuel cells. Things are known. Therefore, by inoculating and cultivating an appropriate strain of yeast in this wheat waste saccharified solution, not only the “materials” such as lactic acid and succinic acid necessary for biodegradable plastic production, but also hydrogen sources for fuel cells, “Energy” such as ethanol that can be used as gasohol can be produced at the same time.

更に、発明者らは稲藁や小麦廃棄物糖化液が、他に栄養物質を添加していないにも関わらず、酵母や乳酸菌だけでなく様々な微生物の良好な増殖基質になる事も見出している。これが意味する事は当該バイオマス糖化液は乳酸・コハク酸等の有機酸産生菌やエタノール発酵菌の増殖基質になるだけでなく、アミノ酸発酵菌、イノシン等核酸発酵菌、微生物蛋白(SCP)関係菌、抗生物質等生理活性物質産生菌、(遺伝子組み替え菌を含む)生理活性蛋白・ペプチド生産菌、産業用酵素産生菌、植物成長促進微生物(PGPR、菌根菌、窒素固定菌)等にとっても良好な増殖基質になる可能性が高い事を意味している。本方法論で糖化液を得る上での糖化コストが(土壌改良材や建築資材の製品化によって)事実上ゼロになる事と稲藁・麦藁等の木質・草本系バイオマスの原料費が廃棄物故にゼロである事を併せて考えると、当該糖化液は、あらゆる発酵産業にとって安価かつ良好な増殖基質になりえ、各種有機酸、エタノール、アミノ酸、イノシン等核酸、抗生物質等生理活性物質、生理活性蛋白・ペプチド、産業用酵素、微生物蛋白(SCP)、プロバイオティクス剤、生物肥料を生産するにあたって有効である可能性を示唆しているものと考えられる。なお、糖化に用いるバイオマスによって成分は変わってくるので、用いる微生物の種類によっては必要に応じて別途、栄養物質を補強してもよいであろう。また、このような発酵生産を行った後の残渣は、用いる微生物によっては、肥料、土壌改良材、プロバイオティクス剤として活用する事が可能であり、そういった形で資源循環を徹底的に実体経済に載せる事が肝要である。  In addition, the inventors have found that rice straw and wheat waste saccharified liquid can be a good growth substrate not only for yeast and lactic acid bacteria but also for various microorganisms, even though no other nutrients are added. Yes. This means that the biomass saccharified solution is not only a growth substrate for organic acid-producing bacteria such as lactic acid and succinic acid, and ethanol-fermenting bacteria, but also amino acid-fermenting bacteria, nucleic acid-fermenting bacteria such as inosine, and microbial protein (SCP) -related bacteria Also good for antibiotics such as antibiotics, bioactive protein / peptide producing bacteria (including genetically modified bacteria), industrial enzyme producing bacteria, plant growth promoting microorganisms (PGPR, mycorrhizal fungi, nitrogen-fixing bacteria) This means that there is a high possibility of becoming a growth substrate. Because the saccharification cost for obtaining saccharified liquid with this methodology is virtually zero (due to the commercialization of soil improvement materials and building materials) and the raw material costs of woody and herbaceous biomass such as rice straw and wheat straw are waste Considering that it is zero, the saccharified solution can be an inexpensive and good growth substrate for all fermentation industries, and various organic acids, ethanol, amino acids, inosine nucleic acids, antibiotics and other physiologically active substances, physiological activities This suggests the possibility of being effective in producing proteins / peptides, industrial enzymes, microbial proteins (SCP), probiotic agents, and biological fertilizers. In addition, since a component changes with the biomass used for saccharification, depending on the kind of microorganisms to be used, you may reinforce a nutrient substance separately as needed. In addition, the residue after such fermentation production can be used as a fertilizer, soil conditioner, or probiotic agent, depending on the microorganism used. It is important to put it on.

ところで、前述したように燃料電池分野では数年前からグルコース燃料電池が開発され体内埋め込み型機器の微小電源として使われているだけでなく(文献:「血液で発電する電池を開発、体内埋め込み医療具に利用」読売新聞、2005.5.13)、最近では廃木材等を用いた発電システムも提案されている(文献:谷口功、「グルコース酸化用機能性電極の開発とグルコース−空気電池の作製」月刊エコインダストリー、Vol.10,No.4,p36−45、2005)が、廃木材等の木質・草本系の廃棄物バイオマスを糖化するコストが高く採算が合わないために、事実上、使えない状態にある。従ってこのグルコース燃料電池の分野においても本発明を適用する事によって木質・草本系バイオマスの糖化コストをゼロにし、そこで得られたグルコース及びキシロースを大量に含む糖化液から燃料電池発電を行えば、グルコース燃料電池の発電能力が高い事を考えれば、エネルギー分野で構造改革が起こるかもしれない。  By the way, as described above, in the field of fuel cells, glucose fuel cells have been developed for several years and not only used as a micro power source for implantable devices (reference: “Development of a battery that generates electricity using blood; Yomiuri Shimbun, 2005.5.13), and recently, a power generation system using waste wood has been proposed (Reference: Isao Taniguchi, “Development of functional electrode for glucose oxidation and glucose-air battery” “Manufacturing” Monthly Eco-Industry, Vol. 10, No. 4, p36-45, 2005) is actually unprofitable due to the high cost of saccharifying woody and herbaceous waste biomass such as waste wood. It cannot be used. Therefore, in the field of glucose fuel cells, by applying the present invention, the saccharification cost of the woody / herbaceous biomass is reduced to zero, and if the fuel cell power generation is performed from the saccharified liquid containing a large amount of glucose and xylose obtained there, Given the high power generation capabilities of fuel cells, structural reforms may occur in the energy sector.

なお、現在、C6糖であるグルコースを分解し燃料電池に必要な水素を発生せしめる酵素であるグルコースデヒドロゲナーゼをメディエーターと共に炭素電極に固定させたグルコース燃料電池は広く使われているが、木質・草本系バイオマスに相当量含まれているヘミセルロースの分解産物であるC5糖、キシロースから発電するシステムは開発されていない。これは資源の有効利用を考える上で必ずしも望ましくなく、今後はC6糖であるグルコースだけでなく、C5糖であるキシロースに関しても、キシロースを分解し燃料電池に必要な水素を発生せしめる酵素であるキシロースデヒドロゲナーゼをメディエーターと共に電極に固定させたキシロース燃料電池を開発する必要があり、それをグルコース燃料電池と共に上記糖化液に適用したバイオマス発電を行う資源循環システムの構築が望まれよう。  Currently, a glucose fuel cell in which glucose dehydrogenase, an enzyme that decomposes glucose, which is a C6 sugar, and generates hydrogen necessary for the fuel cell is fixed to a carbon electrode together with a mediator, is widely used. A system for generating electricity from C5 sugar and xylose, which are degradation products of hemicellulose contained in a considerable amount of biomass, has not been developed. This is not always desirable in view of the effective use of resources. In the future, not only glucose, which is a C6 sugar, but also xylose, which is a C5 sugar, is an enzyme that decomposes xylose and generates hydrogen necessary for fuel cells. It is necessary to develop a xylose fuel cell in which a dehydrogenase is fixed to an electrode together with a mediator, and it would be desirable to construct a resource circulation system that performs biomass power generation by applying it to the saccharified liquid together with a glucose fuel cell.

以上、述べてきた方法を用いる事によって現在、農作物の可食部を利用するポリ乳酸系生分解性プラスチック業界で認められているカーボンニュートラル以上の二酸化炭素排出量抑制効果が期待できる。この方法を用いれば用いたバイオマスを一切焼却しないので発生する二酸化炭素量は糖化液の発酵過程で発生する微生物による二酸化炭素発生に限定できる。これは現在、木質・草本系バイオマスの大半が焼却されそこで発生している二酸化炭素量と比べると微々たるものである。また本方法で得られたエタノール若しくはグルコースを用いた燃料電池発電量が従来の火力発電による発電量の代替になりうるならば、今まで火力発電で発生していた二酸化炭素も節減できる事になる。また本方法で得られたエタノールやグルコースを含む糖化液を水素供給源とする自動車、船舶、家電等が稼働すれば自動車等の排気ガスから発生している二酸化炭素量も削減できる。二酸化炭素が本当に地球温暖化に大きく影響しているのかは専門家の間でも議論が分かれているが、少なくとも京都議定書で日本政府が国際社会に公約した二酸化炭素削減量を確保したり、ウォール街で一部稼働している二酸化炭素排出権市場を有利に進める上では有効に働く事は間違いないだろう。  As described above, by using the method described above, it is possible to expect an effect of suppressing carbon dioxide emission more than carbon neutral which is currently recognized in the polylactic acid biodegradable plastics industry using the edible part of agricultural products. If this method is used, the biomass used is not incinerated at all, so the amount of carbon dioxide generated can be limited to the generation of carbon dioxide by microorganisms generated during the fermentation process of the saccharified solution. This is insignificant compared to the amount of carbon dioxide currently produced by burning most woody and herbaceous biomass. In addition, if the fuel cell power generation using ethanol or glucose obtained by this method can replace the conventional power generation by thermal power generation, carbon dioxide generated by thermal power generation can be saved. . In addition, if an automobile, ship, home appliance, etc. using a saccharified solution containing ethanol or glucose obtained by this method as a hydrogen supply source is operated, the amount of carbon dioxide generated from the exhaust gas of the automobile can be reduced. Whether or not carbon dioxide really has a major impact on global warming is debated among experts, but at least the amount of carbon dioxide reduction promised by the Japanese government to the international community under the Kyoto Protocol, Wall Street There is no doubt that it will work effectively in favoring the carbon dioxide emission market that is partly operating in Japan.

松葉50gおよび松の樹皮50gを鋏等で裁断しミルで粉砕後,濃硫酸10mLを予め加えた蒸留水1Lを加え,懸濁した上で120℃,3時間,加温加圧処理後,酸化カルシウムでpH7.5に調整した。吸引濾過で固液分離し,硫酸カルシウム・有機物残渣を主成分とする濁水発生抑制剤と糖化液を得た。代掻き開始後に秋田県南秋田郡大潟村内農業用幹線用水路で微細土壌粒子が懸濁した濁水を採取した。500Lビーカーに,濁水400mL,もしくは濁水400mLおよび濁水発生抑制剤5.0gを添加した。緩やかに撹拌した後,静置した。18時間後に,適宜希釈後,JISK0102に則り,濁度を測定した。すなわち,1mg/Lカオリン懸濁液の波長660nmにおける吸光度を濁度1度とし,0〜100mg/Lのカオリン懸濁液を用いて作成した検量線から,試料の吸光度を測定し,濁度に換算した。その結果,原水の濁度が280度,18時間、静置後に160度までしか低下しなかったのに対して,濁水発生抑制剤5.0gを添加することにより,濁度は18度まで顕著に低下した。この結果は,本濁水発生抑制剤が,原水に含まれる微細土壌粒子を効果的に凝集・沈降させ,排水への環境汚濁を抑制できることを示唆している。  50 g of pine needles and 50 g of pine bark are cut with a scissors and pulverized with a mill, added with 1 L of distilled water to which 10 mL of concentrated sulfuric acid has been added in advance, suspended, 120 ° C. for 3 hours, heated and pressurized, and then oxidized. The pH was adjusted to 7.5 with calcium. Solid-liquid separation was performed by suction filtration to obtain a turbid water generation inhibitor and saccharified solution mainly composed of calcium sulfate and organic residue. After the start of scratching, turbid water with fine soil particles suspended was collected from the main canal for agriculture in Ogata Village, Minamiakita-gun, Akita Prefecture. To a 500 L beaker, 400 mL of muddy water or 400 mL of muddy water and 5.0 g of muddy water generation inhibitor were added. After gently stirring, it was allowed to stand. 18 hours later, after appropriate dilution, turbidity was measured according to JISK0102. That is, the absorbance at a wavelength of 660 nm of a 1 mg / L kaolin suspension is defined as 1 degree of turbidity, and the absorbance of the sample is measured from a calibration curve prepared using a 0-100 mg / L kaolin suspension. Converted. As a result, the turbidity of raw water decreased to only 160 degrees after standing at 280 degrees for 18 hours, whereas turbidity was noticeable up to 18 degrees by adding 5.0 g of turbid water generation inhibitor. Declined. This result suggests that the turbid water generation inhibitor can effectively agglomerate and settle the fine soil particles contained in the raw water and suppress environmental pollution to the drainage.

本発明によって、木質・草本系バイオマスの糖化中和前後に発生する稲藁残渣が石膏系建築素材、土壌改良材、肥料等として産業利用される事が可能となる。また糖化経費が低減できる事によって、糖化液に含まれるグルコース若しくは(発酵生産可能な)エタノールを用いて燃料電池発電を行う事が可能となる。またそういったエネルギー産業への適用だけでなく、糖化液からの乳酸・コハク酸生産が素材産業(生分解性プラスチック)の原料供給源となると同時に、様々な発酵産業に安価な微生物増殖基質を提供できる事によって抗生物質、アミノ酸等が従来より安価に生産できるようになる事が期待できる。また、その上に二酸化炭素排出量削減や資源循環を通した環境保全にも貢献できる。そして、このようなバイオコンビナートをインターネットのような分散型かつ双方向的な素材&エネルギー源(素材・エネルギーウェブ)として世界各地の農村地域に段階的に設立していく事により都市部に偏った富や雇用を分散させる事も可能となろう。すなわち、素材及びエネルギーを世界的規模で民主化し新しい形の世界経済をもたらす可能性が考えられる。本発明は21世紀後半型の新しい形でのグローバリゼーション(ポスト・グローバリゼーション)につながるかもしれない。  According to the present invention, rice bran residue generated before and after saccharification neutralization of woody / herbaceous biomass can be industrially used as a gypsum-based building material, soil improvement material, fertilizer and the like. Further, since the saccharification cost can be reduced, it becomes possible to perform fuel cell power generation using glucose contained in the saccharified solution or ethanol (which can be fermentatively produced). In addition to the application to the energy industry, lactic acid and succinic acid production from saccharified liquid can be a raw material supply source for the raw material industry (biodegradable plastics), and at the same time can provide inexpensive microbial growth substrates for various fermentation industries. It can be expected that antibiotics, amino acids, etc. can be produced at a lower cost than before. In addition, it can contribute to environmental conservation through carbon dioxide emission reduction and resource recycling. And by setting up such bio-combinates in rural areas around the world as a distributed and interactive material and energy source (material / energy web) like the Internet, it was biased toward urban areas. It will be possible to disperse wealth and employment. In other words, materials and energy can be democratized on a global scale, leading to a new form of the world economy. The present invention may lead to a new form of globalization (post-globalization) in the second half of the 21st century.

Claims (5)

稲藁、麦藁、廃木材、堤防刈草等の木質・草本系バイオマスを必要に応じて細分化・粉砕後、硫酸糖化した上で酸化カルシウム(若しくは炭酸カルシウム)で中和して得た(セルロース及びヘミセルロース由来の)グルコース及びキシロースを大量に含む糖化液を、そのままグルコース燃料電池による発電に用いるか、若しくは、当該糖化液に、乳酸・コハク酸等有機酸産生菌、有機酸及びエタノール産生酵母、アミノ酸発酵菌、イノシン等核酸発酵菌、微生物蛋白(SCP)関係菌、抗生物質等生理活性物質産生菌、生理活性蛋白・ペプチド生産菌、産業用酵素産生菌、植物成長促進微生物(PGPR、菌根菌、窒素固定菌)のいずれかを植菌し培養する事によって各種有機酸、エタノール、アミノ酸、イノシン等核酸、抗生物質等生理活性物質、生理活性蛋白・ペプチド、産業用酵素、微生物蛋白(SCP)、プロバイオティクス剤、生物肥料のいずれかの生産を行うと同時に、中和後の固液分離によって発生する石膏を含むバイオマス残渣を、塩類集積土壌・アルカリ土壌等用の土壌改良材、濁水抑制材、微細土壌流出抑制材、堆肥化素材、若しくは建築用石膏資材等のいずれかとして活用する事を特徴とする資源循環方法。Obtained by neutralizing with calcium oxide (or calcium carbonate) after pulverizing and crushing woody and herbaceous biomass such as rice straw, wheat straw, waste wood, dike mowing grass, etc. A saccharified solution containing a large amount of glucose and xylose (derived from hemicellulose) is used as it is for power generation by a glucose fuel cell, or an organic acid producing bacterium such as lactic acid and succinic acid, an organic acid and ethanol producing yeast, an amino acid Fermentative bacteria, nucleic acid fermenting bacteria such as inosine, microorganism protein (SCP) related bacteria, physiologically active substance producing bacteria such as antibiotics, physiologically active protein / peptide producing bacteria, industrial enzyme producing bacteria, plant growth promoting microorganisms (PGPR, mycorrhizal fungi , Nitrogen-fixing bacteria) and incubating and cultivating various organic acids, ethanol, amino acids, inosine nucleic acids, antibiotics and other physiological activities Biomass residue containing gypsum generated by solid-liquid separation after neutralization while producing any of substances, bioactive proteins / peptides, industrial enzymes, microbial proteins (SCP), probiotic agents, and biological fertilizers Is a resource recycling method characterized by utilizing as a soil improvement material for salt accumulation soil / alkaline soil, muddy water control material, fine soil runoff control material, composting material, or gypsum material for construction. 請求項1において、木質・草本系バイオマス糖化液を電力に変えるにあたりグルコースだけでなくキシロースからも電力発生可能にするためにキシロースデヒドロゲナーゼが電極(炭素電極等)に固定化された燃料電池を用いる資源循環方法。The resource using the fuel cell according to claim 1, wherein xylose dehydrogenase is immobilized on an electrode (carbon electrode or the like) so that not only glucose but also xylose can generate electric power when converting woody / herbaceous biomass saccharified liquid into electric power. Circulation method. 請求項1、2において、木質・草本系バイオマスを硫酸糖化後に発生した強酸性バイオマス残渣を中和せずそのままアルカリ土壌改良剤、若しくはアルカリ廃棄物の中和剤として用いる資源循環方法。3. The resource recycling method according to claim 1 or 2, wherein the strongly acidic biomass residue generated after saccharification of woody / herbaceous biomass is used as it is as an alkaline soil conditioner or an alkaline waste neutralizer without neutralization. 請求項1〜3において固液分離後の液体部分の有価物発酵後に各々の有価物を分離抽出した後に生じる残渣、若しくは発酵液を用いて肥料、土壌改良材、プロバイオティクス剤、微生物タンパク(SCP)等を製造する方法。A fertilizer, a soil conditioner, a probiotic agent, a microbial protein (a residue produced after separating and extracting each valuable material after fermentation of the valuable material in the liquid part after solid-liquid separation, or using a fermentation liquid SCP) and the like. 請求項1〜4の方法を用いた二酸化炭素排出量の抑制方法。The suppression method of the carbon dioxide emission amount using the method of Claims 1-4.
JP2005170114A 2005-05-13 2005-05-13 Method for highly utilizing woody or herbaceous biomass while utilizing gypsum-containing residue and strongly-acid residue effectively Pending JP2006314982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170114A JP2006314982A (en) 2005-05-13 2005-05-13 Method for highly utilizing woody or herbaceous biomass while utilizing gypsum-containing residue and strongly-acid residue effectively

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170114A JP2006314982A (en) 2005-05-13 2005-05-13 Method for highly utilizing woody or herbaceous biomass while utilizing gypsum-containing residue and strongly-acid residue effectively

Publications (1)

Publication Number Publication Date
JP2006314982A true JP2006314982A (en) 2006-11-24

Family

ID=37536108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170114A Pending JP2006314982A (en) 2005-05-13 2005-05-13 Method for highly utilizing woody or herbaceous biomass while utilizing gypsum-containing residue and strongly-acid residue effectively

Country Status (1)

Country Link
JP (1) JP2006314982A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245085A (en) * 2006-03-17 2007-09-27 Aisin Seiki Co Ltd Garbage-treating device
WO2013096452A1 (en) 2011-12-22 2013-06-27 Xyleco, Inc. Processing biomass for use in fuel cells
CN110408405A (en) * 2019-06-13 2019-11-05 中国神华能源股份有限公司 A kind of method of acid soil improving agent and preparation method thereof and improvement acid soil
WO2020185183A3 (en) * 2019-03-08 2020-12-30 YAPAR, Özgür High performance electrolite liquid preparation method in energy storage systems
CN115058305A (en) * 2022-05-31 2022-09-16 四川轻化工大学 Preparation method and application of probiotic rice distiller's yeast

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245085A (en) * 2006-03-17 2007-09-27 Aisin Seiki Co Ltd Garbage-treating device
WO2013096452A1 (en) 2011-12-22 2013-06-27 Xyleco, Inc. Processing biomass for use in fuel cells
JP2015507822A (en) * 2011-12-22 2015-03-12 ザイレコ,インコーポレイテッド Processing of biomass for use in fuel cells
EP2794902A4 (en) * 2011-12-22 2015-08-12 Xyleco Inc Processing biomass for use in fuel cells
EP3404109A1 (en) * 2011-12-22 2018-11-21 Xyleco, Inc. Processing biomass for use in fuel cells
WO2020185183A3 (en) * 2019-03-08 2020-12-30 YAPAR, Özgür High performance electrolite liquid preparation method in energy storage systems
CN110408405A (en) * 2019-06-13 2019-11-05 中国神华能源股份有限公司 A kind of method of acid soil improving agent and preparation method thereof and improvement acid soil
CN110408405B (en) * 2019-06-13 2021-01-05 中国神华能源股份有限公司 Acid soil conditioner, preparation method thereof and method for improving acid soil
CN115058305A (en) * 2022-05-31 2022-09-16 四川轻化工大学 Preparation method and application of probiotic rice distiller's yeast
CN115058305B (en) * 2022-05-31 2023-11-17 四川轻化工大学 Preparation method and application of probiotics rice distiller's yeast

Similar Documents

Publication Publication Date Title
Abreu et al. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process
Karimi et al. Efficient ethanol production from kitchen and garden wastes and biogas from the residues
Yan et al. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain
Liu et al. Fermentative hydrogen production from macro-algae Laminaria japonica using anaerobic mixed bacteria
Lakaniemi et al. Biogenic hydrogen and methane production from reed canary grass
CN101798241B (en) Method for producing microbial organic fertilizer by using sludge from sewage plant
CN106631248A (en) Production process for bioorganic fertilizer with high bacteria content
JP2006334584A (en) Biomass fuel battery power generation system based on effective utilization of saccharification residue
CN102321677A (en) Method for manufacturing biogas and organic fertilizer by straw
JP2008104452A (en) Alcohol production system and alcohol production method
UA103467C2 (en) Use of bacteria of genus deinococcus for production of biofuel
Fang et al. Solid-state anaerobic fermentation of spent mushroom compost for volatile fatty acids production by pH regulation
CN105948853B (en) Organic fertilizer stack type fermentation method taking mushroom dregs as substrate
CN101638673B (en) Method for manufacturing alcohol by utilizing fermentation of plant straws
CN105948841B (en) Organic fertilizer tank type fermentation method taking mushroom dregs as substrate
JP2006326562A (en) Fuel cell power generation system effectively utilizing gypsum-containing or strongly acidic residue
CN101696391B (en) Rapid composting microbial inoculum of agricultural wastes and method for preparing organic fertilizer from the same
JP2006314982A (en) Method for highly utilizing woody or herbaceous biomass while utilizing gypsum-containing residue and strongly-acid residue effectively
JP2006312157A (en) Method for producing lactic acid/succinic acid from rice straw and the like with high efficiency, and method for producing gypsum-based soil improvers/building materials
Adetunji et al. From garbage to treasure: a review on biorefinery of organic solid wastes into valuable biobased products
Smith et al. Bioprocessing of lignocelluloses
CN105803004A (en) Method for low-temperature fermentation of biogas from agricultural waste
Tantayotai et al. Effect of organic acid pretreatment of water hyacinth on enzymatic hydrolysis and biogas and bioethanol production
Dwivedi et al. Valuable product from water hyacinth–review paper
CN101914576B (en) Method for producing ethanol and methane by mixed fermentation of paper-making sludge and monosodium glutamate waste liquid