JP2006313656A - Photoelectric conversion device and photovoltaic generator using the same - Google Patents

Photoelectric conversion device and photovoltaic generator using the same Download PDF

Info

Publication number
JP2006313656A
JP2006313656A JP2005134935A JP2005134935A JP2006313656A JP 2006313656 A JP2006313656 A JP 2006313656A JP 2005134935 A JP2005134935 A JP 2005134935A JP 2005134935 A JP2005134935 A JP 2005134935A JP 2006313656 A JP2006313656 A JP 2006313656A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
semiconductor layer
porous semiconductor
light
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005134935A
Other languages
Japanese (ja)
Other versions
JP4925605B2 (en
Inventor
Hisashi Sakai
久 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005134935A priority Critical patent/JP4925605B2/en
Publication of JP2006313656A publication Critical patent/JP2006313656A/en
Application granted granted Critical
Publication of JP4925605B2 publication Critical patent/JP4925605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To improve remarkably a photoelectric conversion efficiency of a photoelectric conversion device by using a light scatterer which does not cause any stress due to a difference of a thermal expansion coefficient with an electron transport layer and improves a light utilization efficiency of an incident light. <P>SOLUTION: The photoelectric conversion device 1 is provided with a conductive base plate (a translucent base plate 10) as one of electrodes, a porous semiconductor layer 12 which has a large number of photo-excitation materials (a coloring material 13) which are formed on a main surface of the conductive base plate and conduct photoelectric conversion, an electrolyte 14, and another electrode (a second conductive layer 16). The electrolyte 14 contains a light scatterer material 20. From the above arrangement, a stress caused between the porous semiconductor layer 12 and the light scatterer material 20 is controlled and peeling of the porous semiconductor layer 12 from the conductive base plate can be prevented. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高い光電変換効率が得られる新規な光電変換材料を用いた、太陽電池や受光素子等の光電変換装置、およびそれを用いた光発電装置に関するものである。   The present invention relates to a photoelectric conversion device such as a solar cell or a light receiving element, which uses a novel photoelectric conversion material capable of obtaining high photoelectric conversion efficiency, and a photovoltaic device using the photoelectric conversion device.

従来、光電変換装置の一種である色素増感型太陽電池は、高温処理や真空装置を必要としないことから、低コスト化に有利であると考えられ、近年急速に研究開発が進められている。この色素増感型太陽電池は、例えば、表面に導体層を形成して成る導電性ガラス基板上に粒径20nm程度の酸化チタンの微粒子を焼結して得られる多孔質酸化チタン層を設け、この多孔質酸化チタン層を成す酸化チタンの微粒子表面に色素を単分子ずつ吸着させた電極を光作用極として用い、その光作用極と、白金層をスパッタリング法によってガラス基板上に成膜した対極との間に、ヨウ素/ヨウ化物レドックス対を含む電解質溶液を満たし、この電解質溶液を封止した構造を有する。   Conventionally, dye-sensitized solar cells, which are a type of photoelectric conversion device, do not require high-temperature processing or vacuum devices, and are considered advantageous for cost reduction, and research and development have been promoted rapidly in recent years. . In this dye-sensitized solar cell, for example, a porous titanium oxide layer obtained by sintering fine particles of titanium oxide having a particle size of about 20 nm is provided on a conductive glass substrate having a conductor layer formed on the surface, An electrode in which a single molecule of a dye was adsorbed on the surface of the titanium oxide fine particles forming the porous titanium oxide layer was used as a photoactive electrode, and the photoactive electrode and a counter electrode in which a platinum layer was formed on a glass substrate by a sputtering method. In between, an electrolyte solution containing an iodine / iodide redox pair is filled and the electrolyte solution is sealed.

このような多孔質化された光作用極は、多孔質化されていないものに比べて、その表面積を1000倍以上に高めることができ、吸着色素による光吸収を効率よく行ない、高い光電変換効率でもって光発電することができる。その結果、色素増感型太陽電池は、10%以上の光電変換効率が得られる。また、塗布プロセスで簡易に多孔質酸化チタン層を形成できるため、太陽電池の低コスト化が可能であるという利点があり、その実用化が検討されている。   Such a porous photo-active electrode can increase its surface area more than 1000 times compared to non-porous one, efficiently absorb light by adsorbing dye, and have high photoelectric conversion efficiency. It is possible to generate photovoltaic power. As a result, the dye-sensitized solar cell has a photoelectric conversion efficiency of 10% or more. In addition, since the porous titanium oxide layer can be easily formed by a coating process, there is an advantage that the cost of the solar cell can be reduced, and its practical use is being studied.

上記のように高い光電変換効率と低コストに製造可能であるという利点を持つ色素増感型太陽電池であるが、実用化するためには、まだ光電変換効率が十分とは言えない。そこで、光電変換効率を向上させるための方法として、色素が吸着した多孔質酸化チタン層である光吸収層を厚くする方法もある。
特開平10−255863号公報 特開2000−106222号公報
Although it is a dye-sensitized solar cell having the advantages of high photoelectric conversion efficiency and low-cost production as described above, it cannot be said that the photoelectric conversion efficiency is still sufficient for practical use. Therefore, as a method for improving the photoelectric conversion efficiency, there is also a method of increasing the thickness of the light absorption layer, which is a porous titanium oxide layer on which a dye is adsorbed.
JP-A-10-255863 JP 2000-106222 A

ここで、図1に従来技術の光電変換装置1を示す。この光電変換装置1は、透明基板10上に形成された第1の導電層11上に、色素13を担持した多孔質の電子輸送体層(多孔質酸化チタン層)12を形成し、この多孔質半導体層12の隙間を埋めるように形成した、逆導電型輸送体から成る電解質14、白金やカーボンの触媒層15、第2の導電層16および支持体17からなる。   Here, FIG. 1 shows a conventional photoelectric conversion device 1. In this photoelectric conversion device 1, a porous electron transporter layer (porous titanium oxide layer) 12 carrying a dye 13 is formed on a first conductive layer 11 formed on a transparent substrate 10. An electrolyte 14 made of a reverse conductivity type transporter, a platinum or carbon catalyst layer 15, a second conductive layer 16, and a support 17 formed so as to fill the gaps in the porous semiconductor layer 12.

しかしながら、この従来技術の光電変換装置1では、色素13の吸収係数が小さい波長600nm以上の光が透過し、光変換に寄与しないため、光電変換効率が低下するという問題がある。   However, this conventional photoelectric conversion device 1 has a problem that the photoelectric conversion efficiency is lowered because light having a wavelength of 600 nm or more with a small absorption coefficient of the dye 13 is transmitted and does not contribute to light conversion.

上記問題を解消するために、色素13を担持した多孔質の多孔質半導体層12の膜厚を厚くする方法があるが、膜厚を厚くすると多孔質半導体層12が透明基板10から剥離したりするため、光電変換効率が十分に向上しないという問題がある。   In order to solve the above problem, there is a method of increasing the film thickness of the porous porous semiconductor layer 12 carrying the dye 13, but if the film thickness is increased, the porous semiconductor layer 12 may be peeled off from the transparent substrate 10. Therefore, there is a problem that the photoelectric conversion efficiency is not sufficiently improved.

そのため、特許文献1には、図2のように平均粒径が例えば80nm以下の小さな半導体粒子から成る多孔質半導体層12の電解質14の溶液に接する側の面上に、平均粒径が例えば200〜500nmである球形の大きな半導体粒子から成る光反射層18を設けて光電極を構成し、光反射層18に入射する入射光を散乱、反射させることにより、光利用効率を向上させた光電変換装置が提案されている。   Therefore, in Patent Document 1, as shown in FIG. 2, the average particle size is, for example, 200 on the surface of the porous semiconductor layer 12 made of small semiconductor particles having a size of, for example, 80 nm or less in contact with the electrolyte solution 14. Photoelectric conversion with improved light utilization efficiency by providing a light reflection layer 18 composed of large spherical semiconductor particles having a diameter of ˜500 nm to constitute a photoelectrode and scattering and reflecting incident light incident on the light reflection layer 18 A device has been proposed.

しかしながら、この光電変換装置の場合、多孔質半導体層12を構成する粒径の小さな半導体粒子と、光反射層18を構成する大きな半導体粒子とが焼結によって結合しているが、これらの半導体粒子を焼結によって強固に結合させるためには、大きな半導体粒子としては純度の高いものが必要であり、また、各々の半導体粒子を積層する工程が増加するため、コストが高くなるという問題がある。即ち、多孔質半導体層12および光反射層18がともに小さい半導体粒子からなる場合、塗布工程、焼成工程の2工程ですむが、多孔質半導体層12が小さい半導体粒子からなり、光反射層18が大きい半導体粒子からなる場合、小さい半導体粒子の塗布工程、焼成工程、大きい半導体粒子の塗布工程、焼成工程の4工程が必要となる。   However, in the case of this photoelectric conversion device, the semiconductor particles having a small particle size constituting the porous semiconductor layer 12 and the large semiconductor particles constituting the light reflecting layer 18 are bonded by sintering. In order to bond the semiconductor particles firmly by sintering, large semiconductor particles are required to have high purity, and the number of steps for laminating each semiconductor particle increases, leading to a problem of increased costs. That is, when both the porous semiconductor layer 12 and the light reflection layer 18 are made of small semiconductor particles, two steps of a coating process and a baking process are required, but the porous semiconductor layer 12 is made of small semiconductor particles, and the light reflection layer 18 is When it consists of a large semiconductor particle, four processes, the application process of a small semiconductor particle, a baking process, the application process of a large semiconductor particle, and a baking process, are needed.

また、多孔質半導体層12と光反射層18とが同じ材料から成る場合であっても、両層の熱膨張係数が互いに異なるため、両層間に剥離が生じたり、両層にクラックが起きるという問題もある。さらに、多孔質半導体層12を構成する粒径の小さな半導体粒子に色素13を吸着させる際に、光反射層18を構成する粒径の大きな半導体粒子にも色素13が吸着するため、発電に寄与しない余分な色素13が存在するため、高価な色素13を余分に使用して光電変換装置がコスト高になるという問題がある。   Further, even when the porous semiconductor layer 12 and the light reflecting layer 18 are made of the same material, the thermal expansion coefficients of the two layers are different from each other, so that peeling occurs between both layers or cracks occur in both layers. There is also a problem. Further, when the dye 13 is adsorbed to the semiconductor particles having a small particle diameter constituting the porous semiconductor layer 12, the dye 13 is also adsorbed to the semiconductor particles having a large particle diameter constituting the light reflecting layer 18, which contributes to power generation. Therefore, there is a problem in that the cost of the photoelectric conversion device is increased by using an extra expensive dye 13.

また、特許文献2には、大きな球形の半導体粒子(平均粒径10〜300nm)と小さな球形の半導体粒子(平均粒径10nm以下)を混在させて成る半導体電極(電子輸送体層)を用いて、その電子輸送体層において入射光を散乱させることにより、光利用効率を向上させた光電変換装置が提案されている(図示せず)。   Patent Document 2 uses a semiconductor electrode (electron transporter layer) formed by mixing large spherical semiconductor particles (average particle size of 10 to 300 nm) and small spherical semiconductor particles (average particle size of 10 nm or less). There has been proposed a photoelectric conversion device (not shown) in which light utilization efficiency is improved by scattering incident light in the electron transport layer.

しかしながら、この光電変換装置の場合、電子輸送体層に表面積の小さい粒径の大きな半導体粒子が混在しているため、単位体積当たりの色素の吸着量が低下し、そのため光電変換効率が低下するという問題がある。   However, in the case of this photoelectric conversion device, since the semiconductor particles having a small surface area are mixed in the electron transport layer, the amount of dye adsorbed per unit volume is reduced, and thus the photoelectric conversion efficiency is reduced. There's a problem.

また、特許文献2によれば、図4のように電解質14の層の厚みを均一に保つために球状のスペーサ19を電解質14中に分散させることにより、半導体電極(多孔質半導体層12)と対極(触媒層15)との短絡を防ぎ、光電変換装置ごとの性能のばらつきを低減している。   According to Patent Document 2, as shown in FIG. 4, in order to keep the thickness of the layer of the electrolyte 14 uniform, spherical spacers 19 are dispersed in the electrolyte 14, so that the semiconductor electrode (porous semiconductor layer 12) and Short circuit with the counter electrode (catalyst layer 15) is prevented, and variation in performance of each photoelectric conversion device is reduced.

しかしながら、球状のスペーサ19は、電解質14の層の厚みを均一に保つために一層であり、粒径が1μm以上必要なため、光散乱効果が小さい。また、スペーサ19間の隙間を入射光が透過するため、光電変換効率の向上は不十分である。   However, the spherical spacer 19 is a single layer in order to keep the thickness of the electrolyte layer 14 uniform, and since the particle size is required to be 1 μm or more, the light scattering effect is small. Moreover, since incident light permeate | transmits the clearance gap between the spacers 19, the improvement of a photoelectric conversion efficiency is inadequate.

従って、本発明は、上記従来の技術における問題点に鑑みて完成されたものであり、その目的は、電子輸送体層との間で熱膨張係数差に起因する応力が発生しない光散乱体を用いて、入射光の光利用効率を向上させることによって、光電変換装置の光電変換効率を格段に向上させることである。そして、高光電変換効率の太陽電池や受光素子等の光電変換装置、およびそれを用いた光発電装置を提供することである。   Therefore, the present invention has been completed in view of the above problems in the prior art, and its purpose is to provide a light scatterer that does not generate stress due to a difference in thermal expansion coefficient with the electron transport layer. It is to improve the photoelectric conversion efficiency of the photoelectric conversion device by improving the light utilization efficiency of incident light. And it is providing photoelectric conversion apparatuses, such as a solar cell of high photoelectric conversion efficiency, and a light receiving element, and a photovoltaic device using the same.

本発明の光電変換装置は、一方の電極として機能する導電性基板と、該導電性基板の主面に形成され、光電変換を行なう光励起体が表面に多数付着した多孔質半導体層と、電解質と、他方の電極とを具備しており、前記電解質は光散乱体を含むことを特徴とする。   The photoelectric conversion device of the present invention includes a conductive substrate functioning as one electrode, a porous semiconductor layer formed on the main surface of the conductive substrate, on which a large number of photoexciters that perform photoelectric conversion are attached to the surface, an electrolyte, And the other electrode, and the electrolyte includes a light scatterer.

本発明の光電変換装置は好ましくは、前記光散乱体の平均粒径は、前記多孔質半導体層を成す半導体粒子の平均粒径よりも大きいことを特徴とする。   The photoelectric conversion device of the present invention is preferably characterized in that an average particle diameter of the light scatterer is larger than an average particle diameter of the semiconductor particles forming the porous semiconductor layer.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする。   The photovoltaic power generation device of the present invention is characterized in that the photoelectric conversion device of the present invention is used as a power generation means, and the generated power of the power generation means is supplied to a load.

本発明の光電変換装置は、一方の電極として機能する導電性基板と、その主面に形成され、光電変換を行なう光励起体が表面に多数付着した多孔質半導体層と、電解質と、他方の電極とを具備し、電解質は光散乱体を含むことから、多孔質半導体層と光散乱体とが強固に焼結するものではないために、多孔質半導体層と光散乱体との間には応力は生じないか、または生じるとしても無視し得るほどの小さいものとなる。その結果、応力に起因する多孔質半導体層の導電性基板からの剥離を抑制することができ、光電変換面積の損失が抑えられ、光電変換装置の高光電変換効率化および低コスト化を達成することができる。   The photoelectric conversion device of the present invention includes a conductive substrate functioning as one electrode, a porous semiconductor layer formed on the main surface thereof, on which a large number of photoexciters that perform photoelectric conversion are attached, an electrolyte, and the other electrode Since the electrolyte contains a light scatterer, the porous semiconductor layer and the light scatterer do not sinter strongly, so there is no stress between the porous semiconductor layer and the light scatterer. Will not occur, or if so, will be negligibly small. As a result, peeling of the porous semiconductor layer from the conductive substrate due to stress can be suppressed, loss of the photoelectric conversion area can be suppressed, and high photoelectric conversion efficiency and cost reduction of the photoelectric conversion device can be achieved. be able to.

また、光散乱体は焼成されるものではないため、その材料としては、多孔質半導体層と同じ材料の半導体だけでなく、他の半導体、絶縁体でもよく、また電解質に侵されない有機材料でもよいので、光散乱体の選択の自由度が広がる結果、光電変換装置のさらなる低コスト化を達成することができる。   In addition, since the light scatterer is not fired, the material thereof may be not only a semiconductor of the same material as the porous semiconductor layer, but also other semiconductors and insulators, and an organic material that is not affected by the electrolyte. As a result, the degree of freedom in selecting the light scatterer is widened, so that further cost reduction of the photoelectric conversion device can be achieved.

さらに、入射光の光利用効率を向上することができる光散乱体が電解質に分散されているため、電解質が室温で液体である場合や加熱により液体となる場合には、光散乱体を多孔質半導体層上に塗布したり電解質中に注入することができ、その結果、多くのエネルギーを必要とする高温の焼成工程を省くことができ、光電変換装置のさらなる低コスト化を達成することができる。   Furthermore, since the light scatterer that can improve the light utilization efficiency of incident light is dispersed in the electrolyte, when the electrolyte is liquid at room temperature or becomes liquid by heating, the light scatterer is made porous. It can be applied on the semiconductor layer or injected into the electrolyte. As a result, a high-temperature baking process that requires a lot of energy can be omitted, and further cost reduction of the photoelectric conversion device can be achieved. .

また、多孔質半導体層に色素を吸着させた後に光散乱体を導入するため、光電変換に寄与しない光散乱体の表面に色素が吸着することがなくなる。その結果、余分な色素の使用を防いで、光電変換装置のさらなる低コスト化を達成することができる。   In addition, since the light scatterer is introduced after the dye is adsorbed to the porous semiconductor layer, the dye is not adsorbed on the surface of the light scatterer that does not contribute to photoelectric conversion. As a result, the use of an extra dye can be prevented, and further cost reduction of the photoelectric conversion device can be achieved.

また、光散乱体は高電気抵抗であることから、多孔質半導体層あるいは導電性基板と、それらと対向する他方の電極との間の短絡が抑制されるため、別途スペーサ等を用いることなく、光電変換装置のさらなる高変換効率化および低コスト化を達成することができる。   In addition, since the light scatterer has a high electrical resistance, a short circuit between the porous semiconductor layer or the conductive substrate and the other electrode facing them is suppressed. Further higher conversion efficiency and lower cost of the photoelectric conversion device can be achieved.

また、電解質中に光散乱体が含まれることから、多孔質半導体層あるいは導電性基板と、それらと対向する他方の電極との間の間隔の変動を抑制することができるため、セル特性すなわち内部抵抗の増加によるフィルファクター(形状因子)の低下および変換効率の低下を抑制できるため、別途スペーサ等を用いることなく、光電変換装置のさらなる高変換効率化および低コスト化を達成することができる。   In addition, since the light scatterer is contained in the electrolyte, it is possible to suppress the variation in the distance between the porous semiconductor layer or the conductive substrate and the other electrode facing the porous semiconductor layer or the conductive substrate. Since a decrease in fill factor (form factor) and a decrease in conversion efficiency due to an increase in resistance can be suppressed, further conversion efficiency and cost reduction of the photoelectric conversion device can be achieved without using a separate spacer or the like.

本発明の光電変換装置は好ましくは、光散乱体の平均粒径は多孔質半導体層を成す半導体粒子の平均粒径よりも大きいことから、多孔質半導体層を成す半導体粒子としては光散乱しないように光の波長よりも小さい粒径のものを用いるのに対して、光散乱体は光を効率良く散乱する必要があるため光の波長と同等程度、即ち多孔質半導体層を成す半導体粒子よりも大きい粒径のものを用いるため、入射光の光利用効率を向上させることができる。その結果、光電変換装置の高変換効率化を達成するうえで有利である。   In the photoelectric conversion device of the present invention, preferably, since the average particle diameter of the light scatterer is larger than the average particle diameter of the semiconductor particles forming the porous semiconductor layer, the semiconductor particles forming the porous semiconductor layer do not scatter light. In contrast, light scatterers need to scatter light more efficiently than light particles having a particle size smaller than the wavelength of light. Since one having a large particle diameter is used, the light utilization efficiency of incident light can be improved. As a result, it is advantageous in achieving high conversion efficiency of the photoelectric conversion device.

本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、発電手段の発電電力を負荷へ供給するように成したことから、高効率で、耐久性のある光発電装置を低コストに提供することができる。   Since the photovoltaic device of the present invention uses the photoelectric conversion device of the present invention as a power generation means and supplies the generated power of the power generation means to a load, a highly efficient and durable photovoltaic power generation device is provided. It can be provided at low cost.

本発明の光電変換装置および光発電装置の実施の形態の例について図面を参照しつつ以下に詳細に説明する。   Exemplary embodiments of a photoelectric conversion device and a photovoltaic device according to the present invention will be described in detail below with reference to the drawings.

図3は、色素増感型太陽電池としての光電変換装置の基本構成の断面図であり、図3において矢印Lは光の入射方向を示す。なお、本発明を示す図3において、図1等と同一部材には同一符号を付している。   FIG. 3 is a cross-sectional view of a basic configuration of a photoelectric conversion device as a dye-sensitized solar cell, and in FIG. 3, an arrow L indicates a light incident direction. In FIG. 3 showing the present invention, the same members as those in FIG.

図3の光電変換装置1は、一方の電極としての第1の導電層11が一主面に形成された導電性基板としての透光性基板10の一主面上に、光励起体としての色素13を吸着させた金属酸化物半導体からなる一方導電型電荷輸送体である多孔質半導体層(電子輸送体層)12を形成し、その多孔質半導体層12上に光散乱体20を含む他方導電型電荷輸送体である電解質14を配設している構成である。   The photoelectric conversion device 1 of FIG. 3 has a dye as a photoexciter on one main surface of a translucent substrate 10 as a conductive substrate on which a first conductive layer 11 as one electrode is formed on one main surface. A porous semiconductor layer (electron transporter layer) 12 which is a one-conductivity type charge transporter made of a metal oxide semiconductor adsorbing 13 is formed, and the other conductive material including the light scatterer 20 is formed on the porous semiconductor layer 12. In this configuration, an electrolyte 14 that is a type charge transporter is provided.

この光電変換装置1は、色素13の増感作用により光電変換を行なう色素増感型光電変換体をなしており、第1の導電層11上に形成され色素13を担持した多孔質半導体層12、この多孔質半導体層12の隙間を埋めるように設けられた電解質14、白金やカーボンから成る触媒層15、他方の電極としての第2の導電層16および支持体17からなる。第2の導電層16および支持体17は、触媒層15を担持させた金属基板でもよい。   This photoelectric conversion device 1 is a dye-sensitized photoelectric converter that performs photoelectric conversion by the sensitizing action of the dye 13, and is formed on the first conductive layer 11 and has a porous semiconductor layer 12 carrying the dye 13. The electrolyte 14 is provided so as to fill the gap between the porous semiconductor layers 12, the catalyst layer 15 made of platinum or carbon, the second conductive layer 16 as the other electrode, and the support body 17. The second conductive layer 16 and the support 17 may be a metal substrate on which the catalyst layer 15 is supported.

次に、上述した光電変換装置1の各構成について詳細に説明する。   Next, each structure of the photoelectric conversion apparatus 1 mentioned above is demonstrated in detail.

<透光性基板>
透光性基板10としては、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリイミド,ポリカーボネート等から成る樹脂基板、白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等から成る無機質基板、有機無機ハイブリッドシート等がよい。
<Translucent substrate>
As the translucent substrate 10, a resin substrate made of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polycarbonate, etc., an inorganic substrate made of white plate glass, soda glass, borosilicate glass, ceramics, etc., an organic-inorganic hybrid Sheets are good.

<導電層>
第1の導電層11および第2の導電層16としては、低温成長のスパッタリング法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)等、また溶液成長法で作製した不純物ドープの酸化亜鉛(ZnO)膜等がよく、これらを積層して用いてもよい。また、熱CVD法で形成したフッ素ドープの酸化スズ(SnO:F)膜等を用いてもよい。他に、不純物ドープの酸化インジウム(In)膜等が使用できる。
<Conductive layer>
As the first conductive layer 11 and the second conductive layer 16, a tin-doped indium oxide film (ITO film) or an impurity-doped indium oxide film (In 2 O 3 ) prepared by a low-temperature growth sputtering method or a low-temperature spray pyrolysis method. Film) and the like, and an impurity-doped zinc oxide (ZnO) film manufactured by a solution growth method are preferable. Alternatively, a fluorine-doped tin oxide (SnO 2 : F) film formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide (In 2 O 3 ) film or the like can be used.

他の成膜法としては、真空蒸着法,イオンプレーティング法,ディップコート法,ゾルゲル法等がある。これらの成膜法によって表面に入射光の波長オーダーの凹凸を形成すると、光閉じ込め効果を付与することができ、より好ましいものとなる。   Examples of other film forming methods include a vacuum deposition method, an ion plating method, a dip coating method, and a sol-gel method. By forming irregularities in the order of the wavelength of incident light on the surface by these film forming methods, a light confinement effect can be imparted, which is more preferable.

また、第1の導電層11としては、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等から成る薄い金属膜、Ti層,ITO層,Ti層の3層構造等の多層積層体、あるいは金属メッシュ電極,ITO層を積層したもの等の複合体でもよい。   Further, as the first conductive layer 11, a multilayer laminate such as a thin metal film made of Au, Pd, Al or the like formed by vacuum vapor deposition or sputtering, or a three-layer structure of Ti layer, ITO layer, Ti layer, etc. Alternatively, a composite such as a metal mesh electrode or an ITO layer laminated may be used.

<電子輸送体層としての多孔質半導体層>
一方導電型輸送体である多孔質半導体層12は、酸化チタン等から成る多孔質のn型金属酸化物半導体層であることが好ましい。また、多孔質半導体層12を成す半導体粒子は、粒状体、針状体,チューブ状体,柱状体等の線状体、またはこれら種々の線状体が集合してなるものが好適である。
<Porous semiconductor layer as an electron transporter layer>
On the other hand, the porous semiconductor layer 12 which is a conductive transporter is preferably a porous n-type metal oxide semiconductor layer made of titanium oxide or the like. The semiconductor particles forming the porous semiconductor layer 12 are preferably linear bodies such as granular bodies, needle-like bodies, tube-like bodies, columnar bodies, or a collection of these various linear bodies.

多孔質半導体層12は、粒状体や線状体の集合体から成ることから、粒状体間または線状体間での接合面積、および色素13を担持する表面積が増えて、光電変換効率を高めることができる。また、色素増感型光電変換体としての多孔質半導体層12の表面が凹凸状となるため、色素増感型光電変換体に光閉じ込め効果をもたらして、光電変換効率をより高めることができる。   Since the porous semiconductor layer 12 is composed of an aggregate of granular materials or linear bodies, the bonding area between the granular bodies or the linear bodies and the surface area supporting the dye 13 are increased, thereby increasing the photoelectric conversion efficiency. be able to. In addition, since the surface of the porous semiconductor layer 12 as the dye-sensitized photoelectric conversion body is uneven, the light-confining effect can be brought to the dye-sensitized photoelectric conversion body, and the photoelectric conversion efficiency can be further increased.

多孔質半導体層12を成す金属酸化物半導体の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料や組成としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V)等の金属元素のうちの少なくとも1種からなる酸化物半導体がよい。また、窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有させてもよい。上記の酸化チタン等は、いずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2〜5eVの範囲にあり、好ましい。また、金属酸化物半導体は、電子エネルギー準位においてその伝導帯が色素13の伝導帯より低いn型半導体がよい。 Titanium oxide (TiO 2 ) is optimal as the material and composition of the metal oxide semiconductor that forms the porous semiconductor layer 12, and titanium (Ti), zinc (Zn), tin (Sn) are the other materials and compositions. ), Niobium (Nb), indium (In), yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca) ), An oxide semiconductor composed of at least one of metal elements such as vanadium (V) is preferable. Moreover, you may contain 1 or more types of nonmetallic elements, such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), and phosphorus (P). All of the above titanium oxides and the like are preferable because the electronic energy band gap is in the range of 2 to 5 eV larger than the energy of visible light. Further, the metal oxide semiconductor is preferably an n-type semiconductor whose conduction band is lower than that of the dye 13 in the electron energy level.

この多孔質半導体層12は、空孔率が20〜80%であるのがよく、より好適には40〜60%がよい。これは、この程度の空孔率の多孔質化により光作用極の表面積を1000倍以上に高めることができ、光吸収と発電と電子伝導とを効率よく行なうことができるからである。   The porous semiconductor layer 12 may have a porosity of 20 to 80%, and more preferably 40 to 60%. This is because the surface area of the light working electrode can be increased by 1000 times or more by making the porosity of this degree of porosity, and light absorption, power generation and electron conduction can be performed efficiently.

多孔質半導体層12を成す金属酸化物半導体等の半導体粒子の形状は、表面積が大きくなり、かつ電気抵抗が小さい形状がよく、上記のような微細粒子もしくは微細線状体からなるのがよい。その平均粒径もしくは平均線径は、5〜500nmであるのがよく、より好適には10〜200nmであるのがよい。ここで、平均粒径もしくは平均線径の5〜500nmにおける下限値は、これ未満になると材料の微細化が困難になるからであり、上限値は、これを超えると半導体粒子間の接合面積が小さくなり光電流が著しく小さくなるからである。   The shape of the semiconductor particles such as a metal oxide semiconductor constituting the porous semiconductor layer 12 is preferably a shape having a large surface area and a small electric resistance, and is preferably composed of the fine particles or fine linear bodies as described above. The average particle diameter or average line diameter is preferably 5 to 500 nm, and more preferably 10 to 200 nm. Here, if the lower limit of the average particle diameter or the average wire diameter of 5 to 500 nm is less than this, it is difficult to refine the material, and if the upper limit exceeds this, the bonding area between the semiconductor particles is reduced. This is because the photocurrent is significantly reduced.

また、多孔質半導体層12の厚さは0.1〜50μmがよく、より好適には1〜20μmがよい。多孔質半導体層12の厚さ0.1〜50μmにおける下限値は、これより厚さが小さくなると、光電変換作用が著しく小さくなって実用が困難となるからであり、上限値は、これを超えて膜厚が厚くなると、多孔質半導体層12にクラックが入ったり、多孔質半導体層12が透光性基板10から剥離したり、第1の導電層11との間の電気抵抗が大きくなったり、光が透過しなくなって光が入射しなくなり、光電変換作用が著しく小さくなって実用が困難となるからである。   The thickness of the porous semiconductor layer 12 is preferably 0.1 to 50 μm, and more preferably 1 to 20 μm. The lower limit in the thickness of 0.1 to 50 μm of the porous semiconductor layer 12 is because if the thickness is smaller than this, the photoelectric conversion action becomes extremely small and practical use becomes difficult, and the upper limit exceeds this value. When the film thickness is increased, the porous semiconductor layer 12 is cracked, the porous semiconductor layer 12 is peeled off from the translucent substrate 10, or the electrical resistance between the first conductive layer 11 is increased. This is because the light is not transmitted and the light is not incident, and the photoelectric conversion action is remarkably reduced, making practical use difficult.

多孔質半導体層12を成す金属酸化物半導体としての酸化チタンの製造方法は、以下のようになる。まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。次に、このペーストをドクターブレード法によって、第1の導電層11の表面上に一定の速度で塗布し、大気中において、2〜20℃/分で昇温させ、300〜600℃好適には400〜500℃で、10〜60分好適には20〜40分の条件で加熱処理することにより、酸化チタンから成る多孔質半導体層12を形成する。この製造方法は簡便であり、図3に示すように、耐熱性の透光性基板10および第1の導電層11上に予め形成できる場合に有効である。 A method for producing titanium oxide as a metal oxide semiconductor forming the porous semiconductor layer 12 is as follows. First, acetylacetone is added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. Next, this paste is applied on the surface of the first conductive layer 11 at a constant speed by a doctor blade method, and the temperature is raised in the atmosphere at 2 to 20 ° C./minute, preferably 300 to 600 ° C. The porous semiconductor layer 12 made of titanium oxide is formed by heat treatment at 400 to 500 ° C. for 10 to 60 minutes, preferably 20 to 40 minutes. This manufacturing method is simple and effective when it can be formed in advance on the heat-resistant translucent substrate 10 and the first conductive layer 11 as shown in FIG.

この酸化チタン等の金属酸化物半導体の膜成長法としては、低温で処理できることから、電析法,泳動電着法,水熱合成法等がよく、後処理としてマイクロ波処理,プラズマ処理,UV照射処理等を行なうのがよい。これらの膜成長法を考慮した多孔質半導体層12を成す金属酸化物半導体としては、電析法による多孔質ZnO,泳動電着法による多孔質TiO等がよい。 As the film growth method of the metal oxide semiconductor such as titanium oxide, since it can be processed at a low temperature, the electrodeposition method, electrophoretic electrodeposition method, hydrothermal synthesis method, etc. are preferable. An irradiation process or the like is preferably performed. As the metal oxide semiconductor forming the porous semiconductor layer 12 in consideration of these film growth methods, porous ZnO by electrodeposition, porous TiO 2 by electrophoretic deposition, and the like are preferable.

<電解質>
多孔質半導体層12の隙間(空孔)を埋めるように形成された、他方導電型輸送体である電解質14の材料としては、透明導電性酸化物,電解質溶液,ゲル電解質や固体電解質等の電解質,有機正孔輸送剤,極薄膜金属等が挙げられる。特に、正孔輸送体(p型半導体)である、ゲル電解質,液体電解質,固体電解質,電解塩等がよい。これらのうち電解液が最もよいキャリア移動性を示すが、液体の場合には液漏れ等の問題があるのでゲル化や固体化したものを用いることが好ましい。
<Electrolyte>
Examples of the material of the electrolyte 14 that is the other conductive type transporter formed so as to fill the gaps (voids) in the porous semiconductor layer 12 include electrolytes such as transparent conductive oxides, electrolyte solutions, gel electrolytes, and solid electrolytes. , Organic hole transport agents, ultrathin metal, and the like. In particular, a hole electrolyte (p-type semiconductor) such as a gel electrolyte, a liquid electrolyte, a solid electrolyte, or an electrolyte salt is preferable. Among these, the electrolytic solution shows the best carrier mobility. However, in the case of a liquid, there are problems such as liquid leakage.

電解質14中に分散させた光散乱体20は、粒状体、板状体、または針状体,チューブ状体,柱状体等の線状体、またはこれら種々の線状体が集合してなるものが好適である。光散乱体20の平均粒径もしくは平均線径は、多孔質半導体層12を成す半導体粒子よりも大きく、かつ50〜5000nmであるのがよい。より好適には100〜500nmであるのがよい。前方への散乱が強いミー散乱は、多孔質半導体層12への光反射が強くできるため、変換効率の向上の効果が高い。一般に、散乱係数αは粒子径Dと波長λよりα=πD/λの関係にあり、α<0.4はレイリー散乱の領域にあり、0.4<α<3はミー散乱の領域、α>3は回折散乱の領域とされるため、太陽光の波長領域400〜1200nmの領域で0.4<α<3を満たす粒子径Dは50〜5000nm程度となる。ここで、平均粒径もしくは平均線径の50〜5000nmにおける下限値は、これ未満になると光散乱が小さくなるからであり、上限値は、これを超えても電極間距離が大きくなり光電変換効率が低下することや、光散乱性が小さくなるからである。   The light scattering body 20 dispersed in the electrolyte 14 is a granular body, a plate-shaped body, a linear body such as a needle-shaped body, a tubular body, a columnar body, or a collection of these various linear bodies. Is preferred. The average particle diameter or average wire diameter of the light scatterer 20 is preferably larger than the semiconductor particles forming the porous semiconductor layer 12 and 50 to 5000 nm. More preferably, it is 100 to 500 nm. Mie scattering, which has strong forward scattering, can enhance light reflection to the porous semiconductor layer 12, and thus has a high effect of improving conversion efficiency. In general, the scattering coefficient α has a relationship of α = πD / λ from the particle diameter D and the wavelength λ, α <0.4 is in the Rayleigh scattering region, 0.4 <α <3 is the Mie scattering region, α Since> 3 is a diffraction scattering region, the particle diameter D satisfying 0.4 <α <3 in the sunlight wavelength region of 400 to 1200 nm is about 50 to 5000 nm. Here, the lower limit of the average particle diameter or the average wire diameter in the range of 50 to 5000 nm is because light scattering is reduced when the average value is less than this, and the upper limit is that the distance between the electrodes increases and the photoelectric conversion efficiency is exceeded. This is because the light scattering property is reduced and the light scattering property is reduced.

また、多孔質半導体層12は、色素13を多く吸着させるために比表面積が大きい平均粒径10〜200nmの金属酸化物半導体から成るのが好適であったが、光散乱体20は波長300〜2000nmの太陽光を光散乱する必要があり、光散乱のレイリー散乱およびミー散乱が強く起きる粒径が50〜5000nmであることから、多孔質半導体層12の半導体粒子の平均粒径よりも光散乱体20の平均粒径が大きい方が光散乱性は強くなる。   The porous semiconductor layer 12 was preferably composed of a metal oxide semiconductor having a large specific surface area and an average particle diameter of 10 to 200 nm in order to adsorb a large amount of the dye 13, but the light scatterer 20 has a wavelength of 300 to 300 nm. Since it is necessary to scatter 2000 nm sunlight, and the particle size at which Rayleigh scattering and Mie scattering of light scattering strongly occur is 50 to 5000 nm, the light scattering is larger than the average particle size of the semiconductor particles of the porous semiconductor layer 12. As the average particle size of the body 20 is larger, the light scattering property becomes stronger.

また、電解質14中における光散乱体20の含有量は10〜95質量%であるのがよい。より好適には60〜80%であるのがよい。ここで、95%以上の含有量になると、電解質の粘度が著しく増加し、電解質塗布あるいは注入が困難となる。また、10%以下の含有量になると、光散乱の効果が小さく、変換効率の向上ができない。   The content of the light scatterer 20 in the electrolyte 14 is preferably 10 to 95% by mass. More preferably, it is 60 to 80%. Here, when the content is 95% or more, the viscosity of the electrolyte is remarkably increased, and it becomes difficult to apply or inject the electrolyte. On the other hand, when the content is 10% or less, the light scattering effect is small, and the conversion efficiency cannot be improved.

また、累積粒度分布の微粒側からの累積10%、累積90%の粒径を各々D10、D90としたときに、光散乱体20の粒径分布はD90/D10の値が10以下であるのがよい。より好適には5以下であるのがよい。D90/D10の値が10を超えると粒径にバラツキが大きくなるために、電解質14中への分散性が低下したり、電解質14による電極間ギャップのバラツキが大きくなり、光電変換効率が低下する。   In addition, when the cumulative particle size distribution from the fine particle side is 10% cumulative and 90% cumulative particle size is D10 and D90, the particle size distribution of the light scatterer 20 has a D90 / D10 value of 10 or less. Is good. More preferably, it is 5 or less. If the value of D90 / D10 exceeds 10, the dispersion in the particle size increases, so that the dispersibility in the electrolyte 14 decreases or the gap between the electrodes due to the electrolyte 14 increases, and the photoelectric conversion efficiency decreases. .

光散乱体20の平均粒径、粒度分布の測定はレーザー回折法あるいは動的光散乱法等の光回折・散乱法によって行うことができる。   The average particle size and particle size distribution of the light scatterer 20 can be measured by a light diffraction / scattering method such as a laser diffraction method or a dynamic light scattering method.

また、光散乱体20は、電解質14の溶媒に不溶で、太陽光に対して透明で、レイリー散乱の散乱強度は屈折率に比例するため、高屈折率であるものが好適である。また、電解質14の溶媒よりも光散乱体20の屈折率は高い必要があるため、具体的には屈折率は1.3以上がよい。この光散乱体20としては、酸化チタン[ルチル](屈折率n=2.71)、チタン酸鉛(n=2.7)、チタン酸カリウム(n=2.68)、酸化チタン[ブルカイト](n=2.63)、酸化チタン[アナターゼ](n=2.52)、酸化ジルコニウム(n=2.40)、チタン酸バリウム(n=2.40)、硫化亜鉛(n=2.37)、鉛白(n=2.01)、酸化亜鉛(n=1.95)、酸化アルミニウム(n=1.76)、酸化マグネシウム(n=1.72)、硫酸バリウム(n=1.64)、硫酸カルシウム(n=1.59)、ポリカーボネート(n=1.59)、炭酸カルシウム(n=1.58)、タルク(n=1.57)、ポリエチレン(n=1.53)、ガラス(n=1.51)、ポリメタクリル酸メチル(n=1.49)等を用いることができる。より好適には酸化チタン[ルチル]を用いることがよい。 The light scatterer 20 is preferably insoluble in the solvent of the electrolyte 14, transparent to sunlight, and having a high refractive index because the scattering intensity of Rayleigh scattering is proportional to the refractive index. Moreover, since the refractive index of the light-scattering body 20 needs to be higher than the solvent of the electrolyte 14, specifically, the refractive index is preferably 1.3 or more. Examples of the light scatterer 20 include titanium oxide [rutile] (refractive index n = 2.71), lead titanate (n = 2.7), potassium titanate (n = 2.68), and titanium oxide [bulkite]. (N = 2.63), titanium oxide [anatase] (n = 2.52), zirconium oxide (n = 2.40), barium titanate (n = 2.40), zinc sulfide (n = 2.37) ), Lead white (n = 2.01), zinc oxide (n = 1.95), aluminum oxide (n = 1.76), magnesium oxide (n = 1.72), barium sulfate (n = 1.64) ), Calcium sulfate (n = 1.59), polycarbonate (n = 1.59), calcium carbonate (n = 1.58), talc (n r = 1.57), polyethylene (n = 1.53), Glass (n = 1.51), polymethyl methacrylate (n = 1. 9) or the like can be used. More preferably, titanium oxide [rutile] is used.

また、光散乱体20は、球状だけでなく、棒状、多面体状、板状でもよい。特に板状にものがよく、さらには、板状のものがその主面が多孔質半導体層12の表面にほぼ平行となるようにして、電解質14中に存在しているのがよい。この場合、光を入射側へ反射、散乱して、光電変換効率を向上させるのに有利である。   The light scatterer 20 is not limited to a sphere, but may be a rod, polyhedron, or plate. In particular, a plate-like material is preferable, and a plate-like material is preferably present in the electrolyte 14 such that its main surface is substantially parallel to the surface of the porous semiconductor layer 12. In this case, it is advantageous for improving photoelectric conversion efficiency by reflecting and scattering light to the incident side.

また本発明において、光散乱体20は、多孔質半導体層12と焼結等によって結合していない状態、すなわち多孔質半導体層12と化学的、機械的にほぼ非結合状態である。従って、これにより、多孔質半導体層12と光散乱体20との間には応力は生じないか、または生じるとしても無視し得るほどの小さいものとなる。その結果、応力に起因する多孔質半導体層12の導電性基板からの剥離を抑制することができ、光電変換面積の損失が抑えられる。   Further, in the present invention, the light scatterer 20 is not bonded to the porous semiconductor layer 12 by sintering or the like, that is, is substantially unbonded to the porous semiconductor layer 12 chemically and mechanically. Therefore, no stress is generated between the porous semiconductor layer 12 and the light scatterer 20, or even if it occurs, it is negligibly small. As a result, peeling of the porous semiconductor layer 12 from the conductive substrate due to stress can be suppressed, and loss of the photoelectric conversion area can be suppressed.

電解質14に含まれる透明導電性酸化物は、GaP,NiO,CoO,FeO,Bi,MoO,Cr等や一価の銅を含む化合物半導体がよく、これらの中でも一価の銅を含む化合物半導体がよい。その化合物半導体としては、CuI,CuInSe,CuO,CuSCN,CuS,CuInS,CuAlSe等がよく、この中でもCuI,CuSCNがよく、さらにはCuIが製造しやすく最も好ましい。 The transparent conductive oxide contained in the electrolyte 14 is preferably a compound semiconductor containing GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3 or the like and monovalent copper. A compound semiconductor containing copper is preferable. As the compound semiconductor, CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , CuAlSe 2 and the like are preferable, and among these, CuI and CuSCN are preferable, and CuI is most preferable because it is easy to manufacture.

電解質14としては、ヨウ素系の第4級アンモニウム塩やLi塩等を用いる。電解質溶液の組成としては例えば、炭酸エチレン,アセトニトリルまたはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合して調製したものを用いることができる。   As the electrolyte 14, iodine-based quaternary ammonium salt, Li salt, or the like is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing ethylene carbonate, acetonitrile, methoxypropionitrile, or the like with tetrapropylammonium iodide, lithium iodide, iodine, or the like can be used.

電解質溶液の粘度調整剤としては、ポリエチレングリコール,高級脂肪酸アマイド,アクリル系共重合体,シリカ,ポリカルボン酸,ポリアクリル酸,酸化ポリエチレン,シリコーン,ナノ粒子、例えば酸化チタン,酸化アルミニウム,酸化亜鉛,酸化スズ等のナノ粒子等を用いることができる。   Examples of the viscosity modifier for the electrolyte solution include polyethylene glycol, higher fatty acid amide, acrylic copolymer, silica, polycarboxylic acid, polyacrylic acid, polyethylene oxide, silicone, nanoparticles such as titanium oxide, aluminum oxide, zinc oxide, Nanoparticles such as tin oxide can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルとに分けられる。化学ゲルは架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル,エチレンカーボネート,プロピレンカーボネート、またはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合、低粘度の前駆体を多孔質半導体層12に含有させ、加熱,紫外線照射,電子線照射等の手段で二次元,三次元の架橋反応を起こさせることによって、ゲル化または固体化させることができる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to a physical interaction. As the gel electrolyte, acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof was polymerized by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, polyacrylamide or the like. A gel electrolyte is preferred. When a gel electrolyte or a solid electrolyte is used, a low-viscosity precursor is contained in the porous semiconductor layer 12 to cause a two-dimensional or three-dimensional crosslinking reaction by means such as heating, ultraviolet irradiation, or electron beam irradiation. By this, it can be gelled or solidified.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド,ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩等の塩を持つ固体電解質が好ましい。ヨウ化物の溶融塩としては、イミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩等のヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide, or polyethylene and having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt, or dicyanoquinodiimine salt is preferable. As the molten salt of iodide, an iodide such as an imidazolium salt, a quaternary ammonium salt, an isoxazolidinium salt, an isothiazolidinium salt, a pyrazolidium salt, a pyrrolidinium salt, or a pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

有機正孔輸送剤として機能する電解質14としては、トリフェニルジアミン(TPD1,TPD2,TPD3)やOMeTAD(2,2’,7,7’−tetrakis(N,N−di−p−methoxyphenyl−amine)9,9’−spirobifluorene)等が挙げられる。   Examples of the electrolyte 14 functioning as an organic hole transporting agent include triphenyldiamine (TPD1, TPD2, TPD3) and OMeTAD (2, 2 ′, 7, 7′-tetrakis (N, N-di-p-methoxyphenyl-amine). 9,9′-spirobifluorene) and the like.

<色素>
多孔質半導体層12に担持される色素13としては、太陽光の波長300〜2000nmの光を吸収し、かつ多孔質半導体層12に吸着する色素13であれば良い。色素13の材料としては、シリコン,砒化ガリウム,インジウムリン,カドミウムセレン,硫化カドミウム,CuInSe等の無機系半導体、酸化クロム,酸化鉄,酸化ニッケル等の無機顔料、または、Ru錯体系,ポルフィリン系,フタロシアニン系,メロシアニン系,クマリン系,インドリン系等の有機色素が良い。
<Dye>
The dye 13 supported on the porous semiconductor layer 12 may be any dye 13 that absorbs sunlight having a wavelength of 300 to 2000 nm and adsorbs to the porous semiconductor layer 12. Examples of the material of the dye 13 include inorganic semiconductors such as silicon, gallium arsenide, indium phosphide, cadmium selenium, cadmium sulfide, and CuInSe, inorganic pigments such as chromium oxide, iron oxide, and nickel oxide, or Ru complexes, porphyrins, Organic dyes such as phthalocyanine, merocyanine, coumarin, and indoline are preferred.

また、色素13に少なくとも1個以上の吸着置換基、即ちカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基等を置換基として有することが有効である。ここで、吸着置換基は多孔質半導体層12に強固に化学吸着することができ、励起状態の色素13から多孔質半導体層12へ容易に電荷移動できるものであればよい。   In addition, it is effective that the dye 13 has at least one adsorption substituent, that is, a carboxyl group, a sulfonyl group, a hydroxamic acid group, an alkoxy group, an aryl group, a phosphoryl group, or the like as a substituent. Here, the adsorption substituent may be any one that can strongly chemisorb to the porous semiconductor layer 12 and can easily transfer charges from the excited dye 13 to the porous semiconductor layer 12.

また、電解質14から効率よく電子を捕獲するために、色素13に少なくとも1個以上の電子供与性置換基、即ちメチル基,エチル基,イソプロピル基等のアルキル基、メトキシ基,エトキシ基等のアルコキシ基、フェニル,ナフチル基等のアリール基、塩素,臭素等のハロゲン基、ヒドロキシ基、アミノ基、チオシアナート基、シアノ基、ターシャルブチル基、3,5−ジターシャルブチルフェニル基等を置換基として有することが有効である。ここで、電子供与性置換基は、電解質14から効率よく電子を捕獲することができ、電解質14の還元体、たとえばヨウ素レドックスを用いた場合Iから色素13へ容易に電荷移動できるものであればよい。 Further, in order to efficiently capture electrons from the electrolyte 14, the dye 13 has at least one electron-donating substituent, that is, an alkyl group such as a methyl group, an ethyl group, or an isopropyl group, or an alkoxy group such as a methoxy group or an ethoxy group. Groups, aryl groups such as phenyl and naphthyl groups, halogen groups such as chlorine and bromine, hydroxy groups, amino groups, thiocyanate groups, cyano groups, tertiary butyl groups, 3,5-ditertiary butylphenyl groups and the like as substituents It is effective to have. Here, the electron-donating substituent is capable of efficiently capturing electrons from the electrolyte 14 and can easily transfer charge from I to the dye 13 when a reduced form of the electrolyte 14, for example, iodine redox is used. That's fine.

多孔質半導体層12に色素13を吸着させる方法としては、多孔質半導体層12を形成した透光性基板10を、色素13を溶解した溶液に浸漬する方法が挙げられる。色素13を溶解した溶液に多孔質半導体層12を形成した透光性基板10を浸漬する際には、溶液および雰囲気の温度は特に限定されるものではなく、例えば、雰囲気は大気雰囲気とし、温度は室温とすればよく、浸漬時間は色素13の種類,溶媒の種類,溶液の濃度,温度等により適宜調整することができる。   Examples of the method for adsorbing the dye 13 to the porous semiconductor layer 12 include a method of immersing the translucent substrate 10 on which the porous semiconductor layer 12 is formed in a solution in which the dye 13 is dissolved. When the translucent substrate 10 having the porous semiconductor layer 12 formed therein is immersed in a solution in which the dye 13 is dissolved, the temperature of the solution and the atmosphere is not particularly limited. For example, the atmosphere is an air atmosphere, May be set to room temperature, and the immersion time can be appropriately adjusted depending on the type of the dye 13, the type of the solvent, the concentration of the solution, the temperature, and the like.

また、多孔質半導体層12となる金属酸化物半導体の半導体粒子に色素13を吸着させた後、第1の導電層11上に半導体粒子あるいはそのペーストを塗布し、色素13が変質したり分解されない温度、雰囲気で固化させる方法が挙げられる。これにより、色素13を多孔質半導体層12に吸着させることができる。   In addition, after the dye 13 is adsorbed on the metal oxide semiconductor particles to be the porous semiconductor layer 12, the semiconductor particles or paste thereof is applied onto the first conductive layer 11, so that the dye 13 is not altered or decomposed. The method of solidifying by temperature and atmosphere is mentioned. Thereby, the dye 13 can be adsorbed to the porous semiconductor layer 12.

色素13を溶解させるために用いる溶媒は、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。また、溶液中の色素13の濃度は5×10−5〜2×10−3mol/l(l:リットル(1000cm))程度が好ましい。 Examples of the solvent used for dissolving the dye 13 include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like. The concentration of the dye 13 in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l (l: liter (1000 cm 3 )).

また、色素13の溶液中での凝集を抑制するために、添加剤として弱塩基性化合物、例えばターシャルブチルピリジンや弱酸性化合物、デオキシコール酸を、色素13の溶液に添加し、色素13と添加剤とを多孔質半導体層12に共吸着させる方法を用いるとよい。さらに、この方法だけでなく、多孔質半導体層12に色素13を吸着させた後、多孔質半導体層12を上記の添加剤溶液に浸漬して添加剤を吸着させる方法により、多孔質半導体層12に注入された電子が酸化状態の色素13と、多孔質半導体層12に注入された電子が電解質14の酸化物質とそれぞれ再結合反応すること、即ち電子のリークが発生することを抑制でき、光電変換効率を向上させることができる。   Further, in order to suppress aggregation of the dye 13 in the solution, a weakly basic compound such as tertiary butylpyridine, a weakly acidic compound, or deoxycholic acid is added to the dye 13 solution as an additive. A method of co-adsorbing the additive to the porous semiconductor layer 12 may be used. In addition to this method, the porous semiconductor layer 12 is adsorbed by adsorbing the additive by immersing the porous semiconductor layer 12 in the additive solution after adsorbing the dye 13 to the porous semiconductor layer 12. It is possible to prevent the electrons injected into the dye 13 in the oxidized state and the electrons injected into the porous semiconductor layer 12 from recombination with the oxidized substance in the electrolyte 14, that is, the occurrence of electron leakage. Conversion efficiency can be improved.

<支持体>
支持体(支持基板)17としては、フッ素樹脂,シリコンポリエステル樹脂,高耐候性ポリエステル樹脂,ポリ塩化ビニル樹脂,PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等からなる樹脂基板、白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等から成る無機質基板、有機無機ハイブリッドシート、アルミニウム,チタン,ステンレス等の金属から成る金属板がよい。
<Support>
As the support (support substrate) 17, a resin substrate made of fluorine resin, silicon polyester resin, high weather resistance polyester resin, polyvinyl chloride resin, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc. An inorganic substrate made of white plate glass, soda glass, borosilicate glass, ceramics or the like, an organic-inorganic hybrid sheet, or a metal plate made of metal such as aluminum, titanium, or stainless steel is preferable.

<下地層>
下地層は図示していないが、図3の構成では、第1の導電層11と多孔質半導体層12との間に形成された、多孔質の一方導電型の輸送体から成る薄い緻密層からなり、逆電流が流れなくなるのでよい。
<Underlayer>
Although the underlayer is not shown, in the configuration of FIG. 3, a thin dense layer made of a porous one-conductive type transporter formed between the first conductive layer 11 and the porous semiconductor layer 12 is used. Therefore, the reverse current does not flow.

<触媒層>
図3の構成では、第2の導電層16と他方導電型の輸送体である電解質14との間に形成された、白金あるいはカーボン等の極薄膜から成る触媒層15であり、正孔の移動性がよくなる。
<Catalyst layer>
In the configuration of FIG. 3, the catalyst layer 15 is formed between the second conductive layer 16 and the electrolyte 14 which is the other conductivity type transporter and is made of an extremely thin film such as platinum or carbon. Sexuality improves.

なお、第1の導電層11および第2の導電層16にそれぞれ集電極を設けて、電気抵抗を小さくすることもできる。   Note that a collector electrode can be provided on each of the first conductive layer 11 and the second conductive layer 16 to reduce the electrical resistance.

本発明の光発電装置は、上記本発明の光電変換装置1を発電手段として用い、発電手段の発電電力を負荷へ供給するように成したことから、高効率で、耐久性のある光発電装置を低コストに提供することができる。この光発電装置は、家屋等の建築物、自動車等の乗り物の屋根や外面等に設置される太陽光発電装置、建築物や自動車等の乗り物の室内の壁面等に設置される光発電装置に適用できる。   Since the photovoltaic device of the present invention uses the photoelectric conversion device 1 of the present invention as a power generation means and supplies the generated power of the power generation means to a load, the photovoltaic power generation device is highly efficient and durable. Can be provided at low cost. This photovoltaic power generation device is a photovoltaic power generation device installed on the roof or outer surface of a building such as a house, a vehicle, etc., or a photovoltaic power generation device installed on the wall surface of a vehicle, such as a building or a vehicle. Applicable.

本発明の具体的な実施例について以下に説明する。   Specific examples of the present invention will be described below.

図3は、本発明の光電変換装置の断面図である。導電性基板として、フッ素ドープ酸化スズから成る透明な第1の導電層11が主面に形成された、ガラス製の透光性基板10を用い、その第1の導電層11上に多孔質の酸化チタンから成る多孔質半導体層12を形成した。   FIG. 3 is a cross-sectional view of the photoelectric conversion device of the present invention. As the conductive substrate, a transparent substrate 10 made of glass having a transparent first conductive layer 11 made of fluorine-doped tin oxide formed on the main surface is used, and a porous material is formed on the first conductive layer 11. A porous semiconductor layer 12 made of titanium oxide was formed.

多孔質半導体層12は以下のようにして形成した。まず、平均粒径30nmの酸化チタンのアナターゼ粉末(日本エアロジル(株)製「P25」)にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。作製したペーストをドクターブレード法で、透光性基板10の第1の導電層11上に、一定の走査速度で塗布した。このとき、焼成後の膜厚が10μmになるようにペーストの組成比、粘度、走査速度を調整した。   The porous semiconductor layer 12 was formed as follows. First, after adding acetylacetone to anatase powder of titanium oxide having an average particle size of 30 nm (“P25” manufactured by Nippon Aerosil Co., Ltd.), a titanium oxide paste kneaded with deionized water and stabilized with a surfactant is used. Produced. The prepared paste was applied on the first conductive layer 11 of the translucent substrate 10 at a constant scanning speed by a doctor blade method. At this time, the composition ratio, viscosity, and scanning speed of the paste were adjusted so that the film thickness after firing was 10 μm.

その後、四塩化チタン水溶液に多孔質半導体層12を設けた透光性基板10を浸漬し、乾燥させた後、450℃まで1時間昇温して、電気炉で450℃、30分間、透光性基板10を加熱し多孔質半導体層12を焼成した。   Thereafter, the translucent substrate 10 provided with the porous semiconductor layer 12 in a titanium tetrachloride aqueous solution is dipped and dried, and then heated to 450 ° C. for 1 hour, and light-transmitted in an electric furnace at 450 ° C. for 30 minutes. The porous substrate 10 was fired by heating the porous substrate 10.

色素13としては、ルテニウム錯体(ソラロニクス社製「N719」)を用い、色素13を溶解させるために用いる溶媒としてアセトニトリルとt−ブタノール(容積比で1:1)を用い、多孔質半導体層12を形成した透光性基板10を、色素13の含有量が0.3mmol/l(ミリモル/リットル)の溶液に、12時間浸漬して、色素13を多孔質半導体層12に担持させた。その後、透光性基板10をアセトニトリルにて洗浄した後、乾燥させた。   As the dye 13, a ruthenium complex (“N719” manufactured by Solaronics) is used, and acetonitrile and t-butanol (1: 1 by volume) are used as solvents used for dissolving the dye 13, and the porous semiconductor layer 12 is formed. The formed translucent substrate 10 was immersed in a solution having a content of the dye 13 of 0.3 mmol / l (mmol / liter) for 12 hours, so that the dye 13 was supported on the porous semiconductor layer 12. Thereafter, the translucent substrate 10 was washed with acetonitrile and then dried.

第2の導電層16は、ガラス基板から成る支持体17の主面にフッ素ドープ酸化スズからなる透明導電層を形成して成り、さらに第2の導電層16上に触媒層15としてPt層を厚み50nmでスパッタリング法によって被着させた。   The second conductive layer 16 is formed by forming a transparent conductive layer made of fluorine-doped tin oxide on the main surface of a support 17 made of a glass substrate. Further, a Pt layer is formed as a catalyst layer 15 on the second conductive layer 16. The film was deposited by a sputtering method with a thickness of 50 nm.

正孔輸送体層である電解質14として、0.1mol/lのLiI、0.05mol/lのIをアセトニトリルに入れ、LiIおよびIが溶解するまで攪拌して溶液(電解液)を調製した。さらに、電解質14に、光散乱体20(石原産業製「CR−EL酸化チタン」)として平均粒径0.25μmのものを50質量%、および粘度調整剤のポリエチレングリコールを添加した。 Prepared as the electrolyte 14 is a hole transport layer, 0.1 mol / l of LiI, put I 2 of 0.05 mol / l in acetonitrile, the solution was stirred until LiI and I 2 is dissolved (electrolytic solution) did. Further, 50% by mass of a light scattering body 20 (“CR-EL titanium oxide” manufactured by Ishihara Sangyo Co., Ltd.) having an average particle diameter of 0.25 μm and polyethylene glycol as a viscosity modifier were added to the electrolyte 14.

色素13を多孔質半導体層12に吸着させた透光性基板10上に液状の電解質14をスクリーン印刷し、電解質14を形成した。   A liquid electrolyte 14 was screen-printed on the translucent substrate 10 in which the dye 13 was adsorbed on the porous semiconductor layer 12 to form the electrolyte 14.

色素13を多孔質半導体層12に吸着させた透光性基板10と、第2の導電層16が形成された支持体17とを、多孔質半導体層12と第2の導電層16とが対向するとともに、それら間の周縁部に接着剤である熱可塑性樹脂(三井・デュポン ポリケミカル(株)製「ハイミラン」)から成るシートが介在するように配置し、貼り合わせた。さらに、貼り合わせて成る積層体の外周部を、熱可塑性樹脂(紫外線硬化性樹脂または熱硬化性樹脂であってもよい)を用いて封止し、光電変換装置1のセルを作製した。   The transparent semiconductor substrate 10 on which the dye 13 is adsorbed on the porous semiconductor layer 12 and the support body 17 on which the second conductive layer 16 is formed are opposed to the porous semiconductor layer 12 and the second conductive layer 16. At the same time, a sheet made of a thermoplastic resin (“HIMILAN” manufactured by Mitsui / DuPont Polychemical Co., Ltd.) as an adhesive is interposed and bonded to the peripheral edge between them. Furthermore, the outer peripheral part of the laminated body bonded together was sealed using thermoplastic resin (it may be an ultraviolet curable resin or a thermosetting resin), and the cell of the photoelectric conversion apparatus 1 was produced.

また、比較例として、図1に示す構成のものを、光散乱体20がない以外は上記実施例と同様にして光電変換装置を作製した。   Further, as a comparative example, a photoelectric conversion device having the configuration shown in FIG. 1 was produced in the same manner as in the above example except that the light scatterer 20 was not provided.

上記の本実施例の光電変換装置は、AM1.5において、照射光強度が100mW/cmで測定した結果、開放電圧Vocが0.716V、短絡電流Jscが12.52mA/cm、形状因子FFが0.603、光電変換効率が5.41%であり、高い光電変換効率が達成された。また、電極間の短絡は起こらなかった。 The photoelectric conversion device of the above-described example was measured with an irradiation light intensity of 100 mW / cm 2 in AM1.5. As a result, the open circuit voltage Voc was 0.716 V, the short circuit current Jsc was 12.52 mA / cm 2 , and the form factor The FF was 0.603, the photoelectric conversion efficiency was 5.41%, and a high photoelectric conversion efficiency was achieved. Moreover, the short circuit between electrodes did not occur.

比較例の光電変換装置は、AM1.5において、照射光強度が100mW/cmで測定した結果、開放電圧Vocが0.717V、短絡電流Jscが10.82mA/cm、形状因子FFが0.626、光電変換効率が4.86%であり、低い光電変換効率であった。 The photoelectric conversion device of the comparative example was measured with an irradiation light intensity of 100 mW / cm 2 at AM 1.5. As a result, the open circuit voltage Voc was 0.717 V, the short circuit current Jsc was 10.82 mA / cm 2 , and the form factor FF was 0. .626, the photoelectric conversion efficiency was 4.86%, and the photoelectric conversion efficiency was low.

従来の光電変換装置の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the conventional photoelectric conversion apparatus typically. 従来の光電変換装置の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the conventional photoelectric conversion apparatus typically. 本発明の光電変換装置の実施の形態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of embodiment of the photoelectric conversion apparatus of this invention. 従来の光電変換装置の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the conventional photoelectric conversion apparatus typically.

符号の説明Explanation of symbols

1:光電変換装置
10:透光性基板
11:第1の導電層
12:多孔質半導体層
13:色素
14:電解質
15:触媒層
16:第2の導電層
17:支持体
20:光散乱体
1: Photoelectric conversion device 10: Translucent substrate 11: First conductive layer 12: Porous semiconductor layer 13: Dye 14: Electrolyte 15: Catalyst layer 16: Second conductive layer 17: Support 20: Light scatterer

Claims (3)

一方の電極として機能する導電性基板と、該導電性基板の主面に形成され、光電変換を行なう光励起体が表面に多数付着した多孔質半導体層と、電解質と、他方の電極とを具備しており、前記電解質は光散乱体を含むことを特徴とする光電変換装置。 A conductive substrate that functions as one electrode; a porous semiconductor layer formed on a main surface of the conductive substrate, on which a large number of photoexciters that perform photoelectric conversion are attached to the surface; an electrolyte; and the other electrode. And the electrolyte includes a light scatterer. 前記光散乱体の平均粒径は、前記多孔質半導体層を成す半導体粒子の平均粒径よりも大きいことを特徴とする請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein an average particle diameter of the light scatterer is larger than an average particle diameter of the semiconductor particles forming the porous semiconductor layer. 請求項1または請求項2記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする光発電装置。 A photovoltaic device comprising the photoelectric conversion device according to claim 1 or 2 as a power generation means, and the power generated by the power generation means is supplied to a load.
JP2005134935A 2005-05-06 2005-05-06 Photoelectric conversion device and photovoltaic device using the same Expired - Fee Related JP4925605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134935A JP4925605B2 (en) 2005-05-06 2005-05-06 Photoelectric conversion device and photovoltaic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134935A JP4925605B2 (en) 2005-05-06 2005-05-06 Photoelectric conversion device and photovoltaic device using the same

Publications (2)

Publication Number Publication Date
JP2006313656A true JP2006313656A (en) 2006-11-16
JP4925605B2 JP4925605B2 (en) 2012-05-09

Family

ID=37535060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134935A Expired - Fee Related JP4925605B2 (en) 2005-05-06 2005-05-06 Photoelectric conversion device and photovoltaic device using the same

Country Status (1)

Country Link
JP (1) JP4925605B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204956A (en) * 2008-03-26 2008-09-04 Sony Corp Dye sensitized solar battery
US20120132276A1 (en) * 2009-08-11 2012-05-31 Dongjin Semichem Co., Ltd. Dye sensitized solar cell and dye sensitized solar cell module using the same
JP2012119189A (en) * 2010-12-01 2012-06-21 Sekisui Chem Co Ltd Photoelectrode and dye-sensitized solar cell
JP2012181983A (en) * 2011-03-01 2012-09-20 Sony Corp Dye-sensitized photoelectric conversion device and method for manufacturing the same, and electronic device
JP2013196897A (en) * 2012-03-19 2013-09-30 Sekisui Chem Co Ltd Photoelectrode and dye-sensitized solar cell
JP2013251229A (en) * 2012-06-04 2013-12-12 Sharp Corp Photoelectric conversion element and dye-sensitized solar cell
JP2013251228A (en) * 2012-06-04 2013-12-12 Sharp Corp Photoelectric conversion element and dye-sensitized solar cell
KR101462902B1 (en) * 2012-06-08 2014-12-09 성균관대학교산학협력단 Gel-type polymer electrolyte for dye-sensitized solar cell and dye-sensitized solar cell comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289274A (en) * 2001-03-27 2002-10-04 Toyota Central Res & Dev Lab Inc Photoelectrode and pigment sensitized solar cell comprising it
JP2003303629A (en) * 2002-04-11 2003-10-24 Sony Corp Dye sensitizing solar cell
JP2004296373A (en) * 2003-03-28 2004-10-21 Toshiba Corp Photosensitization type solar cell
JP2004311197A (en) * 2003-04-07 2004-11-04 Hitachi Metals Ltd Optical electrode and dye-sensitized solar cell using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289274A (en) * 2001-03-27 2002-10-04 Toyota Central Res & Dev Lab Inc Photoelectrode and pigment sensitized solar cell comprising it
JP2003303629A (en) * 2002-04-11 2003-10-24 Sony Corp Dye sensitizing solar cell
JP2004296373A (en) * 2003-03-28 2004-10-21 Toshiba Corp Photosensitization type solar cell
JP2004311197A (en) * 2003-04-07 2004-11-04 Hitachi Metals Ltd Optical electrode and dye-sensitized solar cell using it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204956A (en) * 2008-03-26 2008-09-04 Sony Corp Dye sensitized solar battery
US20120132276A1 (en) * 2009-08-11 2012-05-31 Dongjin Semichem Co., Ltd. Dye sensitized solar cell and dye sensitized solar cell module using the same
JP2012119189A (en) * 2010-12-01 2012-06-21 Sekisui Chem Co Ltd Photoelectrode and dye-sensitized solar cell
JP2012181983A (en) * 2011-03-01 2012-09-20 Sony Corp Dye-sensitized photoelectric conversion device and method for manufacturing the same, and electronic device
JP2013196897A (en) * 2012-03-19 2013-09-30 Sekisui Chem Co Ltd Photoelectrode and dye-sensitized solar cell
JP2013251229A (en) * 2012-06-04 2013-12-12 Sharp Corp Photoelectric conversion element and dye-sensitized solar cell
JP2013251228A (en) * 2012-06-04 2013-12-12 Sharp Corp Photoelectric conversion element and dye-sensitized solar cell
KR101462902B1 (en) * 2012-06-08 2014-12-09 성균관대학교산학협력단 Gel-type polymer electrolyte for dye-sensitized solar cell and dye-sensitized solar cell comprising the same
US9039919B2 (en) 2012-06-08 2015-05-26 Research & Business Foundation Sungkyunkwan University Gel-type polymer electrolyte for dye-sensitized solar cell and dye-sensitized solar cell comprising the same

Also Published As

Publication number Publication date
JP4925605B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
KR101243915B1 (en) Method of preparing photoelectrode structure
Sedghi et al. Influence of TiO2 electrode properties on performance of dye-sensitized solar cells
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5493369B2 (en) Composition for forming underlayer, method for producing underlayer, method for producing photoelectrode, and method for producing solar cell
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4387652B2 (en) Carbon electrode and dye-sensitized solar cell provided with the same
JP2012064485A (en) Dye-sensitized photoelectric conversion device
KR101172361B1 (en) Manufacturing method of photo electrode for dye-sensitized solar cell
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP2005064493A (en) Photoelectric converter and photovoltaic device using the same
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2002314108A (en) Solar cell
JP4716636B2 (en) Compound semiconductor
JP2006164697A (en) Dye-sensitized solar cell and dye-sensitized solar cell module
KR101447618B1 (en) Light sensitized Solar Cell and Method for manufacturing the same
JP4637473B2 (en) Stacked photoelectric conversion device
JP2005191137A (en) Stacked photoelectric converter
JP4637543B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2007184126A (en) Photoelectric conversion device, its manufacturing method and photovoltaic generator
JP5189869B2 (en) Electrolytic solution and dye-sensitized solar cell
Nursam et al. Low-cost monolithic dye-sensitized solar cells fabricated on single conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees