JP2006312688A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2006312688A
JP2006312688A JP2005136048A JP2005136048A JP2006312688A JP 2006312688 A JP2006312688 A JP 2006312688A JP 2005136048 A JP2005136048 A JP 2005136048A JP 2005136048 A JP2005136048 A JP 2005136048A JP 2006312688 A JP2006312688 A JP 2006312688A
Authority
JP
Japan
Prior art keywords
sliding
sliding member
composite material
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005136048A
Other languages
Japanese (ja)
Inventor
Hidetaka Hayashi
秀高 林
Toshihisa Shimo
俊久 下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2005136048A priority Critical patent/JP2006312688A/en
Publication of JP2006312688A publication Critical patent/JP2006312688A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Sliding-Contact Bearings (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member excellent in sliding characteristics and useful also from the viewpoint of environmental problems. <P>SOLUTION: The sliding member is such that at least its sliding surface side is constituted of a composite material comprising a fiber material composed of cellulose microfibrils and a resin holding the fiber material. In this sliding member, it is preferable that the composite material contain 1-99 wt.% of the fiber material, more preferably 50-75 wt.%. Further, this sliding member is desirably in the form of a sliding component for compressors. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種装置の摺動部に用いられる摺動部材に関する。   The present invention relates to a sliding member used for sliding portions of various devices.

異種の構成素材を組み合わせてできた複合材料は、構成素材の種類や体積比率を変化させることにより、従来の材料では達成できないような様々な特性を有する材料となるため、工業材料の多くの分野で極めて有用である。たとえば、各種マトリックス材料に、炭素繊維やガラス繊維などを補強素材として用いた、高強度の繊維強化複合材料が知られている。また、焼却処理が可能であったり微生物などに分解される植物繊維も、地球環境に優しいことから、補強素材として注目されている。   Composite materials made by combining dissimilar constituent materials become materials with various characteristics that cannot be achieved with conventional materials by changing the types and volume ratios of constituent materials. It is extremely useful. For example, a high-strength fiber-reinforced composite material using carbon fiber or glass fiber as a reinforcing material for various matrix materials is known. Plant fibers that can be incinerated or decomposed into microorganisms are also attracting attention as reinforcing materials because they are friendly to the global environment.

繊維強化複合材料の一例として、特許文献1では、炭素繊維とフェノールノボラック樹脂とからなる樹脂複合体が摺動部材の摺動面に用いられている(実施例1参照)。また、特許文献1には、炭素繊維の代わりに、セルロース繊維などの有機繊維を用いてもよいことが記載されている。   As an example of the fiber-reinforced composite material, in Patent Document 1, a resin composite made of carbon fiber and phenol novolac resin is used for the sliding surface of the sliding member (see Example 1). Patent Document 1 describes that organic fibers such as cellulose fibers may be used instead of carbon fibers.

ところが、セルロース繊維などの一般的な植物繊維は、繊維径が大きいため、樹脂への分散性が低く、また、補強素材としての効果が小さい。さらに、植物繊維の表面に表面処理を施して界面を補強しても、炭素繊維やガラス繊維に比べ、補強効果は小さいものである。   However, general plant fibers such as cellulose fibers have a large fiber diameter, and therefore have low dispersibility in the resin and have a small effect as a reinforcing material. Furthermore, even if the surface of the plant fiber is subjected to surface treatment to reinforce the interface, the reinforcing effect is small as compared with carbon fiber or glass fiber.

また、炭素繊維は、それ自体が高強度である。そのため、炭素繊維を含む樹脂複合体は、摺動部材と摺接する相手材の材質によっては、摺動時に相手材を傷付けて相手材の表面が荒れ、摺動性能が低下することがある。
特開平11−51057号公報
Carbon fiber itself has high strength. For this reason, depending on the material of the counterpart material that is in sliding contact with the sliding member, the resin composite containing carbon fiber may damage the counterpart material during sliding to roughen the surface of the counterpart material, and the sliding performance may deteriorate.
Japanese Patent Laid-Open No. 11-51057

本発明は、上記問題点に鑑み、摺動特性に優れ、環境問題の観点からも有用な摺動部材を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a sliding member that is excellent in sliding characteristics and is useful from the viewpoint of environmental problems.

本発明の摺動部材は、少なくとも摺動面側が、セルロースミクロフィブリルからなる繊維材と、該繊維材を保持する樹脂と、を含む複合材料から構成されることを特徴とする。   The sliding member of the present invention is characterized in that at least the sliding surface side is composed of a composite material including a fiber material made of cellulose microfibril and a resin that holds the fiber material.

前記複合材料は、該複合材料を100重量%としたときに前記繊維材を1〜99重量%含むのが好ましく、さらに好ましくは50〜75重量%である。   The composite material preferably contains 1 to 99% by weight of the fiber material, more preferably 50 to 75% by weight, when the composite material is 100% by weight.

さらに、前記複合材料は、フッ素樹脂、黒鉛、および、二硫化モリブデンのうちの少なくとも1種を含む固体潤滑剤を含むのが好ましい。   Further, the composite material preferably includes a solid lubricant containing at least one of fluororesin, graphite, and molybdenum disulfide.

また、前記摺動部材は、圧縮機の摺動部品であるのが望ましい。   The sliding member is preferably a sliding part of a compressor.

本発明の摺動部材は、セルロースミクロフィブリルからなる繊維材を用いた複合材料から構成される。この複合材料を用いた摺動部材は、セルロースミクロフィブリルの特徴的な形状(後に詳説)により、優れた摺動特性をもつ。   The sliding member of this invention is comprised from the composite material using the fiber material which consists of a cellulose microfibril. A sliding member using this composite material has excellent sliding characteristics due to the characteristic shape of cellulose microfibrils (detailed later).

この際、複合材料を100重量%としたときに繊維材を1〜99重量%とすれば、繊維材が樹脂に良好に保持され、摺動特性に優れた摺動部材となる。また、複合材料を100重量%としたときに繊維材を50〜75重量%とすれば、さらに耐摩耗性に優れた摺動部材となる。   In this case, if the fiber material is 1 to 99% by weight when the composite material is 100% by weight, the fiber material is favorably retained by the resin, and the sliding member has excellent sliding characteristics. Further, when the fiber material is 50 to 75% by weight when the composite material is 100% by weight, the sliding member is further excellent in wear resistance.

さらに、固体潤滑剤を含む複合材料を用いれば、摺動部材の摺動特性が向上する。   Furthermore, if a composite material containing a solid lubricant is used, the sliding characteristics of the sliding member are improved.

なお、本発明の摺動部材は、繊維材と樹脂との複合材料から構成されるため、高強度で軽量であることから、特に、圧縮機の摺動部品として好適である。   In addition, since the sliding member of this invention is comprised from the composite material of a fiber material and resin, since it is high intensity | strength and lightweight, it is especially suitable as a sliding component of a compressor.

以下に、本発明の摺動部材を実施するための最良の形態を説明する。   Below, the best form for implementing the sliding member of this invention is demonstrated.

本発明の摺動部材は、少なくとも摺動面側が、複合材料から構成される。複合材料は、セルロースミクロフィブリルからなる繊維材と、繊維材を保持する樹脂と、を含む。なお、「摺動面側」とは、摺動部材の表面部の少なくとも一部であり、相手材と直接または油膜などを介して間接的に接触する摺動面を含む部分であるのがよい。すなわち、本発明の摺動部材は、摺動部材の全部が複合材料で構成されていても、摺動部材の摺動面を含む一部分が複合材料で構成されていても構わない。   In the sliding member of the present invention, at least the sliding surface side is composed of a composite material. The composite material includes a fiber material made of cellulose microfibril and a resin that holds the fiber material. The “sliding surface side” is at least a part of the surface portion of the sliding member, and preferably includes a sliding surface that is in direct contact with the counterpart material or indirectly through an oil film. . That is, in the sliding member of the present invention, the entire sliding member may be composed of a composite material, or a part including the sliding surface of the sliding member may be composed of a composite material.

本発明において、セルロースミクロフィブリルとは、ミクロフィブリル化したセルロース繊維である。ミクロフィブリル化とは、繊維の中のミクロフィブリル(微小繊維)が摩擦によって表面に現れて毛羽立ち、ささくれる現象である。具体的には、セルロース繊維に強力な機械的剪断力を加えてミクロフィブリル化すると、セルロース繊維は数万本に引き裂かれ、繊維径が0.1〜0.01μmの太さにまで細分化される。また、セルロース繊維の種類に特に限定はなく、原料としては、樹木などの植物の他、バクテリア、ホヤの被嚢など微生物や動物由来の繊維であってもよい。   In the present invention, the cellulose microfibril is a microfibrillated cellulose fiber. Microfibrillation is a phenomenon in which microfibrils (microfibers) in fibers appear on the surface due to friction and become fuzzy. Specifically, when a strong mechanical shearing force is applied to the cellulose fiber to form a microfibril, the cellulose fiber is torn into tens of thousands and subdivided into a fiber diameter of 0.1 to 0.01 μm. The In addition, the type of cellulose fiber is not particularly limited, and the raw material may be a plant such as a tree, or a fiber derived from microorganisms or animals such as bacteria and squirts.

セルロース繊維はリグニンやヘミセルロースなどを含む通常の植物繊維に比べ高強度であり、炭素繊維やガラス繊維と同程度の機械的強度(2GPa程度)を有する。また、セルロースミクロフィブリルは、ミクロフィブリル化による表面積の増大と、微小繊維の絡み合いによる三次元網目構造の形成により、補強素材としての分散性、および、繊維材を保持する樹脂との接合性がよい。つまり、セルロースミクロフィブリルは補強素材としての効果が高いので、セルロースミクロフィブリルを用いた複合材料は、高強度、かつ、優れた耐摩耗性を発現する。   Cellulose fibers are higher in strength than ordinary plant fibers including lignin and hemicellulose, and have mechanical strength (about 2 GPa) comparable to carbon fibers and glass fibers. Cellulose microfibrils have good dispersibility as a reinforcing material and bondability with the resin that holds the fiber material by increasing the surface area by microfibrillation and forming a three-dimensional network structure by entanglement of microfibers. . That is, since cellulose microfibrils are highly effective as reinforcing materials, composite materials using cellulose microfibrils exhibit high strength and excellent wear resistance.

さらに、セルロースミクロフィブリルは、ミクロフィブリル化により繊維が細分化されている。そのため、通常の植物繊維を用いた場合に比べ、複合材料の表面(摺動面)の表面粗さが小さくなるので、摺動特性が向上する。なお、複合材料の表面粗さは、繊維材の含有量が少ないほど小さくなる。また、炭素繊維など、繊維径の大きい通常の繊維材を用いた場合に比べ、摺動中に摺動部材の摺動面と摺接する相手材に生じる摺接面の損傷が低減される。すなわち、本発明の摺動部材は、相手材に対する相手攻撃性が低い。摺動部材の相手攻撃性が低いと、摺動による相手材の摩耗が低減され、相手材の表面粗さが保たれる。その結果、初期の摺動特性が長期間保たれる。   Further, cellulose microfibrils have finely divided fibers by microfibrillation. For this reason, the surface roughness of the surface (sliding surface) of the composite material is reduced as compared with the case of using ordinary plant fibers, so that the sliding characteristics are improved. Note that the surface roughness of the composite material decreases as the fiber content decreases. Further, compared to the case of using a normal fiber material such as carbon fiber having a large fiber diameter, damage to the sliding contact surface that occurs in the mating member that is in sliding contact with the sliding surface of the sliding member during sliding is reduced. That is, the sliding member of the present invention has a low opponent attack against the counterpart material. When the mating attack of the sliding member is low, wear of the mating material due to sliding is reduced, and the surface roughness of the mating material is maintained. As a result, the initial sliding characteristics can be maintained for a long time.

樹脂は、セルロースミクロフィブリルからなる繊維材を保持することができれば、その種類に特に限定はないが、耐熱性樹脂であるのが好ましい。樹脂が耐熱性樹脂であれば、使用環境が高温下であったり、使用中に温度が上昇したりする摺動部材であっても、熱により樹脂成分が変性することなく使用できる。また、セルロース繊維は、その耐熱温度が200℃程度であり、リグニンやヘミセルロースなどを含む通常の植物繊維に比べ、耐熱性に優れる。そのため、セルロースミクロフィブリルと耐熱性樹脂とを併用しても、耐熱性樹脂の耐熱性を大きく損なうことはない。   The resin is not particularly limited as long as it can hold a fiber material composed of cellulose microfibrils, but is preferably a heat resistant resin. If the resin is a heat-resistant resin, it can be used without the resin component being denatured by heat, even if it is a sliding member in which the usage environment is high or the temperature rises during use. Cellulose fibers have a heat resistant temperature of about 200 ° C., and are superior in heat resistance compared to ordinary plant fibers containing lignin, hemicellulose, and the like. Therefore, even when cellulose microfibrils and a heat resistant resin are used in combination, the heat resistance of the heat resistant resin is not greatly impaired.

樹脂には、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂などの熱硬化性樹脂が好適である。また、熱可塑性樹脂を用いる場合には、セルロースミクロフィブリルの分解温度を考慮すると、成形時に非常に高温になる樹脂(たとえば、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)樹脂など)は望ましくない。ポリアミド(PA)樹脂、変性ポリフェニレンエーテル(PPE)樹脂、ポリアセタール樹脂(POM)、ポリプロピレン(PP)樹脂などが、好適である。   The resin is preferably a thermosetting resin such as an epoxy resin, a phenol resin, or an unsaturated polyester resin. In addition, when a thermoplastic resin is used, considering the decomposition temperature of cellulose microfibrils, a resin (for example, polyetheretherketone (PEEK), thermoplastic polyimide (PI) resin, etc.) that becomes very hot during molding is used. Not desirable. Polyamide (PA) resin, modified polyphenylene ether (PPE) resin, polyacetal resin (POM), polypropylene (PP) resin and the like are suitable.

複合材料は、セルロースミクロフィブリルからなる繊維材を少しでも含有すれば摺動特性を向上させる効果があるが、複合材料を100重量%としたときに繊維材を1重量%以上含むのが好ましく、さらに好ましくは10重量%以上、35重量%以上、50重量%以上である。繊維材を1重量%以上含む複合材料であれば、補強素材としての効果が良好に発現されるため好ましい。繊維材を10重量%以上含む複合材料であれば、さらに補強効果が大きく現れる。また、繊維材を35重量%以上、さらには50重量%以上含む複合材料であれば、特に優れた耐摩耗性を示す。なお、後に詳説するように、複合材料に占める繊維材の割合が大きいほど、線膨張係数の低減効果が高くなる。   The composite material has an effect of improving sliding properties if it contains even a small amount of fiber material composed of cellulose microfibrils, but preferably contains 1% by weight or more of the fiber material when the composite material is 100% by weight, More preferably, they are 10 weight% or more, 35 weight% or more, and 50 weight% or more. A composite material containing 1% by weight or more of a fiber material is preferable because the effect as a reinforcing material is exhibited well. If it is a composite material containing 10% by weight or more of a fiber material, the reinforcing effect is even greater. A composite material containing 35% by weight or more, more preferably 50% by weight or more of fiber material exhibits particularly excellent wear resistance. As will be described in detail later, the larger the proportion of the fiber material in the composite material, the higher the effect of reducing the linear expansion coefficient.

また、複合材料を100重量%としたときに繊維材を99重量%以下含むのが好ましく、さらに好ましくは90重量%以下、75重量%以下である。繊維材を99重量%以下含む複合材料であれば、繊維材は樹脂に良好に保持されるため好ましい。繊維材を90重量%以下含む複合材料であれば、空隙の少ない緻密な複合材料となる。繊維材を75重量%以下含む複合材料であれば、複合材料の表面粗さがより小さくなるため好ましい。   Further, when the composite material is 100% by weight, the fiber material is preferably contained in an amount of 99% by weight or less, more preferably 90% by weight or less and 75% by weight or less. A composite material containing 99% by weight or less of the fiber material is preferable because the fiber material is well retained by the resin. A composite material containing 90% by weight or less of a fiber material is a dense composite material with few voids. A composite material containing 75% by weight or less of a fiber material is preferable because the surface roughness of the composite material becomes smaller.

すなわち、複合材料を100重量%としたときに繊維材を1〜99重量%含むのが好ましく、繊維材が樹脂に良好に保持され、摺動特性に優れた複合材料となる。また、繊維材を35〜99重量%含むのがより好ましく、より優れた耐摩耗性をもつ複合材料となる。また、繊維材を50〜75重量%含むのがさらに好ましく、特に耐摩耗性に優れた複合材料となる。   That is, when the composite material is 100% by weight, the fiber material is preferably contained in an amount of 1 to 99% by weight, and the fiber material is favorably held by the resin and becomes a composite material having excellent sliding characteristics. Further, it is more preferable that the fiber material is contained in an amount of 35 to 99% by weight, resulting in a composite material having better wear resistance. Further, it is more preferable that the fiber material is contained in an amount of 50 to 75% by weight, and the composite material is particularly excellent in wear resistance.

複合材料は、従来行われているように、樹脂の種類に応じて適切な温度、時間で処理することにより製造すればよい。たとえば、樹脂が熱可塑性樹脂であれば、セルロースミクロフィブリルと樹脂との混合物を、加熱により溶融させたあと成形する方法を用いることができる。また、フィルム状または粉末状の樹脂とセルロースミクロフィブリルを抄造したシートとを積層し、ホットプレスすることにより溶融含浸、冷却させて成形してもよい。また、樹脂が熱硬化性樹脂であれば、熱硬化性樹脂の溶液にセルロースミクロフィブリルを分散させた混合液を用いて成形することも可能であるし、セルロースミクロフィブリルのシートに熱硬化性樹脂を含浸させた半硬化状態のシート状成型用中間材料から熱硬化性樹脂を硬化させて成形することも可能である。   What is necessary is just to manufacture a composite material by processing by suitable temperature and time according to the kind of resin like conventionally performed. For example, if the resin is a thermoplastic resin, a method can be used in which a mixture of cellulose microfibril and resin is melted by heating and then molded. Alternatively, a film-form or powder-form resin and a sheet made of cellulose microfibrils may be laminated and melt-impregnated and cooled by hot pressing to be molded. In addition, if the resin is a thermosetting resin, it can be molded using a mixed solution in which cellulose microfibrils are dispersed in a thermosetting resin solution, or a thermosetting resin can be formed on a cellulose microfibril sheet. It is also possible to mold by curing the thermosetting resin from the semi-cured sheet-form molding intermediate material impregnated with.

また、複合材料は、固体潤滑剤を含んでもよい。固体潤滑剤は、黒鉛やタルクなどの層状構造物、Pb、Ag、Cu等の軟質金属やその化合物、ポリテトラフルオロエチレン(PTFE)などのフッ素化合物など、固体潤滑剤として通常用いられているものであればよく、特に、フッ素樹脂、黒鉛、および、二硫化モリブデンのうちの少なくとも1種を含むのが好ましい。固体潤滑剤は、平均一次粒径が0.01〜100μmの粉末状で用いるとよい。この際、固体潤滑剤は、複合材料の中で繊維材とともに樹脂に保持される。固体潤滑剤は、複合材料を100重量%としたときに90重量%以下添加されるのが好ましく、さらに好ましくは5〜70重量%である。   The composite material may also include a solid lubricant. Solid lubricants are usually used as solid lubricants, such as layered structures such as graphite and talc, soft metals such as Pb, Ag, and Cu and their compounds, and fluorine compounds such as polytetrafluoroethylene (PTFE). In particular, it is preferable to include at least one of fluororesin, graphite, and molybdenum disulfide. The solid lubricant may be used in the form of a powder having an average primary particle size of 0.01 to 100 μm. At this time, the solid lubricant is held in the resin together with the fiber material in the composite material. The solid lubricant is preferably added in an amount of 90% by weight or less, more preferably 5 to 70% by weight, based on 100% by weight of the composite material.

本発明の摺動部材は、少なくとも摺動面側が複合材料から構成されていれば十分である。つまり、必ずしも全体が複合材料からなる必要はなく、たとえば、その摺動面側以外の部分が樹脂を主成分とする部材や、金属製、セラミックス製の部材であってもよい。具体的には、金属製の基材と、その基材の表面に形成された複合材料からなる摺動層と、を有する摺動部材であってもよい。また、摺動部材の形態や機能等も問わないものであり、用いられる各種装置の形態に応じたものであればよい。なお、摺動面以外の部分(基材)が金属等である場合には、各種接着剤により両者を接着したり、他の部分と一体的に複合材料を形成してもよい。また、摺動部材の形状も、摺動に適する形状であれば限定はない。たとえば、摺動面が、平面からなる摺動面の他、球面などの曲面からなる摺動面であってもよい。   In the sliding member of the present invention, it is sufficient that at least the sliding surface side is made of a composite material. That is, it is not always necessary that the whole is made of a composite material. For example, a portion other than the sliding surface side may be a member whose main component is a resin, a metal member, or a ceramic member. Specifically, it may be a sliding member having a metal base material and a sliding layer made of a composite material formed on the surface of the base material. Further, the form and function of the sliding member are not questioned, and any structure may be used according to the form of various devices used. In addition, when parts (base materials) other than a sliding surface are metals etc., both may be adhere | attached with various adhesive agents, or you may form a composite material integrally with another part. The shape of the sliding member is not limited as long as it is a shape suitable for sliding. For example, the sliding surface may be a sliding surface made of a curved surface such as a spherical surface in addition to a sliding surface made of a flat surface.

なお、基材が金属やセラミックスである場合には、複合材料との密着性が問題となる。密着性に影響する要因のひとつに線膨張係数があり、両者の線膨張係数の差が大きいと温度変化に起因して界面に亀裂が発生し、摺動層に割れや剥離が生じる。ところが、セルロースミクロフィブリルは、その線膨張係数が0.1×10-6/K程度で非常に小さいため、複合材料に占める繊維材の割合を変えることにより複合材料の線膨張係数を調整することが可能である。たとえば、フェノール樹脂の線膨張係数は、40〜70×10-6/K程度であるが、鋼材の線膨張係数は11〜12×10-6/K、アルミニウム合金の線膨張係数は20〜25×10-6/K程度である。そこで、セルロースミクロフィブリルからなる繊維材の割合を調整することにより、複合材料の線膨張係数を基材の線膨張係数にまで低下させることが可能である。さらに、セルロースミクロフィブリルの含有量によっては、複合材料の線膨張係数が小さくなるため、精度よく成形体を製造することができる。 In addition, when a base material is a metal and ceramics, adhesiveness with a composite material becomes a problem. One of the factors affecting the adhesion is the linear expansion coefficient. If the difference between the two linear expansion coefficients is large, a crack occurs at the interface due to a temperature change, and a crack or peeling occurs in the sliding layer. However, since the linear expansion coefficient of cellulose microfibrils is as small as about 0.1 × 10 −6 / K, the linear expansion coefficient of the composite material can be adjusted by changing the proportion of the fiber material in the composite material. Is possible. For example, the linear expansion coefficient of phenol resin is about 40 to 70 × 10 −6 / K, the linear expansion coefficient of steel is 11 to 12 × 10 −6 / K, and the linear expansion coefficient of aluminum alloy is 20 to 25. It is about × 10 -6 / K. Therefore, it is possible to reduce the linear expansion coefficient of the composite material to the linear expansion coefficient of the base material by adjusting the ratio of the fiber material made of cellulose microfibrils. Furthermore, depending on the content of cellulose microfibrils, the linear expansion coefficient of the composite material becomes small, so that a molded product can be produced with high accuracy.

本発明の摺動部材において、摺動面と摺接する相手材の材質に特に限定はなく、相手材の摺接面が鋼などの鉄系金属、アルミニウム系金属、銅系金属、等の何れの材質であっても、優れた摺動特性を示す。中でも、本発明の摺動部材の摺動面がアルミニウム系金属からなる相手材と摺接する場合には、摺動部材は、高い耐摩耗性を示すとともに、相手攻撃性が低い。   In the sliding member of the present invention, there is no particular limitation on the material of the mating material that is in sliding contact with the sliding surface, and the sliding contact surface of the mating material is any of iron-based metal such as steel, aluminum-based metal, copper-based metal, etc. Even if it is a material, it exhibits excellent sliding characteristics. In particular, when the sliding surface of the sliding member of the present invention is in sliding contact with a mating material made of an aluminum-based metal, the sliding member exhibits high wear resistance and low mating attack.

本発明の摺動部材は、圧縮機の摺動部品とすることができる。高強度であり摺動特性に優れる本発明の摺動部材は、高荷重、高摺動速度が要求される圧縮機のような装置の摺動部位に好適である。たとえば、摺動部品は、斜板式圧縮機の斜板やシューであるのが望ましい。また、摺動部品は、ピストン式圧縮機のピストンであってもよい。摺動特性に優れる本発明の摺動部材を斜板式圧縮機の斜板やシュー等に用いることで、圧縮機の摺動部品に要求される条件を十分に満たすことができる。   The sliding member of the present invention can be a sliding component of a compressor. The sliding member of the present invention having high strength and excellent sliding characteristics is suitable for a sliding portion of a device such as a compressor that requires high load and high sliding speed. For example, the sliding component is preferably a swash plate or a shoe of a swash plate compressor. The sliding component may be a piston of a piston type compressor. By using the sliding member of the present invention having excellent sliding characteristics for a swash plate, a shoe or the like of a swash plate type compressor, the conditions required for the sliding parts of the compressor can be sufficiently satisfied.

以上、本発明の摺動部材の実施形態を説明したが、本発明の摺動部材は、上記実施形態に限定されるものではない。本発明の摺動部材は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施してもよく、たとえば、繊維材の補強や複合材料の線膨張係数を低減するために無機充填材を添加してもよいし、摺動部材の摺動面側の表面にさらに種類の異なる摺動層を形成してもよい。   As mentioned above, although embodiment of the sliding member of this invention was described, the sliding member of this invention is not limited to the said embodiment. The sliding member of the present invention may be modified or improved by those skilled in the art without departing from the gist of the present invention. For example, to reinforce fiber materials or reduce the linear expansion coefficient of composite materials. An inorganic filler may be added to the sliding member, or different types of sliding layers may be formed on the sliding surface of the sliding member.

以下に、本発明の摺動部材の実施例を、比較例とともに、図1および図2を用いて説明する。   Below, the Example of the sliding member of this invention is described using FIG. 1 and FIG. 2 with a comparative example.

[実施例1]
セルロースミクロフィブリル(ダイセル化学工業株式会社製、セリッシュKY−100G)と、水溶性のフェノール樹脂と、を所定の割合で混合・攪拌した。得られた混合物をシート状に成形して乾燥させて、プリプレグを作製した。また、30mm×30mm×3mmの鉄(S45C鋼)製の基板を準備し、その表面をサンドペーパー(#200)で処理した。
[Example 1]
Cellulose microfibril (Daicel Chemical Industry Co., Ltd., Selish KY-100G) and a water-soluble phenol resin were mixed and stirred at a predetermined ratio. The obtained mixture was molded into a sheet and dried to prepare a prepreg. Moreover, the board | substrate made from 30 mm x 30 mm x 3 mm iron (S45C steel) was prepared, and the surface was processed with sandpaper (# 200).

得られたプリプレグを複数枚積層して、処理した基板上に載置した。その後、使用したフェノール樹脂に応じた加圧・加熱の条件で厚さ方向(積層方向)に熱プレスを行い、基板の表面に複合材料からなる摺動層を有する板状の摺動部材Aを得た。なお、摺動層は、セルロースミクロフィブリル50wt%、フェノール樹脂50wt%の複合材料からなり、厚さは1mmであった。   A plurality of the obtained prepregs were stacked and placed on the processed substrate. Thereafter, a plate-like sliding member A having a sliding layer made of a composite material on the surface of the substrate is subjected to heat pressing in the thickness direction (lamination direction) under the pressure and heating conditions according to the phenol resin used. Obtained. The sliding layer was made of a composite material of cellulose microfibrils 50 wt% and phenol resin 50 wt%, and the thickness was 1 mm.

[実施例2]
セルロースミクロフィブリルとフェノール樹脂との混合割合を変えた他は、実施例1と同様にして摺動部材Bを作製した。なお、摺動部材Bの摺動層は、セルロースミクロフィブリル75wt%、フェノール樹脂25wt%であった。
[Example 2]
A sliding member B was produced in the same manner as in Example 1 except that the mixing ratio of cellulose microfibril and phenol resin was changed. In addition, the sliding layer of the sliding member B was cellulose microfibril 75 wt% and phenol resin 25 wt%.

[実施例3]
セルロースミクロフィブリルとフェノール樹脂との混合割合を変えた他は、実施例1と同様にして摺動部材Cを作製した。なお、摺動部材Cの摺動層は、セルロースミクロフィブリル20wt%、フェノール樹脂80wt%であった。
[Example 3]
A sliding member C was produced in the same manner as in Example 1 except that the mixing ratio of cellulose microfibril and phenol resin was changed. The sliding layer of the sliding member C was cellulose microfibril 20 wt% and phenol resin 80 wt%.

[比較例1]
セルロースミクロフィブリルを炭素繊維(短繊維)に変えた他は、実施例1と同様にして摺動部材Dを作製した。なお、得られた摺動部材Dの摺動層は、炭素繊維50wt%、フェノール樹脂50wt%であった。
[Comparative Example 1]
A sliding member D was produced in the same manner as in Example 1 except that the cellulose microfibrils were changed to carbon fibers (short fibers). In addition, the sliding layer of the obtained sliding member D was carbon fiber 50 wt% and phenol resin 50 wt%.

[比較例2]
セルロースミクロフィブリルを木粉に変えた他は、実施例1と同様にして摺動部材Eを作製した。なお、得られた摺動部材Eの摺動層は、木粉50wt%、フェノール樹脂50wt%であった。
[Comparative Example 2]
A sliding member E was produced in the same manner as in Example 1 except that cellulose microfibrils were changed to wood powder. In addition, the sliding layer of the obtained sliding member E was wood powder 50 wt% and phenol resin 50 wt%.

なお、各摺動部材の摺動層の繊維材と樹脂との配合割合を、表1にまとめて示す。   The blending ratio of the fiber material and the resin of the sliding layer of each sliding member is summarized in Table 1.

Figure 2006312688
Figure 2006312688

[評価1]
摺動部材A〜Eについて、リングオンディスク試験を行った。リングオンディスク試験に用いた装置の断面図を図1に示す。油槽2の底部に試料台3を載置し、ディスク1として摺動部材A〜Eのいずれかを、摺動層1’が表を向くように試料台3の凹部内に固定した。また、ディスク1の摺動相手材として、直径23mm(外径)で炭素鋼(S45C)製のリング4を用い、リング4の一端面を摺動層1’に当接させて載置した。油槽2には、ディスク1とリング4の端面との界面が液面下に位置するように、潤滑油O(冷凍機油)を入れた。そして、軸Xを中心としてリング4を回転させて、ディスク1とリング4とを摺動させた。ディスク1とリング4との摺動面積は、100mm2 であった。この際、滑り速度を1.2m/sとし、荷重をかけない状態から荷重5000Nまでを250N毎にステップアップさせて試験を行った。各荷重での保持時間は2分間とした。そして、摺動層1’が摩滅したときの摩滅荷重を測定した。
[Evaluation 1]
A ring-on-disk test was performed on the sliding members A to E. A cross-sectional view of the apparatus used for the ring-on-disk test is shown in FIG. The sample stage 3 was placed on the bottom of the oil tank 2, and any one of the sliding members A to E as the disk 1 was fixed in the recess of the sample stage 3 so that the sliding layer 1 'faced up. Further, a ring 4 made of carbon steel (S45C) having a diameter of 23 mm (outer diameter) was used as a sliding partner material of the disk 1, and one end surface of the ring 4 was placed in contact with the sliding layer 1 ′. Lubricating oil O (refrigeration oil) was put in the oil tank 2 so that the interface between the disk 1 and the end face of the ring 4 was positioned below the liquid level. Then, the ring 4 was rotated about the axis X, and the disk 1 and the ring 4 were slid. The sliding area between the disk 1 and the ring 4 was 100 mm 2 . At this time, the sliding speed was set to 1.2 m / s, and the test was performed by stepping up every 250 N from a state where no load was applied to a load of 5000 N. The holding time at each load was 2 minutes. And the abrasion load when sliding layer 1 'was worn out was measured.

また、摺動部材A、CおよびEの摺動層について、100〜200℃における平均線膨張係数を測定した。線膨張係数の測定には、熱機械分析法を用いた。   Moreover, about the sliding layer of sliding member A, C, and E, the average linear expansion coefficient in 100-200 degreeC was measured. Thermomechanical analysis was used to measure the linear expansion coefficient.

リングオンディスク試験と線膨張係数の測定結果を表2に示す。   Table 2 shows the results of the ring-on-disk test and the linear expansion coefficient.

Figure 2006312688
Figure 2006312688

繊維材としてセルロースミクロフィブリルを用いた摺動部材A〜Cは、摩滅荷重が2000N以上であり、優れた耐摩耗性を有し、セルロースミクロフィブリルの含有量が多いほど耐摩耗性が高い傾向にあった。また、摺動部材Aと摺動部材Eとは、同量(50wt%)の繊維材を含有するが、繊維材にセルロースミクロフィブリルを用いた摺動部材Aは、木粉を用いた摺動部材Eよりも、耐摩耗性に優れた。さらに、繊維材として炭素繊維を用いた複合材料は耐摩耗性に優れることが知られているが、セルロースミクロフィブリルを50wt%以上含む摺動部材AおよびBは、炭素繊維を用いた摺動部材Dに匹敵する高い耐摩耗性を示した。   The sliding members A to C using cellulose microfibril as a fiber material have an abrasion load of 2000 N or more, have excellent wear resistance, and the higher the content of cellulose microfibril, the higher the wear resistance tends to be. there were. The sliding member A and the sliding member E contain the same amount (50 wt%) of fiber material, but the sliding member A using cellulose microfibril as the fiber material is slid using wood powder. It was superior to member E in wear resistance. Furthermore, although it is known that composite materials using carbon fibers as the fiber material are excellent in wear resistance, the sliding members A and B containing 50% by weight or more of cellulose microfibrils are sliding members using carbon fibers. High wear resistance comparable to D was exhibited.

また、繊維材にセルロースミクロフィブリルを用いた摺動部材AおよびCの摺動層(複合材料)は、線膨張係数が30×10-6/K以下に低減された。そのため、摺動部材AおよびCは、基材に用いた鋼材(11×10-6/K)との密着性に優れると推測できる。なお、セルロースミクロフィブリルの含有量が多い方が、線膨張係数の低減効果が大きく現れる傾向にあった。一方、繊維材として木粉を50wt%用いた摺動部材Eでは、複合材料の部分の線膨張係数は大きいものであった。すなわち、摺動部材Eは、線膨張係数の低減効果が小さく、基材との密着性に劣ると考えられる。 Further, the sliding layers (composite materials) of the sliding members A and C using cellulose microfibril as the fiber material had a linear expansion coefficient reduced to 30 × 10 −6 / K or less. Therefore, it can be estimated that the sliding members A and C are excellent in adhesiveness with the steel material (11 × 10 −6 / K) used for the base material. In addition, there existed a tendency for the direction with much content of a cellulose microfibril to show the reduction effect of a linear expansion coefficient largely. On the other hand, in the sliding member E using 50 wt% of wood powder as the fiber material, the linear expansion coefficient of the composite material portion was large. That is, it is considered that the sliding member E has a small effect of reducing the linear expansion coefficient and is inferior in adhesion to the base material.

[実施例4]
摺動部材Aからなるディスクと、アルミニウム合金(ADC12)製のリングと、から構成される摺動装置を作製した。本実施例の摺動装置は、評価1のリングオンディスク試験に用いた装置と同様の構成とした。
[Example 4]
A sliding device comprising a disk made of the sliding member A and an aluminum alloy (ADC12) ring was produced. The sliding device of this example had the same configuration as the device used for the ring-on-disk test in Evaluation 1.

[比較例3]
ディスクを摺動部材Dにした他は、実施例4と同様の摺動装置を作製した。
[Comparative Example 3]
A sliding device similar to that of Example 4 was produced, except that the disk was a sliding member D.

[評価2]
実施例4および比較例2の摺動装置について、リングの回転数を1000rpmとした他は、評価1と同様の条件でングオンディスク試験を行った。そして、試験終了時のディスク(摺動部材)の摩耗深さを測定した。なお、試験は、摺動層が摩滅する前に終了した。
[Evaluation 2]
For the sliding devices of Example 4 and Comparative Example 2, the Ng-on-disk test was performed under the same conditions as in Evaluation 1 except that the number of rotations of the ring was 1000 rpm. Then, the wear depth of the disc (sliding member) at the end of the test was measured. The test was completed before the sliding layer was worn away.

また、リングおよびディスクの摺動面の表面粗さ(算術平均粗さRa)を算出した。表面粗さは、リングオンディスク試験の試験前後で測定した。なお、算出方法は、JIS B 0601(1994)に規定された方法に従う。   Further, the surface roughness (arithmetic average roughness Ra) of the sliding surfaces of the ring and the disk was calculated. The surface roughness was measured before and after the ring-on-disk test. The calculation method follows the method defined in JIS B 0601 (1994).

試験前後の摺動面の表面粗さと、試験終了時のディスクの摩耗深さ並びに試験荷重と、を表3に示す。   Table 3 shows the surface roughness of the sliding surface before and after the test, the wear depth of the disk at the end of the test, and the test load.

Figure 2006312688
Figure 2006312688

実施例4の摺動装置では、比較例2の摺動装置に比べ、試験前後でのリングおよびディスクの摺動面の表面粗さの変化が少なく、ディスク(摺動層)の摩耗も少なかった。   In the sliding device of Example 4, the surface roughness of the sliding surface of the ring and the disk before and after the test was small and the wear of the disk (sliding layer) was small compared to the sliding device of Comparative Example 2. .

実施例4の摺動装置は、試験荷重を3000Nまで上昇させたときのディスク(摺動部材A)の摩耗深さは10μmであり、摺動部材D(2500Nまで上昇させたときに30μm摩耗)よりも優れた耐摩耗性を示した。また、実施例4の摺動装置は、試験前後でディスクの摺動面の表面粗さの変化が少なく、その変化量は摺動部材Dよりも小さかった。したがって、実施例4の摺動装置において、摺動部材Aは、耐摩耗性が高く、摺動中の表面粗さに変化が小さいため、長期間使用しても高い摺動特性が保持される。   In the sliding device of Example 4, the wear depth of the disk (sliding member A) when the test load is raised to 3000 N is 10 μm, and the sliding member D (30 μm wear when raised to 2500 N). Better wear resistance than that. Further, in the sliding device of Example 4, there was little change in the surface roughness of the sliding surface of the disk before and after the test, and the amount of change was smaller than that of the sliding member D. Therefore, in the sliding device of Example 4, since the sliding member A has high wear resistance and a small change in the surface roughness during sliding, high sliding characteristics are maintained even after long-term use. .

また、実施例4の摺動装置は、試験前後でリングの摺動面の表面粗さの変化がほとんど無かった。つまり、実施例4の摺動装置において、摺動部材Aのリングに対する相手攻撃性は、低かった。そのため、実施例4の摺動装置は、長期間使用しても高い摺動特性が保たれる。   The sliding device of Example 4 had almost no change in the surface roughness of the ring sliding surface before and after the test. That is, in the sliding device of Example 4, the opponent attack against the ring of the sliding member A was low. Therefore, the sliding device of Example 4 maintains high sliding characteristics even when used for a long time.

すなわち、セルロースミクロフィブリルを繊維材として用いた摺動部材は、特にアルミニウム系金属からなる相手材に対して、優れた耐摩耗性を有するとともに、相手攻撃性が低い。   That is, a sliding member using cellulose microfibrils as a fiber material has excellent wear resistance and low opponent attack property, particularly against a counterpart material made of an aluminum-based metal.

なお、上記の摺動部材を斜板式圧縮機の斜板に適用した場合には、以下のような構成となる。   In addition, when the above sliding member is applied to a swash plate of a swash plate compressor, the configuration is as follows.

(斜板式圧縮機の構成)
図2に、斜板式圧縮機の構成を示す。図2に示すように、駆動軸20は、シリンダブロック22とフロントハウジング23により形成される斜板室24に収容されており、ラジアル軸受により回転自在に支持されている。そして、シリンダブロック22内には、駆動軸20を囲む位置に複数個のボア25が配設されている。各ボア25には、片頭形のピストン26がそれぞれ往復動可能に嵌挿されている。斜板室24内においては、駆動軸20にはロータ27が結合され、そのロータ27の後方に斜板28が嵌合されている。特に、可変容量型の片頭型斜板式圧縮機では、斜板28は支点回りに傾動可能となっており、斜板室24の圧力変化に基づくピストン26の両端面に作用するガス圧の釣り合いによって、斜板28の傾角変位を制御するようになっている。また、斜板28は、両端面外周側にセルロースミクロフィブリルと樹脂との複合材料からなる摺動層(図示せず)をもち、この摺動層の表面が摺動面28pとなる。摺動面28pにはシュー29の摺接面29pが当接されている。これらのシュー29は、ピストン26の半球面座26pと係合されている。このシューを介してピストン26が斜板28と連係することにより、斜板28の回転運動がピストン26の直線運動に変換されて媒体の圧縮が行われる。
(Configuration of swash plate compressor)
FIG. 2 shows the configuration of the swash plate compressor. As shown in FIG. 2, the drive shaft 20 is housed in a swash plate chamber 24 formed by a cylinder block 22 and a front housing 23, and is rotatably supported by a radial bearing. A plurality of bores 25 are disposed in the cylinder block 22 at positions surrounding the drive shaft 20. A single-headed piston 26 is fitted in each bore 25 so as to reciprocate. In the swash plate chamber 24, a rotor 27 is coupled to the drive shaft 20, and a swash plate 28 is fitted behind the rotor 27. In particular, in the variable capacity single-head swash plate compressor, the swash plate 28 can be tilted around a fulcrum, and the balance of gas pressure acting on both end faces of the piston 26 based on the pressure change in the swash plate chamber 24 The inclination displacement of the swash plate 28 is controlled. The swash plate 28 has a sliding layer (not shown) made of a composite material of cellulose microfibril and resin on the outer peripheral side of both end surfaces, and the surface of this sliding layer becomes the sliding surface 28p. The sliding surface 29p of the shoe 29 is in contact with the sliding surface 28p. These shoes 29 are engaged with the hemispherical seat 26 p of the piston 26. When the piston 26 is linked to the swash plate 28 via the shoe, the rotational motion of the swash plate 28 is converted into the linear motion of the piston 26 and the medium is compressed.

リングオンディスク試験に用いた摺動装置の断面を模式的に示す図である。It is a figure which shows typically the cross section of the sliding apparatus used for the ring on disk test. 本発明の摺動部材を用いた斜板式圧縮機の断面を模式的に示す図である。It is a figure which shows typically the cross section of the swash plate type compressor using the sliding member of this invention.

Claims (7)

少なくとも摺動面側が、セルロースミクロフィブリルからなる繊維材と、該繊維材を保持する樹脂と、を含む複合材料から構成されることを特徴とする摺動部材。   A sliding member characterized in that at least the sliding surface side is composed of a composite material including a fiber material made of cellulose microfibrils and a resin for holding the fiber material. 前記複合材料は、該複合材料を100重量%としたときに前記繊維材を1〜99重量%含む請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the composite material includes 1 to 99% by weight of the fiber material when the composite material is 100% by weight. 前記複合材料は、該複合材料を100重量%としたときに前記繊維材を50〜75重量%含む請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the composite material includes 50 to 75% by weight of the fiber material when the composite material is 100% by weight. 前記複合材料は、フッ素樹脂、黒鉛、および、二硫化モリブデンのうちの少なくとも1種を含む固体潤滑剤を含む請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the composite material includes a solid lubricant containing at least one of fluororesin, graphite, and molybdenum disulfide. 前記樹脂は耐熱性樹脂である請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the resin is a heat resistant resin. 前記摺動面は、アルミニウム系金属からなる相手材と摺接する請求項1記載の摺動部材。   The sliding member according to claim 1, wherein the sliding surface is in sliding contact with a mating member made of an aluminum-based metal. 前記摺動部材は、圧縮機の摺動部品である請求項1〜6のいずれかに記載の摺動部材。   The sliding member according to claim 1, wherein the sliding member is a sliding component of a compressor.
JP2005136048A 2005-05-09 2005-05-09 Sliding member Pending JP2006312688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136048A JP2006312688A (en) 2005-05-09 2005-05-09 Sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136048A JP2006312688A (en) 2005-05-09 2005-05-09 Sliding member

Publications (1)

Publication Number Publication Date
JP2006312688A true JP2006312688A (en) 2006-11-16

Family

ID=37534307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136048A Pending JP2006312688A (en) 2005-05-09 2005-05-09 Sliding member

Country Status (1)

Country Link
JP (1) JP2006312688A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099173A1 (en) * 2007-02-13 2008-08-21 Whitford Ltd. Bearing components and processes for depositing additives, especially fluoropolymers, on cellulose
JP2008215176A (en) * 2007-03-02 2008-09-18 Toyota Industries Corp Shoe for swash plate type compressor and swash plate type compressor equipped with shoe
JP2008248092A (en) * 2007-03-30 2008-10-16 Starlite Co Ltd Phenol resin composite material and method for producing the same
JP2008248093A (en) * 2007-03-30 2008-10-16 Starlite Co Ltd Method for producing phenol resin composition
WO2009041653A1 (en) * 2007-09-27 2009-04-02 Taiho Kogyo Co., Ltd. Composition for sliding member and sliding member coated with the composition
WO2010013502A1 (en) 2008-07-31 2010-02-04 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JP2013248824A (en) * 2012-06-01 2013-12-12 Olympus Corp Molding, and method of manufacturing the same
JP2017171698A (en) * 2016-03-18 2017-09-28 スターライト工業株式会社 Slidable resin composition
WO2019097586A1 (en) * 2017-11-14 2019-05-23 利昌工業株式会社 Microfibrillated-cellulose-containing composition, prepreg, molded body, and method for manufacturing prepreg
JP2019516908A (en) * 2016-05-27 2019-06-20 ヴォッベン プロパティーズ ゲーエムベーハー Wind power plant
CN111344353A (en) * 2017-11-16 2020-06-26 尤尼吉可株式会社 Sliding component
CN112585353A (en) * 2018-08-27 2021-03-30 伦克股份有限公司 Bearing assembly for a rotor of a wind turbine and wind turbine
US11242913B2 (en) 2018-04-23 2022-02-08 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
US11493019B2 (en) 2016-06-07 2022-11-08 Wobben Properties Gmbh Wind turbine rotary connection, rotor blade, and wind turbine comprising same
US12007001B2 (en) 2018-04-23 2024-06-11 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703668B2 (en) 2007-02-13 2014-04-22 Whitford Ltd. Bearing components and processes for depositing additives, especially fluoropolymers, on cellulose
US9205454B2 (en) 2007-02-13 2015-12-08 Whitford Ltd. Bearing components and processes for depositing additives, especially fluoropolymers, on cellulose
WO2008099173A1 (en) * 2007-02-13 2008-08-21 Whitford Ltd. Bearing components and processes for depositing additives, especially fluoropolymers, on cellulose
JP2008215176A (en) * 2007-03-02 2008-09-18 Toyota Industries Corp Shoe for swash plate type compressor and swash plate type compressor equipped with shoe
JP2008248093A (en) * 2007-03-30 2008-10-16 Starlite Co Ltd Method for producing phenol resin composition
JP2008248092A (en) * 2007-03-30 2008-10-16 Starlite Co Ltd Phenol resin composite material and method for producing the same
WO2009041653A1 (en) * 2007-09-27 2009-04-02 Taiho Kogyo Co., Ltd. Composition for sliding member and sliding member coated with the composition
WO2010013502A1 (en) 2008-07-31 2010-02-04 国立大学法人京都大学 Molding material containing unsaturated polyester resin and microfibrillated plant fiber
US8877841B2 (en) 2008-07-31 2014-11-04 Kyoto University Molding material containing unsaturated polyester resin and microfibrillated plant fiber
JP2013248824A (en) * 2012-06-01 2013-12-12 Olympus Corp Molding, and method of manufacturing the same
JP2017171698A (en) * 2016-03-18 2017-09-28 スターライト工業株式会社 Slidable resin composition
JP2019516908A (en) * 2016-05-27 2019-06-20 ヴォッベン プロパティーズ ゲーエムベーハー Wind power plant
US10669997B2 (en) 2016-05-27 2020-06-02 Wobben Properties Gmbh Wind turbine
US11493019B2 (en) 2016-06-07 2022-11-08 Wobben Properties Gmbh Wind turbine rotary connection, rotor blade, and wind turbine comprising same
KR20200062273A (en) * 2017-11-14 2020-06-03 리쇼 고교 가부시키가이샤 Microfibrillated cellulose-containing composition, prepreg, molded body, and prepreg manufacturing method
CN111433283A (en) * 2017-11-14 2020-07-17 利昌工业株式会社 Composition containing microfibrillated cellulose, prepreg, molded body, and method for producing prepreg
CN111433283B (en) * 2017-11-14 2023-09-05 利昌工业株式会社 Microfibrillated cellulose-containing composition, prepreg, molded article, and method for producing prepreg
KR102385061B1 (en) 2017-11-14 2022-04-08 리쇼 고교 가부시키가이샤 Compositions containing microfibrillated cellulose, prepregs, molded articles, and methods for producing prepregs
WO2019097586A1 (en) * 2017-11-14 2019-05-23 利昌工業株式会社 Microfibrillated-cellulose-containing composition, prepreg, molded body, and method for manufacturing prepreg
CN111344353A (en) * 2017-11-16 2020-06-26 尤尼吉可株式会社 Sliding component
JPWO2019098210A1 (en) * 2017-11-16 2020-11-19 ユニチカ株式会社 Sliding member
JP7425509B2 (en) 2017-11-16 2024-01-31 ユニチカ株式会社 sliding member
JP7144866B2 (en) 2017-11-16 2022-09-30 ユニチカ株式会社 Resin composition and sliding member containing the resin composition
JP2022171674A (en) * 2017-11-16 2022-11-11 ユニチカ株式会社 sliding member
US11572931B2 (en) 2018-04-23 2023-02-07 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
US11242913B2 (en) 2018-04-23 2022-02-08 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
US12007001B2 (en) 2018-04-23 2024-06-11 Asahi Kasei Kabushiki Kaisha Cellulose-containing gear
CN112585353A (en) * 2018-08-27 2021-03-30 伦克股份有限公司 Bearing assembly for a rotor of a wind turbine and wind turbine

Similar Documents

Publication Publication Date Title
JP2006312688A (en) Sliding member
EP2833009B1 (en) Composite plain bearing, cradle guide, and sliding nut
JP5635352B2 (en) Compound plain bearing
US7942581B2 (en) Anti-friction layer for a bearing element
US6607820B2 (en) Composite sliding material
US7662472B2 (en) Plain bearing
JP5342883B2 (en) Double layer bearing
JP4812823B2 (en) Multilayer bearing manufacturing method
WO2004085581A1 (en) Sliding bearing material
JP2007203125A (en) Sliding member
JP5925553B2 (en) Variable displacement axial piston pump cradle guide and variable displacement axial piston pump
JP2012251616A (en) Multi-layered bearing, thrust multi-layered bearing, and thrust multi-layered bearing device
JP2004277787A (en) Sliding member
JP2001089780A (en) Lubricating resin composition and seal ring
JP2002327750A (en) Multi-layered bearing
JP2006266102A (en) Swash plate compressor and swash plate for same
JP7390774B2 (en) sliding member
JP5841186B2 (en) Compound plain bearing
JP2011137528A (en) Multilayer bearing
JP2003021144A (en) Resin composite sliding member and manufacturing method of the same
JP6813341B2 (en) Resin composition and sliding member
JP2008180138A (en) Sliding member
JP5806363B2 (en) Manufacturing method of compound plain bearing
US20220106982A1 (en) Sliding member
JP2006022892A (en) Sliding member