JP2006310527A - Light emitting element using amorphous material substrate and its manufacturing method - Google Patents

Light emitting element using amorphous material substrate and its manufacturing method Download PDF

Info

Publication number
JP2006310527A
JP2006310527A JP2005131067A JP2005131067A JP2006310527A JP 2006310527 A JP2006310527 A JP 2006310527A JP 2005131067 A JP2005131067 A JP 2005131067A JP 2005131067 A JP2005131067 A JP 2005131067A JP 2006310527 A JP2006310527 A JP 2006310527A
Authority
JP
Japan
Prior art keywords
light emitting
layer
iii
manufacturing
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005131067A
Other languages
Japanese (ja)
Other versions
JP4590497B2 (en
Inventor
Kunio Ito
國雄 伊藤
Kazuya Nishimoto
和也 西本
Takumi Senoo
匠 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2005131067A priority Critical patent/JP4590497B2/en
Publication of JP2006310527A publication Critical patent/JP2006310527A/en
Application granted granted Critical
Publication of JP4590497B2 publication Critical patent/JP4590497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blue or red light emitting diode to achieve the high efficiency in a method of approaching a light emitting layer to a single crystal as much as possible, by introducing a new buffer layer between both sides of a light emitting layer to be formed on a glass substrate. <P>SOLUTION: In the manufacturing method, the high-efficiency blue or red light emitting diode is made grown on a glass substrate, in a method that the single crystallization is gradually carried out as a light emitting layer is approached by the use of the superlattice structure, comprising at least two different kinds of semiconductor compounds among the group II-VI, III-V, I-III-VI, II-III-VI and II-III-V semiconductor compounds as a buffer layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アモルファス材料基板上に成長した発光素子及びその製造方法に関するものである   The present invention relates to a light emitting device grown on an amorphous material substrate and a method for manufacturing the same.

現在、発光ダイオードは電気製品の表示ランプ、電光掲示板、信号機など多くの場所で使用されており、不可欠なものとなりつつある。中でも青色発光ダイオードの発明により光の三原色が実現され照明用として発光ダイオードが注目を集めている。これは一般の照明として使われている蛍光灯に比べ小型、省エネルギー、環境有害物質の不使用などの利点があるからである。しかし、現在の発光ダイオードは初期設置費用が蛍光灯に比べ高いことや、発光ダイオードの単価も高いことが問題として挙げられる。   At present, light emitting diodes are used in many places such as display lamps for electric products, electric bulletin boards, and traffic lights, and are becoming indispensable. In particular, the invention of blue light emitting diodes has realized the three primary colors of light, and light emitting diodes are attracting attention for illumination. This is because there are advantages such as small size, energy saving, and non-use of environmentally hazardous substances compared to fluorescent lamps used as general lighting. However, current light-emitting diodes are problematic in that the initial installation cost is higher than that of fluorescent lamps and the unit price of light-emitting diodes is high.

現在の白色発光ダイオードは青色発光ダイオードを光源として使用している。発光材料としては実用化されているもののほとんどがInGaN系材料となっている。しかし、基板材料としては現在実用化されているサファイア(Al)の他にZnSe、SiCなど多くの材料が研究されている。現在は21世紀明かりプロジェクトにより白色発光ダイオードを照明として使用するための活動が進められており、今後は発光ダイオードの低消費電力化と低コスト化が望まれる。 Current white light emitting diodes use blue light emitting diodes as light sources. Most of the light-emitting materials that have been put to practical use are InGaN-based materials. However, as a substrate material, many materials such as ZnSe and SiC have been studied in addition to sapphire (Al 2 O 3 ) which is currently in practical use. Currently, activities to use white light-emitting diodes as lighting are being promoted by the 21st century light project, and in the future, lower power consumption and cost reduction of light-emitting diodes are desired.

従来の技術において発光ダイオードの高効率化、低コスト化のための様々な構造が考案されている。その例として特許文献1にあるようにサファイア基板上にバッファ層とともに発光層を形成したものが主であるがサファイア基板を用いているため、コストは高く、効率の面でも良くはない。また特許文献2においては、基板として石英ガラス基板を、バッファ層に例えばZnOを用いているが、ZnO一層のみのバッファ層では転位などの欠陥を大きく取り除くことができず、これも高効率化を阻害する要因となっている。
特開2002−270892号公報 特開平8−139361号公報
Various structures have been devised in the prior art for improving the efficiency and cost of light emitting diodes. For example, as disclosed in Patent Document 1, a light emitting layer is formed on a sapphire substrate together with a buffer layer. However, since the sapphire substrate is used, the cost is high and the efficiency is not good. In Patent Document 2, a quartz glass substrate is used as the substrate and, for example, ZnO is used for the buffer layer. However, a buffer layer having only one ZnO layer cannot greatly remove defects such as dislocations, which also increases efficiency. It is a factor that obstructs.
JP 2002-270892 A JP-A-8-139361

上記に示すように、青色発光ダイオードの基板材料はほとんどがサファイア(Al)であるが、サファイアは基板材料として、コストが高く、大量生産を行う際、好ましくない。 As shown above, the substrate material of the blue light emitting diode is mostly sapphire (Al 2 O 3 ), but sapphire is expensive as a substrate material and is not preferable when mass production is performed.

一方、ガラス基板発光ダイオードを製造するにあたっては、低コストのガラス基板を使用するので、材料のコストが安価になり大量生産に向いているといえる。 On the other hand, when manufacturing a glass substrate light emitting diode, since a low-cost glass substrate is used, it can be said that it is suitable for mass production because the material cost is low.

しかし、ガラス基板発光ダイオードを製造するにあたっては、大きな課題が未解決のままであった。 However, when manufacturing a glass substrate light emitting diode, the big subject remained unsolved.

それは、基板材料に用いるガラスがアモルファスであり、一方活性層材料であるInGaNまたはInGaPは単結晶であることが望ましいが、従来例ではガラス基板上に例えばZnOの一層しか層を挟んでいないため、発光層の結晶性自体が良くならず転位や格子欠陥が活性層に多く発生して発光材料として効率が大きく低下してしまうということである。 It is desirable that the glass used for the substrate material is amorphous, while the active layer material InGaN or InGaP is preferably a single crystal, but in the conventional example, only one layer of ZnO, for example, is sandwiched on the glass substrate. This means that the crystallinity of the light emitting layer itself is not improved, and many dislocations and lattice defects are generated in the active layer, so that the efficiency as a light emitting material is greatly reduced.

このためガラス基板上に、高効率の青色または赤色発光ダイオードは成長できないという問題点があった。 For this reason, there is a problem that a high-efficiency blue or red light emitting diode cannot be grown on the glass substrate.

本発明は新バッファ層の導入によりアモルファス性を緩和し、活性層はほぼ単結晶化することにより高効率発光を実現する発光素子及びその製造技術を提供することである。 An object of the present invention is to provide a light-emitting element that realizes high-efficiency light emission by reducing the amorphous nature by introducing a new buffer layer and making the active layer almost single crystal, and a manufacturing technique thereof.

この発明のアモルファス材料基板上への発光ダイオードは、上記の目的を達成させるため、基板材料であるアモルファス材料、例えばガラス上に発光ダイオードの活性層材料であるInGaNやInGaPの単結晶に近い層を成長させるため、InGaNにはII−VI、III−V、I−III−VI、II−III−VI、II−III−V族化合物半導体材料のいずれか二種類以上の超格子を用いたバッファ層構造を、InGaPには
III−V族化合物半導体の二種類以上の超格子バッファ層を用いることによりガラス基板上に発光ダイオードを成長させることを特徴とする。
In order to achieve the above object, the light-emitting diode on the amorphous material substrate of the present invention has a layer close to a single crystal of an amorphous material as a substrate material, for example, an active layer material of InGaN or InGaP as a light-emitting diode material on glass. A buffer layer using a superlattice of at least two kinds of II-VI, III-V, I-III-VI, II-III-VI, and II-III-V compound semiconductor materials for InGaN to grow. The structure is characterized in that a light emitting diode is grown on a glass substrate by using two or more types of superlattice buffer layers of III-V group compound semiconductor for InGaP.

例として青色発光ダイオードの成長について示す。具体的な方法として図1左図に示すような組み合わせで超格子層を形成した。まずガラス基板1上にITOからなる透明電極膜2を成長させる。次にその上にII−VI、III−V、I−III−VI、II−III−VI、II−III−V族化合物半導体材料の中のI−III−VI族化合物半導体材料であるCuGaS層3を5[nm]の厚さで、次に活性層(InGaN)5の格子定数に近い材料ZnIn層4を厚さ5[nm]で成長する。次に3層目には最初と同様のCuGaS層3’を同じく5[nm]の厚さで成長し、4層目にはZnIn層4’を5[nm]の厚さで成長、このような成長を各層50層の計100層まで繰り返し、100層目にはZnIn層4’’が成長される。その上に発光層材料であるInGaN層5を活性層とするダブルへテロ構造を成長させる。これらの成長はすべてMOCVD法で行った。 As an example, the growth of a blue light emitting diode will be described. As a specific method, a superlattice layer was formed by a combination as shown in the left diagram of FIG. First, a transparent electrode film 2 made of ITO is grown on a glass substrate 1. Next, CuGaS 2 which is a group I-III-VI compound semiconductor material among the groups II-VI, III-V, I-III-VI, II-III-VI, II-III-V compound semiconductor materials. The layer 3 is grown to a thickness of 5 [nm], and then the material ZnIn 2 S 4 layer 4 close to the lattice constant of the active layer (InGaN) 5 is grown to a thickness of 5 [nm]. Next, the same CuGaS 2 layer 3 ′ as the first layer is grown to a thickness of 5 [nm] in the third layer, and the ZnIn 2 S 4 layer 4 ′ is grown to a thickness of 5 [nm] in the fourth layer. Growth, such growth is repeated up to a total of 100 layers of 50 layers, and a ZnIn 2 S 4 layer 4 ″ is grown on the 100th layer. A double heterostructure having an InGaN layer 5 as a light emitting layer material as an active layer is grown thereon. All of these growths were performed by the MOCVD method.

ここで、アモルファス上に単結晶で層を形成することは困難だと考えられるが、100層の超格子層を形成していく中で発光層に近づくにつれて徐々に結晶性が向上し単結晶化されていくので、発光層を成長する際には転位が極めて少ないほぼ単結晶の層が成長できることが実験結果より明確になった。   Here, it seems that it is difficult to form a single crystal layer on an amorphous material, but as the superlattice layer of 100 layers is formed, the crystallinity gradually improves as the light emitting layer is approached, and single crystallization is achieved. As a result, it has become clear from the experimental results that an almost single crystal layer with very few dislocations can be grown when the light emitting layer is grown.

同様に赤色発光ダイオードもバッファ層としてガラス基板上にII−VI、III−V、I−III−VI、II−III−VI、II−III−V族化合物半導体材料のうち、InPとGaPの超格子を用いることにより、赤色発光層(InGaP)がほぼ単結晶化することが可能となった。   Similarly, a red light-emitting diode is also used as a buffer layer on a glass substrate with II-VI, III-V, I-III-VI, II-III-VI, and II-III-V compound semiconductor materials. By using the lattice, the red light emitting layer (InGaP) can be substantially single-crystallized.

この超格子は層の数を増やすことによって単結晶に近づくと同時に、超格子界面に沿って転位を逃がすことができるので、発光層へ転位が入らず高効率発光ができる。 By increasing the number of layers, this superlattice approaches a single crystal, and at the same time, dislocations can escape along the superlattice interface, so that dislocation does not enter the light emitting layer and high efficiency light emission can be achieved.

以上説明したことから明らかなように、本発明によれば、ガラス基板上に高効率の青色または赤色発光ダイオードを提供することができるので、青色または赤色発光ダイオードの低コスト化と、現在問題となっている将来の照明として期待される白色発光ダイオードへの適用が可能な青色または紫外発光ダイオードの低コスト化も実現できる。 As is apparent from the above description, according to the present invention, a high-efficiency blue or red light emitting diode can be provided on a glass substrate. It is also possible to reduce the cost of blue or ultraviolet light emitting diodes that can be applied to white light emitting diodes that are expected as future illumination.

これにより将来の照明として現在の蛍光灯に代わり期待される白色発光ダイオードの進展や、その他への様々な発光ダイオードの用途に大きく貢献する。 This greatly contributes to the development of white light-emitting diodes that are expected to replace current fluorescent lamps as future illumination, and to various other light-emitting diode applications.

現在、発光ダイオードの製造の主流はMOCVD成長法(Metal Organic Chemical Vapor Deposition:有機金属気相成長法)で行われている。これは過去一般的だったLPE成長法(Liquid Phase Epitaxy:液相エピタキシャル成長法)や、研究などでよく使われるMBE成長法(Molecular Beam Epitaxy:分子線エピタキシャル成長法)にくらべ、広い面積へ均一な薄膜成長が比較的容易なためである。MOCVD法は、半導体の材料を有機化合物の状態で反応室へ導入し、誘導過熱によって高温にされた基板上に、薄膜を成長させる方法である。この発光ダイオードの製造においてもMOCVD成長法を用いる。 At present, the mainstream of the manufacture of light emitting diodes is performed by MOCVD growth method (Metal Organic Chemical Vapor Deposition). Compared to the LPE growth method (Liquid Phase Epitaxy) and the MBE growth method (Molecular Beam Epitaxy) often used in research, this is a uniform thin film over a large area. This is because growth is relatively easy. The MOCVD method is a method in which a semiconductor material is introduced into a reaction chamber in the state of an organic compound, and a thin film is grown on a substrate heated to a high temperature by induction overheating. The MOCVD growth method is also used in the manufacture of this light emitting diode.

具体的に図2から図1右図に青色発光ダイオード装置の製造方法を示す。 Specifically, FIGS. 2 to 1 show the blue light emitting diode device manufacturing method.

まずガラス基板1上に、ITO透明電極層2をスパッタで成長させる。その上にCuGaS、ZnInからなる超格子バッファ層6を全厚さで0.5μm、n−AlGaNクラッド層7を1μm、InGaNとGaNからなるTQW活性層8を全厚さで40nm、p−AlGaNクラッド層9を0.3μm成長しその上にSiO酸化膜10を0.5μm成長させる(図2)。バッファ層6の詳細は上記に説明してある図1左図の構造を有する。次に150μm周期でSiO酸化膜10の右側三分の二即ち100μmの幅をエッチング除去する(図3)。次にSiO膜10を除去した全域でITO透明電極2まで成長層6から9をドライエッチングで取り除く(図4)。次に表面のSiO酸化膜10をHFでエッチングして取り除き、再びSiO酸化膜10を全面に成長する(図5)。その後、発光ダイオードとなる領域上にあるSiO酸化膜10のみをエッチングして取り除き(図6)、その上にNi/Au2層の金属電極11をニッケル0.1μm、金1μmの順で真空蒸着し、残っていたSiO酸化膜10をHFで取り除けば、発光ダイオード上のNi/Au2層の金属電極11のみが残る(図7)。再び、SiO酸化膜10を全体に成長し、ITO膜上のSiO酸化膜10のみを発光素子領域近傍20μmの幅以外を取り除いた後、Au−Ge−Ni合金の金属電極12を1μmの厚さ真空蒸着する(図8)。その後、SiO膜10をHFですべて除去する。これによりITO透明電極層2上にのみAu−Ge−Ni合金の金属電極12が残る(図9)。ガラス基板1をCu(放熱体)13にボンディングし、ITO透明電極層2上のAu−Ge−Ni合金の金属電極12にカソードの金線を取り付け、発光ダイオードのNi/Au2層の金属電極11上にアノードの金線を取り付ける(図1右図)。また、この放熱体13への放熱特性をよくするためにガラス基板から発光層のみをはがして、放熱体13にはりつけてもよい。この方法で青色発光ダイオードが完成する。 First, an ITO transparent electrode layer 2 is grown on the glass substrate 1 by sputtering. Further thereon, a superlattice buffer layer 6 made of CuGaS 2 and ZnIn 2 S 4 has a total thickness of 0.5 μm, an n-AlGaN cladding layer 7 has a thickness of 1 μm, and a TQW active layer 8 made of InGaN and GaN has a total thickness of 40 nm. Then, the p-AlGaN cladding layer 9 is grown by 0.3 μm, and the SiO 2 oxide film 10 is grown thereon by 0.5 μm (FIG. 2). The details of the buffer layer 6 have the structure shown in the left figure of FIG. 1 described above. Next, the width of the two thirds of the right side of the SiO 2 oxide film 10, that is, 100 μm is removed by etching with a period of 150 μm (FIG. 3). Next, the growth layers 6 to 9 are removed by dry etching up to the ITO transparent electrode 2 over the entire area where the SiO 2 film 10 is removed (FIG. 4). Next, the SiO 2 oxide film 10 on the surface is removed by etching with HF, and the SiO 2 oxide film 10 is again grown on the entire surface (FIG. 5). Thereafter, only the SiO 2 oxide film 10 on the region to be the light emitting diode is removed by etching (FIG. 6), and a Ni / Au2 layer metal electrode 11 is vacuum-deposited in the order of 0.1 μm nickel and 1 μm gold. Then, if the remaining SiO 2 oxide film 10 is removed by HF, only the metal electrode 11 of the Ni / Au 2 layer on the light emitting diode remains (FIG. 7). Again, the SiO 2 oxide film 10 is grown as a whole, and only the SiO 2 oxide film 10 on the ITO film is removed except for the width of 20 μm in the vicinity of the light emitting element region, and then the Au—Ge—Ni alloy metal electrode 12 is 1 μm thick. The thickness is vacuum deposited (FIG. 8). Thereafter, the SiO 2 film 10 is completely removed with HF. As a result, the metal electrode 12 of the Au—Ge—Ni alloy remains only on the ITO transparent electrode layer 2 (FIG. 9). The glass substrate 1 is bonded to a Cu (heat radiating body) 13, a gold wire of the cathode is attached to the metal electrode 12 of the Au—Ge—Ni alloy on the ITO transparent electrode layer 2, and the metal electrode 11 of the Ni / Au 2 layer of the light emitting diode. A gold wire for the anode is attached on the top (the right figure in FIG. 1). In addition, in order to improve the heat dissipation characteristics to the radiator 13, only the light emitting layer may be peeled off from the glass substrate and attached to the radiator 13. A blue light emitting diode is completed by this method.

本発明に係る超格子構造と本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a manufacturing method of a superlattice structure according to the present invention and a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention 本発明の青色LED装置の製造方法の一例を示す概略断面図Schematic sectional view showing an example of a method for producing a blue LED device of the present invention

符号の説明Explanation of symbols

1・・・ガラス基板
2・・・ITO透明薄膜層
3,3’・・・CuGaS
4,4’,4’’・・・ZnIn
5・・・InGaAlN
6・・・図1に示したバッファ層
7・・・n−InAlGaNクラッド層
8・・・InGaN TQW活性層
9・・・p−InAlGaNクラッド層
10・・・SiO酸化膜
11・・・Ni/Au2層の金属電極
12・・・Au−Ge−Niの金属合金電極
13・・・Cu(放熱体)
1 ... glass substrate 2 ... ITO transparent film layers 3,3 '.. CuGaS 2 layers 4,4', 4 '' ··· ZnIn 2 S 4 layer 5 ... InGaAlN
6 buffer layer 7 shown in ... Figure 1 ... n-InAlGaN cladding layer 8 ... InGaN TQW active layer 9 ... p-InAlGaN cladding layer 10 ... SiO 2 oxide film 11 ... Ni / Au2 layer metal electrode 12 ... Au-Ge-Ni metal alloy electrode 13 ... Cu (heatsink)

Claims (6)

発光素子においてアモルファス材料基板に超格子構造からなるバッファ層を形成しその上に多層薄膜成長層からなることを特徴とする発光素子及びその製造方法   In a light emitting device, a buffer layer having a superlattice structure is formed on an amorphous material substrate, and a multilayer thin film growth layer is formed thereon, and a method for manufacturing the same 上記請求項1において発光素子の基板としてガラスを用いることを特徴とする発光素子及びその製造方法 2. A light emitting device according to claim 1, wherein glass is used as a substrate of the light emitting device, and a method for manufacturing the same. 上記請求項1においてバッファ層としてII−VI、III−V、I−III−VI、II−III−VI、II−III−V族化合物半導体の少なくとも二種類の化合物結晶の超格子構造と、多層薄膜成長層としてInGaAlNからなることを特徴とする発光素子及びその製造方法   A superlattice structure of at least two kinds of compound crystals of II-VI, III-V, I-III-VI, II-III-VI, and II-III-V compound semiconductors as a buffer layer in claim 1 and a multilayer A light emitting device comprising InGaAlN as a thin film growth layer and a method for manufacturing the same 上記請求項3においてガラス基板とバッファ層との間にITOやInなどの透明電極膜を形成することを特徴とする発光素子及びその製造方法 4. A light emitting device according to claim 3, wherein a transparent electrode film such as ITO or In 2 S 3 is formed between the glass substrate and the buffer layer, and a method for manufacturing the same. 上記請求項1においてバッファ層としてIII−V族化合物半導体の少なくとも二種類の化合物結晶の超格子構造と多層薄膜成長層としてInGaAlPからなることを特徴とする発光素子及びその製造方法   2. A light emitting device according to claim 1, wherein the buffer layer is made of a superlattice structure of at least two kinds of compound crystals of a III-V group compound semiconductor and InGaAlP is used as a multilayer thin film growth layer, and a manufacturing method thereof. 上記請求項5においてガラス基板とバッファ層との間にITOやInなどの透明電極膜を形成することを特徴とする発光素子及びその製造方法
6. A light emitting device according to claim 5, wherein a transparent electrode film such as ITO or In 2 S 3 is formed between the glass substrate and the buffer layer, and a method for manufacturing the same.
JP2005131067A 2005-04-28 2005-04-28 Light emitting device using amorphous material substrate and method for manufacturing the same Expired - Fee Related JP4590497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131067A JP4590497B2 (en) 2005-04-28 2005-04-28 Light emitting device using amorphous material substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131067A JP4590497B2 (en) 2005-04-28 2005-04-28 Light emitting device using amorphous material substrate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2006310527A true JP2006310527A (en) 2006-11-09
JP4590497B2 JP4590497B2 (en) 2010-12-01

Family

ID=37477083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131067A Expired - Fee Related JP4590497B2 (en) 2005-04-28 2005-04-28 Light emitting device using amorphous material substrate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4590497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100942A1 (en) * 2009-03-05 2010-09-10 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting unit
WO2023032583A1 (en) * 2021-09-03 2023-03-09 株式会社ジャパンディスプレイ Gallium nitride-based semiconductor device on amorphous substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249495A (en) * 1986-04-23 1987-10-30 Hitachi Ltd Semiconductor laser device
JPH08139361A (en) * 1994-11-08 1996-05-31 Toshiba Corp Compound semiconductor light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62249495A (en) * 1986-04-23 1987-10-30 Hitachi Ltd Semiconductor laser device
JPH08139361A (en) * 1994-11-08 1996-05-31 Toshiba Corp Compound semiconductor light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100942A1 (en) * 2009-03-05 2010-09-10 株式会社小糸製作所 Light-emitting module, method of producing light-emitting module, and lighting unit
JPWO2010100942A1 (en) * 2009-03-05 2012-09-06 株式会社小糸製作所 Light emitting module, method for manufacturing light emitting module, and lamp unit
WO2023032583A1 (en) * 2021-09-03 2023-03-09 株式会社ジャパンディスプレイ Gallium nitride-based semiconductor device on amorphous substrate

Also Published As

Publication number Publication date
JP4590497B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
TWI413279B (en) Group iii nitride semiconductor light emitting device, process for producing the same, and lamp
TWI385822B (en) Method of producing group-iii nitride semiconductor layer, group-iii nitride semiconductor light-emitting device and lamp thereof
TWI458120B (en) Light emitting diode, light emitting diode lamp and lighting system
JP4852755B2 (en) Method for manufacturing compound semiconductor device
KR101629343B1 (en) Epitaxy structure and manufacturing method of nano patterning substrate
US20110059564A1 (en) Led having vertical structure and method for fabricating the same
CN102630349A (en) Power light emitting diode and method with current density operation
JP2010205988A (en) Nitride semiconductor element and method for manufacturing the same
JP2005191110A (en) Nitride light emitting device and high luminous power conversion efficiency nitride light emitting device
JP2008047860A (en) Method of forming rugged surface and method of manufacturing gallium nitride light-emitting diode device using the same
JP2005101533A (en) Light emitting device and manufacturing method therefor
JP2009141093A (en) Light emitting element and method of manufacturing the same
CN103681996A (en) UV (Ultraviolet) LED and preparation method thereof
JP2009283620A (en) Group iii nitride semiconductor light emitting element, method for manufacturing thereof, and lamp
JP2004200639A (en) Manufacturing method of light emitting diode element, and the light emitting diode element
CN102064250B (en) Substrate-glaring SiC substrate vertical structure light-emitting tube and preparation method thereof
JP2008130891A (en) Method for manufacturing group iii nitride compound semiconductor light emitting element, the same, and lamp
US20080142812A1 (en) LED and method for marking the same
JP4590497B2 (en) Light emitting device using amorphous material substrate and method for manufacturing the same
JP4508021B2 (en) Manufacturing method of semiconductor light emitting device
JP2002222991A (en) Semiconductor light emitting element
JP2005123585A (en) InGaN LIGHT EMITTING DIODE STRUCTURE
CN105098008A (en) GaN-based light-emitting diode (LED) epitaxy structure containing ternary superlattice and preparation method of GaN-based LED epitaxy structure
CN101304063A (en) Method for preparing LED
KR20130021931A (en) Semiconductor light emitting device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees