JP2006308994A - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
JP2006308994A
JP2006308994A JP2005133407A JP2005133407A JP2006308994A JP 2006308994 A JP2006308994 A JP 2006308994A JP 2005133407 A JP2005133407 A JP 2005133407A JP 2005133407 A JP2005133407 A JP 2005133407A JP 2006308994 A JP2006308994 A JP 2006308994A
Authority
JP
Japan
Prior art keywords
exposure
light
stage
slit
reference plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005133407A
Other languages
English (en)
Inventor
Masahiro Oba
昌宏 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005133407A priority Critical patent/JP2006308994A/ja
Publication of JP2006308994A publication Critical patent/JP2006308994A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 ビーム位置検出手段に設けられた光検出器の着脱に伴う再調整作業を軽減する。
【解決手段】 複数の露光ヘッドから照射された各光ビームの露光面上での露光位置を検出するビーム位置検出手段には、光ビームを透過させるスリットが形成された基準板170と、スリットを透過した光ビームを検出する受光素子172とが設けられ、この受光素子172は、取付板190を介して移動ベース74に取り付けることにより、基準板170とは独立して着脱できるよう構成する。受光素子172の交換や取り外しでは、基準板170を取り付け直して露光機能の再調整をする必要がなくなるため、受光素子172の着脱に伴う再調整作業が軽減される。
【選択図】 図22

Description

本発明は、露光装置に関し、特に、画像情報に応じて空間変調素子等により変調された光ビームを複数の露光ヘッドから感光材料に照射して露光するマルチヘッドの露光装置に関する。
従来から、デジタル・マイクロミラー・デバイス(DMD)等の空間光変調素子(SLM)を利用し、画像データに応じて変調された光ビームで画像露光を行う露光装置が種々提案されている。
例えば、DMDは、制御信号に応じて反射面の角度が変化する多数のマイクロミラーが、シリコン等の半導体基板上に2次元状に配列されたミラーデバイスであり、このDMDを用いた従来のデジタル走査露光方式の露光装置では、レーザ光を照射する光源、光源から照射されたレーザ光をコリメートするレンズ系、レンズ系の略焦点位置に配置されたDMD、DMDで反射されたレーザ光を走査面上に結像するレンズ系、を備えた露光ヘッドにより、画像データ等に応じて生成した制御信号によりDMDのマイクロミラーの各々をオンオフ制御してレーザ光を変調し、変調されたレーザ光で、ステージ上にセットされ走査方向に沿って移動されるプリント配線板や液晶表示素子等の感光材料に対し画像(パターン)を走査露光している。
このようなデジタル露光装置において、特に大面積を露光するために感光材料の搬送方向と交差する方向に沿って複数の露光ヘッドを配列したマルチヘッド構成の装置では、ヘッド間での画像のつなぎを高精度に検出し、高精度に補正する技術が必要となる(例えば、特許文献1参照)。また、微細なパターンを形成するためには、各露光ヘッドのビームパワーを測定し均一に補正するシェーディング技術が必要となり、さらに、微細なパターンを精度良く多層に重ね合わせるためのアライメント計測技術も必要となる(例えば、特許文献2参照)。
そこで、上記の各露光ヘッドから照射された各光ビームにより露光される露光領域のつなぎを補正するために各露光ビームによる露光位置を検出する光検出器及びビーム位置検出用基準板からなるビーム位置検出手段、各露光ヘッドから照射された各光ビームの光量分布及び露光量を測定する光量測定手段、更に、アライメント機能を校正するための校正用基準板をステージの端部にそれぞれ設け、各測定時にステージを移動させて、例えば、ビーム位置検出手段又はビームパワー測定手段は露光ヘッドの下方に配置し、また校正用部材は、校正用部材に設けられた基準マークを撮影して校正を行うアライメントカメラの下方に配置するようにしている。
特開2005−3762号公報 特開2004−348045号公報
ところで、上記のビーム位置検出用基準板や校正用基準板は、露光精度やアライメント精度という装置性能にとって非常に重要な機能を調整(校正)するための基準板であるため、ステージに高精度に位置決めして取り付けられるとともに、通常は装置寿命まで使用される。そして、装置の製造時には、これらの基準板を基準として装置の各機能が数時間を掛けて高精度に調整される。
一方、ビーム位置検出用基準板と対になる光検出器は、故障や経時による性能低下等によって交換することがあり、更に装置のメンテナンスで取り外されることもある。そのため、この光検出器の交換や取り外しに伴い、ビーム位置検出用基準板がステージから取り外されると、再度多くの時間を掛けて、ビーム位置検出用基準板を高精度に位置決めしてステージに取り付け、露光機能の再調整をしなければならなくなり、作業が極めて煩雑になる。
本発明は上記事実を考慮して、ビーム位置検出手段に設けられた光検出器を基準板と独立して着脱できるようにすることにより、光検出器の着脱に伴う再調整作業を軽減することができる露光装置を提供することを課題とする。
上記目的を達成するために請求項1に記載の発明は、画像情報に応じて変調された光ビームを照射して感光材料を走査露光する複数の露光ヘッドと、前記複数の露光ヘッドに対して相対移動し、感光材料を走査方向に沿って搬送するステージと、前記ステージにおける移動方向の一端部に設けられ、前記複数の露光ヘッドから照射された各光ビームの露光面上での露光位置を検出するビーム位置検出手段と、を備え、前記ビーム位置検出手段は、光ビームを透過させるスリット状の透光部が前記複数の露光ヘッドに対応して複数形成された基準板と、前記透光部を透過した光ビームを検出するとともに前記基準板と独立して着脱可能とされた光検出器と、を有することを特徴としている。
請求項1に記載の発明では、複数の露光ヘッドに対して相対移動し、感光材料を走査方向に沿って搬送する搬送手段における移動方向の一端部に、複数の露光ヘッドから照射された各光ビームの露光面上での露光位置を検出するビーム位置検出手段を配置することにより、例えば、ビーム位置検出手段によって取得した各光ビームの露光面上でのビーム位置情報に基づいて、複数の露光ヘッドから照射された各光ビームにより露光される露光領域(画像)のつなぎを補正して、高精度な画像露光を行うことができる。そして、このステージにおける移動方向の一端部に設けられたビーム位置検出手段では、基準板を取り外さなくとも、光検出器が基準板と独立して着脱できるため、光検出器の交換や取り外しに伴い、基準板を高精度に位置決めしてステージに再取り付けし、露光機能の再調整をする必要がなくなる。これにより、光検出器の着脱に伴う再調整作業を軽減することができる。
請求項2に記載の発明は、画像情報に応じて変調された光ビームを照射して感光材料を走査露光する複数の露光ヘッドと、前記複数の露光ヘッドに対して相対移動し、感光材料を走査方向に沿って搬送するステージと、前記ステージにおける移動方向の一端部に設けられ、前記複数の露光ヘッドから照射された各光ビームの露光面上での露光位置を検出するビーム位置検出手段と、を備え、前記ビーム位置検出手段は、光ビームを透過させるスリット状の透光部が前記複数の露光ヘッドに対応して複数形成された基準板と、前記透光部を透過した光ビームを検出する光検出器と、前記基準板と独立して前記光検出器を着脱可能に取り付ける着脱手段と、を有することを特徴としている。
請求項2に記載の発明では、ステージにおける移動方向の一端部に設けられたビーム位置検出手段は、基準板を取り外さなくとも、着脱手段を介して光検出器が基準板と独立して着脱できる。そのため、光検出器の交換や取り外しに伴い、基準板を高精度に位置決めしてステージに再取り付けし、露光機能の再調整をする必要がなくなり、光検出器の着脱に伴う再調整作業を軽減することができる。
請求項3に記載の発明は、請求項1又は請求項2記載の露光装置において、前記基準板が前記ステージの前記一端部に埋設されていることを特徴としている。
請求項3記載の発明では、基準板をステージの一端部に埋設することにより、基準板の安定性が向上して、振動や歪み等によるビーム位置検出精度の低下を抑制できる。また、大面積を露光するために基準板を大型化する場合でも、ステージに安定して設置することができるため、そのような基準板の大型化にも容易に対応できるようになる。
請求項4に記載の発明は、請求項1〜請求項3の何れか1項記載の露光装置において、前記ビーム位置検出手段は更に、前記光検出器を前記複数の透光部と対応する各光ビームの検出位置に移動させる移動手段を有することを特徴としている。
請求項4記載の発明では、光検出器が移動手段によって、複数の透光部と対応する各光ビームの検出位置に移動されて配置されるため、例えば光検出器を複数の透光部と同数設けなくとも、最低1個の光検出器があれば各透光部での光ビーム検出が可能となる。このように、光検出器の数を透光部よりも少なくできることにより、ビーム位置検出手段のコストを低減することができる。
請求項5に記載の発明は、請求項1〜請求項4の何れか1項記載の露光装置において、前記ビーム位置検出手段によって取得した前記各光ビームの露光面上でのビーム位置情報に基づいて、前記複数の露光ヘッドから照射された各光ビームにより露光される露光領域のつなぎを補正するつなぎ補正手段を有することを特徴としている。
請求項5に記載の発明では、ビーム位置検出手段によって取得した各光ビームの露光面上でのビーム位置情報に基づいて、つなぎ補正手段が複数の露光ヘッドから照射された各光ビームにより露光される露光領域のつなぎを補正する。これにより、複数の露光ヘッド間での露光領域(画像)のつなぎが高精度に補正される。
本発明の露光装置は上記構成としたので、ビーム位置検出手段に設けられた光検出器を基準板と独立して着脱できるようになり、光検出器の着脱に伴う再調整作業を軽減することができる。
以下、本発明の実施形態に係る露光装置について図面を参照して説明する。
図1には本発明の一実施形態に係る露光装置が示されている。また、図2〜図6には本実施形態に係る露光装置に適用される露光ヘッド及び空間光変調素子が示されている。
図1に示すように、露光装置10は、4本の脚部14に支持された矩形厚板状の設置台12を備えている。設置台12の上面には、長手方向に沿って2本のガイド16が延設されており、これら2本のガイド16上には、矩形平盤状のステージ18が設けられている。ステージ18は、長手方向がガイド16の延設方向を向くよう配置され、ガイド16によって設置台12上を往復移動可能に支持されており、図示しない駆動装置に駆動されてガイド16に沿って往復移動する(図1の矢印Y方向)。
ステージ18の上面には、露光対象物となる矩形板状の感光材料20が図示しない位置決め部により所定の載置位置に位置決めされた状態で載置される。このステージ18の上面(感光材料載置面)には、図示しない複数の溝部が形成されており、それらの溝部内が負圧供給源によって負圧とされることにより、感光材料20はステージ18の上面に吸着されて保持される。また、感光材料20には、露光位置の基準を示すアライメントマーク21が複数設けられており、本実施形態では、円形の貫通孔によって構成されるアライメントマーク21が感光材料20の四隅近傍にそれぞれ1個づつ計4個配置されている。
設置台12の中央部には、ステージ18の移動経路を跨ぐようにコ字状のゲート22が設けられている。ゲート22は、両端部がそれぞれ設置台12上面の両側部に固定されており、ゲート22を挟んで一方の側には感光材料20を露光するスキャナ24が設けられ、他方の側には感光材料20に設けられたアライメントマーク21を撮影する複数(例えば、2台)のCCDカメラ26を備えたアライメントユニット100が設けられている。
図7に示すように、アライメントユニット100は、ゲート22に取り付けられる矩形状のユニットベース102を備えている。ユニットベース102のカメラ配設面側には、ステージ18の移動方向(矢印Y方向)と直交する方向(矢印X方向)に沿って一対のガイドレール104が延設されており、各CCDカメラ26は、これら一対のガイドレール104に摺動可能に案内されるとともに、各々に個別に用意されたボールねじ機構106及びそれを駆動する図示しないステッピングモータ等の駆動源により駆動されて、ステージ18の移動方向と直交する方向に独立して移動する。また、各CCDカメラ26は、カメラ本体26Aの先端に設けられたレンズ部26Bを下方へ向けるとともにレンズ光軸が略垂直になる姿勢で配置されており、このレンズ部26Bの先端部にはリング状のストロボ光源(LEDストロボ光源)26Cが取付けられている。
この各CCDカメラ26は、感光材料20のアライメントマーク21を撮影する際に、上記の駆動源及びボールねじ機構106により矢印X方向に移動されてそれぞれ所定の撮影位置に配置され、すなわち、レンズ光軸が、ステージ18の移動に伴って移動する感光材料20のアライメントマーク21の通過位置に合うように配置され、アライメントマーク21が所定の撮影位置に至ったタイミングで、ストロボ光源26Cを発光させ、感光材料20へ照射したストロボ光の感光材料20上面での反射光をレンズ部26Bを介してカメラ本体26Aに入力させることにより、アライメントマーク21を撮影する。
また、ステージ18の駆動装置、スキャナ24、CCDカメラ26、CCDカメラ26を移動させるための駆動源、及びステージ18に設けられた後述する測定ユニット70は、これらを制御するコントローラ28に接続されている。このコントローラ28により、後述する露光装置10の露光動作時には、ステージ18は所定の速度で移動するよう制御され、CCDカメラ26は所定の位置に配置されて所定のタイミングで感光材料20のアライメントマーク21を撮影するよう制御され、スキャナ24は所定のタイミングで感光材料20を露光するよう制御される。また、測定ユニット70による各測定動作時には、測定ユニット70がコントローラ28によって所定の各測定動作をするよう制御される。
図1及び図2に示すように、スキャナ24の内部にはm行n列(例えば、2行4列)の略マトリックス状に配列された複数(例えば、8個)の露光ヘッド30が設置されている。
露光ヘッド30で露光される露光エリア32は、図2及び図11に示すように、走査方向を短辺とする矩形状であり、走査方向に対し、所定の傾斜角θで傾斜している。そして、ステージ18の移動に伴い、感光材料20には露光ヘッド30毎に帯状の露光済み領域34が形成される。
また、図11に示すように、帯状の露光済み領域34が走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッド30の各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本実施の形態では1倍)ずらして配置されている。このため、例えば1行目の最も左側に位置する露光エリア32Aと、露光エリア32Aの右隣に位置する露光エリア32Cとの間の露光できない領域は、2行目の最も左側に位置する露光エリア32Bにより露光される。同様に、露光エリア32Bと、露光エリア32Bの右隣に位置する露光エリア32Dとの間の露光できない領域は、露光エリア32Cにより露光される。
図3に示すように、各露光ヘッド30は、それぞれ入射された光ビームを画像データに応じて各画素毎に変調する空間光変調素子として、デジタル・マイクロミラー・デバイス(DMD)36を備えている。このDMD36は、データ処理部とミラー駆動制御部を備えた上述のコントローラ28に接続されている(図1参照)。
コントローラ28のデータ処理部では、入力された画像データに基づいて、各露光ヘッド30毎にDMD36の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、DMDコントローラとしてのミラー駆動制御部では、データ処理部で生成した制御信号に基づいて、各露光ヘッド30毎にDMD36における各マイクロミラーの反射面の角度を制御する。なお、この反射面の角度の制御については後述する。
各露光ヘッド30におけるDMD36の光入射側には、図1に示すように、紫外波長領域を含む一方向に延在したマルチビームをレーザ光として出射する照明装置38からそれぞれ引き出されたバンドル状の光ファイバ40が接続される。
照明装置38は、図示は省略するがその内部に、複数の半導体レーザチップから出射されたレーザ光を合波して光ファイバに入力する合波モジュールが複数個設置されている。各合波モジュールから延びる光ファイバは、合波したレーザ光を伝搬する合波光ファイバであって、複数の光ファイバが1つに束ねられてバンドル状の光ファイバ40として形成される。
また各露光ヘッド30におけるDMD36の光入射側には、図3に示すように、光ファイバ40の接続端部から出射されたレーザ光を均一の照明光にする均一照明光学系41と、均一照明光学系41を透過したレーザ光をDMD36に向けて反射するミラー42とが配置されている。
各露光ヘッド30におけるDMD36の光反射側に設けられる投影光学系は、DMD36の光反射側の露光面にある感光材料20上に光源像を投影するため、DMD36側から感光材料20へ向って順に、レンズ系50、マイクロレンズアレイ54、対物レンズ系56の各露光用の光学部材が配置されて構成されている。
ここで、レンズ系50及び対物レンズ系56は、図3に示すように複数枚のレンズ(凸レンズや凹レンズ等)を組み合せた拡大光学系として構成されており、DMD36により反射されるレーザビーム(光線束)の断面積を拡大することで、DMD36により反射されたレーザビームによる感光材料20上の露光エリア32の面積を所定の大きさに拡大している。なお、感光材料20は、対物レンズ系56の後方焦点位置に配置される。
マイクロレンズアレイ54は、図3に示すように、照明装置38から各光ファイバ40を通じて照射されたレーザ光を反射するDMD36の各マイクロミラー46に1対1で対応する複数のマイクロレンズ60が2次元状に配列され、一体的に成形されて矩形平板状に形成されたものであり、各マイクロレンズ60は、それぞれレンズ系50を透過した各レーザビーム(露光ビーム)の光軸上にそれぞれ配置されている。
またDMD36は、図5に示すように、SRAMセル(メモリセル)44上に、マイクロミラー(微小ミラー)46が支柱により支持されて配置されたものであり、画素(ピクセル)を構成する多数の(例えば、600個×800個)の微小ミラーを格子状に配列したミラーデバイスとして構成されている。各ピクセルには、最上部に支柱に支えられたマイクロミラー46が設けられており、マイクロミラー46の表面にはアルミニウム等の反射率の高い材料が蒸着されている。
また、マイクロミラー46の直下には、図示しないヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル44が配置されており、全体はモノリシック(一体型)に構成されている。
DMD36のSRAMセル44にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー46が、対角線を中心としてDMD36が配置された基板側に対して±α度(例えば±10度)の範囲で傾けられる。図6には、DMD36の一部を拡大し、マイクロミラー46が+α度又は−α度に制御されている状態の一例を示しており、図6(A)は、マイクロミラー46がオン状態である+α度に傾いた状態を示し、図6(B)は、マイクロミラー46がオフ状態である−α度に傾いた状態を示す。したがって、画像信号に応じて、DMD36の各ピクセルにおけるマイクロミラー46の傾きを、図6に示すように制御することによって、DMD36に入射された光はそれぞれのマイクロミラー46の傾き方向へ反射される。
それぞれのマイクロミラー46のオンオフ(on/off)制御は、DMD36に接続されたコントローラ28のミラー駆動制御部によって行われ、オン状態のマイクロミラー46により反射された光は露光状態に変調され、DMD36の光出射側に設けられた投影光学系(図3参照)へ入射する。またオフ状態のマイクロミラー46により反射された光は非露光状態に変調され、光吸収体(図示省略)に入射する。
また、DMD36は、その短辺方向が走査方向と所定角度(例えば、0.1°〜0.5°)を成すように僅かに傾斜させて配置するのが好ましい。図4(A)はDMD36を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)48の走査軌跡を示し、図4(B)はDMD36を傾斜させた場合の露光ビーム48の走査軌跡を示している。
DMD36には、長手方向(行方向)に沿ってマイクロミラー46が多数個(例えば、800個)配列されたマイクロミラー列が、短手方向に多数組(例えば、600組)配列されているが、図4(B)に示すように、DMD36を傾斜させることにより、各マイクロミラー46による露光ビーム48の走査軌跡(走査線)のピッチP2が、DMD36を傾斜させない場合の走査線のピッチP1より狭くなり、解像度を大幅に向上させることができる。一方、DMD36の傾斜角は微小であるので、DMD36を傾斜させた場合の走査幅W2と、DMD36を傾斜させない場合の走査幅W1とは略同一である。
また、異なるマイクロミラー列により同じ走査線上における略同一の位置(ドット)が重ねて露光(多重露光)されることになる。このように、多重露光されることで、露光位置の微少量をコントロールすることができ、高精細な露光を実現することができる。また、走査方向に配列された複数の露光ヘッド間のつなぎ目を微少量の露光位置制御により段差無くつなぐことができる。
なお、DMD36を傾斜させる代わりに、各マイクロミラー列を走査方向と直交する方向に所定間隔ずらして千鳥状に配置しても、同様の効果を得ることができる。
上記のように構成された露光ヘッド30では、照明装置38からの入射光(レーザ光)をDMD36により変調してその露光ビーム(レーザビーム)を感光材料20の表面に照射して露光(画像形成)を行うが、その動作中に生じる外乱、あるいは経時的な変化等によって、DMD36で反射されて出射される露光ビームにおける、走査方向に直交する方向に対する光量分布が不均一になったり、感光材料20上における所定の露光量の値で露光されるべき各部分の露光量が、所定の露光量の値から変化してしまう場合がある。
そこで、この露光装置10では、光量分布を均一化するシェーディング調整と露光量の調整をするため、DMD36側から出射される露光ビームにおける光量分布と露光量を測定するための光量測定手段を設けている。
さらに、この露光ヘッド30では、光源から結像面に至るまでに多数の光学部材や機構部材等が設けられているため、温度変化による熱膨張や熱収縮、及び長期間使用による経時変化の蓄積等により、各露光ヘッド30からの露光ビームにより形成される画像(露光済み領域34)が、つなぎ目において無視できない程度のずれを起こし、画像品質が低下する場合がある。
そこで、この露光装置10では、複数の露光ヘッド30が出射する露光ビームによって形成される各画像(露光エリア32)のつなぎを補正するため、各露光ビームの露光位置を検出するビーム位置検出手段を設けている。
そして、これらの光量測定手段及びビーム位置検出手段は、測定ユニット70に一体的に構成されてユニット化されている。
図1に示すように、露光装置10のステージ18には、感光材料20を載置するために停止されるステージ18の停止位置(図1の状態)において、複数の露光ヘッド30が搭載されたスキャナ24に近い側の端部であるステージ移動方向の下流側の端部に測定ユニット70が取り付けられている。測定ユニット70は、図2及び図8に示すように、ステージ18に取り付けられる箱状のユニットフレーム71を備え、ユニットフレーム71内には、DMD36側から出射された露光ビームにおける走査方向と直交する方向(矢印X方向)に対する光量分布と露光量を測定する光量測定手段としての光量測定器72と、光量測定器72を上面に取り付けた移動ベース74とが配置されている。
ユニットフレーム71の両側部に対向して立設された側板部88A、88Bの間には、ステージ18の移動方向(矢印Y方向)と直交する方向(矢印X方向)に沿って2本のガイドシャフト90A、90B、及びボールねじ92が架設されている。移動ベース74は、ステージ18側となる一端部に形成されたガイド孔94が一方のガイドシャフト90Aに挿通され、他端の下部に回転可能に取り付けられたカムフォロア96が他方のガイドシャフト90B上に乗せられて支持されるとともに、下面に取り付けられたボールねじナット98がボールねじ92に螺合している。そして、ボールねじ92が図示しないステッピングモータ等の駆動源によって駆動されることにより、移動ベース74及び光量測定器72はガイドシャフト90A、90BにガイドされてX方向に移動する。
光量測定器72は、矩形箱状のハウジング76を備えており、ハウジング76の上面に形成された矩形状の開口77にはスリット板78が嵌め込まれて取り付けられている。図9に示すように、スリット板78には、平面視がI字状(直線状)とされた貫通溝のスリット80が形成されており、このスリット80は、露光ヘッド30から出射された露光ビームによる走査方向(ステージ18の移動方向)と平行な向きにされている。
図10に示すように、光量測定器72のハウジング76内には、スリット板78の直下で且つスリット80から入射する露光ビームの光路上に集光レンズ82が配置され、また、必要に応じて集光レンズ82の直下に光学フィルタ(NDフィルタ)84を配置し、さらに、光学フィルタ84の直下に受光素子(フォトディテクタ)86が配置されている。
なお、光学フィルタ84は、感光材料20の分光感度特性に合わせるために使用する、又は露光ヘッド30から出射される光ビームの光学波長特性に合わせるために使用するものであり、DMD36と受光素子86との間であれば光路上の任意の位置に配置することができる。
また、受光素子86はコントローラ28に接続され、受光した光量に応じた電気信号をコントローラ28に出力するよう構成されている。
この光量測定器72は、前述したように移動ベース74に取り付けられて測定ユニット70に搭載されているが、本実施形態では、スリット板78の上面がステージ18に載置された感光材料20の露光面位置と一致するように(感光材料20の露光面と面一になる状態)に配置されている。
そして、この光量測定器72により光ビームの光量を測定する際には、スリット80を通過した光ビームが集光レンズ82に入射し、集光レンズ82で集光される光路上で光学フィルタ84に入射し、所定波長の光ビームが光学フィルタ84を透過し、受光素子86上に集光されて受光され、受光素子86が受光量の測定値に応じた電圧レベルの信号をコントローラ28に出力する。また、この光ビームの光量測定では、上記のように、スリット板78を感光材料20の露光面位置に一致させて配置していることにより、感光材料20上での実際の露光とほぼ同じレベルの光量を測定することができ、その測定精度を高めることができる。
また、本実施形態の測定ユニット70には、前述したようにビーム位置検出手段が設けられており、このビーム位置検出手段は、図2及び図8に示すように、ユニットフレーム71の上板部99に嵌め込まれて取り付けられた基準板170と、移動ベース74の上面に取り付けられて基準板170の下方に配置された受光素子(フォトディテクタ)172とを備えている。
このビーム位置検出手段を構成する基準板170及び受光素子172は、図示のように、光量測定器72よりもステージ18側(ステージ移動方向における上流側)に配置されている。
基準板170は、スキャナ24に設けられた複数の露光ヘッド30の配列方向における全幅寸法よりも長尺とされた矩形状のガラス板によって形成されており、ステージ移動方向に下流側にビーム位置検出部170Aが設けられ、上流側にカメラ位置検出部170Bが設けられている(図2参照)。
ビーム位置検出部170Aには、クロムメッキ等の金属膜によるパターニングで、X方向に向かって開く「く」の字型で透明部(透光部)に形成された複数のスリット120がX方向に沿って所定の間隔で配列されている。
このスリット120は、図9に示すように、ステージ移動方向の上流側(カメラ位置検出部170B側)に位置する所定長さを持つ直線状のスリット部120aと、ステージ移動方向の下流側(光量測定器72)に位置する所定長さを持つ直線状のスリット部120bと、をそれぞれの一端部で直角に接続した形状に形成されている。すなわち、スリット部120aと、スリット部120bとは互いに直交するとともに、Y軸に対してスリット部120aは135度、スリット部120bは45度の角度を有している。
なお、スリット120におけるスリット部120aと、スリット部120bとは、ステージ18の移動方向(走査方向)に対して45度の角度を成すように形成したものを図示したが、これらスリット部120aと、スリット部120bとを、露光ヘッド30の画素配列に対して傾斜すると同時に、ステージ移動方向に対して傾斜する状態(お互いが平行でないように配置した状態)とできれば、ステージ移動方向に対する角度を任意に設定しても良い。また、スリット120に代えて回折格子を使用してもよい。
一方、受光素子172は、移動ベース74の上面における一端部に取り付けられてビーム位置検出部170Aの下方に位置しており、コントローラ28によってボールねじ92が駆動制御されることにより、移動ベース74の移動に伴ってX方向に移動し各スリット120の真下に配置される。また、受光素子172はコントローラ28に接続され、受光した光量に応じた電気信号をコントローラ28に出力するよう構成されている。
また、基準板170のカメラ位置検出部170Bには、図9に示すように、クロムメッキ等の金属膜によるパターニングで、円形に形成された検出用マーク177A、十字形に形成された検出用マーク177B、及び正方形に形成された検出用マーク177CがX方向に沿って所定の間隔で順番に複数配列されている。
図20(A)〜(D)に示すように、この検出用マーク177Aの幅寸法:MAと検出用マーク177Bの幅寸法:MBと検出用マーク177Cの幅寸法:MCとは等しくされ(MA=MB=MC)、検出用マーク177A、177B、177Cの配列ピッチ:P1は、CCDカメラ26の視野(撮影視野)VのX方向における長さ寸法:Lから、検出用マーク177A、177B、177Cの幅寸法の1/2を差し引いた値に設定されている(P1=L−(MA/2)=L−(MB/2)=L−(MC/2))。また、ここでは、CCDカメラ26のX方向への移動単位:U1は、検出用マーク177A、177B、177Cの幅寸法の1/2に設定されている(U1=MA/2=MB/2=MC/2)。
また、本実施形態の測定ユニット70では、移動ベース74に取り付けられた光量測定手段の受光素子86と、ビーム位置検出手段の受光素子172とが基準板170と独立してそれぞれ単独で着脱可能とされている。
図21及び図22に示すように、受光素子86は、矩形の平板状に形成された取付板180の下部に一側端部が固着されて、取付板180と一体化されている。この取付板180の上部には2個の貫通孔182が形成されており、これらの貫通孔182にはそれぞれネジ184が挿通され、移動ベース74の側面74Aに形成された2個のネジ孔186に螺合する。受光素子86は、この取付板180を介して移動ベース74にネジ止め固定されるとともに、基準板170と独立して着脱可能に取り付けられている。
また、受光素子172は、矩形の長尺状に形成された取付板190の基端部に一側端部が固着されて、取付板190と一体化されている。この取付板190は、受光素子172が固着された基端部から前方へ延出されて、その先端部が受光素子86の取付板180の上方に位置している。また、取付板190の先端部には、2個の貫通孔192が形成されており、これらの貫通孔192にはそれぞれネジ194が挿通され、移動ベース74の側面74Aに形成された2個のネジ孔196に螺合する。受光素子172は、この取付板190を介して移動ベース74にネジ止め固定されるとともに、基準板170と独立して着脱可能に取り付けられている。
次に、この露光装置10に装備された測定ユニット70の光量測定器72を使用して、スキャナ24の各露光ヘッド30から出射される露光ビームの光量分布を均一化するシェーディング調整と露光量の調整を行う際の手順について説明する。
まず、上記の各調整を実施するに当たり、露光ビームの光量分布及び露光量を光量測定器72によって測定する。この測定では、コントローラ28が照明装置38及び測定対称となる露光ヘッド30のDMD36を制御して、そのDMD36の第1列目(例えば図2では右側となる、走査方向に直交する方向に対して光量測定器72の初期位置側に位置する第1列目)から最終列目にかけて各列毎に順次点灯させる動作をさせる。
また、コントローラ28は、この照明装置38及びDMD36に対する制御の開始前に、DMD36の第1列目のマイクロミラー46群をオン状態(点灯)とし、他のマイクロミラー46を全てオフ状態としたときに露光ビームが照射される露光面上の所定位置に、スリット80の中央部が対応して配置されるよう、ボールねじ92を駆動制御して光量測定器72を初期位置に移動させ停止させる。
この光量測定器72の初期位置への配置後に、コントローラ28は光量測定を開始し、測定対象となるDMD36の第1列目のマイクロミラー46群だけをオン状態(点灯)にさせ、この第1列目のマイクロミラー46群だけに対応した走査領域の露光量を測定する。続いて、コントローラ28は、DMD36の第2列目のマイクロミラー46群で露光される露光面上の走査領域にスリット80の中央部が位置するように、ボールねじ92を駆動制御して光量測定器72を移動させ、その移動停止後に、DMD36の第2列目のマイクロミラー46群だけをオン状態(点灯)にさせて、この第2列目のマイクロミラー46群に対応した走査領域の露光量を測定する。
コントローラ28は、上述した一連の光量測定動作を、第1列目のマイクロミラー46群から最終列目のマイクロミラー46群に至るまで順次繰り返す。これにより、測定対象となった一つのDMD36で変調され出射された露光ビームの光量分布と露光量とが測定され、コントローラ28は、これらの測定値を、測定対象となった一つのDMD36による露光ビームの光量分布を均一化するシェーディング調整と露光量の調整を行うためにメモリに記憶する。
このようにスリット80を利用して露光走査方向に対応した、ある1列のマイクロミラー46群の光量を測定する場合には、図10に示すように、露光ヘッド30のDMD36におけるオン状態とされた1列のマイクロミラー46群から出射された所定複数の露光ビーム48がスリット80の長手方向中央部を通過し、集光レンズ82で集光され、光学フィルタ84を通過した露光ビーム48が受光素子86に受光されて、その光量が測定される。
このとき、DMD36におけるオン状態とされた1列のマイクロミラー46群以外のところから照射される迷光や他の露光ビーム等の光量測定の対象外となる光は、スリット板78のスリット80以外の平面部分で反射されて遮断される。そのため、光量測定の対象外となる光が、図10に3点鎖線で示すように受光素子86に受光されることは無い。
よって、このようにスリット80を設けたスリット板78を使用して光量測定を行う場合には、迷光等の影響を排除して、オン状態とされた所定列のマイクロミラー46群から出射された所定複数の露光ビームによる実際の露光状態に即した走査領域の光量を測定することができる。
また、この光量測定では、図11に示すように、例えば、図中の最も左に位置する1行1列目のDMD36Aに対する光量測定を終了した後は、次に、その右隣位置する1行2列目のDMD36Cに対する光量測定を同様に行い、1行目の全てのDMD36(36A、36C、36E、36G)の光量測定を行う。さらに、1行目の各DMD36に対する光量測定の終了後は、ステージ18を移動して2行目の各DMD36(36B、36D、36F、36H)の光量測定を順に行う。
このようにして測定された各DMD36による露光ビームの光量分布及び露光量は、例えば図12のグラフにおける実線(スリットあり)で示すようなデータとなる。また、この図12に例示した光量データは、上述したように、光量測定時にスリット板78のスリット80によって迷光等が除外されるため、例えばスリット板78を設けずに迷光等が受光素子86に入射してしまうような光量測定手段を使用した場合と比べて精度が向上する。
ここで、図12に例示するような光量分布が不均一な光量データが得られた場合には、各DMD36による露光ビームの光量分布を均一化するシェーディング調整と露光量の調整を行う。
このシェーディング調整と露光量の調整は、例えば、露光量が多くなる画素に対して多重露光するマイクロミラー46の数を減らす、又はそのマイクロミラー46のオン状態の時間を減少させることにより、光量分布における露光量の最低線に沿うよう光量分布を均一化する補正を行う。
なお、各画素に対する露光ビームの状態は、図13に示すような正規分布の状態となるので、露光量が多くなると画素の露光面積が広くなり、露光量が少なくなると画素の露光面積が狭くなる性質を利用して、露光量が多くなる画素の部分に対応した画像データを狭い面積となるように書き換え、露光量が小さくなる画素の部分に対応した画像データを広い面積となるように書き換えて補正(例えば、露光量が多くなる画素の部分で線の画像を形成する場合には、この線の画像データを細い線とする画像データに書き換えることにより補正)するようにしても良い。
また、上記のシェーディング調整及び露光量の調整は、各露光ヘッド30のDMD36毎に実施するだけではなく、スキャナ24に搭載した全ての露光ヘッド30のDMD36で、相対的に光量分布が均一化するように調整することが望ましい。
また、この露光装置10では、光量測定器72に設けた光学フィルタ84を利用して、感光材料20の分光感度特性に対応した、又は光源となる照明装置38から出射される光ビームの光学波長特性に対応した露光量の調整を行うことができる。
次に、測定ユニット70の基準板170及び受光素子172を使用して、スキャナ24の各露光ヘッド30から出射される露光ビームによって形成される各画像のつなぎを補正する手順について説明する。
前述したように、本実施形態のスキャナ24による露光動作では、1行目の最も左側に位置する露光エリア32Aと、露光エリア32Aの右隣に位置する露光エリア32Cとの間の露光できない部分が、2行目の最も左側に位置する露光エリア32Bによって露光されるため(図11参照)、露光エリア32Aにつながれる露光エリアは露光エリア32Bである。図14に、この露光エリア32A及び露光エリア32Bの位置関係を示す。
図14に示すように、露光エリア32Aと露光エリア32Bとは、露光ヘッド30Aの画素である繋ぎ画素P1と、露光ヘッド30Bの画素である繋ぎ画素P2とにおいてつなげられる。この繋ぎ画素P1と繋ぎ画素P2とを選択して実際の位置を特定する手順は、先ず、コントローラ28がステージ18を移動制御してスリット120をスキャナ24の下方に配置し、露光ヘッド30Aの画素のうち、露光ヘッド30Bの画素に重ねるべき画素を繋ぎ画素P1として選択し、点灯させる。また、このとき、コントローラ28は、露光ビームが照射されるスリット120に受光素子172が対応して配置されるよう、ボールねじ92を駆動制御して移動ベース74及び受光素子172を所定位置に移動させて停止させる。
続いて、ステージ18をゆっくり移動させ、図14及び図15に示すように、スリット120をY軸方向に沿って移動させて露光エリア32Aに配置する。このときのスリット120aとスリット120bとの交点を(X0,Y0)とする。ここで、前述したように、スリット120aはY軸に対して135度の角度を成し、スリット120bはY軸に対して45度の角度を成している。
次に、図16に示すように、ステージ18を移動させ、スリット120をY軸に沿って図16における右方に移動させる。そして、図16において二点鎖線で示すように、繋ぎ画素P1からの光が左側のスリット120aを通過して受光素子172で検出されたところでステージ18を停止させる。このときのスリット120aとスリット120bとの交点を(X0,Y11)とする。
続いて、ステージ18を逆方向へ移動させ、スリット120をY軸に沿って図17における左方に移動させる。そして、図17において二点鎖線で示すように、繋ぎ画素P2からの光が右側のスリット120bを通過して受光素子172で検出されたところでステージ18を停止させる。このときのスリット120aとスリット120bとの交点を(X0,Y12)とする。
ここで、繋ぎ画素P1の座標を(X1,Y1)とすると、X1=X0+(Y11−Y12)/2で表され、Y1=(Y11+Y12)/2で表される。
繋ぎ画素P1の座標が求められたら、繋ぎ画素P1を消灯し、露光ヘッド30Bの画素のうち、露光エリア32Aに繋ぐべき画素であって繋ぎ画素P1に位置の近いものを繋ぎ画素P2として選択し、点灯させる。
そして、ステージ18をYだけ移動させてスリット120を露光エリア32Bに位置させる。このときのスリット120aとスリット120bとの交点の座標は(X0,Y0+Y)である。
そして、図17に示すように、ステージ18を移動させ、スリット120をY軸に沿って図17における右方に移動させる。図17において二点鎖線で示すように、繋ぎ画素P2からの光が左側のスリット120aを通過して受光素子172で検出されたところでステージ18を停止させる。このときのスリット120aとスリット120bとの交点を(X0,Y21)とする。
続いて、ステージ18を逆方向へ移動させ、スリット120をY軸に沿って図17における左方に移動させる。そして、図17において二点鎖線で示すように、繋ぎ画素P1からの光が右側のスリット120bを通過して受光素子172で検出されたところでステージ18を停止させる。このときのスリット120aとスリット120bとの交点を(X0,Y22)とする。
ここで、繋ぎ画素P2の座標を(x2,y2)とすると、x2=X0+(Y21−Y22)/2で表され、y2=(Y21+Y22)/2で表される。
このようにして求められた繋ぎ画素P2(x2,y2)について、図18に示すように、繋ぎ画素P1とのX座標の差ΔX=X2−X1を求める。そして、上記の繋ぎ画素P2のうち、X座標の差ΔXが最も小さなものを繋ぎ画素P2(X2,Y2)として選択する。
繋ぎ画素P1と繋ぎ画素P2とは、X方向のずれが極めて小さいため、露光タイミングを補正してY軸方向のずれを除去し、X方向については画像が重なるように露光ヘッド30Aと露光ヘッド30Bに入力される画像データを制御することにより、図19に示すように繋ぎ画素P1と繋ぎ画素P2との間の画像のずれや重なりを除去できる。
なお、露光ヘッド30Aにおいて繋ぎ画素P1を複数指定し、前記複数の繋ぎ画素P1のそれぞれについて上記手順に従って実際のXY座標(X1,Y1)を特定するとともに、上記繋ぎ画素P1のそれぞれについて露光ヘッド30Bの画素から繋ぎ画素P2を指定して実際のXY座標(X2、Y2)を特定すれば、露光ヘッド30Aと露光ヘッド30Bとの間の画像のずれや重なりをさらに小さくすることができる。
このように、本実施形態の露光装置10では、ステージ18を移動させてスリット120のスリット120a及びスリット120bを透過する露光ビームの光量を受光素子172で検出することにより、露光ヘッド30A及び露光ヘッド30Bの画素から繋ぎ画素P1及び繋ぎ画素P2を選択することができ、実際の位置が特定できる。
また、露光ヘッド30Aと露光ヘッド30Bとの相対的な位置関係が仮にずれた場合でも、繋ぎ画素P1及び繋ぎ画素P2の実際の位置に関する位置情報に基いて露光ヘッド30Aと露光ヘッド30Bとに入力する画像データを制御することにより、露光ヘッド30A、30Bにより形成される画像のずれや重なりを精度よく補正できる。
また、上述した露光ヘッド30A、30Bに対する画像のつなぎ補正は、露光装置10のスキャナ24に搭載された全ての露光ヘッド30に対し同様の手順で実施する。すなわち、全ての露光ヘッド30間の繋ぎ画素を特定し、その繋ぎ画素で画像が重なるように、各露光ヘッド30に入力される画像データに対して画像データシフト、画像回転、倍率変換などの補正を行う。これにより、露光装置10による露光動作では、露光領域全体に亘って繋ぎ目におけるずれの少ない画像を形成することができる。
以上の手順により、各露光ヘッド30から出射される露光ビームによって形成される各画像のつなぎが補正されるが、この補正を行うためには、上述したように、基準板170に形成した複数のスリット120を用いて各露光ビームによる露光位置を検出している。ただし、各スリット120は、スリット長(図9のL1)が1mm程度、スリット幅が20μm程度に設定されて非常に小さいため、露光装置10の製造で、測定ユニット70(基準板170)をステージ18の取り付けた後に初めて行われる露光位置の検出では、ステージ18を狙いの位置(設計値)まで移動させてスリット120を露光ヘッド30の真下(露光ビーム照射位置)に配置しても、各部品の精度誤差や組付誤差等によってスリット120が露光ビームに合わず、露光位置を迅速に検出できない場合がある。
一方、光量測定器72のスリット板78に形成されたI字状のスリット80は、スリット長(図9のL2)が30mm程度、スリット幅が3mm程度に設定されており、上記のスリット120に対して十分大きく形成されている。そのため、上述した露光ビームの光量分布及び露光量の測定を、測定ユニット70をステージ18の取り付けた後に初めて行う際には、各部品の精度誤差や組付誤差等が多少大きくても、ステージ18を狙いの位置(設計値)まで移動させてスリット80を露光ヘッド30の真下(露光ビーム照射位置)に配置するだけで、スリット80が露光ビームにほぼ位置合わせされ、露光位置が迅速に検出できるようになる。また、このスリット80と各スリット120との相対位置関係は、測定ユニット70の設計値に基づいて予め把握することができる。
そこで、このスリット80を用いた露光ビームの光量分布及び露光量の測定を先に行うことにより、スリット80を介して、基準板170の各スリット120と各露光ビームの位置ずれが把握できるようになり、スリット120による露光位置の検出では、この位置ずれ分を加味してスリット120を露光ビームに位置合わせすることで、迅速な検出が可能となる。したがって、上記のつなぎ補正を完了するまでの調整時間を短縮することができる。
次に、上記のように構成された露光装置10による感光材料20に対する露光動作について説明する。
先ず、露光パターンに応じた画像データがコントローラ28に入力されると、コントローラ28内のメモリに一旦記憶される。この画像データは、画像を構成する各画素の濃度を2値(ドットの記録の有無)で表したデータである。
次に、オペレータが、図1に示す初期位置に停止されたステージ18上に感光材料20をセットし、コントローラ28から露光開始の入力操作を行う。なお、露光装置10により画像露光を行う感光材料20としては、プリント配線基板や液晶表示素子等のパターンを形成(画像露光)する材料としての基板やガラスプレート等の表面に、感光性エポキシ樹脂等のフォトレジストを塗布、又ドライフィルムの場合はラミネートしたものなどが挙げられる。
上記の入力操作により、露光装置10の露光動作が開始すると、コントローラ28により駆動装置が制御され、感光材料20を上面に吸着したステージ18は、ガイド16に沿って移動方向(矢印Y方向)におけるアライメント計測方向の上流側から下流側に一定速度で移動開始する。このステージの移動開始に同期して、又は、感光材料20の先端が各CCDカメラ26の真下に達する少し手前のタイミングで、各CCDカメラ26はコントローラ28により制御されて作動する。
ステージ18の移動に伴い、感光材料20がCCDカメラ26の下方を通過する際には、CCDカメラ26によるアライメント計測が行われる。
このアライメント計測では、先ず、感光材料20の移動方向下流側(前端側)の角部近傍に設けられた2個のアライメントマーク21が各CCDカメラ26の真下(レンズの光軸上)に達すると、所定のタイミングで各CCDカメラ26はそれぞれアライメントマーク21を撮影し、その撮影した画像データを、すなわち、露光位置の基準がアライメントマーク21によって示された基準位置データを含む画像データをコントローラ28のデータ処理部へ出力する。アライメントマーク21の撮影後は、ステージ18が下流側への移動を再開する。
また、本実施形態の感光材料20のように、移動方向(走査方向)に沿って複数のアライメントマーク21が設けられている場合には、次のアライメントマーク21(移動方向上流側(後端側)の角部近傍に設けられた2個のアライメントマーク21)が各CCDカメラ26の真下に達すると、同様に所定のタイミングで各CCDカメラ26はそれぞれアライメントマーク21を撮影してその画像データをコントローラ28のデータ処理部へ出力する。
なお、感光材料に、移動方向に沿って3個以上のアライメントマークが設けられている場合も同様に、各アライメントマークがCCDカメラ26の下方を通過する毎に、所定のタイミングでCCDカメラ26によるアライメントマークの撮影が繰り返し行われ、全てのアライメントマークに対し、その撮影した画像データがコントローラ28のデータ処理部へ出力される。
データ処理部は、入力された各アライメントマーク21の画像データ(基準位置データ)から判明する画像内におけるマーク位置及びマーク間ピッチ等と、そのアライメントマーク21を撮影したときのステージ18の位置及びCCDカメラ26の位置から、演算処理によって、ステージ18上における感光材料20の載置位置のずれ、移動方向に対する感光材料20の傾きのずれ、及び、感光材料20の寸法精度誤差等を把握し、感光材料20の被露光面に対する適正な露光位置を算出する。そして、後述するスキャナ24による画像露光時に、メモリに記憶されている露光パターンの画像データに基づいて生成する制御信号をその適正な露光位置に合わせ込んで画像露光する露光位置ずれの補正(アライメント)を実行する。
感光材料20がCCDカメラ26の下方を通過すると、CCDカメラ26によるアライメント計測が完了し、続いてステージ18は駆動装置により逆方向へ駆動され、ガイド16に沿って走査方向へ移動する。そして感光材料20はステージ18の移動に伴いスキャナ24の下方を走査方向の下流側へ移動し、被露光面の画像露光領域が露光開始位置に達すると、スキャナ24の各露光ヘッド30は露光ビームを照射して感光材料20の被露光面に対する画像露光を開始する。
ここで、コントローラ28のメモリに記憶された画像データが複数ライン分ずつ順次読み出され、データ処理部で読み出された画像データに基づいて各露光ヘッド30毎に制御信号が生成される。この制御信号には、前述した露光ビームの光量分布を均一化するシェーディング調整と露光量の調整、及びアライメント計測によって得られた感光材料20に対する露光位置ずれの補正が加えられる。そして、ミラー駆動制御部は、この生成及び補正された制御信号に基づいて各露光ヘッド30毎にDMD36のマイクロミラー46の各々をオンオフ制御する。
照明装置38の光ファイバ40から出射されたレーザ光がDMD36に照射されると、DMD36のマイクロミラーがオン状態のときに反射されたレーザ光は、マイクロレンズアレイ54の各対応するマイクロレンズ60を含むレンズ系により感光材料20の露光面上に結像される。このようにして、照明装置38から出射されたレーザ光が画素毎にオンオフされて、感光材料20がDMD36の使用画素数と略同数の画素単位(露光エリア)で露光される。
また、感光材料20がステージ18とともに一定速度で移動されることにより、感光材料20がスキャナ24によりステージ移動方向と反対の方向に走査され、各露光ヘッド30毎に帯状の露光済み領域34(図2に図示)が形成される。
スキャナ24による感光材料20の画像露光が完了すると、ステージ18は駆動装置によりそのまま走査方向の下流側へ駆動されて走査方向の最下流側にある初期位置に復帰する。以上により、露光装置10による感光材料20に対する露光動作が終了する。
次に、本実施形態の露光装置10におけるアライメント機能(露光位置合わせ機能)の校正方法について説明する。
上述したアライメント機能を備える本実施形態の露光装置10では、CCDカメラ26が移動する際に姿勢変化(ローリング、ピッチング、及びヨーイング)を起こし、撮影位置に配置された状態で撮影レンズの光軸中心が正規の位置からずれる場合があるため、その影響により、アライメント機能を用いて露光位置を補正し画像露光を行っても、露光位置が適正位置からずれて許容範囲を超えてしまう場合がある。
このCCDカメラ26の姿勢変化による光軸ずれ要因により精度が影響されるアライメント機能を校正するため、露光装置10の製造時やメンテナンス時、あるいは、露光動作における所定のタイミング(例えば、所定数の感光材料に対する露光動作後等)に、以下に説明する校正方法によりアライメント機能の校正作業を実施する。
この校正作業の手順としては、先にCCDカメラ26の校正を行い、次に露光基準とカメラ光軸中心との位置関係を取得して、その取得情報を露光ヘッド30による露光位置合わせに反映させる手順で行うが、この校正作業は感光材料20に対する露光手順とは別に事前に実施する、又は、感光材料20に対する露光時に同時に実施することができる。また、CCDカメラ26の校正、及び、露光基準とカメラ光軸中心との位置関係の取得については、連続的又は個別に行うことができるが、ここでは、連続的に行う場合で説明する。
CCDカメラ26の校正については、先ず、オペレータが露光対象物となる感光材料20のアライメントマーク21の位置データをコントローラ28に入力する。この位置データの入力によりアライメントマーク21の座標が取得される。
続いて、オペレータがコントローラ28から校正開始の入力操作を行うと、露光装置10の校正動作が開始し、コントローラ28は上記の入力された位置データに基づいて各CCDカメラ26の駆動源を制御し、各CCDカメラ26を感光材料20のアライメントマーク21を撮影する所定の撮影位置にそれぞれ移動させる。このとき、各CCDカメラ26の位置は、各駆動源(ステッピングモータ)のパルスをカウントすることでコントローラ28に制御され、また前述した移動単位(U1)のステップで送られる。
各CCDカメラ26がアライメントマーク21の撮影位置に配置されると、ステージ18がガイド16に沿ってアライメント計測方向の上流側から下流側に移動し、基準板170のカメラ位置検出部170Bを各CCDカメラ26の下方(視野内)に配置する位置まで移動する。
各CCDカメラ26の視野内に基準板170のカメラ位置検出部170Bが配置されると、各CCDカメラ26はコントローラ28により制御されてカメラ位置検出部170Bをそれぞれ撮影する。このとき、各CCDカメラ26は、カメラ位置検出部170Bに配列された複数の検出用マーク177A、177B、177Cのうち少なくとも1つをそれぞれ撮影する。
次に、撮影された検出用マーク177A、177B、177Cの視野中心(光軸中心)からの位置ずれ量を、コントローラ28が画像処理等によって計測する。なお、ここでは、撮影した検出用マークが検出用マーク177A、検出用マーク177B、及び検出用マーク177Cの何れであるかは、パターンマッチング等の画像処理を用いて切り替える。
ここで、撮影された検出用マーク177A、177B、177Cが、複数設けられたうちの何れの検出用マークであるかは上記のパルスによって特定し、また、各検出用マーク177A、177B、177Cマークの絶対位置データは予め別の測定手段によって測定し、コントローラ28に記憶されており、この絶対位置データと、上記の計測結果(計測値)との差分を演算して、基準板170と各CCDカメラ26の光軸中心との位置ずれデータを取得する。この計測及び演算結果から、アライメントマーク21を撮影する位置(アライメント計測位置)における各CCDカメラ26の光軸中心ずれ量を補正するための校正用データが得られ、この校正用データはコントローラ28のメモリに記憶される。そして、CCDカメラ26の校正動作を終了し、次に、露光基準とカメラ光軸中心との位置関係の取得動作に移行する。
この動作が開始すると、コントローラ28により駆動装置が制御され、ステージ18は基準板170のビーム位置検出部170Aを露光ヘッド30によるレーザビームの照射位置(露光位置)まで移動する。次に、基準板170のビーム位置検出部170Aへ向けて露光ヘッド30からレーザビームを照射し、前述したビーム位置検出動作により、露光基準点の位置を計測する。
ここで、ビーム位置検出部170Aとカメラ位置検出部170Bとは同一の基準板170に設けられており、これらの位置関係は予め別の測定手段により測定されている。これにより、露光基準と、上記のカメラの校正動作で撮影した検出用マーク177A、177B、177Cとの位置関係が判明する。したがって、本動作により計測した露光基準データと、カメラの校正動作により取得したCCDカメラ26の光軸中心との位置ずれデータ(校正用データ)とを演算することで、露光基準とカメラ光軸中心との位置関係を示す露光基準−カメラ光軸中心位置データ(補正データ)が得られ、このデータはコントローラ28のメモリに記憶される。そして、露光基準とカメラ光軸中心との位置関係の取得動作を終了し、校正動作を終了する。
以上のアライメント機能の校正方法によって露光装置10の校正作業を行い、その校正された露光装置10によって、感光材料20を画像露光する場合には、コントローラ28がメモリから露光基準−カメラ光軸中心位置データを読み出し、露光パターンの画像データに基づいて生成する制御信号(露光データ)を、この露光基準−カメラ光軸中心位置データを用いて演算処理することにより校正用データを露光データに反映させる。そしてこの制御信号にさらに、前述したように感光材料20をアライメント計測して取得した露光位置の補正データを反映させる補正制御(アライメント)を実行し、適正な露光位置に合わせ込んで画像露光を行う。
また、本実施形態では、図20(A)〜(D)に示すように、移動単位(U1)のステップで送られる各CCDカメラ26は、何れの位置に配置されても常に検出用マーク177A、177B、177Cの何れか1つを視野内に捉えて撮影する。これにより、感光材料のサイズ(幅寸法)に応じて走査方向と直交する方向でのアライメントマークの位置が変更される場合でも、そのアライメントマークの位置と対応する所定の位置に各CCDカメラ26を配置した状態での校正が可能であり、露光対象の感光材料に対応した高精度な校正を行うことができる。
以上説明した本実施形態の露光装置10では、測定ユニット70に設けられたビーム位置検出手段の基準板170は、露光精度やアライメント精度という装置性能にとって非常に重要な機能を調整(校正)するためのものであるため、ステージ18に高精度に位置決めして取り付けられるとともに、通常は装置寿命まで使用される。そして、露光装置10の製造時には、この基準板170を基準として装置の各機能が数時間を掛けて高精度に調整される。
一方、基準板170(ビーム位置検出部170A)と対になるビーム位置検出手段の受光素子172は、故障や経時による性能低下等によって交換することがあり、更に露光装置10のメンテナンスで取り外されることもある。そのため、この受光素子172の交換や取り外しに伴い、基準板170や測定ユニット70がステージ18から取り外されると、再度多くの時間を掛けて、それらをを高精度に位置決めしてステージ18に取り付け、露光機能の再調整をしなければならなくなり、作業が極めて煩雑になる。
これに対し、本実施形態の露光装置10では、基準板170を取り外さなくとも、取付板190を介して移動ベース74に取り付けられた受光素子172が基準板170と独立して着脱可能であるため(図21及び図22参照)、受光素子172の交換や取り外しに伴い、基準板170を取り付け直し、露光機能の再調整をする必要がなくなり、受光素子172の着脱に伴う再調整作業を軽減することができる。また、受光素子172の取付位置精度は、基準板170に比べて許容範囲が十分大きいため、この受光素子172を取り付け直す際の位置調整及び取付作業は容易となる。
さらに本実施形態では、測定ユニット70に設けられた光量測定手段についても同様に、基準板170を取り外さなくとも、取付板180を介して移動ベース74に取り付けられた受光素子86が基準板170と独立して着脱可能であるため、この受光素子86の着脱に伴う再調整作業も軽減される。
また、本実施形態では、受光素子172が、移動ベース74、ガイドシャフト90A、90B、ボールねじ92、及び駆動源(図示省略)によって構成される移動手段によって、基準板170のビーム位置検出部170Aに形成された複数のスリット120と対応する各露光ビームの検出位置に移動されて配置される。これにより、例えば受光素子を複数のスリット120と同数設けなくとも、本実施形態のように1個の受光素子172によって各スリット120でのビーム検出が可能となる。このように、受光素子の数をスリット120よりも少なくできることにより、ビーム位置検出手段のコストを低減することができる。
また、本実施形態では、ステージ18上に載置された感光材料20の位置情報を取得するために、感光材料20に設けられた露光位置の基準を示すアライメントマーク21を撮影するCCDカメラ26は、感光材料のサイズ等に応じて位置が変更される基準マークの撮影に対応するため、走査方向と交差する方向へ移動可能とされている。この場合、前述したように、移動に伴うCCDカメラ26の姿勢変化で、基準マークの撮影位置に配置されたCCDカメラ26が正規の位置からずれる場合があるため、ステージ18に装着した測定ユニット70に、カメラ位置検出部170Bを設けた基準板170を設置し、この基準板170のカメラ位置検出部170Bを、ステージ18の移動に伴いCCDカメラ26による撮影位置に配置し、その状態で、CCDカメラ26の移動方向に沿って所定の間隔で配列された複数の検出用マーク177A、177B、177Cの何れか1つを読み取ることにより、CCDカメラ26を校正している。これにより、CCDカメラ26の移動に伴う姿勢変化要因により精度が影響されるアライメント機能の校正が可能となり、感光材料20に対する露光位置ずれの補正精度を向上することができる。
そして、ここでは、露光ビームによる露光位置を検出するスリット120(ビーム位置検出部170A)を備える基準板170に、上記のCCDカメラ26の校正を行うためのカメラ位置検出部170Bを一体的に設けていることにより、それらを別体とする場合に比べ、スリット120と検出用マーク177A、177B、177Cとの相対位置が高い精度で計測できるとともに、スリット120と検出用マーク177A、177B、177Cとの間に位置ずれ等が生じにくくなる。これにより、この基準板170のビーム位置検出部170Aと受光素子172とにより検出した露光ビームの露光位置データと、基準板170に一体的に設けられたカメラ位置検出部170Bを用いて取得した校正用データとを演算して求めた補正データであれば、その誤差分が抑えられ、補正データを反映させて行うアライメントをより高精度に行うことができる。また、これらのビーム位置検出部170A及びカメラ位置検出部170Bを別体とした場合に比べて、構成部品の点数を削減できるとともに、測定ユニット70への取り付けも容易になる。
さらにここでは、感光材料20が載置されるステージ18に測定ユニット70を装着してこの測定ユニット70にカメラ位置検出部170Bを設けた基準板170を設置するとともに、この基準板170は、ステージ18に感光材料20を載置した状態でCCDカメラ26による検出用マーク177A、177B、177Cの撮影が可能なように配設していることにより、露光装置10によって感光材料20を露光する場合でも、アライメント機能が校正できるようになり、校正作業が容易になる。
また、本実施形態の露光装置10では、測定ユニット70に設けたビーム位置検出手段の受光素子172、及び、光量測定手段の受光素子86が基準板170と独立してそれぞれ単独で着脱可能であることにより、基準板170をステージに埋設して一体的に設けることも可能である。
図23及び図24に、この基準板170をステージに埋設した場合の一例を示す。図23に示すように、ここでの変形例におけるステージ200は、前端部202が前方へ突出されて、その前端部202の下面に段差部204が凹設されており、段差部204には、前述した測定ユニット70における上板部99及び基準板170を取り除いた構成の測定サブユニット210が取り付けられている。
また、ステージ200の前端部202には、矩形状の開口206が長手方向をステージ200の幅方向(矢印X方向)と平行な向きにされて形成されている。開口206は、図24に示すように、深さ方向における中央付近に周状の段部208が設けられており、この段部208よりも下側の開口面積が、上側の開口面積よりも一回り小さくされている。基準板170は、この開口206に上方から嵌め込まれ、下面の周縁が段部208に当接し深さ方向の位置決めがなされて、ステージ200の前端部202に埋設されている。これにより、露光ヘッド30から基準板170のスリット120へ照射された露光ビームLBは、スリット120を透過して開口206を通過し、スリット120の下方に配置された受光素子172によって受光される。
以上説明した変形例では、基準板170をステージ200の前端部202に埋設していることにより、基準板170の安定性が向上して、振動や歪み等によるビーム位置検出精度の低下を抑制できる。また、本実施形態の露光装置10のように、大面積を露光するために多数の露光ヘッド30を搭載して基準板170を大型化した場合でも、ステージ200に安定して設置することができ、そのような基準板の大型化にも容易に対応できるようになる。
以上、本発明を上述した特定の実施形態により詳細に説明したが、本発明はそれに限定されるものではなく、本発明の範囲内にて他の種々の形態が実施可能である。
例えば、上記の実施の形態では、測定ユニット70にビーム位置検出手段、光量測定手段、及び校正用部材を一体構成してステージ18の同一端部(移動方向における下流側端部)に配置しているが、このステージ18の同一端部に配置するものはビーム位置検出手段、光量測定手段のみでもよい。また、ステージ18の同一端部に配置するビーム位置検出手段及び光量測定手段は一体的に構成せず、別体として各ユニットを隣接配置するようにしてもよい。
また、上述した露光装置10では、光量測定手段(光量測定器72)の設置数を1つとしているが、この光量測定手段は、スキャナ24に設けた複数の露光ヘッド30と同数以下で且つ複数としてもよい。その場合には、複数の露光ヘッド30に対する露光ビームの光量測定を、複数の光量測定手段によって同時に行うことができるため、上述した露光装置10のように、全露光ヘッドの光量測定を1つの光量測定手段で行う場合に比べて測定時間を短縮することができ、生産性を更に向上することができる。
また、上記の実施の形態では、複数の露光ヘッド30から照射された各光ビームの光量分布を均一化するシェーディング調整及び露光量の調整を行うために、光量測定手段(光量測定器72)によって各光ビームの光量分布及び露光量を測定する場合で説明したが、この光量測定手段については、シェーディング調整又は露光量の調整の何れか一方を行うために、各光ビームの光量分布又は露光量を測定する構成のものでもよい。
また、CCDカメラ26を校正するために使用する検出用マーク(校正用基準マーク)が円形、十字形、及び正方形の3種類の場合について説明したが、この検出用マークの形状についてはそれら以外の形状を用いることが可能であり、さらに、4種類以上の検出用マークを用いることも可能である。その場合でも、前述したように、CCDカメラ26の視野及び移動単位と、検出用マークの配列ピッチとを所定の条件で規定することにより、同等の機能を実現することができる。
また、上記の実施の形態における露光装置10の感光材料20に対する露光動作では、ステージ18を移動させつつ感光材料20を走査露光する場合について説明したが、露光動作はこのような走査露光に限らず、他にも、最初の露光位置まで移動させた感光材料20を一旦停止して所定の露光領域のみを露光し、その露光後に、感光材料20を次の露光位置まで移動させて再び停止し次の所定の露光領域のみを露光する、というように、感光材料20の移動→露光位置に停止→画像露光→移動・・・・・・を繰り返すような動作としてもよい。
また、上記の実施の形態における露光装置10では、空間変調素子としてDMDを備えた露光ヘッドについて説明したが、このような反射型空間光変調素子の他に、透過型空間光変調素子(LCD)を使用することもできる。例えば、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)や、電気光学効果により透過光を変調する光学素子(PLZT素子)や液晶光シャッタ(FLC)等の液晶シャッターアレイなど、MEMSタイプ以外の空間光変調素子を用いることも可能である。なお、MEMSとは、IC製造プロセスを基盤としたマイクロマシニング技術によるマイクロサイズのセンサ、アクチュエータ、そして制御回路を集積化した微細システムの総称であり、MEMSタイプの空間光変調素子とは、静電気力を利用した電気機械動作により駆動される空間光変調素子を意味している。さらに、Grating Light Valve(GLV)を複数ならべて二次元状に構成したものを用いることもできる。これらの反射型空間光変調素子(GLV)や透過型空間光変調素子(LCD)を使用する構成では、上記したレーザの他にランプ等も光源として使用可能である。
また、上記の実施の形態における光源としては、合波レーザ光源を複数備えたファイバアレイ光源、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源、複数の発光点が二次元状に配列された光源(たとえば、LDアレイ、有機ELアレイ等)、等が適用可能である。
また、上記の露光装置10には、露光により直接情報が記録されるフォトンモード感光材料、露光により発生した熱で情報が記録されるヒートモード感光材料の何れも使用することができる。フォトンモード感光材料を使用する場合、レーザ装置にはGaN系半導体レーザ、波長変換固体レーザ等が使用され、ヒートモード感光材料を使用する場合、レーザ装置にはAlGaAs系半導体レーザ(赤外レーザ)、固体レーザが使用される。
本発明の一実施形態に係る露光装置を示す斜視図である。 本発明の一実施形態に係るスキャナの構成と、ステージ及び測定ユニットの位置関係を示す斜視図である。 本発明の一実施形態に係る露光ヘッドの光学系を示す概略構成図である。 (A)は本発明の第1の実施形態に係る露光装置における、DMD(デジタルマイクロミラーデバイス)を傾斜させない場合の各マイクロミラーによる露光ビームの走査軌跡を示す要部平面図、(B)はDMDを傾斜させた場合の露光ビームの走査軌跡を示す要部平面図である。 本発明の一実施形態に係る露光装置に設けられたDMDの構成を示す部分拡大図である。 (A)及び(B)は図5のDMDの動作を説明するための説明図である。 本発明の一実施形態に係るアライメントユニットの構成を示す斜視図である。 本発明の一実施形態に係る測定ユニットの構成を示す斜視図である。 本発明の一実施形態に係る測定ユニットを模式的に示す平面図である。 本発明の一実施形態に係る光量測定器におけるスリットを利用して点灯している画素の光量を検出する状態を示す説明図である。 本発明の一実施形態に係る光量測定器により露光ビームの光量分布と露光量とを検出する状態を示す説明図である。 本発明の一実施形態に係る光量測定器により測定した光量分布を例示するグラフ図である。 本発明の一実施形態に係る露光装置における露光ビームの特性を例示するグラフ図である。 本発明の一実施形態に係る露光装置において、特定の露光ヘッドによって露光される特定の露光エリアと、他の露光ヘッドによって露光されるとともに特定の露光エリアにつなげようとする他の露光エリアとの位置関係を示す平面図である。 図14における特定の露光エリア及び他の露光エリアと、測定ユニットの基準板に設けられたスリットとの位置関係を示す平面図である。 特定の露光ヘッドの繋ぎ画素である特定の繋ぎ画素の位置をスリットによって特定する手順を示す説明図である。 他の露光ヘッドの画素のうち、特定の露光エリアにつなげようとする画素の位置をスリットによって特定する手順を示す説明図である。 他の露光ヘッドの画素のうち、図17の手順によって位置が特定された画素から実際の繋ぎ画素を選択する手順を示す説明図である。 特定の繋ぎ画素と他の繋ぎ画素とによって特定の露光エリアと他の露光エリア32とが繋げられた状態を示す平面図である。 (A)〜(D)は、本発明の一実施形態に係るカメラ位置検出部をCCDカメラにより撮影する際の検出用マークと撮影視野の関係を示す説明図である。 図8の測定ユニットにおける移動ベース付近の構成を拡大して示す拡大斜視図である。 図21に示した移動ベースから受光素子が取り外された状態を示す分解斜視図である。 本発明の変形例に係るステージに基準板が埋設された状態を示す斜視図である。 図23に示したステージと基準板を部分断面にて示す側断面図である。
符号の説明
10 露光装置
18 ステージ
20 感光材料
24 スキャナ(露光手段)
28 コントローラ(つなぎ補正手段)
30 露光ヘッド(露光手段)
32 露光エリア(露光領域)
48 露光ビーム
74 移動ベース(移動手段)
90A ガイドシャフト(移動手段)
90B ガイドシャフト(移動手段)
92 ボールねじ(移動手段)
170 基準板(ビーム位置検出手段/基準板)
170A ビーム位置検出部(ビーム位置検出手段)
172 受光素子(ビーム位置検出手段/光検出器)
180 取付板(着脱手段)
184 ネジ(着脱手段)
200 ステージ
202 前端部(一端部)
206 開口
LB 露光ビーム

Claims (5)

  1. 画像情報に応じて変調された光ビームを照射して感光材料を走査露光する複数の露光ヘッドと、
    前記複数の露光ヘッドに対して相対移動し、感光材料を走査方向に沿って搬送するステージと、
    前記ステージにおける移動方向の一端部に設けられ、前記複数の露光ヘッドから照射された各光ビームの露光面上での露光位置を検出するビーム位置検出手段と、
    を備え、
    前記ビーム位置検出手段は、
    光ビームを透過させるスリット状の透光部が前記複数の露光ヘッドに対応して複数形成された基準板と、
    前記透光部を透過した光ビームを検出するとともに前記基準板と独立して着脱可能とされた光検出器と、
    を有することを特徴とする露光装置。
  2. 画像情報に応じて変調された光ビームを照射して感光材料を走査露光する複数の露光ヘッドと、
    前記複数の露光ヘッドに対して相対移動し、感光材料を走査方向に沿って搬送するステージと、
    前記ステージにおける移動方向の一端部に設けられ、前記複数の露光ヘッドから照射された各光ビームの露光面上での露光位置を検出するビーム位置検出手段と、
    を備え、
    前記ビーム位置検出手段は、
    光ビームを透過させるスリット状の透光部が前記複数の露光ヘッドに対応して複数形成された基準板と、
    前記透光部を透過した光ビームを検出する光検出器と、
    前記基準板と独立して前記光検出器を着脱可能に取り付ける着脱手段と、
    を有することを特徴とする露光装置。
  3. 前記基準板が前記ステージの前記一端部に埋設されていることを特徴とする請求項1又は請求項2記載の露光装置。
  4. 前記ビーム位置検出手段は更に、前記光検出器を前記複数の透光部と対応する各光ビームの検出位置に移動させる移動手段を有することを特徴とする請求項1〜請求項3の何れか1項記載の露光装置。
  5. 前記ビーム位置検出手段によって取得した前記各光ビームの露光面上でのビーム位置情報に基づいて、前記複数の露光ヘッドから照射された各光ビームにより露光される露光領域のつなぎを補正するつなぎ補正手段を有することを特徴とする請求項1〜請求項4の何れか1項記載の露光装置。
JP2005133407A 2005-04-28 2005-04-28 露光装置 Pending JP2006308994A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133407A JP2006308994A (ja) 2005-04-28 2005-04-28 露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133407A JP2006308994A (ja) 2005-04-28 2005-04-28 露光装置

Publications (1)

Publication Number Publication Date
JP2006308994A true JP2006308994A (ja) 2006-11-09

Family

ID=37475935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133407A Pending JP2006308994A (ja) 2005-04-28 2005-04-28 露光装置

Country Status (1)

Country Link
JP (1) JP2006308994A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054737A (ja) * 2007-08-24 2009-03-12 Nikon Corp マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP2009163242A (ja) * 2007-12-28 2009-07-23 Asml Netherlands Bv 空間光変調器の較正
JP2011138058A (ja) * 2009-12-28 2011-07-14 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2011237684A (ja) * 2010-05-12 2011-11-24 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2013543647A (ja) * 2010-06-11 2013-12-05 オーボテック リミテッド 光学シアリングのシステムと方法
US9304401B2 (en) 2011-03-29 2016-04-05 Asml Netherlands B.V. Measurement of the position of a radiation beam spot in lithography
WO2016136690A1 (ja) * 2015-02-23 2016-09-01 株式会社ニコン 計測装置、リソグラフィシステム及び露光装置、並びに管理方法、重ね合わせ計測方法及びデバイス製造方法
JP2021152659A (ja) * 2017-01-20 2021-09-30 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated 非ブレーズドdmdを伴う解像度強化型のデジタルリソグラフィ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054737A (ja) * 2007-08-24 2009-03-12 Nikon Corp マーク検出方法及び装置、位置制御方法及び装置、露光方法及び装置、並びにデバイス製造方法
JP2009163242A (ja) * 2007-12-28 2009-07-23 Asml Netherlands Bv 空間光変調器の較正
JP2011138058A (ja) * 2009-12-28 2011-07-14 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2011237684A (ja) * 2010-05-12 2011-11-24 Hitachi High-Technologies Corp 露光装置、露光方法、及び表示用パネル基板の製造方法
JP2013543647A (ja) * 2010-06-11 2013-12-05 オーボテック リミテッド 光学シアリングのシステムと方法
US9304401B2 (en) 2011-03-29 2016-04-05 Asml Netherlands B.V. Measurement of the position of a radiation beam spot in lithography
WO2016136690A1 (ja) * 2015-02-23 2016-09-01 株式会社ニコン 計測装置、リソグラフィシステム及び露光装置、並びに管理方法、重ね合わせ計測方法及びデバイス製造方法
CN107250915A (zh) * 2015-02-23 2017-10-13 株式会社尼康 测量装置、光刻***及曝光装置、以及管理方法、重迭测量方法及组件制造方法
JPWO2016136690A1 (ja) * 2015-02-23 2017-11-30 株式会社ニコン 計測装置、リソグラフィシステム及び露光装置、並びに管理方法、重ね合わせ計測方法及びデバイス製造方法
JP2021152659A (ja) * 2017-01-20 2021-09-30 アプライド マテリアルズ インコーポレイテッドApplied Materials, Incorporated 非ブレーズドdmdを伴う解像度強化型のデジタルリソグラフィ
JP7337877B2 (ja) 2017-01-20 2023-09-04 アプライド マテリアルズ インコーポレイテッド 非ブレーズドdmdを伴う解像度強化型のデジタルリソグラフィ

Similar Documents

Publication Publication Date Title
JP4450739B2 (ja) 露光装置
KR100742597B1 (ko) 노광장치의 교정방법, 노광방법 및 노광장치
JP4322837B2 (ja) 露光装置の校正方法及び露光方法並びに露光装置
JP4328385B2 (ja) 露光装置
KR101485437B1 (ko) 기준 위치 측정 장치 및 방법, 및 패턴 형성 장치
JP4401308B2 (ja) 露光装置
US20090097002A1 (en) Exposure device
JP4486323B2 (ja) 画素位置特定方法、画像ずれ補正方法、および画像形成装置
JP2006308994A (ja) 露光装置
JP4533785B2 (ja) アライメントセンサの位置校正方法、基準パターン校正方法、露光位置補正方法、校正用パターン及びアライメント装置
KR20040111029A (ko) 화소위치 특정방법, 화상어긋남 보정방법 및 화상형성장치
US20100123745A1 (en) Frame data creation device, creation method, creation program, storage medium storing the program, and imaging device
JP4273030B2 (ja) 露光装置の校正方法及び露光装置
US7369149B2 (en) Image recording method and image recording device for correcting optical magnification errors
US20090251676A1 (en) Exposure apparatus and exposure method
JP2006337873A (ja) 露光装置及び露光方法
JP2006337878A (ja) 露光装置及び露光方法
JP2006234921A (ja) 露光装置および露光方法
JP2005294373A (ja) マルチビーム露光装置
JP2006337874A (ja) 露光装置及び露光方法
JP5209946B2 (ja) 焦点位置検出方法および描画装置
JP2006220799A (ja) 露光方法及び装置
US20080123072A1 (en) Projection Head Focus Position Measurement Method And Exposure Method
JP2008076590A (ja) 描画位置測定方法および装置
JP2006030791A (ja) 光学装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070201