JP2006308264A - Heat transporting device - Google Patents

Heat transporting device Download PDF

Info

Publication number
JP2006308264A
JP2006308264A JP2005134595A JP2005134595A JP2006308264A JP 2006308264 A JP2006308264 A JP 2006308264A JP 2005134595 A JP2005134595 A JP 2005134595A JP 2005134595 A JP2005134595 A JP 2005134595A JP 2006308264 A JP2006308264 A JP 2006308264A
Authority
JP
Japan
Prior art keywords
working fluid
container
heat
wick
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134595A
Other languages
Japanese (ja)
Inventor
Satoru Sadahiro
哲 貞廣
Masataka Mochizuki
正孝 望月
Yuji Saito
祐士 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005134595A priority Critical patent/JP2006308264A/en
Publication of JP2006308264A publication Critical patent/JP2006308264A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transporting device having high heat transporting performance, with respect to the heat transporting device wherein an evaporating portion container for evaporating working fluid transporting the heat as latent heat and a condensing portion condensing the steam of the working fluid are connected by a circulating pipe conduit. <P>SOLUTION: In this heat transporting device wherein a steam pipe 6 communicated with the evaporating portion container 2 is communicated with the condensing portion 3, and a liquid returning pipe 4 communicated with the evaporating portion container 2 is communicated with the condensing portion 3 to form a circular flow channel as a whole, the condensable working fluid 7 is sealed in the circular flow channel, and further wicks 11, 12 impregnated with the working fluid 7 and generating capillary pressure are mounted inside of the evaporating portion container 2, at least a part of a liquid flow channel from the liquid returning pipe 4 to the inside of the evaporating portion container 2 is formed by a glass tube 8 having heat conductivity lower than that of the evaporating portion container 2, and one end portion of the glass tube 8 is communicated with the wick 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、潜熱として熱を輸送する作動流体を蒸発させる蒸発部容器と、その作動流体の蒸気を凝縮させる凝縮部とが、循環管路によって連結された熱輸送装置に関するものである。   The present invention relates to a heat transport device in which an evaporating part container that evaporates a working fluid that transports heat as latent heat and a condensing part that condenses the vapor of the working fluid are connected by a circulation line.

密閉した容器(コンテナ)や管路の内部に流体を封入し、外部から供給した熱を低温の箇所に輸送して、冷却する装置が、従来、知られている。この種の一例として、前記容器や管路の内部に、水やアルコール、アンモニアなどの液体を充填した構造のヒートパイプがある。このようなヒートパイプでは、内部の液体がいわゆる作動流体として作用するため、入熱のある箇所から低温の箇所に効率よく熱が輸送されて冷却が行われる。   2. Description of the Related Art Conventionally, a device is known that encloses a fluid in a sealed container (container) or pipe line, transports the heat supplied from the outside to a low-temperature location, and cools it. As an example of this type, there is a heat pipe having a structure in which liquid such as water, alcohol, ammonia, or the like is filled in the container or pipe. In such a heat pipe, since the liquid inside acts as a so-called working fluid, heat is efficiently transported from a place where heat is input to a low temperature place to perform cooling.

また、トップヒートモードを動作態様とするヒートパイプの一例として、コンテナの内部にウィックを備えたものがある。このウィックとしては、例えばコンテナの内壁面にその長さ方向に向けて形成された多数条の細溝(グルーブ)、あるいはブロンズなどの微小粉末をコンテナの内壁面に焼結させて成る多孔構造の粉末焼結体が挙げられる。   Further, as an example of a heat pipe having a top heat mode as an operation mode, there is one having a wick inside a container. This wick has, for example, a multi-layered groove formed on the inner wall surface of the container in the length direction, or a porous structure formed by sintering fine powder such as bronze on the inner wall surface of the container. A powder sintered body is mentioned.

上記の構造では、容器や管路の内部に作動流体の蒸気および液相の作動流体が同時に存在している。この液相の作動流体は、容器や管路に配置されるウイックの毛細管圧力などによって、ヒートパイプの内部を蒸発部側に向けて還流する。これに対して作動流体の蒸気は、蒸発部側から作動流体の凝縮の生じる凝縮部(コンデンサ)に向けて流動する。したがって、前記容器や管路の内部において、還流する液相の作動流体の流動方向と作動流体の蒸気の流動方向とが互いに反対となる。そのために、液相の作動流体が作動流体の蒸気によって吹き飛ばされ、あるいは吹き戻され、これがいわゆる飛散限界となってヒートパイプの熱輸送能力が制限されることがある。   In the above structure, the working fluid vapor and the liquid working fluid are simultaneously present inside the container and the pipe line. This liquid-phase working fluid recirculates toward the evaporation portion side in the heat pipe by the capillary pressure of the wick disposed in the container or the conduit. On the other hand, the vapor of the working fluid flows from the evaporation unit side toward the condensing unit (condenser) where the working fluid condenses. Accordingly, the flow direction of the flowing liquid-phase working fluid and the flow direction of the vapor of the working fluid are opposite to each other inside the container or the pipe line. For this reason, the liquid-phase working fluid is blown off or blown back by the working fluid vapor, which becomes the so-called scattering limit, and the heat transport capability of the heat pipe may be limited.

従来、このような不都合を解消できる熱輸送装置としてヒートパイプをループ型としたものが開発されている。これは、外部から入熱のある蒸発部と作動流体が放熱して凝縮する凝縮部とを分離して構成し、かつこれらの液相の作動流体が蒸発部に向けて還流する液戻り管と作動流体の蒸気の流動する蒸気管とによって環状(ループ状)に連結した構造のヒートパイプである。この種の構造の一例が特許文献1、特許文献2、特許文献3、特許文献4に記載されている。
特開平10−160368号公報 特開2003−148882号公報 特開2002−168579号公報 特開2001−66080号公報
2. Description of the Related Art Conventionally, a heat pipe having a loop shape has been developed as a heat transport device that can eliminate such inconvenience. This is configured by separating the evaporation section having heat input from the outside and the condensation section in which the working fluid dissipates heat and condenses, and a liquid return pipe in which these liquid-phase working fluid recirculates toward the evaporation section, It is a heat pipe having a structure connected in a ring shape (loop shape) with a steam pipe through which a working fluid vapor flows. Examples of this type of structure are described in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4.
Japanese Patent Laid-Open No. 10-160368 JP 2003-148882 A JP 2002-168579 A JP 2001-66080 A

しかしながら、地上において、トップヒートモードでルート型ヒートパイプを使用する場合、凝縮部の内部に供給された液相の作動流体がその凝縮部よりも上方に向かって流動する際にその重力によって下方に引き戻される。すなわち、凝縮部の内部に在る液相の作動流体が移動しない、いわゆるバックフローが起こる。   However, on the ground, when the root type heat pipe is used in the top heat mode, when the liquid-phase working fluid supplied to the inside of the condensing part flows upward from the condensing part, it is lowered by the gravity. Pulled back. That is, a so-called back flow occurs in which the liquid-phase working fluid in the condensing part does not move.

したがって、トップヒートモードにおいて、コンテナの内部にウイックがある場合には、その液相の作動流体がウイックの内部に止まってしまうため、ウイックに十分な毛細管圧力が生じず、作動流体の供給が不足してループ型ヒートパイプの内部にいわゆるドライアウト(表面張力の遮断、機能停止)が発生する。   Therefore, in the top heat mode, if there is a wick inside the container, the working fluid in the liquid phase stops inside the wick, so that sufficient capillary pressure does not occur in the wick and the supply of working fluid is insufficient. As a result, a so-called dry out (blocking of surface tension, function stoppage) occurs inside the loop heat pipe.

このような現象は、上方に向かって流動する液相の作動流体の重力の影響によって顕著になり、ヒートパイプの性能が低下したり、ヒートパイプの不動作が生じる場合などがあり、結局は熱輸送能力が劣る不都合が生じる。   Such a phenomenon becomes prominent due to the influence of gravity of the liquid-phase working fluid that flows upward, and the performance of the heat pipe may deteriorate or the heat pipe may not operate. The inconvenience of poor transport capacity arises.

この発明は、上記の技術的課題に着目してなされたものであり、熱輸送能力の高い熱輸送装置を提供することを目的とするものである。   The present invention has been made paying attention to the above technical problem, and an object thereof is to provide a heat transport device having a high heat transport capability.

上記の目的を達成するために、請求項1の発明は、蒸発部容器に連通した蒸気管が凝縮部に連通するとともに、前記蒸発部容器に連通した液戻り管が前記凝縮部に連通することにより、全体として環状の流路が形成され、その環状の流路に凝縮性の作動流体が封入されており、さらに前記蒸発部容器の内部に、前記作動流体を浸透させて毛細管圧力を生じさせるウイックが配置された熱輸送装置であって、前記液戻り管から前記蒸発部容器の内部に至る液流路の少なくとも一部が、前記蒸発部容器よりも熱伝導率が低い管状部材によって形成され、この管状部材の一端部が前記ウイックと連通していることを特徴とする装置である。   In order to achieve the above object, according to the first aspect of the present invention, the steam pipe communicating with the evaporation section container communicates with the condensing section, and the liquid return pipe communicating with the evaporation section container communicates with the condensing section. As a result, an annular channel is formed as a whole, a condensable working fluid is sealed in the annular channel, and the working fluid is permeated into the evaporation section container to generate a capillary pressure. A heat transport apparatus in which a wick is disposed, wherein at least a part of a liquid flow path from the liquid return pipe to the inside of the evaporation section container is formed by a tubular member having a lower thermal conductivity than the evaporation section container. The tubular member has one end communicating with the wick.

請求項1の発明によれば、液戻り管から蒸発部容器の内部に至る液流路の少なくとも一部が、蒸発部容器よりも熱伝導率が低い管状部材によって形成され、この管状部材の一端部がウイックと連通しているので、蒸発部容器からの熱の影響を小さくすることができる。したがって、蒸発部コンテナの内部では、管状部材の内部に移動した作動流体は液相の状態となる。そのため、ウイックに十分な毛細管圧力が生じるので、その重力の影響により液相の作動流体がウイックの内部に止まることがない。その結果、作動流体の供給が促進されるので、ドライアウトの発生を防止することができる。   According to the first aspect of the present invention, at least a part of the liquid flow path from the liquid return pipe to the inside of the evaporation section container is formed by the tubular member having a lower thermal conductivity than the evaporation section container, and one end of the tubular member Since the section communicates with the wick, the influence of heat from the evaporation section container can be reduced. Accordingly, the working fluid that has moved into the tubular member is in a liquid phase inside the evaporation section container. Therefore, since sufficient capillary pressure is generated in the wick, the working fluid in the liquid phase does not stop inside the wick due to the influence of the gravity. As a result, the supply of the working fluid is promoted, and the occurrence of dryout can be prevented.

以下、本発明を実施した最良の形態について説明する。この発明によるループ型ヒートパイプ1は、図1に示すように、蒸発部コンテナ2の流入口2Aと凝縮部3の流出口3Bとが、液戻り管(リキッドライン)4によって接続され、さらに蒸発部コンテナ2の流出口2Bと凝縮部3の流入口3Aとが、蒸気管(ベーパライン)6によって接続され、全体として密閉された環状(ル−プ状)に形成されている。この蒸発部コンテナ2の内壁には細溝5が軸線方向に沿って形成されている。したがって、蒸発部コンテナ2は、液戻り管4および蒸気管6に熱を伝達することができる。   The best mode for carrying out the present invention will be described below. In the loop heat pipe 1 according to the present invention, as shown in FIG. 1, the inlet 2A of the evaporator section 2 and the outlet 3B of the condenser 3 are connected by a liquid return pipe (liquid line) 4 and further evaporated. The outlet 2B of the partial container 2 and the inlet 3A of the condensing part 3 are connected by a steam pipe (vapor line) 6 and are formed in a closed annular shape (loop shape) as a whole. A narrow groove 5 is formed in the inner wall of the evaporation section container 2 along the axial direction. Therefore, the evaporation container 2 can transfer heat to the liquid return pipe 4 and the steam pipe 6.

上記凝縮部3の内部には、凝縮部3の内部に輸送された蒸気を積極的に冷却するための冷却水が流通するコンデンサチューブなどの冷却機構(図示せず)が設けられている。このループ型ヒートパイプ1の内部は、ほぼ完全に脱気された後に、水やアルコールなどの凝縮性の流体が作動流体7として封入されている。さらに、蒸発部コンテナ2および液戻り管4の各内部は液流路となっており、その液流路がガラス管8によって形成されている。なお、蒸発部コンテナ2の内面とガラス管8の外面との間に断熱材を設けてもよい。この断熱材は、蒸発部コンテナ2の熱を保持することができるので、液相の作動流体7の高温、高圧を維持することができる。また、ループ型ヒートパイプ1の材質としては、熱伝導性に優れる純銅や銅合金もしくはアルミニウム、ニッケル等の金属が採用されている。   A cooling mechanism (not shown) such as a condenser tube through which cooling water for positively cooling the steam transported into the condensing unit 3 flows is provided inside the condensing unit 3. The inside of the loop heat pipe 1 is almost completely degassed, and then a condensable fluid such as water or alcohol is enclosed as a working fluid 7. Further, each of the inside of the evaporation section container 2 and the liquid return pipe 4 is a liquid flow path, and the liquid flow path is formed by the glass tube 8. A heat insulating material may be provided between the inner surface of the evaporation container 2 and the outer surface of the glass tube 8. Since this heat insulating material can hold | maintain the heat | fever of the evaporation part container 2, the high temperature and high pressure of the liquid-phase working fluid 7 can be maintained. Further, as the material of the loop type heat pipe 1, pure copper, copper alloy, or metal such as aluminum or nickel, which is excellent in thermal conductivity, is employed.

蒸発部コンテナ2は円筒形状に構成されており、その内部にウイック11とウイック12とが収納されている。具体的には、蒸発部コンテナ2の内部において、ウイック12の内部にはウイック11が設けられており、蒸発部コンテナ2の流出口2B側では、ウイック12の端部12Aが、ウイック11の端部11Aを覆っている。また、ウイック12の端部12Aと蒸発部コンテナ2の流出口2Bとの間には空間部13が形成されている。さらに、蒸発部コンテナ2の流入口2A側では、蒸発部コンテナ2の外周面が半径方向に突出するように形成されており、その突出部2Cの内面とウイック12の他端部12Bとの間にも空間部14が形成されている。   The evaporation part container 2 is comprised by the cylindrical shape, and the wick 11 and the wick 12 are accommodated in the inside. Specifically, the wick 11 is provided inside the wick 12 inside the evaporation section container 2, and the end 12 </ b> A of the wick 12 is the end of the wick 11 on the outlet 2 </ b> B side of the evaporation section container 2. Covers part 11A. A space portion 13 is formed between the end portion 12 </ b> A of the wick 12 and the outlet 2 </ b> B of the evaporation portion container 2. Further, on the inlet 2A side of the evaporation section container 2, the outer peripheral surface of the evaporation section container 2 is formed so as to protrude in the radial direction, and between the inner surface of the protruding section 2C and the other end 12B of the wick 12. Also, a space portion 14 is formed.

上記ウイック11は、作動流体7をループ型ヒートパイプ1の内部に循環させるための毛細管圧力を生じるものであり、例えばセラミックやニッケル、銅、銅酸化物等を原料とした多孔質材、あるいはポリエチレン樹脂(例えばUltra High Molecular Weightポリエチレン)などの高分子材料を原料とした多孔質材であって、ウイック12よりも実効毛細管半径が小さく、ウイック12の毛細管圧力よりも大きい毛細管圧力を生じる構成となっている。一方、ウイック12は、例えば金網やファイバーウイックであって、ウイック11よりも相対的に流路が大きい構成となっており、ウイック11の外周方向に沿って設けられている。また、ウイック11の内周方向には中空部分が形成されており、その中空部分に管状のガラス管8が挿入されている。つまり、ウイック11とガラス管8の一端部8Aとが連通している。なおこの具体例では、蒸発部コンテナ2の材質を銅としており、その蒸発部コンテナ2よりも熱伝導率が低い管状部材としてガラス管が採用されている。   The wick 11 generates a capillary pressure for circulating the working fluid 7 inside the loop heat pipe 1. For example, a porous material made of ceramic, nickel, copper, copper oxide, or the like, or polyethylene It is a porous material made of a polymer material such as resin (for example, Ultra High Molecular Weight polyethylene), and has an effective capillary radius smaller than that of the wick 12 and generates a capillary pressure larger than the capillary pressure of the wick 12. ing. On the other hand, the wick 12 is, for example, a wire mesh or a fiber wick, and has a relatively larger flow path than the wick 11, and is provided along the outer peripheral direction of the wick 11. Further, a hollow portion is formed in the inner peripheral direction of the wick 11, and a tubular glass tube 8 is inserted into the hollow portion. That is, the wick 11 and the one end 8 </ b> A of the glass tube 8 communicate with each other. In this specific example, the material of the evaporation section container 2 is copper, and a glass tube is employed as a tubular member having a lower thermal conductivity than the evaporation section container 2.

次にこの発明の作用について具体的に説明する。   Next, the operation of the present invention will be specifically described.

先ず、蒸発部コンテナ2に対して熱Qが伝達されると、蒸発部コンテナ2の内部に供給された液相の作動流体7が加熱されて蒸発する。具体的には、空間部14の内部に在る液相の作動流体7が蒸発部コンテナ2の熱Qによって蒸発した状態となっており、その作動流体7の蒸気は、細溝5の間に形成された間隙を通って、空間部13に充満する。一方、細溝5の内側に設けられたウイック12には、液相の作動流体7の蒸発に伴うメニスカスの低下が生じ、それに伴って毛細管圧力が生じる。ウイック11は、ウイック12よりも大きい毛細管圧力を生じる構成となっているので、液相の作動流体7をウイック11からウイック12へ流動させる。すなわち、ガラス管8の内部に在る液相の作動流体7は蒸発部コンテナ2の内部に流出する。   First, when the heat Q is transmitted to the evaporation section container 2, the liquid-phase working fluid 7 supplied to the inside of the evaporation section container 2 is heated and evaporated. Specifically, the liquid-phase working fluid 7 present in the space 14 is in a state of being evaporated by the heat Q of the evaporator container 2, and the vapor of the working fluid 7 is interposed between the narrow grooves 5. The space 13 is filled through the formed gap. On the other hand, in the wick 12 provided inside the narrow groove 5, the meniscus is lowered due to the evaporation of the liquid-phase working fluid 7, and accordingly, capillary pressure is generated. Since the wick 11 is configured to generate a capillary pressure larger than that of the wick 12, the liquid-phase working fluid 7 flows from the wick 11 to the wick 12. In other words, the liquid-phase working fluid 7 present in the glass tube 8 flows out into the evaporator container 2.

ループ型ヒートパイプ1は重力のある環境で使用されているので、液戻り管4の内部に供給される作動流体7には常に重力(流動方向と反対の方向に作用する力)がかかっている。具体的には、ガラス管8の内部に在る液相の作動流体7には常に重力がかかっている。   Since the loop heat pipe 1 is used in an environment with gravity, the working fluid 7 supplied to the inside of the liquid return pipe 4 is always subjected to gravity (force acting in the direction opposite to the flow direction). . Specifically, gravity is always applied to the liquid-phase working fluid 7 in the glass tube 8.

ところで、上述したようにガラス管8は蒸発部コンテナ2よりも熱伝導率が低い部材であるので、蒸発部コンテナ2に伝達された熱Qは、ガラス管8に伝わり難い。例えば、蒸発部コンテナ2から液戻り管4に熱が伝達された場合でも、ガラス管8の内部を移動する液相の作動流体7に対して熱の影響を小さくすることができる。そのため、そのガラス管8の内部に移動した作動流体7を常に液相の状態とすることができるので、例えば液戻り管4の内部で液相の作動流体7がその重力により下方に引き戻された場合でも、ウイックに対する濡れ性が良好になる。その結果、ウイックに十分な毛細管圧力が生じるので、その重力の影響により液相の作動流体7がウイックの内部に止まることがない。そのため、蒸発部コンテナ2の内部への液相の作動流体7の供給が促進されるので、ドライアウトの発生を防止することができる。   By the way, as described above, the glass tube 8 is a member having a lower thermal conductivity than the evaporation unit container 2, so that the heat Q transmitted to the evaporation unit container 2 is not easily transmitted to the glass tube 8. For example, even when heat is transferred from the evaporation section container 2 to the liquid return pipe 4, the influence of heat on the liquid-phase working fluid 7 that moves inside the glass pipe 8 can be reduced. Therefore, the working fluid 7 that has moved to the inside of the glass tube 8 can always be in a liquid phase state. For example, the working fluid 7 in the liquid phase is pulled back downward due to the gravity inside the liquid return tube 4. Even in this case, the wettability with respect to the wick is improved. As a result, a sufficient capillary pressure is generated in the wick, so that the liquid-phase working fluid 7 does not stop inside the wick due to the influence of gravity. For this reason, the supply of the liquid-phase working fluid 7 to the inside of the evaporation section container 2 is promoted, so that the occurrence of dryout can be prevented.

その後、空間部13に充満した作動流体7の蒸気は蒸気管6の内部を通って凝縮部3に至り、ここで外部に熱を放出して凝縮する。なお、蒸発部コンテナ2に伝達された熱Qは、作動流体7の蒸気の潜熱として凝縮部3に効率よく輸送される。その結果生じた液相の作動流体7は、上記毛細管圧力によるポンプ力によって液戻り管4の内部を通って蒸発部コンテナ2に還流する。   After that, the vapor of the working fluid 7 filled in the space 13 passes through the inside of the vapor pipe 6 to reach the condensing unit 3 where it is condensed by releasing heat. The heat Q transmitted to the evaporation unit container 2 is efficiently transported to the condensing unit 3 as latent heat of the vapor of the working fluid 7. The resulting liquid-phase working fluid 7 is returned to the evaporator container 2 through the liquid return pipe 4 by the pumping force generated by the capillary pressure.

ここで、この実施例の構成と、特許請求の範囲に記載された構成との対応関係を説明すれば、ループ型ヒートパイプ1がこの発明の熱輸送装置に相当し、蒸発部コンテナ2がこの発明の蒸発部容器に相当し、ガラス管8がこの発明の管状部材に相当する。   Here, the correspondence between the configuration of this embodiment and the configuration described in the claims will be described. The loop heat pipe 1 corresponds to the heat transport device of the present invention, and the evaporation section container 2 It corresponds to the evaporation part container of the invention, and the glass tube 8 corresponds to the tubular member of the invention.

なお、上述の具体例では、蒸発部コンテナおよび液戻り管の各内部にガラス管が設けられているが、この発明では上記具体例に限定されない。要は、液戻り管から蒸発部コンテナの内部に至る液流路の少なくとも一部が、蒸発部コンテナよりも熱伝導率が低い管状部材によって形成されていればよい。   In the above specific example, the glass tube is provided inside each of the evaporation section container and the liquid return pipe, but the present invention is not limited to the above specific example. In short, it is sufficient that at least a part of the liquid flow path from the liquid return pipe to the inside of the evaporation section container is formed by a tubular member having a lower thermal conductivity than the evaporation section container.

この発明のループ型ヒートパイプの一具体例を簡略的に示す平面図である。It is a top view which shows simply the example of the loop type heat pipe of this invention. 図1のガラス管を示す拡大図である。It is an enlarged view which shows the glass tube of FIG.

符号の説明Explanation of symbols

1…ループ型ヒートパイプ(熱輸送装置)、 2…蒸発部コンテナ(蒸発部容器)、 3…凝縮部、 4…液戻り管、 6…蒸気管、 7…作動流体、 8…ガラス管(管状部材)、 11,12…ウイック。   DESCRIPTION OF SYMBOLS 1 ... Loop type heat pipe (heat transport apparatus), 2 ... Evaporation part container (evaporation part container), 3 ... Condensing part, 4 ... Liquid return pipe, 6 ... Steam pipe, 7 ... Working fluid, 8 ... Glass pipe (tubular) Member), 11, 12 ... wick.

Claims (1)

蒸発部容器に連通した蒸気管が凝縮部に連通するとともに、前記蒸発部容器に連通した液戻り管が前記凝縮部に連通することにより、全体として環状の流路が形成され、その環状の流路に凝縮性の作動流体が封入されており、さらに前記蒸発部容器の内部に、前記作動流体を浸透させて毛細管圧力を生じさせるウイックが配置された熱輸送装置であって、
前記液戻り管から前記蒸発部容器の内部に至る液流路の少なくとも一部が、前記蒸発部容器よりも熱伝導率が低い管状部材によって形成され、この管状部材の一端部が前記ウイックと連通していることを特徴とする熱輸送装置。
A vapor pipe communicating with the evaporation section container communicates with the condensing section, and a liquid return pipe communicating with the evaporation section container communicates with the condensing section, so that an annular flow path is formed as a whole. A heat transport device in which a condensable working fluid is sealed in a path, and a wick that causes the working fluid to permeate into the evaporating part container to generate a capillary pressure;
At least a part of the liquid flow path extending from the liquid return pipe to the inside of the evaporation section container is formed by a tubular member having a lower thermal conductivity than the evaporation section container, and one end of the tubular member communicates with the wick. A heat transport device characterized by that.
JP2005134595A 2005-05-02 2005-05-02 Heat transporting device Pending JP2006308264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134595A JP2006308264A (en) 2005-05-02 2005-05-02 Heat transporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134595A JP2006308264A (en) 2005-05-02 2005-05-02 Heat transporting device

Publications (1)

Publication Number Publication Date
JP2006308264A true JP2006308264A (en) 2006-11-09

Family

ID=37475344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134595A Pending JP2006308264A (en) 2005-05-02 2005-05-02 Heat transporting device

Country Status (1)

Country Link
JP (1) JP2006308264A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093012A (en) * 2010-10-26 2012-05-17 Showa Corp Loop type heat pipe and method of manufacturing the same
CN114440675A (en) * 2020-11-05 2022-05-06 中北大学 Gravity heat pipe with multiple heat release ends communicated

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765396A (en) * 1986-12-16 1988-08-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polymeric heat pipe wick
FR2755219A3 (en) * 1996-10-30 1998-04-30 N Proizv Objedinenie Im Sa Lav Thermal tube circuit used in cooling system for heat emitting apparatus
US6227288B1 (en) * 2000-05-01 2001-05-08 The United States Of America As Represented By The Secretary Of The Air Force Multifunctional capillary system for loop heat pipe statement of government interest
JP2003269878A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Loop type heat pipe evaporator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4765396A (en) * 1986-12-16 1988-08-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Polymeric heat pipe wick
FR2755219A3 (en) * 1996-10-30 1998-04-30 N Proizv Objedinenie Im Sa Lav Thermal tube circuit used in cooling system for heat emitting apparatus
US6227288B1 (en) * 2000-05-01 2001-05-08 The United States Of America As Represented By The Secretary Of The Air Force Multifunctional capillary system for loop heat pipe statement of government interest
JP2003269878A (en) * 2002-03-14 2003-09-25 Mitsubishi Electric Corp Loop type heat pipe evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093012A (en) * 2010-10-26 2012-05-17 Showa Corp Loop type heat pipe and method of manufacturing the same
CN114440675A (en) * 2020-11-05 2022-05-06 中北大学 Gravity heat pipe with multiple heat release ends communicated

Similar Documents

Publication Publication Date Title
JP4627212B2 (en) Cooling device with loop heat pipe
US20080078530A1 (en) Loop heat pipe with flexible artery mesh
JP2007107784A (en) Loop type heat pipe
US20110000646A1 (en) Loop heat pipe
JP2010107153A (en) Evaporator and circulation type cooling device using the same
JPWO2016121778A1 (en) Heat storage container and heat storage device provided with heat storage container
JPH1096593A (en) Capillary tube evaporator
JP2018185110A (en) heat pipe
JP5471119B2 (en) Loop heat pipe, electronic device
JP2017072340A (en) heat pipe
JP2006275424A (en) Cooling device
JP2009115346A (en) Heat pipe
JP2007247930A (en) Evaporator and loop-type heat pipe using the same
JP2007263427A (en) Loop type heat pipe
JP5304479B2 (en) Heat transport device, electronic equipment
JP2002303494A (en) Evaporator and loop type heat pipe employing the same
JP2004218887A (en) Cooling device of electronic element
JP2006308264A (en) Heat transporting device
JP4705840B2 (en) Loop type heat pipe
JP2012037098A (en) Loop heat pipe, and electronic apparatus
JP6095095B2 (en) Heat exchangers and electronics
JP2014052110A (en) Heat exchanger and electronic equipment
JP4648106B2 (en) Cooling system
JP5636803B2 (en) Loop heat pipe and electronic equipment
JP6960651B2 (en) Electronics, heat exchangers and evaporators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Effective date: 20100720

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Effective date: 20100924

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116