JP2006307623A - Environmentally functional building material and its manufacturing method - Google Patents

Environmentally functional building material and its manufacturing method Download PDF

Info

Publication number
JP2006307623A
JP2006307623A JP2005269334A JP2005269334A JP2006307623A JP 2006307623 A JP2006307623 A JP 2006307623A JP 2005269334 A JP2005269334 A JP 2005269334A JP 2005269334 A JP2005269334 A JP 2005269334A JP 2006307623 A JP2006307623 A JP 2006307623A
Authority
JP
Japan
Prior art keywords
building material
titanium dioxide
base material
thin film
functional building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005269334A
Other languages
Japanese (ja)
Inventor
Kengo Okamoto
健吾 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005269334A priority Critical patent/JP2006307623A/en
Publication of JP2006307623A publication Critical patent/JP2006307623A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Finishing Walls (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a comparatively inexpensive and strong building material having a humidity adjusting function, remarkable deodorization and anti-fouling properties, and a property for eliminating a sick house syndrome. <P>SOLUTION: The environmentally functional building material comprises an interior finishing building material 2, a base material 3 stacked on the interior finishing building material 2, and a titanium dioxide film 4 formed on the base material. The titanium dioxide film has a thickness of 10 nm or above and less than 100 nm. The interior finishing building material is a gypsum wallboard, a calcium silicate plate, a particle board, a timber plywood, a fiberboard, a plastic board, a ceramic panel, concrete, tile, or a glass block. The base material is made of a metal, a ceramic, glass, an inorganic fiber, glass wool, cloth, non-woven fabric, paper, or a plastic. The base material has a porous structure, a knitted loop structure, a woven fabric structure, or a non-woven fabric structure. The manufacturing method comprises a process for forming the titanium dioxide film having the thickness of 10 nm or above and less than 100 nm on 95 to 100% of the whole surface of the base material by an open-to-atmosphere type chemical gas phase deposition method, and a process for stacking the base material, having the titanium dioxide film formed on its surface, on the interior finishing building material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、住宅の室内壁面などに施工される建材であって、室内空間の空気環境に対して、湿度の調整や臭いの除去、有害ガス成分の除去など、環境を改善する機能を発揮することができる環境機能建材及びこのような建材を製造する方法に関するものである。   INDUSTRIAL APPLICABILITY The present invention is a building material to be constructed on the indoor wall surface of a house, and exhibits functions for improving the environment, such as humidity adjustment, odor removal, and harmful gas component removal, with respect to the air environment in the indoor space. The present invention relates to an environmentally functional building material and a method for manufacturing such a building material.

従来、住宅の室内壁面に施工される建材として、珪藻土などの調湿材を含有する内装建材が知られている。この内装建材は、室内環境の空気中に過剰の湿気が含まれているときには、空気中の湿気を吸湿保持することで、室内環境の湿度を下げ、室内環境が乾燥してくると、吸湿保持した水分を環境中に放出することで環境の湿度を上げる作用がある。その結果、室内環境は一定の湿度範囲に調整され、居住者にとって快適な湿度環境が維持できる。そして、内装建材に含まれる調湿材として、ホルムアルデヒドやアンモニアなどを吸着する機能のある材料を使用すると、室内に設置された家具や壁紙などから放出されシックハウス症候群の原因になるとされている揮発ガス成分を、内装建材に吸着して、室内環境から除去することができ、その内装建材に、脱臭機能を持たせることもできる。   Conventionally, interior construction materials containing humidity control materials such as diatomaceous earth are known as construction materials to be constructed on the indoor wall surface of a house. This interior building material retains moisture when the air in the indoor environment contains excessive moisture, by absorbing the moisture in the air to reduce the humidity in the indoor environment and when the indoor environment dries. Releases the moisture in the environment to increase the humidity of the environment. As a result, the indoor environment is adjusted to a certain humidity range, and a comfortable humidity environment for the occupant can be maintained. And, if a material that has the function of adsorbing formaldehyde, ammonia, etc. is used as a humidity control material in interior building materials, it is emitted from furniture and wallpaper installed indoors and is considered to cause sick house syndrome The component can be adsorbed on the interior building material and removed from the indoor environment, and the interior building material can be given a deodorizing function.

また、酸化チタンは、表面に付着した有機物などを分解することができ、揮発ガス成分を分解して無害な物質に変える光触媒機能を有することが知られている。従って、内装建材の材料に酸化チタンを配合して環境を改善しうる環境機能建材とする技術も提案されている(例えば、特許文献1参照。)。この環境機能建材では、少なくとも表面が多孔質構造であり調湿機能を有する内装建材と、この内装建材の表面に存在する多孔質構造の細孔に、バインダーを介さずに担持された光触媒機能を有する酸化チタン微粒子とを備える。そしてこれを製造する方法は、内装建材の表面に、酸化チタン微粒子の供給源がTi濃度として0.4〜5.0重量%含有され、実質的にバインダー成分を含まない水溶液を、塗布量10〜500g/m2で塗布し乾燥させている。 Titanium oxide is known to have a photocatalytic function capable of decomposing organic substances and the like attached to the surface and converting volatile gas components into innocuous substances. Therefore, a technique for making an environmental functional building material that can improve the environment by blending titanium oxide into the material of the interior building material has also been proposed (for example, see Patent Document 1). In this environmentally functional building material, at least the surface has a porous structure and has a humidity control function, and the photocatalytic function supported without a binder on the pores of the porous structure existing on the surface of the interior building material. Having fine titanium oxide particles. And the method of manufacturing this is the coating amount of the aqueous solution in which the supply source of the titanium oxide fine particles is contained in the surface of the interior building material 0.4 to 5.0% by weight as the Ti concentration and does not substantially contain the binder component. It is applied and dried at ˜500 g / m 2 .

また、別の環境機能建材として、二酸化チタンの結晶配向膜をある特定方向に配向させたものも提案されている(例えば、特許文献2参照。)。この環境機能建材の表面における二酸化チタンからなる結晶配向膜は、その結晶表面と垂直方向に(001)、(100)、(211)、(101)及び(110)からなる結晶面から選択された方向に配向された抗菌性材料により構成される。そして、結晶配向膜の厚さが0.1μm以上であることが更に要求され、結晶配向膜を形成する結晶の粒径が0.1〜10μmであり、粒径分布が実質的に平均値±100%であることを特徴としている。この環境機能建材では、二酸化チタンの結晶配向膜を上述したような特定方向に配向させることにより、顕著な抗菌性を有する建材が得られるとしている。
特開2004−76494号公報(特許請求の範囲、図1) 特開平10−95935号公報(明細書[0012]、[0013]、図1)
Another environmental functional building material has been proposed in which a crystal orientation film of titanium dioxide is oriented in a specific direction (see, for example, Patent Document 2). The crystal orientation film made of titanium dioxide on the surface of the environmental functional building material was selected from crystal faces made of (001), (100), (211), (101) and (110) in a direction perpendicular to the crystal surface. It is composed of antibacterial materials oriented in the direction. Further, the thickness of the crystal orientation film is further required to be 0.1 μm or more, the grain size of the crystal forming the crystal orientation film is 0.1 to 10 μm, and the grain size distribution is substantially an average value ± It is characterized by 100%. In this environmental functional building material, it is said that a building material having remarkable antibacterial properties can be obtained by orienting the crystal orientation film of titanium dioxide in the specific direction as described above.
Japanese Patent Laying-Open No. 2004-76494 (Claims, FIG. 1) JP-A-10-95935 (specifications [0012], [0013], FIG. 1)

しかし、上記特許文献1には、液体コーティング法により、内装建材の表面に光触媒膜を直接成膜する手法が呈示されており、この手法では内装建材の表面を光触媒が覆ってしまうため、光触媒機能は生じるものの、内装建材本来の調湿機能が失われてしまう欠点があった。また、上記特許文献2には、二酸化チタンからなる結晶配向膜の厚さが0.1μm以上必要であることが必要とされており、0.1μm以上の厚さに成膜する作業に時間が掛かりその単価を押し上げる不具合があった。また、二酸化チタン膜が比較的厚いため、その剥離強度が弱くなり、その二酸化チタンからなる膜が内装建材から剥がれ易くなる等の欠点があった。
本発明の目的は、防臭、防汚、耐シックハウス症を有する比較的安価かつ堅牢な環境機能建材及びその製造方法を提供することにある。
However, Patent Document 1 discloses a method of directly forming a photocatalyst film on the surface of an interior building material by a liquid coating method. In this method, the photocatalyst function covers the surface of the interior building material. Although this occurs, there is a drawback that the humidity control function inherent to the interior building material is lost. Further, in Patent Document 2, it is required that the thickness of the crystal orientation film made of titanium dioxide is 0.1 μm or more, and time for forming the film to a thickness of 0.1 μm or more is required. There was a problem of raising the unit price. In addition, since the titanium dioxide film is relatively thick, its peeling strength is weakened, and the film made of titanium dioxide is easily peeled off from the interior building material.
An object of the present invention is to provide a relatively inexpensive and robust environmental functional building material having deodorization, antifouling, and sick house disease, and a method for producing the same.

請求項1に係る発明は、図1に示すように、内装建材2と、その内装建材2に積層された基材3と、その基材3の表面に直接成膜された二酸化チタン薄膜4とを備え、その二酸化チタン薄膜4の膜厚が10nm以上100nm未満である環境機能建材である。
請求項9に係る発明は、大気開放型化学気相析出法により基材3の表面に二酸化チタン薄膜4を膜厚10nm以上100nm未満で成膜する工程と、その基材3を内装建材2に積層する工程とを含む環境機能建材の製造方法である。
この請求項1に記載された環境機能建材及び請求項9に記載されたその製造方法では、基材3に二酸化チタン薄膜4を成膜し、その二酸化チタン薄膜4の膜厚が10〜100nmであるので、著しい光触媒活性を発揮し、かつ十分な剥離強度を保持できる。従って、成膜時間も短縮でき、コストも削減できる。そして、成膜された二酸化チタン薄膜4が基材3から剥離するようなこともなく、比較的堅牢な環境機能建材1を得ることができる。
As shown in FIG. 1, the invention according to claim 1 includes an interior building material 2, a base material 3 laminated on the interior building material 2, and a titanium dioxide thin film 4 directly formed on the surface of the base material 3. In which the thickness of the titanium dioxide thin film 4 is 10 nm or more and less than 100 nm.
The invention according to claim 9 includes a step of forming the titanium dioxide thin film 4 on the surface of the base material 3 with a film thickness of 10 nm or more and less than 100 nm by an atmospheric open chemical vapor deposition method, and the base material 3 as an interior building material 2. It is a manufacturing method of an environmental functional building material including the process to laminate | stack.
In the environmental functional building material described in claim 1 and the manufacturing method thereof described in claim 9, a titanium dioxide thin film 4 is formed on a substrate 3, and the thickness of the titanium dioxide thin film 4 is 10 to 100 nm. As a result, a remarkable photocatalytic activity can be exhibited and sufficient peel strength can be maintained. Accordingly, the film formation time can be shortened and the cost can be reduced. And the formed titanium dioxide thin film 4 does not peel from the base material 3, and the comparatively robust environmental functional building material 1 can be obtained.

請求項2に係る発明は、請求項1に係る発明であって、二酸化チタン薄膜4が基材3の全表面の95〜100%に成膜された環境機能建材である。
請求項10に係る発明は、請求項9に係る発明であって、二酸化チタン薄膜4を基材3の全表面の95〜100%に成膜する環境機能建材の製造方法である。
この請求項2に記載された環境機能建材及び請求項10に記載されたその製造方法では、基材3の全表面の95〜100%に二酸化チタン薄膜4を成膜したので、その二酸化チタン薄膜4も光触媒として機能するため、優れた光触媒活性が得られ、防臭、防汚、耐シックハウス症を有する環境機能建材1を得ることができる。
The invention according to claim 2 is the environmental function building material according to claim 1, wherein the titanium dioxide thin film 4 is formed on 95 to 100% of the entire surface of the base material 3.
The invention according to claim 10 is the method according to claim 9, wherein the titanium dioxide thin film 4 is formed on 95 to 100% of the entire surface of the base material 3.
In the environmental functional building material according to claim 2 and the manufacturing method according to claim 10, since the titanium dioxide thin film 4 is formed on 95 to 100% of the entire surface of the base material 3, the titanium dioxide thin film Since 4 also functions as a photocatalyst, excellent photocatalytic activity can be obtained, and an environmental functional building material 1 having deodorization, antifouling, and sick house disease can be obtained.

請求項3に係る発明は、請求項1又は2に係る発明であって、基材3が通気性を有する環境機能建材である。
請求項4に係る発明は、請求項3に係る発明であって、基材3が多孔構造又は編目構造又は織布構造又は不織布構造を有する環境機能建材である。
請求項11に係る発明は、請求項9又は10に係る発明であって、通気性を有する基材3を用いる環境機能建材の製造方法である。
請求項12に係る発明は、請求項11に係る発明であって、基材3が多孔構造又は編目構造又は織布構造又は不織布構造を有する環境機能建材の製造方法である。
この請求項3及び請求項4に記載された環境機能建材並びに請求項11及び請求項12に記載されたその製造方法では、通気性を有する基材3を用いるので、その基材3が積層された内装建材2が調湿機能を有する場合にはその調湿機能が害されることもない。よって、調湿機能とともに防臭、防汚、耐シックハウス症を有する環境機能建材1を得ることができる。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the base material 3 is an environmental functional building material having air permeability.
The invention according to claim 4 is the environmental function building material according to claim 3, wherein the substrate 3 has a porous structure, a stitch structure, a woven structure, or a non-woven structure.
The invention according to claim 11 is the invention according to claim 9 or 10, wherein the environmental functional building material is produced using the base material 3 having air permeability.
The invention according to claim 12 is the invention according to claim 11, wherein the substrate 3 has a porous structure, a stitch structure, a woven structure, or a non-woven structure.
In the environmental functional building material according to claim 3 and claim 4 and the manufacturing method according to claim 11 and claim 12, since the base material 3 having air permeability is used, the base material 3 is laminated. When the interior building material 2 has a humidity control function, the humidity control function is not impaired. Therefore, the environmental function building material 1 which has a deodorizing, antifouling, and sick house disease with a humidity control function can be obtained.

請求項5に係る発明は、請求項1ないし4いずれか1項に係る発明であって、二酸化チタン薄膜4が大気開放型化学気相析出法により基材3の表面に成膜された環境機能建材である。
この請求項5に記載された環境機能建材では、成膜時間も短縮でき、コストも削減できるので、更に安価な環境機能建材を得ることができる。
請求項6に係る発明は、請求項1ないし5いずれか1項に係る発明であって、二酸化チタン薄膜4が二酸化チタンに3〜7重量%の炭素を含有した炭素ドープ二酸化チタンからなる環境機能建材である。
この請求項6に記載された環境機能建材では、二酸化チタン薄膜4として炭素ドープ二酸化チタンからなるものを使用するので、炭素ドープにより光触媒活性に寄与する光吸収帯が紫外領域から可視光領域へと拡がって、紫外光下のみならず、可視光下における光触媒活性も十分に発揮させることができる。
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the titanium dioxide thin film 4 is formed on the surface of the base material 3 by the open-air chemical vapor deposition method. It is a building material.
In the environmental functional building material according to the fifth aspect, since the film formation time can be shortened and the cost can be reduced, a more inexpensive environmental functional building material can be obtained.
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the titanium dioxide thin film 4 is made of carbon-doped titanium dioxide containing 3 to 7% by weight of carbon in titanium dioxide. It is a building material.
In the environmental functional building material according to claim 6, since the titanium dioxide thin film 4 is made of carbon-doped titanium dioxide, the light absorption band contributing to the photocatalytic activity by carbon doping is changed from the ultraviolet region to the visible light region. It spreads and can fully exhibit the photocatalytic activity not only under ultraviolet light but also under visible light.

請求項7に係る発明は、請求項1ないし6いずれか1項に係る発明であって、内装建材2が、石膏ボード、ケイカル板、パーティクルボード、木材合板、繊維板、プラスチック板、セラミックパネル、コンクリート、タイル又はガラスブロックである環境機能建材である。
請求項13に係る発明は、請求項9ないし12いずれか1項に係る発明であって、内装建材2として、石膏ボード、ケイカル板、パーティクルボード、木材合板、繊維板、プラスチック板、セラミックパネル、コンクリート、タイル又はガラスブロックを用いる環境機能建材の製造方法である。
この請求項7に記載された環境機能建材及び請求項12に記載された環境機能建材の製造方法では、内装建材2が優れた調湿機能を有するので、その優れた調湿機能とともに顕著な防臭、防汚、耐シックハウス症を有する環境機能建材1を得ることができる。
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the interior building material 2 is a gypsum board, a calcium board, a particle board, a wood plywood, a fiber board, a plastic board, a ceramic panel, It is an environmental functional building material that is concrete, tile or glass block.
The invention according to claim 13 is the invention according to any one of claims 9 to 12, wherein the interior building material 2 includes a gypsum board, a calcium board, a particle board, a wood plywood, a fiber board, a plastic board, a ceramic panel, It is a manufacturing method of an environmental functional building material using concrete, a tile, or a glass block.
In the environmental functional building material described in claim 7 and the environmental functional building material manufacturing method described in claim 12, since the interior building material 2 has an excellent humidity control function, it has a remarkable deodorizing function together with the excellent humidity control function. Thus, the environmental functional building material 1 having antifouling and sick house disease can be obtained.

請求項8に係る発明は、請求項1ないし7いずれか1項に係る発明であって、基材3が金属、セラミック、ガラス、無機繊維、グラスウール、布、不織布、紙又はプラスチックである環境機能建材である。
請求項14に係る発明は、請求項9ないし13いずれか1項に係る発明であって、基材3として、金属、セラミック、ガラス、無機繊維、グラスウール、布、不織布、紙又はプラスチックを用いる環境機能建材の製造方法である。
この請求項8に記載された環境機能建材及び請求項14に記載された環境機能建材の製造方法では、二酸化チタン薄膜4を成膜する基材3に十分な強度を保持でき、比較的堅牢な環境機能建材1を得ることができる。
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the substrate 3 is a metal, ceramic, glass, inorganic fiber, glass wool, cloth, nonwoven fabric, paper or plastic. It is a building material.
The invention according to claim 14 is the invention according to any one of claims 9 to 13, wherein the substrate 3 is made of metal, ceramic, glass, inorganic fiber, glass wool, cloth, non-woven fabric, paper or plastic. It is a manufacturing method of a functional building material.
In the environmental functional building material described in claim 8 and the environmental functional building material manufacturing method described in claim 14, the substrate 3 on which the titanium dioxide thin film 4 is formed can have sufficient strength and is relatively robust. The environmental functional building material 1 can be obtained.

本発明の環境機能建材では、調湿機能を有する内装建材と、内装建材と、その内装建材に積層された基材と、その基材の表面に直接成膜された二酸化チタン薄膜とを備え、その二酸化チタン薄膜の膜厚が10nm以上100nm未満であるので、著しい光触媒活性を発揮し、かつ十分な剥離強度を保持できる。従って、成膜時間も短縮でき、コストも削減できる。そして、成膜された二酸化チタン薄膜が基材から剥離するようなこともなく、比較的堅牢な環境機能建材を得ることができる。   The environmental functional building material of the present invention comprises an interior building material having a humidity control function, an interior building material, a base material laminated on the interior building material, and a titanium dioxide thin film directly formed on the surface of the base material, Since the film thickness of the titanium dioxide thin film is 10 nm or more and less than 100 nm, it exhibits remarkable photocatalytic activity and can maintain sufficient peel strength. Accordingly, the film formation time can be shortened and the cost can be reduced. And the formed titanium dioxide thin film does not peel from the base material, and a relatively robust environmental functional building material can be obtained.

この場合、二酸化チタン薄膜が基材の全表面の95〜100%に成膜されれば、その二酸化チタン薄膜が光触媒として機能するため、防臭、防汚、耐シックハウス症を有する環境機能建材を得ることができ、基材が編目構造又は織布構造又は不織布構造等であって通気性を有するものであれば、調湿機能を有する環境機能建材を得ることができる。
また、内装建材が、石膏ボード、ケイカル板、パーティクルボード、木材合板、繊維板、プラスチック板、セラミックパネル、コンクリート、タイル又はガラスブロックであれば、内装建材が優れた調湿機能を有するので、その優れた調湿機能を得ることができ、基材が金属、セラミック、ガラス、無機繊維、グラスウール、布、不織布、紙又はプラスチックであれば、二酸化チタン薄膜を成膜する基材に十分な強度を保持でき、比較的堅牢な環境機能建材を得ることができる。
In this case, if the titanium dioxide thin film is formed on 95 to 100% of the entire surface of the base material, the titanium dioxide thin film functions as a photocatalyst, so that an environmental functional building material having deodorization, antifouling, and sick house disease is obtained. If the substrate has a knitted structure, a woven fabric structure, a nonwoven fabric structure, or the like and has air permeability, an environmental functional building material having a humidity control function can be obtained.
Also, if the interior building material is gypsum board, calcite board, particle board, wood plywood, fiber board, plastic board, ceramic panel, concrete, tile or glass block, the interior building material has an excellent humidity control function, An excellent humidity control function can be obtained, and if the substrate is metal, ceramic, glass, inorganic fiber, glass wool, cloth, nonwoven fabric, paper or plastic, sufficient strength is applied to the substrate on which the titanium dioxide thin film is formed. A relatively robust environmental functional building material that can be retained can be obtained.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1に示すように、本発明の環境機能建材1は、内装建材2と、この内装建材2に積層された基材3とを備える。この実施の形態における内装建材2は調湿機能を有するものであって、その内装建材2に積層された基材3は通気性を有するものである。内装建材2は、通常の建築施工に利用されている調湿機能を有する建材と同様の材料および構造が採用できる。この内装建材2の具体例としては、珪藻土などの調湿材を含有するタイル、石膏ボード、コンクリート、ガラスブロック、ケイカル板、パーティクルボード、木材合板、繊維板又はセラミックパネルなどが挙げられる。内装建材2は、材料そのものが多孔質構造で調湿機能を有する材料からなるものであってもよいし、材料自体は調湿機能を有さないが、そこに調湿機能に優れた調湿材を配合することで多孔質構造になり調湿機能を発揮するものであってもよい。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 1, the environmental functional building material 1 of the present invention includes an interior building material 2 and a base material 3 laminated on the interior building material 2. The interior building material 2 in this embodiment has a humidity control function, and the base material 3 laminated on the interior building material 2 has air permeability. The interior building material 2 can employ the same material and structure as a building material having a humidity control function that is used in ordinary construction work. Specific examples of the interior building material 2 include tiles containing a humidity control material such as diatomaceous earth, gypsum board, concrete, glass block, calcium silicate board, particle board, wood plywood, fiber board, or ceramic panel. The interior building material 2 may be made of a material having a porous structure and a humidity control function, or the material itself does not have a humidity control function, but there is a humidity control function excellent in the humidity control function. It may have a porous structure by blending materials and exhibit a humidity control function.

一方、基材3としては、特に制限はなく、二酸化チタン薄膜4の吹き付け時の加熱に耐えられる材料はいずれも使用可能である。この基材3としては、金属、セラミック、ガラス、無機繊維、グラスウール、布、不織布、紙又はプラスチック等が例示される。そして、この基材3は通気性を有することが好ましく、例えば多孔構造体又は繊維集合体からなる基材3が例示される。基材3が多孔構造体である場合には、その多孔構造体はセラミック、ガラス、金属又はプラスチックからなるものが好ましい。セラミックとしては発泡アルミナが例示され、ガラスとしては半融ガラス等が例示される。また、金属としては多孔構造のアルミ箔が例示され、プラスチックとしては、発泡ポリウレタンが例示される。   On the other hand, the substrate 3 is not particularly limited, and any material that can withstand the heating when the titanium dioxide thin film 4 is sprayed can be used. Examples of the substrate 3 include metal, ceramic, glass, inorganic fiber, glass wool, cloth, nonwoven fabric, paper, plastic, and the like. And it is preferable that this base material 3 has air permeability, for example, the base material 3 which consists of a porous structure or a fiber assembly is illustrated. When the base material 3 is a porous structure, the porous structure is preferably made of ceramic, glass, metal or plastic. Examples of the ceramic include foamed alumina, and examples of the glass include semi-melted glass. The metal is exemplified by a porous aluminum foil, and the plastic is exemplified by polyurethane foam.

一方、基材3が繊維集合体である場合、その繊維集合体はセラミックウール、グラスウール、有機繊維、不織布、紙であることが好ましい。そして、繊維集合体を構成する繊維は金属繊維よりも他繊維(セラミックウール、グラスウール、有機繊維、不織布、紙)の方が錆びにくく耐腐食性に優れ、耐久性が良いので好ましい。また、繊維状のものであれば金属よりガラス又は有機系の方が比較的安価であるので好ましい。そして基材3が繊維集合体である場合の形状は、編目構造又は織布構造又は不織布構造であることが比較的高い通気性を有するために好ましい。   On the other hand, when the base material 3 is a fiber assembly, the fiber assembly is preferably ceramic wool, glass wool, organic fiber, nonwoven fabric, or paper. The fibers constituting the fiber assembly are preferably other fibers (ceramic wool, glass wool, organic fibers, non-woven fabric, paper) than metal fibers because they are less likely to rust, have better corrosion resistance, and have better durability. Further, if it is fibrous, glass or an organic system is preferable because it is relatively cheaper than metal. And since the shape in case the base material 3 is a fiber assembly has comparatively high air permeability, it is preferable that it is a stitch structure, a woven fabric structure, or a nonwoven fabric structure.

そして、基材3が通気性を有する場合には、その通気性を確保するために基材3の気孔率は50%〜98%であることが好ましい。気孔率が50%〜98%であると、基材3が多くの連続気孔3aを有し、その連続気孔3aの内表面に成膜された二酸化チタン薄膜4による十分な光触媒活性が得られるためである。このうち特に好ましい気孔率は70%〜95%である。気孔率50%未満では比表面積が小さくなるため、十分な光触媒活性が得られない。気孔率98%を越えると機械的強度が弱くなり、建材としての骨格を強度的に維持できない。   And when the base material 3 has air permeability, in order to ensure the air permeability, it is preferable that the porosity of the base material 3 is 50%-98%. When the porosity is 50% to 98%, the substrate 3 has many continuous pores 3a, and sufficient photocatalytic activity is obtained by the titanium dioxide thin film 4 formed on the inner surface of the continuous pores 3a. It is. Among these, a particularly preferable porosity is 70% to 95%. When the porosity is less than 50%, the specific surface area becomes small, and thus sufficient photocatalytic activity cannot be obtained. When the porosity exceeds 98%, the mechanical strength becomes weak and the skeleton as a building material cannot be maintained in strength.

この基材3には二酸化チタン薄膜4が成膜される。この二酸化チタン薄膜4は、大気開放型化学気相析出法によって成膜されることが好ましい。大気開放型化学気相析出法とは、大気開放下にて原料ガスを成膜対象基材3表面に吹付けて、化学気相析出(Chemical Vapor Deposition)法により対象基材3表面上に金属酸化物等の薄膜を成膜する方法である。この大気開放型化学気相析出法では、その成膜速度が非常に速く、薄膜の作成が可能であり、更に大面積や複雑形状表面への成膜が容易である。そして、装置自体が比較的安価で、保守管理も簡単である等の様々な特徴を有する。このため、二酸化チタン薄膜4を大気開放型化学気相析出法によって成膜することにより、基材3の断面が直径1μm以下の気孔3a内部まで全面に均一に成膜可能である。また、粒子形態制御ができ、かつ従来の液体コーティング法では均一成膜が難しかった膜厚10〜500nmの極薄膜まで均一成膜が可能になる。   A titanium dioxide thin film 4 is formed on the substrate 3. The titanium dioxide thin film 4 is preferably formed by an open air chemical vapor deposition method. In the open air chemical vapor deposition method, a raw material gas is sprayed onto the surface of the target substrate 3 in the open atmosphere, and a metal is deposited on the target substrate 3 surface by the chemical vapor deposition method. This is a method of forming a thin film of oxide or the like. In this open air chemical vapor deposition method, the deposition rate is very fast, a thin film can be formed, and deposition on a large area or a complex shape surface is easy. The apparatus itself has various features such as being relatively inexpensive and easy to maintain. For this reason, by forming the titanium dioxide thin film 4 by the open chemical vapor deposition method, it is possible to uniformly form the entire surface of the substrate 3 up to the inside of the pores 3a having a diameter of 1 μm or less. In addition, it is possible to control the particle morphology, and uniform film formation is possible up to an ultra-thin film having a film thickness of 10 to 500 nm, which is difficult to form with the conventional liquid coating method.

ここで、二酸化チタン薄膜4は、二酸化チタンに3〜7重量%の炭素を含有した炭素ドープ二酸化チタンからなることが好ましい。この二酸化チタン薄膜4を3〜7重量%の炭素を含有した炭素ドープ二酸化チタンとすれば、紫外光下のみならず、可視光下における光触媒活性も十分に発揮されるためである。従って、炭素ドープ二酸化チタンからなる二酸化チタン薄膜4を有する環境機能建材1は、内装建材等の室内用途に適応可能になる。炭素ドープ二酸化チタンの炭素ドープ量を3〜7重量%に規定したのは、3重量%未満では炭素ドープ量不足で、二酸化チタンの紫外可視吸収スペクトルにおける可視光吸収帯の広がりが不十分となって、満足する可視光下での光触媒活性が得られないためであり、7重量%を越えると炭素ドープ量が過剰で、可視光下での光触媒活性は得られるものの、過剰な炭素ドープによる二酸化チタンの結晶性の低下が著しく、光触媒活性における全体の量子効率等が却って低減してしまう問題が生じるためである。   Here, the titanium dioxide thin film 4 is preferably made of carbon-doped titanium dioxide containing 3 to 7% by weight of carbon in titanium dioxide. This is because if the titanium dioxide thin film 4 is made of carbon-doped titanium dioxide containing 3 to 7% by weight of carbon, the photocatalytic activity not only under ultraviolet light but also under visible light is sufficiently exhibited. Therefore, the environmental functional building material 1 having the titanium dioxide thin film 4 made of carbon-doped titanium dioxide can be adapted for indoor use such as interior building materials. The carbon doping amount of the carbon-doped titanium dioxide is specified to be 3 to 7% by weight. If the amount is less than 3% by weight, the carbon doping amount is insufficient, and the visible light absorption band in the UV-visible absorption spectrum of titanium dioxide becomes insufficient. This is because satisfactory photocatalytic activity under visible light cannot be obtained. If the amount exceeds 7% by weight, the amount of carbon dope is excessive, and photocatalytic activity under visible light can be obtained, but carbon dioxide due to excessive carbon dope is obtained. This is because the crystallinity of titanium is remarkably lowered, and the overall quantum efficiency in photocatalytic activity is reduced.

そして、二酸化チタン薄膜4は、基材3の全表面の95〜100%に成膜されることが要件とされる。通気性を有する基材3では、その表層だけでなく気孔3aの内面を含む全表面の95〜100%、好ましくは98〜100%に二酸化チタン薄膜4が成膜される。これは、気孔3aの内面における二酸化チタン薄膜4も光触媒として機能するため、優れた光触媒活性を得て、除臭、除菌、防汚、耐シックハウス症に対して効果を生じさせるためである。二酸化チタン薄膜4が基材3の全表面の95%未満であると光触媒反応に有効な二酸化チタン薄膜4の量が少なくなり光触媒活性が不十分となるため不適切である。また、基材3の表面にバインダーを使用することなく二酸化チタン薄膜4を成膜することによりその触媒活性を向上させることができる。バインダーを使用すると二酸化チタン薄膜4がバインダーに被覆され光触媒活性が低下するからである。また、表面から裏面に連通する複数の気孔3aを有する基材3に二酸化チタン薄膜4を成膜することにより比表面積を大きくすることができる。   The titanium dioxide thin film 4 is required to be formed on 95 to 100% of the entire surface of the substrate 3. In the base material 3 having air permeability, the titanium dioxide thin film 4 is formed on 95 to 100%, preferably 98 to 100% of the entire surface including not only the surface layer but also the inner surface of the pores 3a. This is because the titanium dioxide thin film 4 on the inner surface of the pores 3a also functions as a photocatalyst, thereby obtaining excellent photocatalytic activity and producing an effect on deodorization, sterilization, antifouling, and sick house disease. If the titanium dioxide thin film 4 is less than 95% of the entire surface of the substrate 3, the amount of the titanium dioxide thin film 4 effective for the photocatalytic reaction is reduced and the photocatalytic activity becomes insufficient. Moreover, the catalytic activity can be improved by forming the titanium dioxide thin film 4 on the surface of the base material 3 without using a binder. This is because when the binder is used, the titanium dioxide thin film 4 is coated with the binder and the photocatalytic activity is lowered. Further, the specific surface area can be increased by forming the titanium dioxide thin film 4 on the base material 3 having a plurality of pores 3a communicating from the front surface to the back surface.

そして、基材3に成膜された二酸化チタン薄膜4の膜厚は10nm以上100nm未満であることが更に要件とされる。二酸化チタン薄膜4の膜厚を上記範囲内に規定したのは、二酸化チタン薄膜4の膜厚が10nm未満では十分な光触媒活性が得られない。二酸化チタン薄膜4の膜厚が100nmを越えると十分な光触媒活性が得られるが、膜の剥離強度が弱くなるからである。また、不必要に厚塗りすることは生産効率及びコスト的にも不利である。光触媒は表面反応であるため、一定膜厚以上があれば表面反応は維持されるため、膜厚にどこまでも比例して光触媒活性が向上するものではない。だから一定膜厚が保持されれば十分だからである。二酸化チタン薄膜4の更に好ましい膜厚は40〜70nmである。   The film thickness of the titanium dioxide thin film 4 formed on the base material 3 is further required to be 10 nm or more and less than 100 nm. The reason why the thickness of the titanium dioxide thin film 4 is defined within the above range is that sufficient photocatalytic activity cannot be obtained when the thickness of the titanium dioxide thin film 4 is less than 10 nm. This is because when the thickness of the titanium dioxide thin film 4 exceeds 100 nm, sufficient photocatalytic activity can be obtained, but the peel strength of the film becomes weak. Further, unnecessarily thick coating is disadvantageous in terms of production efficiency and cost. Since the photocatalyst is a surface reaction, the surface reaction is maintained if there is a certain film thickness or more, so the photocatalytic activity does not improve in proportion to the film thickness. Therefore, it is sufficient if a certain film thickness is maintained. A more preferable film thickness of the titanium dioxide thin film 4 is 40 to 70 nm.

次に本発明の環境機能建材の製造方法について説明する。
本発明の環境機能建材1は、表面から裏面に連通する複数の気孔3aを有する基材3を準備し、この基材3の全表面の95〜100%に二酸化チタン薄膜4を成膜し、かつこの基材3を内装建材2に積層することにより得られる。二酸化チタン薄膜4の成膜方法は特に限定されず、例えば図3に示すような大気開放型化学気相析出法による大気開放型化学気相析出装置を用いることができる。大気開放型化学気相析出法とは、大気開放下にて原料ガスを成膜対象基材3表面に吹付けて、化学気相析出(Chemical Vapor Deposition)法により対象基材3表面上に金属酸化物等の薄膜を成膜する方法である。
Next, the manufacturing method of the environmental function building material of this invention is demonstrated.
The environmental functional building material 1 of the present invention prepares a base material 3 having a plurality of pores 3a communicating from the front surface to the back surface, and forms a titanium dioxide thin film 4 on 95 to 100% of the entire surface of the base material 3, And it is obtained by laminating this base material 3 on the interior building material 2. The method for forming the titanium dioxide thin film 4 is not particularly limited, and for example, an atmospheric open type chemical vapor deposition apparatus by an open atmospheric type chemical vapor deposition method as shown in FIG. 3 can be used. In the open air chemical vapor deposition method, a raw material gas is sprayed onto the surface of the target substrate 3 in the open atmosphere, and a metal is deposited on the target substrate 3 surface by the chemical vapor deposition method. This is a method of forming a thin film of oxide or the like.

図3に示すように、大気開放型化学気相析出装置10は、内部にチタン含有原料を載せる試料ボード11aが設置可能な原料気化器11と、原料気化ガスを基材3に向かって噴出する噴出ノズル13と、一方が気化器11の側部に接続され他方が噴出ノズル13頂部に接続された配管14と、気化器11で気化した原料気化ガスを配管14を介して噴出ノズル13へと運ぶキャリアガスの流量調節器16と、基材3を保持し、かつ水平方向に可動可能な加熱台17とをそれぞれ備える。加熱台17の内部にはヒータ17aが設けられ、加熱台17に保持した基材3を加熱する。また、基材3の内表面へ原料気化ガスを供給し易くするため、加熱台17と基材3との間にはスペーサ17b等を配置してもよい。   As shown in FIG. 3, the open-air chemical vapor deposition apparatus 10 has a raw material vaporizer 11 in which a sample board 11 a on which a titanium-containing raw material is placed can be installed, and a raw material vaporized gas is ejected toward the substrate 3. The jet nozzle 13, a pipe 14, one of which is connected to the side of the vaporizer 11 and the other connected to the top of the jet nozzle 13, and the raw material vaporized gas vaporized by the vaporizer 11 to the jet nozzle 13 via the pipe 14. A carrier gas flow controller 16 to be carried and a heating table 17 that holds the substrate 3 and is movable in the horizontal direction are provided. A heater 17 a is provided inside the heating table 17 to heat the substrate 3 held on the heating table 17. Further, a spacer 17 b or the like may be disposed between the heating table 17 and the base material 3 in order to easily supply the raw material vaporized gas to the inner surface of the base material 3.

大気開放型化学気相析出法で用いるチタン含有原料としては、原料を気化させ大気に放出した際に、大気中の酸素或いは水分等と反応して二酸化チタン薄膜4を形成するものであれば特に限定されない。具体的には、チタンテトライソプロポキシド(Ti(i-C37O)4;以下、TTIPという。)、チタンDPM(dipivaloylmethane)錯体、チタンDMHD(2,6−ジメチル−3,5−ヘプタンジオン)錯体等が挙げられる。このうちTTIPは、炭素ドープ二酸化チタンからなる二酸化チタン薄膜4を得る場合において、その炭素ドープ量を制御し易い。炭素ドープ二酸化チタンの炭素ドープ量を制御するために、TTIPやチタンDPM錯体のチタン含有原料が70重量%以上の割合で含むように有機溶媒に溶解して溶液原料を調製し、この溶液原料を用いて成膜しても良い。溶液原料に使用する有機溶媒としてはイソプロピルアルコール、ヘキサン、シクロヘキサンが挙げられる。 The titanium-containing raw material used in the open-air chemical vapor deposition method is not particularly limited as long as it can react with oxygen or moisture in the atmosphere to form the titanium dioxide thin film 4 when the raw material is vaporized and released into the atmosphere. It is not limited. Specifically, titanium tetraisopropoxide (Ti (i-C 3 H 7 O) 4;. Hereinafter, referred TTIP), titanium DPM (dipivaloylmethane) complexes, titanium DMHD (2,6-dimethyl-3,5 Heptanedione) complex and the like. Among these, TTIP is easy to control the amount of carbon doping when obtaining the titanium dioxide thin film 4 made of carbon-doped titanium dioxide. In order to control the carbon doping amount of carbon-doped titanium dioxide, a solution raw material is prepared by dissolving in an organic solvent so that the titanium-containing raw material of TTIP or titanium DPM complex is contained in a proportion of 70% by weight or more. It may be used to form a film. Examples of the organic solvent used for the solution raw material include isopropyl alcohol, hexane, and cyclohexane.

基材3としては前述した通りであり、キャリアガスとしては、加熱下で使用するチタン含有原料と反応しない媒体であれば特に限定されない。具体的には、N2ガス、アルゴンガス、ヘリウムガス等の不活性ガス、乾燥空気等が挙げられる。なお、図3において符号18はキャリアガス供給源、符号19は原料気化器11、噴出ノズル13、加熱台17等を覆う防護チャンバ、符号21は開閉可能なチャンバ扉、符号22はチャンバ扉21の開閉を担うインターロックスイッチをそれぞれ示す。 The substrate 3 is as described above, and the carrier gas is not particularly limited as long as it is a medium that does not react with the titanium-containing raw material used under heating. Specifically, an inert gas such as N 2 gas, argon gas, and helium gas, dry air, and the like can be given. In FIG. 3, reference numeral 18 denotes a carrier gas supply source, reference numeral 19 denotes a protective chamber covering the raw material vaporizer 11, the ejection nozzle 13, the heating table 17, etc., reference numeral 21 denotes an openable / closable chamber door, and reference numeral 22 denotes the chamber door 21. Each interlock switch that opens and closes is shown.

この装置10では、先ず、チャンバ19内の加熱台17上にスペーサ17bを介して基材3を配置する。続いて所定量に量り取ったチタン含有原料を載せた試料ボード11aを原料気化器11内に設置する。次いで、原料気化器11内部、配管14、噴出ノズル13及び加熱台17をそれぞれ所望の温度に加熱し、原料気化器11内部のチタン含有原料を気化させる。次に、流量調節器16により流量を調節しながらキャリアガス供給源18からキャリアガスを原料気化器11に導入する。原料気化ガスは原料気化器11から配管14を介して噴出ノズル13に搬送される。原料気化ガスは、噴出ノズル13底部に設けられた開口部から基材3表面に向かって噴出され、基材3表面近傍の大気中に含まれる水分と反応して二酸化チタン薄膜4が基材3の内表面も含めた全面に成膜される。   In this apparatus 10, first, the base material 3 is disposed on the heating table 17 in the chamber 19 via the spacer 17 b. Subsequently, a sample board 11 a on which a titanium-containing raw material weighed in a predetermined amount is placed in the raw material vaporizer 11. Next, the inside of the raw material vaporizer 11, the pipe 14, the ejection nozzle 13, and the heating table 17 are each heated to a desired temperature to vaporize the titanium-containing raw material inside the raw material vaporizer 11. Next, the carrier gas is introduced into the raw material vaporizer 11 from the carrier gas supply source 18 while the flow rate is adjusted by the flow rate regulator 16. The raw material vaporized gas is conveyed from the raw material vaporizer 11 to the jet nozzle 13 via the pipe 14. The raw material vaporized gas is ejected from the opening provided at the bottom of the ejection nozzle 13 toward the surface of the base material 3, reacts with moisture contained in the atmosphere near the surface of the base material 3, and the titanium dioxide thin film 4 forms the base material 3. The film is formed on the entire surface including the inner surface.

ここで、炭素ドープ二酸化チタンからなる二酸化チタン薄膜4を得る場合には、原料気化ガスの濃度を2×10-6〜1.6×10-5mol/L、供給量を1〜8L/minとすることで炭素ドープ二酸化チタンの炭素ドープ量を所望のドープ量に制御することができる。また、加熱台17の温度を制御することで基材3の表面温度を350〜700℃とすることによっても炭素ドープ二酸化チタンの炭素ドープ量を所望のドープ量に制御することができる。基材2の表面温度が350℃未満では加熱が不十分となって7重量%を越える炭素が含有された炭素ドープ二酸化チタンが形成され、過剰な炭素ドープによって二酸化チタンの結晶性が著しく低下し、実用に耐えられる光触媒活性が得られなくなる。また基材2の表面温度が700℃を越えるとアナターゼ型二酸化チタンの含有量が低下する。そして、加熱台17を所定の速度で水平方向に駆動させることにより、噴出ノズル13から噴出された原料気化ガスが基材3の表面に均一に吹き付けられ、二酸化チタン薄膜4が均一に成膜される。 Here, when obtaining the titanium dioxide thin film 4 made of carbon-doped titanium dioxide, the concentration of the raw material vaporized gas is 2 × 10 −6 to 1.6 × 10 −5 mol / L, and the supply amount is 1 to 8 L / min. By doing so, the carbon doping amount of the carbon-doped titanium dioxide can be controlled to a desired doping amount. Moreover, the carbon dope amount of carbon dope titanium dioxide can also be controlled to a desired dope amount by controlling the surface temperature of the base material 3 to 350 to 700 ° C. by controlling the temperature of the heating table 17. When the surface temperature of the substrate 2 is less than 350 ° C., the heating is insufficient and carbon-doped titanium dioxide containing more than 7% by weight of carbon is formed, and the crystallinity of titanium dioxide is significantly reduced by excessive carbon doping. The photocatalytic activity that can withstand practical use cannot be obtained. On the other hand, when the surface temperature of the substrate 2 exceeds 700 ° C., the content of anatase-type titanium dioxide decreases. Then, by driving the heating table 17 in the horizontal direction at a predetermined speed, the raw material vaporized gas ejected from the ejection nozzle 13 is sprayed uniformly on the surface of the base material 3, and the titanium dioxide thin film 4 is uniformly formed. The

二酸化チタン薄膜4の成膜時間等は基材3によって異なるが、例えば、基材3の形状が30mm×30mm×1.5mm程度であれば、3μm/hr程度の成膜速度で2分間以内成膜することにより、本発明の多孔質光触媒に好適な二酸化チタン薄膜4が得られる。表面に二酸化チタン薄膜4が成膜された基材3は、その後内装建材2に積層され本発明の環境機能建材1が得られる。ここで、基材3の内装建材2への積層は、プレス加工や接着ライニング等により行われる。なお、基材3の内装建材2への積層は先に行っても良い。即ち、基材3を先に内装建材2に積層し、この内装建材2に積層された基材3の表面に後から二酸化チタン薄膜4を成膜するようにしても良い。   The deposition time of the titanium dioxide thin film 4 varies depending on the substrate 3. For example, if the shape of the substrate 3 is about 30 mm × 30 mm × 1.5 mm, the deposition rate is about 3 μm / hr within 2 minutes. By forming the film, a titanium dioxide thin film 4 suitable for the porous photocatalyst of the present invention is obtained. The base material 3 having the titanium dioxide thin film 4 formed on the surface is then laminated on the interior building material 2 to obtain the environmental functional building material 1 of the present invention. Here, lamination | stacking to the interior building material 2 of the base material 3 is performed by press work, an adhesive lining, etc. In addition, you may perform the lamination | stacking to the interior building material 2 of the base material 3 previously. That is, the base material 3 may be laminated on the interior building material 2 first, and the titanium dioxide thin film 4 may be formed later on the surface of the base material 3 laminated on the interior building material 2.

このようにして得られた本発明の環境機能建材1では、基材3に二酸化チタン薄膜4を成膜したので、その二酸化チタン薄膜4も光触媒として機能するため、優れた光触媒活性が得られる。一方、この基材3は通気性を有するので、基材3が積層された内装建材2における調湿機能が害されることもない。よって、調湿機能とともに顕著な防臭、防汚、耐シックハウス症を有する環境機能建材1が得られる。また、大気開放型化学気相析出法により基材3に二酸化チタン薄膜4を成膜することにより、環境機能建材1を比較的安価に得ることが可能になる。また、二酸化チタン薄膜4の膜厚を10nm以上100nm未満とするので、成膜された二酸化チタン薄膜4が基材3から剥離するようなこともなく、比較的堅牢な環境機能建材1を得ることができる。
なお、上述した実施の形態では、通気性を有する基材3を用いて説明したが、図2に示すように、基材3は通気性を有しないものであってもよい。
In the environmental functional building material 1 of the present invention thus obtained, since the titanium dioxide thin film 4 is formed on the substrate 3, the titanium dioxide thin film 4 also functions as a photocatalyst, so that excellent photocatalytic activity is obtained. On the other hand, since this base material 3 has air permeability, the humidity control function in the interior building material 2 on which the base material 3 is laminated is not impaired. Therefore, the environmental function building material 1 which has remarkable deodorization, antifouling, and sick house disease with a humidity control function is obtained. Moreover, it becomes possible to obtain the environmental functional building material 1 at a relatively low cost by forming the titanium dioxide thin film 4 on the base material 3 by the open chemical vapor deposition method. Moreover, since the film thickness of the titanium dioxide thin film 4 is 10 nm or more and less than 100 nm, the formed titanium dioxide thin film 4 is not peeled off from the base material 3, and a relatively robust environmental functional building material 1 is obtained. Can do.
In the above-described embodiment, the base material 3 having air permeability has been described. However, as shown in FIG. 2, the base material 3 may not have air permeability.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
大気開放型CVD装置の気化器にチタンテトライソプロピレート12gを充填し、気化温度80℃にて加熱し原料揮発ガス体とした。この原料揮発ガス体を窒素キャリアガスにて4L/minの流速にて噴霧ノズルに供給した。一方、厚さ0.1mm、一辺30mmの正方形で、かつ通気性を持たせるため、直径0.5mmの細孔を多数空けたアルミ箔を基材3としてホットプレート上に設置し400℃にて加熱した。ホットプレートを左右に6cmの振幅で40mm/minの速度にて往復運動させた。この状態でホットプレートの上部に設置したノズルからチタンテトライソプロピレート原料揮発ガスを1.5min噴霧し、表面に膜厚70nmの二酸化チタン薄膜4を成膜した通気性を保持したアルミ箔からなる基材3を得た。このアルミ箔からなる基材3を、厚さ6mm、一辺30mmの正方形の内装建材2である石膏ボード片に機械的にラミネート加工し、アルミ箔を石膏ボードに積層させた環境機能建材1を得た。この図1に示す環境機能建材1を実施例1とした。
なお、この基材3の表面に成膜された二酸化チタン薄膜4の剥離強度を、JISの鉛筆硬度試験法に則り測定した結果、鉛筆硬度5Hと十分な剥離強度を保持していた。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
A vaporizer of an atmospheric open type CVD apparatus was filled with 12 g of titanium tetraisopropylate and heated at a vaporization temperature of 80 ° C. to obtain a raw material volatile gas body. This raw material volatile gas was supplied to the spray nozzle with a nitrogen carrier gas at a flow rate of 4 L / min. On the other hand, an aluminum foil having a thickness of 0.1 mm, a side of 30 mm, and a large number of pores having a diameter of 0.5 mm is provided on a hot plate as a base material 3 at 400 ° C. Heated. The hot plate was reciprocated from side to side at a speed of 40 mm / min with an amplitude of 6 cm. In this state, a titanium tetraisopropylate raw material volatile gas is sprayed for 1.5 min from a nozzle installed at the top of the hot plate, and a titanium foil thin film 4 having a film thickness of 70 nm is formed on the surface. Material 3 was obtained. The base material 3 made of this aluminum foil is mechanically laminated on a gypsum board piece, which is a square interior building material 2 having a thickness of 6 mm and a side of 30 mm, to obtain an environmental functional building material 1 in which the aluminum foil is laminated on the gypsum board. It was. The environmental functional building material 1 shown in FIG.
In addition, as a result of measuring the peel strength of the titanium dioxide thin film 4 formed on the surface of the substrate 3 in accordance with the JIS pencil hardness test method, the pencil hardness was 5H and sufficient peel strength was maintained.

<実施例2>
図2に示すように、基材3として、通気性を確保するための細孔を形成していない、厚さ0.1mm、一辺30mmの正方形のアルミ箔を用い、実施例1と同一の条件及び手順により、表面に膜厚70nmの二酸化チタン薄膜4を成膜した通気性を有さないアルミ箔からなる基材3を得た。このアルミ箔からなる基材3を、実施例1と同一の内装建材2である石膏ボード片に機械的にラミネート加工し、アルミ箔を石膏ボードに積層させた環境機能建材1を得た。この図2に示す環境機能建材1を実施例2とした。
なお、この基材3の表面に成膜された二酸化チタン薄膜4の剥離強度を、JISの鉛筆硬度試験法に則り測定した結果、鉛筆硬度5Hと十分な剥離強度を保持していた。
<Example 2>
As shown in FIG. 2, the same conditions as in Example 1 were used as the base material 3, using a square aluminum foil having a thickness of 0.1 mm and a side of 30 mm, in which pores for ensuring air permeability were not formed. And the base material 3 which consists of an aluminum foil which does not have air permeability which formed the titanium dioxide thin film 4 with a film thickness of 70 nm on the surface by the procedure was obtained. The base material 3 made of this aluminum foil was mechanically laminated on a gypsum board piece, which is the same interior building material 2 as in Example 1, to obtain an environmental functional building material 1 in which the aluminum foil was laminated on the gypsum board. The environmental functional building material 1 shown in FIG.
In addition, as a result of measuring the peel strength of the titanium dioxide thin film 4 formed on the surface of the substrate 3 in accordance with the JIS pencil hardness test method, the pencil hardness was 5H and sufficient peel strength was maintained.

<実施例3>
チタン含有原料としてチタンテトライソプロピレート(TTIP)の代わりに、そのTTIPが85重量%、イソプロピルアルコールが15重量%の割合となるように、TTIPをイソプロピルアルコールに溶解した溶液原料を用いた。これ以外は実施例1と同様にして二酸化チタン薄膜4を成膜した通気性を保持したアルミ箔からなる基材3を得た。得られた基材3をX線光電子分光分析装置(X-ray Photoelectron Spectroscopy;XPS)により組成分析した結果、二酸化チタン薄膜4における炭素含有率は6.5重量%であることが判明した。この基材3を、実施例1と同一の内装建材2である石膏ボード片に機械的にラミネート加工し、アルミ箔を石膏ボードに積層させた環境機能建材1を得た。この環境機能建材1を実施例3とした。
なお、この基材3の表面に成膜された二酸化チタン薄膜4の剥離強度を、JISの鉛筆硬度試験法に則り測定した結果、鉛筆硬度5Hと十分な剥離強度を保持していた。
<Example 3>
Instead of titanium tetraisopropylate (TTIP), a solution raw material in which TTIP was dissolved in isopropyl alcohol was used so that the TTIP was 85% by weight and the isopropyl alcohol was 15% by weight. Except for this, a substrate 3 made of an aluminum foil having a breathability and having a titanium dioxide thin film 4 formed in the same manner as in Example 1 was obtained. As a result of analyzing the composition of the obtained substrate 3 using an X-ray photoelectron spectroscopy (XPS), it was found that the carbon content in the titanium dioxide thin film 4 was 6.5% by weight. This base material 3 was mechanically laminated on a gypsum board piece, which is the same interior building material 2 as in Example 1, to obtain an environmental functional building material 1 in which an aluminum foil was laminated on the gypsum board. This environmental functional building material 1 was set as Example 3.
In addition, as a result of measuring the peel strength of the titanium dioxide thin film 4 formed on the surface of the substrate 3 in accordance with the JIS pencil hardness test method, the pencil hardness was 5H and sufficient peel strength was maintained.

<比較例1>
比較例として二酸化チタン薄膜4をコーティングしない厚さ6mm、一辺30mmの正方形の石膏ボード片からなる内装建材を準備した。この内装建材を比較例1とした。
<Comparative Example 1>
As a comparative example, an interior building material consisting of a square gypsum board piece having a thickness of 6 mm and a side of 30 mm not coated with the titanium dioxide thin film 4 was prepared. This interior building material was referred to as Comparative Example 1.

<比較試験1>
実施例1〜実施例3及び比較例1の建材をそれぞれ用い、光触媒性能評価試験法IIa(2001年度版)ガスバックA法(光触媒製品技術協議会)に準拠した方法により、アセトアルデヒドの分解活性を指標として、光触媒活性を測定した。先ず、コック付きテドラーバックに実施例1〜実施例3及び比較例1の建材をそれぞれ別に封入した。次いで、それらのテドラーバック内にアセトアルデヒド濃度20ppmに調整した空気を1L充填した。次に、充填後のテドラーバックを30分間静置した。テドラーバックに空気を充填した直後、30分間静置後におけるテドラーバック中のアセトアルデヒド濃度をガス検知管(ガステック製;92M)にてそれぞれ測定した。続いて紫外線ランプを用いて30分間静置後のテドラーバックに波長350nm程度のUV光を照射した。そして、UV光照射30分後、1時間後におけるテドラーバック中のアセトアルデヒド濃度をガス検知管によりそれぞれ測定した。
実施例1〜実施例3及び比較例1のそれぞれの建材を用いた試験におけるテドラーバック中のアセトアルデヒド残存率とUV光照射時間との関係を図4に示す。
<比較試験2>
実施例1及び比較例1の建材をそれぞれ用い、JISA1470−2「調湿建材の吸放湿試験方法」によりその調湿機能を測定した。同条件の温度周期変化で測定した結果、実施例1及び比較例1ともほぼ同様の相対湿度周期変化、絶対湿度周期変化を示した。
<Comparison test 1>
Using the building materials of Examples 1 to 3 and Comparative Example 1, respectively, the decomposition activity of acetaldehyde was determined by a method based on Photocatalyst Performance Evaluation Test Method IIa (2001 version) Gasback A Method (Photocatalyst Product Technical Council). As an index, photocatalytic activity was measured. First, the building materials of Examples 1 to 3 and Comparative Example 1 were separately sealed in a tedlar bag with a cock. Next, 1 L of air adjusted to an acetaldehyde concentration of 20 ppm was filled in the tedlar bags. Next, the tedlar bag after filling was allowed to stand for 30 minutes. Immediately after filling the Tedlar bag with air, the concentration of acetaldehyde in the Tedlar bag after standing for 30 minutes was measured with a gas detector tube (manufactured by Gastec; 92M). Subsequently, UV light having a wavelength of about 350 nm was irradiated to the Tedlar back after standing for 30 minutes using an ultraviolet lamp. And 30 minutes after UV light irradiation, the acetaldehyde density | concentration in a Tedlar bag in 1 hour after was measured with the gas detector tube, respectively.
FIG. 4 shows the relationship between the residual ratio of acetaldehyde in the Tedlar bag and the UV light irradiation time in the tests using the respective building materials of Examples 1 to 3 and Comparative Example 1.
<Comparison test 2>
Each of the building materials of Example 1 and Comparative Example 1 was used to measure the humidity control function according to JIS A 1470-2 “Hygroscopic building material moisture absorption / release test method”. As a result of measurement with the temperature cycle change under the same conditions, both Example 1 and Comparative Example 1 showed substantially the same relative humidity cycle change and absolute humidity cycle change.

<評価>
図4から明らかなように、実施例1〜実施例3の環境機能建材では、紫外光照射時間1時間以内でアセトアルデヒド残存率がゼロとなる優れた光触媒活性を示した。これに対して比較例1の建材ではアセトアルデヒドを全く分解しなかった。これは実施例1〜実施例3では、基材3の表面に成膜された二酸化チタン薄膜4がアセトアルデヒドを分解したことに起因するものと考えられる。
一方、比較試験2の結果から、実施例1及び比較例1の双方の建材における調湿機能はほとんど同一の機能を有することが判る。実施例1では内装建材に基材が積層されるけれども、その積層された基材が通気性を有することにより内装建材の調湿機能を害していないことによるものと考えられる。よって、本発明の環境機能建材は、調湿機能とともに顕著な防臭、防汚、耐シックハウス症を有することが判る。
<Evaluation>
As is clear from FIG. 4, the environmental functional building materials of Examples 1 to 3 showed excellent photocatalytic activity in which the acetaldehyde residual ratio became zero within 1 hour of ultraviolet light irradiation. In contrast, the building material of Comparative Example 1 did not decompose acetaldehyde at all. This is considered to be caused by the fact that in Examples 1 to 3, the titanium dioxide thin film 4 formed on the surface of the substrate 3 decomposed acetaldehyde.
On the other hand, it can be seen from the results of Comparative Test 2 that the humidity control functions in the building materials of both Example 1 and Comparative Example 1 have almost the same function. In Example 1, although a base material is laminated | stacked on an interior building material, it is thought that it is because the laminated | stacked base material has air permeability and does not impair the humidity control function of an interior building material. Therefore, it turns out that the environmental functional building material of this invention has remarkable deodorization, antifouling, and sick house disease with a humidity control function.

本発明実施形態の環境機能建材の構造を示す断面図である。It is sectional drawing which shows the structure of the environmental function building material of this invention embodiment. 本発明の別の環境機能建材の構造を示す断面図である。It is sectional drawing which shows the structure of another environmental functional building material of this invention. 大気開放型化学気相析出装置の構成図である。It is a block diagram of an open air type chemical vapor deposition apparatus. 実施例1及び比較例1の建材を用いたアセトアルデヒド残存率とUV照射時間との関係を示す図である。It is a figure which shows the relationship between the acetaldehyde residual rate using the building material of Example 1 and Comparative Example 1, and UV irradiation time.

符号の説明Explanation of symbols

1 環境機能建材
2 内装建材
3 基材
4 二酸化チタン薄膜
1 Environmental Functional Building Material 2 Interior Building Material 3 Base Material 4 Titanium Dioxide Thin Film

Claims (14)

内装建材(2)と、前記内装建材(2)に積層された基材(3)と、前記基材(3)の表面に直接成膜された二酸化チタン薄膜(4)とを備え、前記二酸化チタン薄膜(4)の膜厚が10nm以上100nm未満である環境機能建材。   An interior building material (2), a base material (3) laminated on the interior building material (2), and a titanium dioxide thin film (4) directly deposited on the surface of the base material (3). An environmental functional building material in which the thickness of the titanium thin film (4) is 10 nm or more and less than 100 nm. 二酸化チタン薄膜(4)が基材(3)の全表面の95〜100%に成膜された請求項1記載の環境機能建材。   The environmental functional building material according to claim 1, wherein the titanium dioxide thin film (4) is formed on 95 to 100% of the entire surface of the substrate (3). 基材(3)が通気性を有する請求項1又は2記載の環境機能建材。   The environmental functional building material according to claim 1 or 2, wherein the base material (3) has air permeability. 基材(3)が多孔構造又は編目構造又は織布構造又は不織布構造を有する請求項3記載の環境機能建材。   The environmental functional building material according to claim 3, wherein the substrate (3) has a porous structure, a stitch structure, a woven structure or a non-woven structure. 二酸化チタン薄膜(4)が大気開放型化学気相析出法により基材(3)の表面に成膜された請求項1ないし4いずれか1項に記載の環境機能建材。   The environmental functional building material according to any one of claims 1 to 4, wherein the titanium dioxide thin film (4) is formed on the surface of the substrate (3) by an open-air chemical vapor deposition method. 二酸化チタン薄膜(4)が二酸化チタンに3〜7重量%の炭素を含有した炭素ドープ二酸化チタンからなる請求項1ないし5いずれか1項に記載の環境機能建材。   The environmental functional building material according to any one of claims 1 to 5, wherein the titanium dioxide thin film (4) comprises carbon-doped titanium dioxide containing 3 to 7% by weight of carbon in titanium dioxide. 内装建材(2)が、石膏ボード、ケイカル板、パーティクルボード、木材合板、繊維板、プラスチック板、セラミックパネル、コンクリート、タイル又はガラスブロックである請求項1ないし6いずれか1項に記載の環境機能建材。   The environmental function according to any one of claims 1 to 6, wherein the interior building material (2) is a gypsum board, a calc board, a particle board, a wood plywood, a fiber board, a plastic board, a ceramic panel, concrete, a tile or a glass block. Building materials. 基材(3)が金属、セラミック、ガラス、無機繊維、グラスウール、布、不織布、紙又はプラスチックである請求項1ないし7いずれか1項に記載の環境機能建材。   The environmental functional building material according to any one of claims 1 to 7, wherein the substrate (3) is a metal, ceramic, glass, inorganic fiber, glass wool, cloth, non-woven fabric, paper or plastic. 大気開放型化学気相析出法により基材(3)の表面に二酸化チタン薄膜(4)を膜厚10nm以上100nm未満で成膜する工程と、
前記基材(3)を内装建材(2)に積層する工程と
を含む環境機能建材の製造方法。
A step of forming a titanium dioxide thin film (4) on the surface of the substrate (3) with a film thickness of 10 nm or more and less than 100 nm by an open-air chemical vapor deposition method;
A method for producing an environmental functional building material, comprising: laminating the base material (3) on an interior building material (2).
二酸化チタン薄膜(4)を基材(3)の全表面の95〜100%に成膜する請求項9記載の環境機能建材の製造方法。   The method for producing an environmental functional building material according to claim 9, wherein the titanium dioxide thin film (4) is formed on 95 to 100% of the entire surface of the substrate (3). 通気性を有する基材(3)を用いる請求項9又は10記載の環境機能建材の製造方法。   The method for producing an environmental functional building material according to claim 9 or 10, wherein a base material (3) having air permeability is used. 基材(3)が多孔構造又は編目構造又は織布構造又は不織布構造を有する請求項11記載の環境機能建材の製造方法。   The method for producing an environmental functional building material according to claim 11, wherein the base material (3) has a porous structure, a stitch structure, a woven structure or a non-woven structure. 内装建材(2)として、石膏ボード、ケイカル板、パーティクルボード、木材合板、繊維板、プラスチック板、セラミックパネル、コンクリート、タイル又はガラスブロックを用いる請求項9ないし12いずれか1項に記載の環境機能建材の製造方法。   The environmental function according to any one of claims 9 to 12, wherein a gypsum board, a calc board, a particle board, a wood plywood, a fiber board, a plastic board, a ceramic panel, concrete, a tile or a glass block is used as the interior building material (2). Manufacturing method of building materials. 基材(3)として、金属、セラミック、ガラス、無機繊維、グラスウール、布、不織布、紙又はプラスチックを用いる請求項9ないし13いずれか1項に記載の環境機能建材の製造方法。

The method for producing an environmental functional building material according to any one of claims 9 to 13, wherein a metal, ceramic, glass, inorganic fiber, glass wool, cloth, nonwoven fabric, paper, or plastic is used as the substrate (3).

JP2005269334A 2005-03-31 2005-09-16 Environmentally functional building material and its manufacturing method Pending JP2006307623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269334A JP2006307623A (en) 2005-03-31 2005-09-16 Environmentally functional building material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005100281 2005-03-31
JP2005269334A JP2006307623A (en) 2005-03-31 2005-09-16 Environmentally functional building material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006307623A true JP2006307623A (en) 2006-11-09

Family

ID=37474814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269334A Pending JP2006307623A (en) 2005-03-31 2005-09-16 Environmentally functional building material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006307623A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345600A1 (en) * 2010-02-17 2010-09-27 Antonio Nuñez Jaramillo Flexible concrete panel reinforced with glass fibers and isolation. (Machine-translation by Google Translate, not legally binding)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045650A (en) * 2000-08-08 2002-02-12 Toto Ltd Moisture-controllable, photocatalyst interior wall material, method for producing the same and coating composition for moisture-controllable, photocatalyst interior wall material
JP2004285716A (en) * 2003-03-24 2004-10-14 Ube Board Kk Functional building material
WO2004108283A1 (en) * 2003-06-09 2004-12-16 Nippon Sheet Glass Co., Ltd. Photocatalyst member
JP2005047787A (en) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd Titanium dioxide microparticle and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002045650A (en) * 2000-08-08 2002-02-12 Toto Ltd Moisture-controllable, photocatalyst interior wall material, method for producing the same and coating composition for moisture-controllable, photocatalyst interior wall material
JP2005047787A (en) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd Titanium dioxide microparticle and method for producing the same
JP2004285716A (en) * 2003-03-24 2004-10-14 Ube Board Kk Functional building material
WO2004108283A1 (en) * 2003-06-09 2004-12-16 Nippon Sheet Glass Co., Ltd. Photocatalyst member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2345600A1 (en) * 2010-02-17 2010-09-27 Antonio Nuñez Jaramillo Flexible concrete panel reinforced with glass fibers and isolation. (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
EP3302796B1 (en) Use of a photocatalytic composition in the removal of trimethylamine
US20200129972A1 (en) Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
JP2002285691A (en) Interior material
KR20080101373A (en) Manufacture method of water soluble functional paint
JPH11254632A (en) Interior finishing decorative material having photocatalytic function and moisture absorbing and dissipating property
KR101848949B1 (en) Absorption-desorption wallpaper
KR20200064834A (en) Photocatalytic composite activated carbon material introduced TiOF2 and manufacturing method thereof
JP2006307623A (en) Environmentally functional building material and its manufacturing method
CN107859258B (en) A kind of air cleaning and environment-friendly type diatom ooze wallpaper and preparation method
JP5181201B2 (en) Wallpaper, building material using this wallpaper, and wall covering structure
CN105802367A (en) Composite film-coated self-cleaning inorganic ecological decorative plate and preparation method thereof
CN105667004B (en) A kind of method in situ for eliminating ski dome
JP3848605B2 (en) Building material having environmental improvement function and method for manufacturing the same
JP2007075696A (en) Porous photocatalyst film
JP4520501B2 (en) Method for producing functional charcoal board laminate
CN204983467U (en) Green ecological wall paper of built -in tea stalk powder
CN212188580U (en) Air purification module
KR101729364B1 (en) The wall paper with the air cleaning fuction comprising porous clay minerals coated by photocatalyst
KR100475367B1 (en) Composition for coating the surface of architecture and producing method thereof
KR100549500B1 (en) Polyester spunbonded non-woven fabric
JP5246587B2 (en) Interior material and manufacturing method thereof
KR200386651Y1 (en) wallpaper using fabric
CN204846966U (en) Indoor house environmental protection paper basket
JP5804257B2 (en) Decorative sheet
CN105965615A (en) Formaldehyde-free air purification furniture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712