JP2006303427A - Manufacturing method of thermoelectric semiconductor material - Google Patents

Manufacturing method of thermoelectric semiconductor material Download PDF

Info

Publication number
JP2006303427A
JP2006303427A JP2005369181A JP2005369181A JP2006303427A JP 2006303427 A JP2006303427 A JP 2006303427A JP 2005369181 A JP2005369181 A JP 2005369181A JP 2005369181 A JP2005369181 A JP 2005369181A JP 2006303427 A JP2006303427 A JP 2006303427A
Authority
JP
Japan
Prior art keywords
semiconductor material
alloy powder
thermoelectric semiconductor
powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005369181A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hasezaki
和洋 長谷崎
Yasutoshi Noda
泰稔 野田
Hiroyuki Kitagawa
裕之 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimane University
Original Assignee
Shimane University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimane University filed Critical Shimane University
Priority to JP2005369181A priority Critical patent/JP2006303427A/en
Publication of JP2006303427A publication Critical patent/JP2006303427A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a thermoelectric semiconductor material that performs cooling by extracting electricity from heat or passing currents through the material, which method enables manufacturing of a thermoelectric semiconductor material showing improved thermoelectric performance free from cracking. <P>SOLUTION: The manufacturing method includes a step of transforming material powder into alloy powder by a mechanical alloying method, and a step of subjecting the alloy powder to a superplastic deformation process. According to the method, the average diameter of crystal grains of the alloy powder having undergone the superplastic deformation process is determined to be 0.1 to 10 μm or smaller. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、熱から電気を取り出すもしくは電流を流すことで冷却を行う熱電半導体材料の製造方法に関し、特に、クラックが無い状態で、熱電性能が向上した熱電半導体材料を製造する、熱電半導体材料の製造方法に関する。   The present invention relates to a method for manufacturing a thermoelectric semiconductor material in which electricity is extracted from heat or cooled by flowing an electric current, and in particular, a thermoelectric semiconductor material for manufacturing a thermoelectric semiconductor material having improved thermoelectric performance in a state free from cracks. It relates to a manufacturing method.

熱電半導体材料は、熱から直接電力を発生させること、又は、熱電半導体自身に電流を流すことで冷却を行う材料である。   The thermoelectric semiconductor material is a material that performs cooling by generating electric power directly from heat or by passing an electric current through the thermoelectric semiconductor itself.

このような熱電半導体材料は、例えば、僻地の非常用小型発電機電源や、コンピューターのLSIの冷却などの用途に使用されている。   Such thermoelectric semiconductor materials are used, for example, for applications such as remote emergency generator power supplies in remote areas and cooling of computer LSIs.

しかしながら、従来の熱電半導体材料は、熱から電気へのエネルギーの変換効率や、電気からの吸収熱への成績係数が低く、他の発電システムや冷却システムより効率が悪い、という問題がある。   However, conventional thermoelectric semiconductor materials have a problem that the efficiency of energy conversion from heat to electricity and the coefficient of performance from electricity to absorbed heat are low, and the efficiency is lower than that of other power generation systems and cooling systems.

熱電半導体材料の熱電変換性能指数Zは、次式で表せる。   The thermoelectric conversion performance index Z of the thermoelectric semiconductor material can be expressed by the following equation.

ただし、式中αは熱起電力であり、бは電気伝導率であり、また、Кは熱伝導率である。 Where α is the thermoelectromotive force, б is the electrical conductivity, and К is the thermal conductivity.

この式から明らかなように、熱電半導体材料は、熱起電力や電気伝導率を大きくするか、熱伝導率を低くすれば、その性能を向上させることができる。   As is apparent from this equation, the performance of the thermoelectric semiconductor material can be improved by increasing the thermoelectromotive force and electrical conductivity or decreasing the thermal conductivity.

熱伝導率を低くして、熱電半導体材料の性能を向上させることを目的としたものとして、例えば、原料粉末を、メカニカルアイロイング法により合金粉末にする工程と、この合金粉末を加圧成形した後、熱処理する工程とを備える、熱電半導体材料の製造方法が既に提案されている。
特許2665014号 この熱電半導体材料の製造方法では、熱処理後、例えば、焼結後の合金粉末の結晶粒径を微細化し熱伝導率を低くすることで、熱電半導体材料の性能の向上を図っている。
For the purpose of lowering the thermal conductivity and improving the performance of the thermoelectric semiconductor material, for example, the raw material powder is made into an alloy powder by a mechanical ironing method, and the alloy powder is pressed. Thereafter, a method for manufacturing a thermoelectric semiconductor material has been proposed, which includes a step of heat treatment.
Patent No. 2665014 In this method of manufacturing a thermoelectric semiconductor material, after heat treatment, for example, the crystal grain size of the sintered alloy powder is refined to reduce the thermal conductivity, thereby improving the performance of the thermoelectric semiconductor material. .

しかしながら、熱処理した後の結晶粒は、再結晶化し、粒子が肥大化するため、メカニカルアロイング直後では、結晶粒の平均粒径が約1μm程度であっても、実用に供される最終的な、熱処理後、例えば、焼結後の焼結後においては、結晶粒の平均粒径が、10μm以上となっており、熱電性能の向上が得られない問題点がある。   However, since the crystal grains after the heat treatment are recrystallized and the grains are enlarged, even if the average grain diameter of the crystal grains is about 1 μm immediately after the mechanical alloying, the final grain that is practically used. After heat treatment, for example, after sintering after sintering, the average grain size of the crystal grains is 10 μm or more, and there is a problem that improvement in thermoelectric performance cannot be obtained.

また、熱電性能の向上を目的に、強塑性変形(「超塑性変形」のこと。以下、「強塑性変形」は、「超塑性変形」のことであるので、「強塑性変形」を「超塑性変形」に誤記の補正をした。)加工の一つである、せん変形により結晶粒を微細化し、熱伝導率を低下させる方法として、ECAE(equal channel angular extrusion)と呼ばれる方法がある。
Jae−Taek Im,K.Ted.Hartwig,Jeff Sharp,Microstructual refinement of cast p−type Bi2Te3−Sb2Te3 by equal channel angular extrushion,Acta meterialia 52(2004),p.49−p.55 しかしながら、この方法では、出発原料の結晶粒径が、100μm程度あるため、変形抵抗が大きく、結晶粒の粗大化がある程度抑制できる再結晶化温度付近で押し出すことができない、という問題点や、再結晶粒は、10μm以上であり、目的とする熱電性能の向上は得られていない。
For the purpose of improving thermoelectric performance, strong plastic deformation ("superplastic deformation". Hereinafter, "strong plastic deformation" means "superplastic deformation". An error is corrected in “plastic deformation.”) One method of processing is a method called ECAE (equal channel angular extrusion) as a method of reducing the thermal conductivity by refining crystal grains by helical deformation.
Jae-Taek Im, K.M. Ted. Hartwig, Jeff Sharp, Microstructural refinement of cast p-type Bi2Te3-Sb2Te3 by channel channel angular extension, Actameter4. 49-p. However, in this method, since the crystal grain size of the starting material is about 100 μm, there is a problem that the deformation resistance is large and it is not possible to extrude near the recrystallization temperature at which the coarsening of the crystal grains can be suppressed to some extent, The recrystallized grains are 10 μm or more, and the target thermoelectric performance is not improved.

また、熱電性能の向上を目的に、結晶粒を微細化し熱伝導率を低下させる方法として、バルクメカニカルアロイング法で、微細な粒子の合金粉末を製造した後に、せん断押し出しする方法がある。
祝迫 恭、相澤 龍彦、山本 淳、太田 敏隆、Bi-Te系熱電材料のせん断付加押し出し、Journal of the Japan Society of Powder and Powder Metallurgy Vol.47,No.11(2000),p.1189−p.1193 しかしながら、この方法は、再結晶温度近傍では、押し出しこそ可能であるものの、押し出された板材に、クラック(亀裂)が大量に導入されたものなり、実質的に熱電材料としての利用は不可能である、という問題点がある。また、上記した、バルクメカニカルアロイング法で、微細な粒子の合金粉末を製造した後に、せん断押し出しする方法には、再結晶化温度に対して、90K以上の高い温度では、押し出しは可能なものの、目的とする熱電性能の向上は得られていないという、問題もある。
In order to improve the thermoelectric performance, there is a method of reducing the thermal conductivity by refining crystal grains, and then producing a fine particle alloy powder by a bulk mechanical alloying method and then extruding it.
Congratulation Satoshi, Tatsuhiko Aizawa, Satoshi Yamamoto, Toshitaka Ota, Shear-added extrusion of Bi-Te thermoelectric materials, Journal of the Japan Society of Powder and Powder Metallurgy Vol. 47, no. 11 (2000), p. 1189-p. 1193 However, in this method, although extrusion is possible in the vicinity of the recrystallization temperature, a large amount of cracks are introduced into the extruded plate material, so that it is practically impossible to use as a thermoelectric material. There is a problem that it is. Further, in the above-described bulk mechanical alloying method, after producing an alloy powder with fine particles, the method of shear extrusion is capable of extruding at a temperature higher than 90K with respect to the recrystallization temperature. There is also a problem that the target thermoelectric performance is not improved.

解決しようとする問題点は、熱電性能の向上を目的に、結晶粒を微細化し熱伝導率を低下させるために、結晶粒の粗大化がある程度抑制できる再結晶化温度付近で押し出した場合クラックが発生する、という点である。   For the purpose of improving thermoelectric performance, the problem to be solved is that cracks are generated when extruding near the recrystallization temperature, where grain coarsening can be suppressed to some extent in order to reduce crystal grain size and reduce thermal conductivity. It occurs.

即ち、本発明は、クラックのない良好な熱電半導体材料を得る製造方法を提供することを目的としている。   That is, an object of the present invention is to provide a production method for obtaining a good thermoelectric semiconductor material free from cracks.

本発明は、均一組成で、平均粒径が、0.01μm以上10μm以下の範囲の熱電半導体合金材料粉末を、再結晶化開始温度、即ち、固相温度付近で保持しながら、歪速度を、10−2−1(sec−1)から10−6−1(sec−1)に制御して変形を加えた場合、伸び率が、100%を超える超塑性現象が熱電半導体材料にあることを発見したことを応用したものである。 The present invention provides a thermoelectric semiconductor alloy material powder having a uniform composition and an average particle diameter in the range of 0.01 μm or more and 10 μm or less, while maintaining the recrystallization start temperature, that is, near the solid phase temperature, while maintaining the strain rate. When deformation is applied by controlling from 10 −2 sec −1 (sec −1 ) to 10 −6 sec −1 (sec −1 ), the thermoelectric semiconductor material has a superplastic phenomenon with an elongation rate exceeding 100%. This is an application of the discovery.

本発明者等は、この発見により、再結晶開始温度付近で、変形抵抗が少なく、材料に亀裂(クラック)を発生することなく、超塑性変形加工が可能であることを見出した。   Based on this discovery, the present inventors have found that superplastic deformation processing is possible near the recrystallization start temperature with little deformation resistance and without causing cracks in the material.

即ち、本発明者等は、従来は、歪速度が、0.015秒−1(sec−1)以上であるため,変形抵抗が大きく、大きな変形が得られる超塑性発現歪速度領域ではないために、亀裂(クラック)が少ない健全な熱電半導体材料を得ることができなかったが、上記の超塑性効果を発揮させるために、原料粉末を、メカニカルアロイング法により、合金粉末にした後の合金粉末の平均粒径を、0.01μm以上10μmの範囲にし、更に、押し出し温度を、再結晶化開始温度−50Kから再結晶化開始温度+75Kの温度範囲に保持し、更に、歪速度を、10−2−1(sec−1)から10−6−1(sec−1)に制御しながら、超塑性変形加工すれば、結晶粒の肥大化を抑制しながら、結晶粒微細熱電半導体を得ることができることを見出し、本発明を完成するに至った。 That is, since the present inventors have conventionally had a strain rate of 0.015 sec −1 (sec −1 ) or more, the deformation resistance is large, and it is not a superplastic expression strain rate region in which large deformation can be obtained. In addition, it was not possible to obtain a sound thermoelectric semiconductor material with few cracks, but in order to exhibit the superplastic effect described above, the alloy after the raw material powder was converted into an alloy powder by the mechanical alloying method The average particle diameter of the powder is in the range of 0.01 μm or more and 10 μm, and the extrusion temperature is maintained in the temperature range from the recrystallization start temperature −50 K to the recrystallization start temperature +75 K, and the strain rate is If superplastic deformation is performed while controlling from 10 −2 sec −1 (sec −1 ) to 10 −6 sec −1 (sec −1 ), the crystal grain fine thermoelectric semiconductor is suppressed while suppressing the enlargement of crystal grains. That you can get The headline and the present invention were completed.

即ち、請求項1に記載の熱電半導体材料の製造方法は、熱から電力を取り出す又は電流を流すことで冷却を行う熱電半導体材料の製造方法であって、原料粉末を、メカニカルアロイング法により、合金粉末にする工程と、合金粉末を超塑性変形加工する工程とを備え、合金粉末を超塑性変形加工する工程後の合金粉末の平均粒径を、0.1μm以上10μm以下の結晶粒となるようにした。   That is, the method for producing a thermoelectric semiconductor material according to claim 1 is a method for producing a thermoelectric semiconductor material in which electric power is extracted from heat or cooling is performed by flowing an electric current, and the raw material powder is obtained by mechanical alloying. It comprises a step of making an alloy powder and a step of superplastic deformation of the alloy powder, and the average particle size of the alloy powder after the step of superplastic deformation of the alloy powder becomes a crystal grain of 0.1 μm or more and 10 μm or less I did it.

請求項2に記載の熱電半導体材料の製造方法は、請求項1に記載の熱電半導体材料の製造方法の、原料粉末を、メカニカルアロイングにより、合金粉末にする工程において、合金粉末の平均粒径を0.01μm以上10μm以下の範囲にした。   The method for producing a thermoelectric semiconductor material according to claim 2 is an average particle diameter of the alloy powder in the step of converting the raw material powder into an alloy powder by mechanical alloying in the method for producing the thermoelectric semiconductor material according to claim 1. In the range of 0.01 μm or more and 10 μm or less.

尚、合金粉末(熱半導体材料)を超塑性変形加工(例えば、押し出しする)前の出発原料である、メカニカルアロイング後の合金粉末(熱半導体材料)の平均粒径は、材料中の割れ(クラック)を抑制を抑制するためには、0.01μm以上5μm以下の範囲が好ましく、変形抵抗抑制の観点からは、0.01μm以上3μm以下の範囲が好ましい。   In addition, the average particle diameter of the alloy powder (thermal semiconductor material) after mechanical alloying, which is a starting material before superplastic deformation processing (for example, extruding) of the alloy powder (thermal semiconductor material), is the crack ( In order to suppress the suppression of cracks, a range of 0.01 μm or more and 5 μm or less is preferable, and from the viewpoint of suppressing deformation resistance, a range of 0.01 μm or more and 3 μm or less is preferable.

請求項3に記載の熱電半導体材料の製造方法は、請求項1又は請求項2に記載の熱電半導体材料の製造方法において、超塑性変形加工の温度条件が、固相温度−50K以上75K以下の温度範囲である。   The method for producing a thermoelectric semiconductor material according to claim 3 is the method for producing a thermoelectric semiconductor material according to claim 1 or 2, wherein the temperature condition of the superplastic deformation process is a solid phase temperature of −50K to 75K. It is a temperature range.

尚、超塑性変形加工の温度条件(例えば、押し出し温度)は、結晶粒の粗大化を更に防止するために、固相温度(再結晶化開始温度)が、−50K以上50K以下の温度範囲にすることが、好ましい。   Note that the temperature condition (for example, extrusion temperature) of the superplastic deformation processing is such that the solid phase temperature (recrystallization start temperature) is in the temperature range of −50K to 50K in order to further prevent coarsening of crystal grains. It is preferable to do.

請求項4に記載の熱電半導体材料の製造方法は、請求項1〜3のいずれかに記載の熱電半導体材料の製造方法において、超塑性変形加工の歪速度が、10−6−1(sec−1)以上10−2−1(sec−1)以下に制御することを特徴とする。 The method for producing a thermoelectric semiconductor material according to claim 4 is the method for producing a thermoelectric semiconductor material according to any one of claims 1 to 3, wherein the strain rate of superplastic deformation is 10 −6 sec −1 (sec. −1 ) to 10 −2 seconds −1 (sec −1 ) or less.

尚、歪速度は、熱電半導体材料中の割れ(クラック)を抑制するためには、10−6−1(sec−1)以上10−3−1(sec−1)以下に制御することが、好ましく、また、変形抵抗抑制の観点からは、10−6−1(sec−1)以上10−4−1以下に制御することが、好ましい。 In addition, in order to suppress the crack (crack) in the thermoelectric semiconductor material, the strain rate should be controlled to 10 −6 sec −1 (sec −1 ) or more and 10 −3 sec −1 (sec −1 ) or less. However, from the viewpoint of suppressing deformation resistance, it is preferable to control to 10 −6 sec −1 (sec −1 ) or more and 10 −4 sec −1 or less.

但し、10−6−1(sec−1)未満の歪速度は、加工時間が長くなり実用の観点から有効でない。 However, a strain rate of less than 10 −6 sec −1 (sec −1 ) is not effective from the viewpoint of practical use because the processing time becomes long.

請求項5に記載の熱電半導体材料の製造方法は、請求項1〜4のいずれかに記載の熱電半導体材料の製造方法の、合金粉末が、BiTe、BiSb及びSbTeの群から選択されるBiTe系材料、CoSb3、CeFeCoSb、CoSnTe、LaCoSnSb、YbCoSb及びBaCoSbの群から選択されるスクッテルダイト系材料、ZrNiSn、TiNiSn及びTiNisbの群から選択されるハーフホイッスラ系材料、又は、PbTe、ZnSb、FeSi2、AgSbTe、SiGe、SiC、MnSi、MgSiGeSn及びYbAlの群から選択される材料である。 The method for producing a thermoelectric semiconductor material according to claim 5 is a BiTe system in which the alloy powder of the method for producing a thermoelectric semiconductor material according to any one of claims 1 to 4 is selected from the group of BiTe, BiSb and SbTe. Material, CoSb3, CeFeCoSb, CoSnTe, LaCoSnSb, skutterudite-based material selected from the group of YBCoSb and BaCoSb, half-Whistler-based material selected from the group of ZrNiSn, TiNiSn and TiNisb, or PbTe, ZnSb, FeSi2, AgSbTe, the material of choice SiGe, SiC, MnSi, from the group of MgSiGeSn and YbAl 3.

本発明に係る熱電半導体材料の製造方法を用いれば、合金粉末を超塑性変形加工する工程後の合金粉末の平均粒径が、10μm以下の結晶粒であって、しかも、亀裂(クラック)が少ない健全な熱電半導体材料を得ることができる。   If the method for producing a thermoelectric semiconductor material according to the present invention is used, the average particle size of the alloy powder after the process of superplastic deformation of the alloy powder is a crystal grain of 10 μm or less, and there are few cracks. A sound thermoelectric semiconductor material can be obtained.

即ち、本発明に係る熱電半導体材料の製造方法を用いれば、熱伝導率が低く、熱電性能が高い、しかも、亀裂(クラック)が少ない健全な熱電半導体材料を得ることができる。   That is, if the method for producing a thermoelectric semiconductor material according to the present invention is used, a healthy thermoelectric semiconductor material having low thermal conductivity, high thermoelectric performance, and few cracks can be obtained.

特に、本発明に係る熱電半導体材料の製造方法を用いれば、結晶方位異方性により、熱電性能が大きく異なるBiTe系では、c軸の垂直面が滑り面であることから、c軸に垂直な面方向に配向が可能となり、結晶粒が細粒であり且つ熱電性能を方向制御が可能となった。   In particular, when the thermoelectric semiconductor material manufacturing method according to the present invention is used, in the BiTe system, in which the thermoelectric performance is greatly different due to crystal orientation anisotropy, the vertical surface of the c-axis is a sliding surface. Orientation was possible in the plane direction, the crystal grains were fine, and the direction of thermoelectric performance could be controlled.

以下、本発明に係る熱電半導体材料の製造方法を実施例に基づいて、例示的に、更に、詳しく説明する。
(実施例1)
図1は、本発明に係る熱電半導体材料の製造方法の一例を示すフローチャートである。
EXAMPLES Hereinafter, the manufacturing method of the thermoelectric semiconductor material which concerns on this invention is demonstrated still in detail based on an Example.
Example 1
FIG. 1 is a flowchart showing an example of a method for producing a thermoelectric semiconductor material according to the present invention.

ここでは、本発明に係る熱電半導体材料の製造方法の一例として、p型Bi0.5Sb1.5Teを製造する場合を例にとって説明する。 Here, as an example of the method for manufacturing a thermoelectric semiconductor material according to the present invention, a case where p-type Bi 0.5 Sb 1.5 Te 3 is manufactured will be described as an example.

まず、ステップS11に示す工程において、化学量論比のBi、Sb及びTeの各々の粉末を電子天秤にて秤量した。これらの原料粉末の平均粒径は、いずれも、0.1mm以上1mm以下であり、また、純度は、いずれも、99.99%以上であった。   First, in the process shown in step S11, each powder of Bi, Sb, and Te of stoichiometric ratio was weighed with an electronic balance. These raw material powders all had an average particle size of 0.1 mm or more and 1 mm or less, and their purity was 99.99% or more.

次に、ステップS12に示す工程において、ステップS11に示す工程において秤量した、原料粉末のメカニカルアロイングを行った。   Next, in the process shown in step S12, mechanical alloying of the raw material powder weighed in the process shown in step S11 was performed.

メカニカルアロイングは、アルゴンガス雰囲気(純度99.99%以上、露点−70℃以下)で、粉砕ボールとして、窒化珪素セラミックスを使用し、粉砕ボールと原料粉末との重量比は、20対1として行った。   Mechanical alloying uses an argon gas atmosphere (purity 99.99% or more, dew point −70 ° C. or less), uses silicon nitride ceramics as a pulverized ball, and the weight ratio of the pulverized ball and the raw material powder is 20: 1. went.

粉砕容器としては、アルゴンガス置換が可能なSUS304製金属容器を用いた。   As the grinding container, a metal container made of SUS304 capable of argon gas replacement was used.

メカニカルアロイングは、遊星ボールミリング装置により、30時間粉砕することで行った。得られた合金粉末の平均粒径は、2.0μmであった。   Mechanical alloying was performed by grinding for 30 hours with a planetary ball milling device. The average particle size of the obtained alloy powder was 2.0 μm.

次に、ステップS13に示す工程において、ステップS12で得られた合金粉末(メカニカルアロイング粉体)をホットプレス(熱間プレス)した。   Next, in the process shown in Step S13, the alloy powder (mechanical alloying powder) obtained in Step S12 was hot pressed (hot pressed).

合金粉末(メカニカルアロイング粉体)は、表面が非常に活性なため、ホットプレスの作業は、アルゴンガス雰囲気下で行うことで、大気中からの、酸素や水分との反応を回避させた。ホットプレスは、カーボンの金型に合金粉末(メカニカルアロイング粉体)を挿入し、再結晶開始温度、即ち、BiTe−SbTe系の固相温度である、413℃以下、具体的には、400℃×30MPaで、10分(min)間、加圧することで、均一微細熱電材料原料を得た。得られた原料の平均粒径は、2.0μmであった。   Since the surface of the alloy powder (mechanical alloying powder) is very active, the hot pressing operation was performed in an argon gas atmosphere to avoid reaction with oxygen and moisture from the atmosphere. In hot pressing, an alloy powder (mechanical alloying powder) is inserted into a carbon mold, and a recrystallization start temperature, that is, a BiTe-SbTe solid phase temperature of 413 ° C. or lower, specifically 400 A uniform fine thermoelectric material was obtained by pressurizing at 30 ° C. for 10 minutes (min). The average particle size of the obtained raw material was 2.0 μm.

図2は、ECAE(equal channel angular extrusion)装置の構成を模式的に説明する構成図である。   FIG. 2 is a configuration diagram schematically illustrating the configuration of an ECAE (equal channel angular extrusion) apparatus.

このECAE(equal channel angular extrusion)装置は、せん断押し出し金型1と、押し棒2とを備える。   This ECAE (equal channel angular extrusion) apparatus includes a shear extrusion mold 1 and a push bar 2.

せん断押し出し金型1には、合金粉末収容部1aが設けられている。   The shear extrusion mold 1 is provided with an alloy powder container 1a.

この合金粉末収容部1aは、その途中の位置において屈曲部p1aを有する。   The alloy powder containing portion 1a has a bent portion p1a at a position in the middle thereof.

屈曲部p1aの角度θは、合金粉末収容部1a内に収容された、ホットプレス後の合金粉末(メカニカルアロイング粉体)に超塑性変形を生じさせ易く、且つ、屈曲部1a付近に、ホットプレス後の合金粉末(メカニカルアロイング粉体)の一部が滞留するようなことが無いようにするためには、角度θは、45度以上120度以下にすることが好ましく、90度にすることが、最も好ましい。   The angle θ of the bent portion p1a is likely to cause superplastic deformation in the hot-pressed alloy powder (mechanical alloying powder) housed in the alloy powder housing portion 1a, and is hot in the vicinity of the bent portion 1a. In order to prevent part of the alloy powder (mechanical alloying powder) after pressing from staying, the angle θ is preferably 45 degrees or more and 120 degrees or less, and is preferably 90 degrees. Is most preferred.

また、合金粉末収容部1aの形状及び押し棒2の形状は、その断面形状が、矩形であることが好ましく、四角形状であることがより好ましく、長方形又は正方形であることが好ましく、正方形であることが、更に、好ましい。   Further, the shape of the alloy powder container 1a and the shape of the push rod 2 are preferably rectangular in cross section, more preferably rectangular, rectangular or square, and preferably square. It is further preferable.

また、合金粉末収容部1aの断面形状及び押し棒2の断面形状の各々の形状は、合金粉末収容部1aの側周面に、押し棒2の側周面が、摺動可能なようになっておれば、同一形状、または、押し棒2の断面形状が、合金粉末収容部1aの断面形状に比べて、ほんの少し小さい相似形にする。   Each of the cross-sectional shape of the alloy powder containing portion 1a and the cross-sectional shape of the push rod 2 can be slidable on the side peripheral surface of the alloy powder containing portion 1a. In this case, the same shape or the cross-sectional shape of the push rod 2 is made to be a slightly smaller similarity than the cross-sectional shape of the alloy powder containing portion 1a.

合金粉末収容部1aの出口の断面形状は、その一辺の長さを、0.25mm以上250mm以下の範囲にすることが好ましく、0.5mm以上5mm以下の範囲にすることが好ましい。   As for the cross-sectional shape of the outlet of the alloy powder container 1a, the length of one side is preferably in the range of 0.25 mm to 250 mm, and more preferably in the range of 0.5 mm to 5 mm.

尚、合金粉末収容部1aの出口の断面形状は、その一辺の長さの下限値を、0.25mm以上としているのは、合金粉末収容部1aの出口の断面形状の一辺を、0.25mm未満とすると、ホットプレス後の合金粉末(メカニカルアロイング粉体)の超塑性変形加工が困難になるからである。   In addition, the cross-sectional shape of the outlet of the alloy powder container 1a has a lower limit value of 0.25 mm or more for the length of one side, and the one side of the cross-sectional shape of the outlet of the alloy powder container 1a is 0.25 mm. If it is less than this, it is difficult to superplastically deform the alloy powder (mechanical alloying powder) after hot pressing.

次に、ステップS14に示す工程において、図2に示す、ECAE(equal channel angular extrusion)法により、ホットプレス後の合金粉末(メカニカルアロイング粉体)に、せん断変形を与えた。   Next, in the process shown in step S14, shear deformation was given to the alloy powder after hot pressing (mechanical alloying powder) by an ECAE (equal channel angular extrusion) method shown in FIG.

即ち、せん断押し出し金型1の合金粉末収容部1a内に、ホットプレス後の合金粉末(メカニカルアロイング粉体)4を収容し、押し棒2を、図2中、白抜き矢印A1方向に押し込んで、矢印A2方向に、合金粉末(熱半導体材料)を超塑性変形加工(押し出し)した。   That is, the alloy powder (mechanical alloying powder) 4 after hot pressing is accommodated in the alloy powder accommodating portion 1a of the shear extrusion die 1, and the push rod 2 is pushed in the direction of the white arrow A1 in FIG. The alloy powder (thermal semiconductor material) was superplastically deformed (extruded) in the direction of arrow A2.

押し出し条件は、再結晶開始温度、即ち、BiTe−SbTe系の固相温度である、413℃以下の400℃とした。   The extrusion conditions were set to 400 ° C., which is 413 ° C. or lower, which is the recrystallization start temperature, that is, the solid phase temperature of the BiTe—SbTe system.

押し出しの歪速度は、10−4−1(sec−1)とした。 The strain rate of extrusion was 10 −4 sec −1 (sec −1 ).

この押し出しは、均一な微細結晶粒を得るためには、複数回行うことが望ましく、実施例1では、4回行った。   This extrusion is desirably performed a plurality of times in order to obtain uniform fine crystal grains. In Example 1, the extrusion was performed four times.

以上の工程により得られた、p型Bi0.5Sb1.5Teの押し出し方向および垂直方向の熱電性能を図3に示す。 FIG. 3 shows the thermoelectric performance in the extrusion direction and the vertical direction of p-type Bi 0.5 Sb 1.5 Te 3 obtained by the above steps.

尚、実施例1で得られた、p型Bi0.5Sb1.5Teの平均粒径は、2.0μmであった。 In addition, the average particle diameter of p-type Bi 0.5 Sb 1.5 Te 3 obtained in Example 1 was 2.0 μm.

図3にもあるように、本発明で得られた熱電半導体材料の押し出し方向は、熱電性能が発揮されるとされるa軸方向に配向しているため、それと垂直な方向では異なる熱電性能を示す。   As shown in FIG. 3, the extrusion direction of the thermoelectric semiconductor material obtained in the present invention is oriented in the a-axis direction where the thermoelectric performance is exhibited. Show.

図3の結果から、明らかなように、本発明で得られた熱電半導体材料は、優れた特性を示す。   As is clear from the results of FIG. 3, the thermoelectric semiconductor material obtained by the present invention exhibits excellent characteristics.

また、この熱電半導体材料は、合金粉末を超塑性変形加工する工程後の合金粉末の平均粒径が、10μm以下の結晶粒であって、しかも、亀裂(クラック)が殆どみられなかった
(実施例2)
図4は、本発明に係る熱電半導体材料の製造方法の他の一例を示すフローチャートである。
Further, this thermoelectric semiconductor material is a crystal grain having an average particle diameter of 10 μm or less after the step of superplastic deformation of the alloy powder, and cracks were hardly observed (implementation). Example 2)
FIG. 4 is a flowchart showing another example of the method for manufacturing a thermoelectric semiconductor material according to the present invention.

ここでは、本発明に係る熱電半導体材料の製造方法の他の一例として、p型Bi0.5Sb1.5Teを製造する場合を例にとって説明する。 Here, as another example of the method for producing a thermoelectric semiconductor material according to the present invention, a case of producing p-type Bi 0.5 Sb 1.5 Te 3 will be described as an example.

まず、ステップS21に示す工程において、化学量論比のBi、Sb及びTeの各々の粉末を電子天秤にて秤量した。これらの原料粉末の平均粒径は、いずれも、0.1mm以上1mm以下であり、また、純度は、いずれも、99.99%以上であった。   First, in the process shown in step S21, each powder of Bi, Sb, and Te of stoichiometric ratio was weighed with an electronic balance. These raw material powders all had an average particle size of 0.1 mm or more and 1 mm or less, and their purity was 99.99% or more.

次に、ステップS22に示す工程において、ステップS21に示す工程において秤量した、原料粉末のメカニカルアロイングを行った。   Next, in the process shown in step S22, mechanical alloying of the raw material powder weighed in the process shown in step S21 was performed.

メカニカルアロイングは、アルゴンガス雰囲気(純度99.99%以上、露点−70℃以下)で、粉砕ボールとして、窒化珪素セラミックスを使用し、粉砕ボールと原料粉末との重量比は、20対1として行った。   Mechanical alloying uses an argon gas atmosphere (purity 99.99% or more, dew point −70 ° C. or less), uses silicon nitride ceramics as a pulverized ball, and the weight ratio of the pulverized ball and the raw material powder is 20: 1. went.

粉砕容器としては、アルゴンガス置換が可能なSUS304製金属容器を用いた。   As the grinding container, a metal container made of SUS304 capable of argon gas replacement was used.

メカニカルアロイングは、遊星ボールミリング装置により、30時間粉砕することで行った。得られた合金粉末の平均粒径は、2.0μmであった。   Mechanical alloying was performed by grinding for 30 hours with a planetary ball milling device. The average particle size of the obtained alloy powder was 2.0 μm.

図5は、実施例2において使用した熱間圧延装置の構成を模式的に説明する構成図である。   FIG. 5 is a configuration diagram schematically illustrating the configuration of the hot rolling apparatus used in the second embodiment.

次に、ステップS23に示す工程において、ステップS22に示す工程において得られたHIP焼結材(合金粉末(メカニカルアロイング粉体))12をカプセル容器(この例では、純アルミ容器)11に移し変え、その内部を真空排気後、真空排気口を、電子ビーム溶接で封じきり処理(カプセリング処理)を行った。   Next, in the process shown in step S23, the HIP sintered material (alloy powder (mechanical alloying powder)) 12 obtained in the process shown in step S22 is transferred to a capsule container (in this example, a pure aluminum container) 11. Then, after the inside was evacuated, the evacuation port was sealed by electron beam welding (capsuling treatment).

HIP焼結材(合金粉末(メカニカルアロイング粉体))12は、表面が非常に活性なため、カプセル挿入作業は、アルゴンガス雰囲気下で行うことで、大気中からの、酸素や水分との反応を回避させた。   Since the surface of the HIP sintered material (alloy powder (mechanical alloying powder)) 12 is very active, the capsule insertion operation is performed under an argon gas atmosphere, so that oxygen and moisture from the atmosphere can be removed. The reaction was avoided.

次に、カプセル容器(この例では、純アルミ容器)11を、HIP(hot isostatic press)した。HIP(hot isostatic press)は、再結晶開始温度すなわちBiTe−SbTe系の固相温度である413℃以下、具体的には400℃×100MPaで1時間ガス加圧することで均一微細熱電材料原料を得た。得られた原料の平均粒径は、2.0μmであった。   Next, the capsule container (in this example, a pure aluminum container) 11 was subjected to HIP (hot isostatic press). HIP (hot isostatic press) is a recrystallization start temperature, that is, a BiTe-SbTe solid phase temperature of 413 ° C. or lower, specifically 400 ° C. × 100 MPa for 1 hour to obtain a uniform fine thermoelectric material raw material. It was. The average particle size of the obtained raw material was 2.0 μm.

次に、ステップS24に示す工程において、図5に示す熱間圧延装置の熱間圧延ロール23、23を用い、カプセル容器(この例では、純アルミ容器)11に、矢印A3方向に塑性変形を与えた。   Next, in the process shown in step S24, the hot deformation rolls 23 and 23 of the hot rolling apparatus shown in FIG. 5 are used to plastically deform the capsule container (in this example, a pure aluminum container) 11 in the direction of arrow A3. Gave.

塑性変形は、463℃で行った。   Plastic deformation was performed at 463 ° C.

また、歪速度は、10−2−1(sec−1)とした。 The strain rate was 10 −2 sec −1 (sec −1 ).

この圧延は、均一な微細結晶粒を得るためには複数回行うことが望ましく、実施例2では、4回行った。   This rolling is desirably performed a plurality of times in order to obtain uniform fine crystal grains. In Example 2, the rolling was performed four times.

以上の工程により得られた、p型Bi0.5Sb1.5Teの押し出し方向および垂直方向の熱電性能を図6に示す。 FIG. 6 shows the thermoelectric performance in the extrusion direction and the vertical direction of p-type Bi 0.5 Sb 1.5 Te 3 obtained by the above steps.

尚、実施例2で得られたp型Bi0.5Sb1.5Teの平均粒径は、4.0μmであった。 The average particle size of the p-type Bi 0.5 Sb 1.5 Te 3 obtained in Example 2 was 4.0 μm.

図6にもあるように、本発明で得られた熱電半導体材料の圧延方向は、熱電性能が発揮されるとされるa軸方向に配向しているため、それと垂直な方向では異なる熱電性能を示す。   As shown in FIG. 6, the rolling direction of the thermoelectric semiconductor material obtained in the present invention is oriented in the a-axis direction where thermoelectric performance is expected to be exhibited. Show.

図6の結果から、明らかなように、本発明で得られた熱電半導体材料は、優れた特性を示す。   As is apparent from the results of FIG. 6, the thermoelectric semiconductor material obtained by the present invention exhibits excellent characteristics.

また、この熱電半導体材料は、合金粉末を超塑性変形加工する工程後の合金粉末の平均粒径が、10μm以下の結晶粒であって、しかも、亀裂(クラック)が殆どみられなかった。   In addition, the thermoelectric semiconductor material was a crystal grain having an average particle diameter of 10 μm or less after the step of superplastic deformation of the alloy powder, and cracks were hardly observed.

また、上記した発明を実施するための最良の形態では、本発明に係る熱電半導体材料の製造方法の説明として、p型Bi0.5Sb1.5Te、及び、p型Bi0.5Sb1.5Teを製造する場合を例にとって説明したが、これは、本発明を説明するために用いたものであって、本発明に係る熱電半導体材料の製造方法は、p型Bi0.5Sb1.5Te、及び、p型Bi0.5Sb1.5Teを製造する場合に限定されるものではない。 In the best mode for carrying out the invention described above, p-type Bi 0.5 Sb 1.5 Te 3 and p-type Bi 0.5 are used as the description of the method for producing a thermoelectric semiconductor material according to the present invention. Although the case where Sb 1.5 Te 3 is manufactured has been described as an example, this is used to explain the present invention, and the method for manufacturing a thermoelectric semiconductor material according to the present invention is p-type Bi 0. However, the present invention is not limited to the case of manufacturing .5 Sb 1.5 Te 3 and p-type Bi 0.5 Sb 1.5 Te 3 .

BiTe系として、同じ化合物群に属するBiTe、BiSbTe、BiSbTeSeの化合物及び微量不純物を添加したn型及びp型を示すBiTe、BiSbTe、BiSbTeSeの化合物は、合金粉末の粒径を0.1μm以上10μm以下として、同じ固相温度413℃±75℃の押し出し温度で歪み速度10−2−1で製造することが可能である。 BiTe, BiSbTe, BiSbTeSe compounds belonging to the same compound group, and BiTe, BiSbTe, and BiSbTeSe compounds that add a small amount of impurities to BiTe, BiSbTe, and BiSbTeSe belong to the same compound group. Can be produced at the same solid phase temperature of 413 ° C. ± 75 ° C. and an extrusion temperature of 10 −2 sec− 1 .

更に、BiTe系の化合物群に含まれるBiSbは、固相温度が280℃であるため、合金粉末の粒径を、0.1μm以上10μm以下として、押し出し温度280℃±75℃で歪み速度10−3−1で製造することが可能であった。 Furthermore, since BiSb included in the BiTe compound group has a solid phase temperature of 280 ° C., the particle size of the alloy powder is set to 0.1 μm to 10 μm, the extrusion temperature is 280 ° C. ± 75 ° C., and the strain rate is 10 It was possible to produce in 3 seconds -1 .

この他、CoSb3、 CeFeCoSb、 CoSnTe、 LaCoSnSb、 YbCoSb、 BaCoSbなどのスクッテルダイト系、ZrNiSn、 TiNiSn、 TiNiSbに代表されるハーフホイッスラ系、PbTe、ZnSb、FeSi2、AgSbTe、SiGe、SiC、MnSi、MgSiGeSnの熱電半導体材料も合金状態図から固相温度を導き出し、その温度±75℃以内で、歪み速度10-6-1以上10-2-1以下の範囲にすることで製造可能であった。 In addition, skutterudite series such as CoSb3, CeFeCoSb, CoSnTe, LaCoSnSb, YbCoSb, BaCoSb, half whistler series represented by ZrNiSn, TiNiSn, TiNiSb, PbTe, ZnSb, FeSi 2 e, SiSi, AgSi The thermoelectric semiconductor material of MgSiGeSn can also be manufactured by deriving the solid phase temperature from the alloy phase diagram, and setting the strain rate within the range of 10 −6 sec −1 to 10 −2 sec −1 within the temperature ± 75 ° C. It was.

本発明に係る熱電半導体材料の製造方法は、合金粉末を超塑性変形加工する工程後の合金粉末の平均粒径が、熱伝導率が低く、熱電性能が高い、即ち、10μm以下の結晶粒であって、しかも、亀裂(クラック)が少ない健全な、BiTe、BiSb及びSbTeの群から選択されるBiTe系材料、CoSb3、CeFeCoSb、CoSnTe、LaCoSnSb、YbCoSb及びBaCoSbの群から選択されるスクッテルダイト系材料、ZrNiSn、TiNiSn及びTiNisbの群から選択されるハーフホイッスラ系材料、又は、PbTe、ZnSb、FeSi2、AgSbTe、SiGe、SiC、MnSi、MgSiGeSn及びYbAlの群から選択される熱電半導体材料の製造方法として、好適であることを付記しておく。 In the method for producing a thermoelectric semiconductor material according to the present invention, the average particle size of the alloy powder after the superplastic deformation processing of the alloy powder is low in thermal conductivity and high in thermoelectric performance, that is, with crystal grains of 10 μm or less. Furthermore, a BiTe-based material selected from the group of BiTe, BiSb and SbTe, which is healthy with few cracks (cracks), a skutterudite system selected from the group of CoSb3, CeFeCoSb, CoSnTe, LaCoSnSb, YbCoSb and BaCoSb material, ZrNiSn, half whistler based material selected from the group of TiNiSn and TiNisb, or, PbTe, ZnSb, FeSi2, AgSbTe , SiGe, SiC, MnSi, manufacture of thermoelectric semiconductor material selected from the group of MgSiGeSn and YbAl 3 Note that the method is suitable Keep it.

本発明に係る熱電半導体材料の製造方法を用いれば、合金粉末を超塑性変形加工する工程後の合金粉末の平均粒径が、10μm以下の結晶粒であって、しかも、亀裂(クラック)が少ない健全な熱電半導体材料を得ることができる。 If the method for producing a thermoelectric semiconductor material according to the present invention is used, the average particle size of the alloy powder after the process of superplastic deformation of the alloy powder is a crystal grain of 10 μm or less, and there are few cracks. A sound thermoelectric semiconductor material can be obtained.

即ち、本発明に係る熱電半導体材料の製造方法を用いれば、熱電半導体材料の性能が向上した熱電半導体材料を製造できる。   That is, if the method for manufacturing a thermoelectric semiconductor material according to the present invention is used, a thermoelectric semiconductor material with improved performance of the thermoelectric semiconductor material can be manufactured.

本発明に係る熱電半導体材料の製造方法により製造される熱電半導体材料は、小型発電機電源や、廃熱回収による発電システムなどへ利用が期待れ、さらには、冷却素子として用いた場合、その性能向上により、消費電力が低下するので、省エネルギーに寄与できる。   The thermoelectric semiconductor material manufactured by the method for manufacturing a thermoelectric semiconductor material according to the present invention is expected to be used for a small generator power source, a power generation system by waste heat recovery, and the like, and further, when used as a cooling element, Improvement can contribute to energy saving because power consumption is reduced.

本発明に係る熱電半導体材料の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the thermoelectric semiconductor material which concerns on this invention. ECAE(equal channel angular extrusion)装置の構成を模式的に説明する構成図である。It is a block diagram which illustrates typically the structure of an ECAE (equal channel angular extrusion) apparatus. 実施例1で得られた、p型Bi0.5Sb1.5Teの押し出し方向および垂直方向の熱電性能を示す表である。4 is a table showing the thermoelectric performance in the extrusion direction and in the vertical direction of p-type Bi 0.5 Sb 1.5 Te 3 obtained in Example 1. 本発明に係る熱電半導体材料の製造方法の他の一例を示すフローチャートである。It is a flowchart which shows another example of the manufacturing method of the thermoelectric-semiconductor material based on this invention. 実施例2において使用した熱間圧延装置の構成を模式的に説明する構成図である。It is a block diagram which illustrates typically the structure of the hot rolling apparatus used in Example 2. FIG. 実施例2で得られた、p型Bi0.5Sb1.5Teの押し出し方向および垂直方向の熱電性能を示す表である。4 is a table showing the thermoelectric performance in the extrusion direction and in the vertical direction of p-type Bi 0.5 Sb 1.5 Te 3 obtained in Example 2.

符号の説明Explanation of symbols

1 せん断押し出し金型
1a 合金粉末収容部
2 押し棒
4 合金粉末(メカニカルアロイング粉体)
11 カプセリング容器
12 HIP焼結材(合金粉末(メカニカルアロイング粉体))
13 熱間圧延ロール
DESCRIPTION OF SYMBOLS 1 Shear extrusion die 1a Alloy powder accommodating part 2 Push bar 4 Alloy powder (mechanical alloying powder)
11 Capsule container 12 HIP sintered material (alloy powder (mechanical alloying powder))
13 Hot rolling roll

Claims (5)

熱から電力を取り出す又は電流を流すことで冷却を行う熱電半導体材料の製造方法であって、
原料粉末を、メカニカルアロイング法により、合金粉末にする工程と、
前記合金粉末を超塑性変形加工する工程とを備え、
前記合金粉末を超塑性変形加工する工程後の合金粉末の平均粒径を、0.1μm以上10μm以下の結晶粒となるようにした、熱電半導体材料の製造方法。
A method for producing a thermoelectric semiconductor material that cools by extracting electric power from heat or passing an electric current,
The process of making raw material powder into alloy powder by mechanical alloying method,
A step of superplastic deformation of the alloy powder,
A method for producing a thermoelectric semiconductor material, wherein an average particle size of the alloy powder after the step of superplastic deformation of the alloy powder is made to be a crystal grain of 0.1 µm or more and 10 µm or less.
前記原料粉末を、メカニカルアロイングにより、合金粉末にする工程において、前記合金粉末の平均粒径を0.01μm以上10μm以下の範囲にした、請求項1に記載の熱電半導体材料の製造方法。 2. The method for producing a thermoelectric semiconductor material according to claim 1, wherein in the step of converting the raw material powder into an alloy powder by mechanical alloying, an average particle size of the alloy powder is in a range of 0.01 μm to 10 μm. 前記超塑性変形加工の温度条件が、固相温度−50K以上75K以下の温度範囲である、請求項1又は請求項2に記載の熱電半導体材料の製造方法。 The method for producing a thermoelectric semiconductor material according to claim 1 or 2, wherein a temperature condition of the superplastic deformation process is a solid phase temperature of -50K or more and 75K or less. 前記超塑性変形加工の歪速度を、10−6−1以上10−2−1以下に制御することを特徴とする、請求項1〜3のいずれかに記載の熱電半導体材料の製造方法。 The method for producing a thermoelectric semiconductor material according to any one of claims 1 to 3, wherein a strain rate of the superplastic deformation process is controlled to be 10-6 sec- 1 or more and 10-2 sec- 1 or less. . 前記合金粉末が、BiTe、BiSb及びSbTeの群から選択されるBiTe系材料、CoSb3、CeFeCoSb、CoSnTe、LaCoSnSb、YbCoSb及びBaCoSbの群から選択されるスクッテルダイト系材料、ZrNiSn、TiNiSn及びTiNisbの群から選択されるハーフホイッスラ系材料、又は、PbTe、ZnSb、FeSi2、AgSbTe、SiGe、SiC、MnSi、MgSiGeSn及びYbAlの群から選択される材料である、請求項1〜4のいずれかに記載の熱電半導体材料の製造方法。 The alloy powder is a BiTe-based material selected from the group of BiTe, BiSb and SbTe, a skutterudite-based material selected from the group of CoSb3, CeFeCoSb, CoSnTe, LaCoSnSb, YbCoSb and BaCoSb, a group of ZrNiSn, TiNiSn and TiNisb. half whistler based material selected from, or, PbTe, ZnSb, FeSi2, AgSbTe , SiGe, SiC, a material MnSi, selected from the group of MgSiGeSn and YbAl 3, according to any of claims 1 to 4 Manufacturing method of thermoelectric semiconductor material.
JP2005369181A 2005-03-23 2005-12-22 Manufacturing method of thermoelectric semiconductor material Pending JP2006303427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369181A JP2006303427A (en) 2005-03-23 2005-12-22 Manufacturing method of thermoelectric semiconductor material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005083293 2005-03-23
JP2005369181A JP2006303427A (en) 2005-03-23 2005-12-22 Manufacturing method of thermoelectric semiconductor material

Publications (1)

Publication Number Publication Date
JP2006303427A true JP2006303427A (en) 2006-11-02

Family

ID=37471306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369181A Pending JP2006303427A (en) 2005-03-23 2005-12-22 Manufacturing method of thermoelectric semiconductor material

Country Status (1)

Country Link
JP (1) JP2006303427A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103343249A (en) * 2013-06-25 2013-10-09 江苏大学 Preparation method of electric field driven in-situ gradient thermoelectric material
US8865995B2 (en) 2004-10-29 2014-10-21 Trustees Of Boston College Methods for high figure-of-merit in nanostructured thermoelectric materials
KR101452795B1 (en) * 2006-12-01 2014-10-21 메사추세츠 인스티튜트 오브 테크놀로지 Methods for high figure-of-merit in nanostructured thermoelectric materials
US9011763B2 (en) 2004-10-29 2015-04-21 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
JP2015156476A (en) * 2014-01-16 2015-08-27 株式会社豊田中央研究所 n-type thermoelectric material
JP2020507913A (en) * 2017-03-15 2020-03-12 エルジー・ケム・リミテッド New compound semiconductor and its utilization
CN114249304A (en) * 2020-09-25 2022-03-29 中国科学院大连化学物理研究所 High-performance BiTe-based composite thermoelectric material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244167A (en) * 1990-02-22 1991-10-30 Mitsubishi Heavy Ind Ltd Manufacture of thermoelectric conversion element material
JP2004143560A (en) * 2002-10-28 2004-05-20 Matsushita Electric Works Ltd Production method for thermoelectric conversion element
JP2004221429A (en) * 2003-01-16 2004-08-05 Matsushita Electric Works Ltd Thermoelectric conversion material and thermoelectric module using the same, methods for manufacturing both the same
JP2006108418A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Manufacturing method of thermoelectric material and thermoelement
JP2006108419A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Manufacturing method of thermoelectric material and thermoelement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244167A (en) * 1990-02-22 1991-10-30 Mitsubishi Heavy Ind Ltd Manufacture of thermoelectric conversion element material
JP2004143560A (en) * 2002-10-28 2004-05-20 Matsushita Electric Works Ltd Production method for thermoelectric conversion element
JP2004221429A (en) * 2003-01-16 2004-08-05 Matsushita Electric Works Ltd Thermoelectric conversion material and thermoelectric module using the same, methods for manufacturing both the same
JP2006108418A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Manufacturing method of thermoelectric material and thermoelement
JP2006108419A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Manufacturing method of thermoelectric material and thermoelement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865995B2 (en) 2004-10-29 2014-10-21 Trustees Of Boston College Methods for high figure-of-merit in nanostructured thermoelectric materials
US9011763B2 (en) 2004-10-29 2015-04-21 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
KR101452795B1 (en) * 2006-12-01 2014-10-21 메사추세츠 인스티튜트 오브 테크놀로지 Methods for high figure-of-merit in nanostructured thermoelectric materials
CN103343249A (en) * 2013-06-25 2013-10-09 江苏大学 Preparation method of electric field driven in-situ gradient thermoelectric material
JP2015156476A (en) * 2014-01-16 2015-08-27 株式会社豊田中央研究所 n-type thermoelectric material
JP2020507913A (en) * 2017-03-15 2020-03-12 エルジー・ケム・リミテッド New compound semiconductor and its utilization
US11724944B2 (en) 2017-03-15 2023-08-15 Lg Chem, Ltd. Compound semiconductor and use thereof
CN114249304A (en) * 2020-09-25 2022-03-29 中国科学院大连化学物理研究所 High-performance BiTe-based composite thermoelectric material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5333001B2 (en) Thermoelectric material and manufacturing method thereof
JP2006303427A (en) Manufacturing method of thermoelectric semiconductor material
Mohebali et al. Thermoelectric figure of merit of bulk FeSi2–Si0. 8Ge0. 2 nanocomposite and a comparison with β-FeSi2
JP5922323B2 (en) Double-phase thermoelectric conversion material
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP2006269731A (en) Thermoelectric conversion material, its manufacturing method and thermoelectric conversion module using the same
JP2008159680A (en) Yb-ae-fe-co-sb (ae:ca, sr, ba, cu, ag, au)-based thermoelectric conversion material
US20230284532A1 (en) Alloy, sintered article, thermoelectric module and method for the production of a sintered article
JP2008047806A (en) Clathrate compound and thermoelectric conversion element formed of same
CN115667559B (en) Silicide alloy material and element using the same
KR101455713B1 (en) Method of preparing high performance thermoelectric materials using cold working
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP6560061B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
KR20110092762A (en) MANUFACTURING METHOD OF Mg2Si THERMOELECTRIC MATERIAL USING MECHANICAL ALLOYING AND Mg2Si THERMOELECTRIC MATERIAL
JP7159635B2 (en) Silicide-based alloy material and element using the same
JP2009176967A (en) Thermoelectric transduction material
JP2007173852A (en) Method of manufacturing thermoelectric material
JP2004179264A (en) Thermoelectric material and manufacturing method therefor
US11963448B2 (en) Method for producing thermoelectric conversion element
JP3704556B2 (en) Method for producing zinc antimony compound
JP7449549B2 (en) Thermoelectric element and its manufacturing method
KR100689253B1 (en) Method for producing thermoelectric skutterudites
JP2017043847A (en) Alloy material
JP2022142131A (en) Silicide alloy material and element including the same
JP6826925B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements, thermoelectric conversion modules, and mobiles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823