JP2006301588A - 反射スクリーン、及び、反射スクリーンの製造方法 - Google Patents

反射スクリーン、及び、反射スクリーンの製造方法 Download PDF

Info

Publication number
JP2006301588A
JP2006301588A JP2006016795A JP2006016795A JP2006301588A JP 2006301588 A JP2006301588 A JP 2006301588A JP 2006016795 A JP2006016795 A JP 2006016795A JP 2006016795 A JP2006016795 A JP 2006016795A JP 2006301588 A JP2006301588 A JP 2006301588A
Authority
JP
Japan
Prior art keywords
reflective screen
reflective
light
layer
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006016795A
Other languages
English (en)
Other versions
JP5250933B2 (ja
Inventor
Nobuhiko Ichikawa
信彦 市川
Hiroshi Sekiguchi
博 関口
Atsushi Horikoshi
堀越  淳
Akihide Sano
彰英 佐野
Hidemasa Oshige
秀将 大重
Kei Kato
圭 加藤
Eiji Asano
英司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2006016795A priority Critical patent/JP5250933B2/ja
Publication of JP2006301588A publication Critical patent/JP2006301588A/ja
Application granted granted Critical
Publication of JP5250933B2 publication Critical patent/JP5250933B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】コントラストが高く、高輝度であって映り込みのない画像を得ることができ、かつ製造が容易な反射スクリーン、及び、反射スクリーンの製造方法を提供する。
【解決手段】裏面側における幅より映像源側における幅が広い略楔形状であってスクリーン面に沿って多数並べて形成された単位プリズム形状12と、裏面側に形成され、単位プリズム形状12を通過した映像光を反射する反射層13と、単位プリズム形状12の間に形成された光吸収部とを設ける。
【選択図】図1

Description

本発明は、前方からの映像光を反射面により反射させて観察する反射スクリーン、及び、反射スクリーンの製造方法に関するものである。
従来、この種の反射スクリーンは、透明シートの前面側に光透過拡散層、背面側に光反射用のリニアフレネルレンズ面が設けられたものが知られていた(例えば、特許文献1)。また、特許文献2には、外光によるコントラストの低下を抑え、好適な視野角を得ることを可能にする反射スクリーンの構成が開示されている。さらに、特許文献3には、レンチキュラーレンズと反射部を設けた裏面の直交方向に配列されたリニアフレネルレンズの組み合わせによる反射スクリーンについて記載されている。
しかし、よりコントラストの高い画像を得たいという要求、及び、投影側光源の光量が少ない場合であっても、できる限り高輝度な画像を得たいという要求があった。また、高輝度な画像を得られた場合であっても、不要な映り込みを排除することは、常に要求されることである。
さらに、上述した従来の反射スクリーンでは、その製造工程が複雑になり、結果として製造コストが高くなるという問題があった。
また、特許文献4には、斜め前方から投射した光を反射させて観察する反射スクリーンに関し、断面が鋸歯状のスクリーン面に反射面と光吸収面とを形成し、映像光及び外光が到達する面を作り分けた反射スクリーンが開示されている。
しかし、特許文献4に記載の反射スクリーンでは、断面が鋸歯状のスクリーン面に反射面と光吸収面とを明確に分けて製造する必要があるが、鋸歯状の山の一方を反射面とし、他方を光吸収面として作り分けることは、困難であって、製造単価が高くなってしまうという問題があった。
特開平8−29875号公報 特開平10−62870号公報 特開2002−311507号公報 特開平2−262134号公報
本発明の課題は、コントラストが高く、高輝度であって映り込みのない画像を得ることができ、かつ製造が容易な反射スクリーン、及び、反射スクリーンの製造方法を提供することである。
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施例に対応する符号を付して説明するが、これに限定されるものではない。
請求項1の発明は、映像源(L)から投影された映像光を反射させて観察可能にする反射スクリーンであって、スクリーン面に対して直交する断面において、光を透過可能な光透過部(12,22)と、光を吸収する光吸収部(14,24)と、を備え、前記光透過部と前記光吸収部とが、スクリーン面に沿って交互に形成されており、少なくとも前記光透過部の裏面側には、前記光透過部を通過した前記映像光を反射する反射層(13,23)を備える反射スクリーンである。
請求項2の発明は、請求項1に記載の反射スクリーンにおいて、前記光透過部は、スクリーン面に対して直交する断面において、裏面側における幅より前記映像源側における幅が広い略楔形状であってスクリーン面に沿って多数並べて形成された単位プリズム形状(12,22)であること、を特徴とする反射スクリーン(10,20)である。
請求項3の発明は、請求項1又は請求項2に記載の反射スクリーンにおいて、前記光吸収部(14,24)は、前記単位プリズム形状(12,22)を形成する材料の屈折率よりも屈折率が低いこと、を特徴とする反射スクリーン(10,20)である。
請求項4の発明は、請求項1又は請求項2に記載の反射スクリーンにおいて、前記光吸収部(14,24)は、光を吸収する微小ビーズを含むこと、を特徴とする反射スクリーン(10,20)である。
請求項5の発明は、請求項4に記載の反射スクリーンにおいて、前記光吸収部は、前記単位プリズム形状を形成する材料の屈折率よりも屈折率が低い樹脂に前記微小ビーズを混練することにより形成されていること、を特徴とする反射スクリーンである。
請求項6の発明は、請求項1から請求項5までのいずれか1項に記載の反射スクリーンにおいて、前記反射層(13,23)は、前記光透過部又は前記単位プリズム形状(12,22)の略楔形状の頂部に対応する部分にのみに形成されていること、を特徴とする反射スクリーン(10,20)である。
請求項7の発明は、請求項2から請求項6までのいずれか1項に記載の反射スクリーンにおいて、前記単位プリズム形状(22)は、その並ぶ方向において非対称な第1のプリズム面(22a)及び第2のプリズム面(22b)を有していること、を特徴とする反射スクリーン(20)である。
請求項8の発明は、請求項7に記載の反射スクリーンにおいて、前記第1のプリズム面(22a)は、1種類の面により形成されており、前記第2のプリズム面(22b)は、少なくとも2種類の面(22b−1,22b−2)により形成されていること、を特徴とする反射スクリーンである。
請求項9の発明は、請求項7又は請求項8に記載の反射スクリーンにおいて、前記第1のプリズム面(22a)は、1つの平面により形成されており、前記第2のプリズム面(22b)は、裏面に近い位置に形成された第1の平面(22b−1)と、前記第1の平面よりも映像源側に形成された第2の平面(22b−2)との2種類の平面を有しており、前記第1の平面は、前記第1のプリズム面と対称な平面により形成されており、前記第2の平面がスクリーン面の法線と成す角度(15°)は、前記第1の平面がスクリーン面の法線と成す角度(5°)よりも大きいこと、を特徴とする反射スクリーン(20)である。
請求項10の発明は、請求項1から請求項9までのいずれか1項に記載の反射スクリーンにおいて、前記光透過部(82)と前記光吸収部(84)との境界面がスクリーン面に対する法線となす角度をθとすると、5°≦θ≦15°の関係を満たすこと、を特徴とする反射スクリーン(80)である。
請求項11の発明は、請求項1から請求項10までのいずれか1項に記載の反射スクリーンにおいて、映像源側の表面には、アンチグレア処理、反射防止処理(15,25)、帯電防止処理、ハードコート処理、防汚処理の少なくとも一つの処理が施されていること、を特徴とする反射スクリーン(10,20)である。
請求項12の発明は、請求項1から請求項11までのいずれか1項に記載の反射スクリーンにおいて、映像源側の表面には、正反射する成分を低減させる正反射防止層(35,45,55,65)が形成されていること、を特徴とする反射スクリーン(30,40,50,60)である。
請求項13の発明は、請求項12に記載の反射スクリーンにおいて、前記正反射防止層(35,45,55,65)によるヘイズ値は、25%以上、かつ、90%以下の範囲内にあること、を特徴とする反射スクリーン(30,40,50,60)である。
請求項14の発明は、請求項12又は請求項13に記載の反射スクリーンにおいて、前記正反射防止層(35,45,55,65)は、表面に微細凹凸形状が形成されており、前記微細凹凸形状により正反射する成分を低減させること、を特徴とする反射スクリーン(30,40,50,60)である。
請求項15の発明は、請求項14に記載の反射スクリーンにおいて、前記正反射防止層は、多数の微小ビーズと、前記微小ビーズを固着するバインダと、を有しており、前記微小ビーズが固着されている部分は、前記微小ビーズが固着されずに前記バインダのみとなっている部分よりも映像源側へ突出して前記微細凹凸形状が形成されていること、を特徴とする反射スクリーンである。
請求項16の発明は、請求項14又は請求項15に記載の反射スクリーンにおいて、前記微細凹凸形状には、スクリーン面と平行となる平坦面が実質的に形成されていないこと、を特徴とする反射スクリーン(30,40,50,60)である。
請求項17の発明は、請求項12又は請求項13に記載の反射スクリーンにおいて、前記正反射防止層は、微小な単位レンズ形状を一次元、又は、2次元方向に配列したレンズアレイが形成されており、前記レンズアレイにより正反射する成分を低減させること、を特徴とする反射スクリーンである。
請求項18の発明は、請求項17に記載の反射スクリーンにおいて、前記レンズアレイは、単位レンズ形状を一次元方向に配列して形成されたレンチキュラーレンズアレイであって、前記単位レンズ形状が同一断面形状で延在する方向は、前記光透過部及び前記光吸収部が同一断面形状で延在する方向と略直交していること、を特徴とする反射スクリーンである。
請求項19の発明は、請求項17に記載の反射スクリーンにおいて、前記レンズアレイは、単位レンズ形状を二次元方向に配列して形成されたマイクロレンズアレイであって、前記単位レンズ形状をスクリーンの法線方向から観察したときの長手方向は、前記光透過部及び前記光吸収部が同一断面形状で延在する方向と略直交していること、を特徴とする反射スクリーンである。
請求項20の発明は、請求項12から請求項19までのいずれか1項に記載の反射スクリーンにおいて、前記正反射防止層のさらに映像源側には、帯電防止処理、ハードコート処理、防汚処理の少なくとも一つの処理が前記正反射防止層の表面形状に沿って施されており、前記正反射防止層の正反射する成分を低減させる機能を保ったまま帯電防止、ハードコート、防汚の機能を有していること、を特徴とする反射スクリーンである。
請求項21の発明は、請求項1から請求項20までのいずれか1項に記載の反射スクリーンにおいて、前記反射層(13,23,33,43,53,63)は、反射率が40%以上であること、を特徴とする反射スクリーン(10,20,30,40,50,60)である。
請求項22の発明は、請求項1から請求項21までのいずれか1項に記載の反射スクリーンにおいて、前記反射層(13,23,33,43,53,63)は、拡散反射率Rdが10%以上、かつ、70%以下の範囲内であること、を特徴とする反射スクリーンである。
請求項23の発明は、請求項22に記載の反射スクリーンにおいて、前記反射層(53,63)は、その表面に表面拡散処理が施されていることにより前記拡散反射率Rdを前記所定の範囲内としていること、を特徴とする反射スクリーン(50,60)である。
請求項24の発明は、請求項23に記載の反射スクリーンにおいて、前記反射層(53,63)は、方向により拡散作用の強度が異なること、を特徴とする反射スクリーン(50,60)である。
請求項25の発明は、請求項24に記載の反射スクリーンにおいて、前記反射層(53,63)は、スクリーンの使用状態における垂直方向よりも水平方向の拡散作用が強いこと、を特徴とする反射スクリーン(50,60)である。
請求項26の発明は、請求項1から請求項25までのいずれか1項に記載の反射スクリーンにおいて、前記反射層は、拡散反射率Rdの異なる複数の領域(73a,73b)を組み合わせて形成されていること、を特徴とする反射スクリーン(70)である。
請求項27の発明は、請求項1から請求項26までのいずれか1項に記載の反射スクリーンにおいて、透過する光を特定の方向についてのみ強く拡散させる異形拡散層(48)を設けたこと、を特徴とする反射スクリーン(40)である。
請求項28の発明は、請求項27に記載の反射スクリーンにおいて、前記異形拡散層(48)が透過した光を強く拡散させる方向は、前記光透過部(42)及び前記光吸収部(44)が同一断面形状で延在する方向と一致していること、を特徴とする反射スクリーン(40)である。
請求項29の発明は、請求項1から請求項28までのいずれか1項に記載の反射スクリーンにおいて、前記反射層(33,43)は、高反射率の反射フィルム、又は、反射板(33,43)により形成されており、前記反射フィルム、又は、前記反射板は、前記光透過部(32,42)及び前記光吸収部(34,44)に対して接着層(37,47)、又は、粘着層を用いて積層されていること、を特徴とする反射スクリーン(30,40)である。
請求項30の発明は、請求項29に記載の反射スクリーンにおいて、前記反射フィルム又は前記反射板(33,43)と前記光透過部(32,42)及び前記光吸収部(34,44)との間隔(t)は、前記光透過部の前記反射層側の幅(A)の1/2以下であること、を特徴とする反射スクリーン(30,40)である。
請求項31の発明は、請求項29又は請求項30に記載の反射スクリーンにおいて、前記接着層、又は、前記粘着層には、光拡散材が混入されていること、を特徴とする反射スクリーンである。
請求項32の発明は、請求項1から請求項31までのいずれか1項に記載の反射スクリーンにおいて、スクリーン面に対して直交する断面での前記光透過部(82)の裏面側の幅をwtとし、前記光吸収部(84)の裏面側の幅をwaとすると、1/4≦wt/wa≦2の関係を満たすこと、を特徴とする反射スクリーン(80)である。
請求項33の発明は、請求項1から請求項32までのいずれか1項に記載の反射スクリーンにおいて、映像源側の表面には、紫外線吸収作用を有した紫外線吸収層(85)が設けられていること、を特徴とする反射スクリーン(80)である。
請求項34の発明は、請求項1から請求項33までのいずれか1項に記載の反射スクリーンにおいて、不使用時には、巻き上げることが可能であること、を特徴とする反射スクリーンである。
請求項35の発明は、請求項2から請求項34までのいずれか1項に記載の反射スクリーンにおいて、前記単位プリズム形状が並ぶ方向と直交する方向に並ぶ第2の単位プリズム形状が前記単位プリズム形状よりもさらに映像源側に形成されていること、を特徴とする反射スクリーンである。
請求項36の発明は、請求項2から請求項34までのいずれか1項に記載の反射スクリーンの製造方法であって、前記単位プリズム形状(12,22)を樹脂により賦型する単位プリズム形状賦型工程と、形成された前記単位プリズム形状の略楔形状の頂部に対応する部分にのみ前記反射層(13,23)を形成する反射層形成工程と、前記反射層を形成した後に、前記光吸収部(14,24)を形成する光吸収部形成工程と、を備える反射スクリーンの製造方法である。
請求項37の発明は、請求項2から請求項34までのいずれか1項に記載の反射スクリーンの製造方法であって、前記単位プリズム形状(12,22)を樹脂により賦型する単位プリズム形状賦型工程と、形成された前記単位プリズム形状の間に前記光吸収部(14,24)を形成する光吸収部形成工程と、前記光吸収部を形成した後に前記反射層(13,23)を形成する反射層形成工程と、を備える反射スクリーンの製造方法である。
請求項38の発明は、請求項36又は請求項37に記載の反射スクリーンの製造方法において、前記光吸収部形成工程は、ワイピングにより前記光吸収部(14,24)を形成する材料を前記単位プリズム形状(12,22)の間に充填すること、を特徴とする反射スクリーンの製造方法である。
本発明によれば、以下の効果を奏することができる。
(1)光を透過可能な光透過部と、光を吸収する光吸収部と、を備え、前記光透過部と前記光吸収部とが、スクリーン面に沿って交互に形成されており、前記光透過部を通過した前記映像光を反射する反射層を備えるので、不要な外光を吸収し、コントラストの高い映像を表示することができる。
(2)スクリーン面に沿って多数並べて形成された単位プリズム形状と、裏面側に形成され、単位プリズム形状を通過した映像光を反射する反射層とを備えるので、映像光を必要な観察方向へ効率よく反射させることができる。
(3)光吸収部は、単位プリズム形状を形成する材料の屈折率よりも屈折率が低いので、単位プリズム形状と光吸収部との境界面において、映像光を全反射することができ、反射損失を最小限とし、明るい映像を表示することができる。
(4)光吸収部は、光を吸収する微小ビーズを含むので、簡単且つ確実に外光の吸収作用を得ることができる。
(5)光吸収部は、単位プリズム形状を形成する材料の屈折率よりも屈折率が低い樹脂に微小ビーズを混練することにより形成されているので、裏面保護層を形成することなく、微小ビーズを固定することができる。
(6)反射層は、光透過部又は単位プリズム形状の略楔形状の頂部に対応する部分にのみに形成されているので、容易に製造をすることができる。
(7)単位プリズム形状は、その並ぶ方向において非対称な第1のプリズム面及び第2のプリズム面を有しているので、映像光又は外光の予定される方向に応じて、最適な形状とすることができる。したがって、映像光をより効率よく反射し、外光をより効率よく吸収させることができる。
(8)第1のプリズム面は、1種類の面により形成されており、第2のプリズム面は、少なくとも2種類の面により形成されているので、映像光をより効率よく反射し、外光をより効率よく吸収させるためにより都合のよい形状とすることができる。
(9)第1のプリズム面は、1つの平面により形成されており、第2のプリズム面は、第1の平面と第2の平面との2種類の平面を有しており、第1の平面は、第1のプリズム面と対称な平面により形成されており、第2の平面がスクリーン面の法線と成す角度は、第1の平面がスクリーン面の法線と成す角度よりも大きいので、第2の平面に対する外光の入射角度を小さくすることができ、より多くの外光を吸収することができる。また、下方に対する間口が広がることから、映像光をより確実に単位プリズム形状に取り入れることができる。
(10)光透過部と光吸収部との境界面がスクリーン面に対する法線となす角度θは、5°≦θ≦15°の関係を満たすので、明るくコントラストの高い映像を表示できる。
(11)映像源側の表面には、アンチグレア処理、反射防止処理、帯電防止処理、ハードコート処理、防汚処理の少なくとも一つの処理が施されているので、使用環境に応じて適切な処理を選択することにより、より高品質な反射スクリーンとすることができる。
(12)映像源側の表面には、正反射する成分を低減させる正反射防止層が形成されているので、映像源や、照明光が反射スクリーン表面に移りこむことを防止し、より鮮明な画像を表示することができる。
(13)正反射防止層によるヘイズ値は、25%以上、かつ、90%以下の範囲内にあるので、白みがかってしまうことなく映り込みを効果的に防止することができる。
(14)正反射防止層は、表面に微細凹凸形状が形成されており、微細凹凸形状により正反射する成分を低減させるので、製造が容易であって、かつ、確実に移り込みを防止することができる。
(15)正反射防止層は、多数の微小ビーズと、微小ビーズを固着するバインダと、を有しており、微小ビーズが固着されている部分は、微小ビーズが固着されずにバインダのみとなっている部分よりも映像源側へ突出して微細凹凸形状が形成されているので、微小ビーズを混合する割合を変更することにより、任意に正反射防止効果及び拡散効果を設定することができる。
(16)微細凹凸形状には、スクリーン面と平行となる平坦面が実質的に形成されていないので、映像源の映り込みを確実に防止することができる。
(17)正反射防止層は、微小な単位レンズ形状を一次元、又は、2次元方向に配列したレンズアレイが形成されており、レンズアレイにより正反射する成分を低減させるので、映像源の映り込みを防止しながら、視域を任意に設定することができる。
(18)レンズアレイは、単位レンズ形状を一次元方向に配列して形成されたレンチキュラーレンズアレイであって、単位レンズ形状が同一断面形状で延在する方向は、光透過部及び光吸収部が同一断面形状で延在する方向と略直交しているので、光透過部により視域を制御される方向と直交する方向において視域を制御することができる。
(19)レンズアレイは、単位レンズ形状を二次元方向に配列して形成されたマイクロレンズアレイであって、単位レンズ形状をスクリーンの法線方向から観察したときの長手方向は、光透過部及び光吸収部が同一断面形状で延在する方向と略直交しているので、光透過部により視域を制御される方向と直交する方向において視域を制御することができる。
(20)正反射防止層のさらに映像源側には、帯電防止処理、ハードコート処理、防汚処理の少なくとも一つの処理が正反射防止層の表面形状に沿って施されており、正反射防止層の正反射する成分を低減させる機能を保ったまま帯電防止、ハードコート、防汚の機能を有しているので、使用環境に応じて適切な処理を選択することにより、映像源の映り込みを防止しながらより高品質な反射スクリーンとすることができる。
(21)反射層は、反射率が40%以上であるので、輝度の高い映像を表示することができる。
(22)反射層は、拡散反射率Rdが10%以上、かつ、70%以下の範囲内であるので、視域が極端に狭くなることなく、かつ、反射効率も高くバランスよい反射を行うことができる。
(23)反射層は、その表面に表面拡散処理が施されていることにより拡散反射率Rdを所定の範囲内としているので、反射光の拡散度合を任意に設定することができる。
(24)反射層は、方向により拡散作用の強度が異なるので、視域を広げながらも、光吸収部に向かってしまうような反射を最小限に抑えることができる。
(25)反射層は、スクリーンの使用状態における垂直方向よりも水平方向の拡散作用が強いので、より広い視域を確保する必要がある水平方向に対して視域を広げることができる。
(26)反射層は、拡散反射率Rdの異なる複数の領域を組み合わせて形成されているので、拡散反射率Rdが小さいほど高くなる正面のピーク輝度と、拡散反射率Rdが大きいほど高くなる大きな観察角度に分布する輝度分布との間で、輝度を任意に設定、制御することができる。
(27)透過する光を特定の方向についてのみ強く拡散させる異形拡散層を設けたので、簡単、かつ、確実に、光の拡散方向に強い指向性を与えることができる。
(28)異形拡散層が透過した光を強く拡散させる方向は、光透過部及び光吸収部が同一断面形状で延在する方向と一致しているので、異形拡散層を反射層と光透過部及び光吸収部との間に配置した場合であっても、反射光が異形拡散層により大きく拡散された後に光吸収部に吸収されてしまうことがなく、効率よく視域を広げることができる。
(29)反射フィルム、又は、反射板は、光透過部及び光吸収部に対して接着層、又は、粘着層を用いて積層されているので、反射層の形成をより簡単に行うことができる。また、反射層の特性を自由に設定することができる。
(30)反射フィルム又は反射板と光透過部及び光吸収部との間隔は、光透過部の反射層側の幅の1/2以下であるので、反射層により反射した後に光透過部へ再入射させるべき反射光が光吸収部へ入射してしまうことを防止でき、スクリーンとしての反射効率の低下を防止することができる。
(31)接着層、又は、粘着層には、光拡散材が混入されているので、簡単に視域を広げることができる。
(32)1/4≦wt/wa≦2の関係を満たすので、明るくコントラストの高い映像を表示できる。
(33)映像源側の表面には、紫外線吸収作用を有した紫外線吸収層が設けられているので、紫外線による黄変を防止できる。
(34)不使用時には、巻き上げることが可能であるので、外光の影響を受けにくいことと合わせて、より多くの場面で使用可能な反射スクリーンとすることができる。
(35)単位プリズム形状が並ぶ方向と直交する方向に並ぶ第2の単位プリズム形状が単位プリズム形状よりもさらに映像源側に形成されているので、様々な方向からの外光を効果的に除去することができる。
(36)単位プリズム形状賦型工程と、形成された単位プリズム形状の略楔形状の頂部に対応する部分にのみ反射層を形成する反射層形成工程と、反射層を形成した後に、光吸収部を形成する光吸収部形成工程を備えるので、光吸収部の形成は、裏面の全面に光吸収部を形成するだけでよく、反射スクリーンの製造を簡単に行うことができる。
(37)単位プリズム形状賦型工程と、形成された単位プリズム形状の間に光吸収部を形成する光吸収部形成工程と、光吸収部を形成した後に反射層を形成する反射層形成工程とを備えるので、反射層の形成は、裏面の全面に反射層を形成するだけでよく、反射スクリーンの製造を簡単に行うことができる。
(38)光吸収部形成工程は、ワイピングにより光吸収部を形成する材料を単位プリズム形状の間に充填するので、確実に充填することができる。
コントラストが高く、高輝度であって映り込みのない画像を得ることができる反射スクリーン及び反射投影システムを得るという目的を、単位プリズム形状を多数並べ、また、その間に光吸収部を設けることにより、製造が容易な形態で実現した。
図1は、実施例1における反射スクリーン10を示した断面図である。なお、図1を含め、以下に示す各図は、説明のため各部寸法、形状などを適宜誇張して示している。特に図1は、室内照明G,映像源L,反射スクリーン10をまとめて模式的に示しているので、実際とは配置関係が異なり、各光線の入射角度などが後述の説明における大小関係と異なる部分が含まれている。
本実施例における反射スクリーン10は、映像光を投影するプロジェクター光学エンジン部(映像源)Lをスクリーン10の中心に対して下方に設置し、映像光を上方斜めに投射させる配置とし、環境光の殆どがスクリーンの上方からスクリーンに入射することを考慮して開発されたスクリーンである。そして、下方からの映像光は、効率よく観察者側へ反射し、上方からの不要光は、選択的に後述の光吸収部により吸収させることで、非常にコントラストの高いフロントプロジェクタ用反射スクリーンとしたものである。
図1には、スクリーンの使用状態における垂直方向断面を示している。反射スクリーン10は、ベース部11,単位プリズム形状12,反射層13,光吸収部14,前面処理層15,裏面保護層16等を備えている。
ベース部11は、単位プリズム形状12を形成するときに必要な基材となる部分であり、アクリル、ポリカーボネート、ポリエチレンテレフタレートなどの樹脂製のシート又はフィルムから形成される光透過性のある部分であり、本実施例では、アクリルを使用している。なお、このベース部11には、必要に応じて所定の透過率に減じさせるようなグレー等の染料、顔料等で着色(ティント)が施されていてもよい。
単位プリズム形状12は、図1の断面において、裏面側における幅より映像源側における幅が広い略楔形状となっている。単位プリズム形状12は、スクリーン面に沿って(図1では上下方向に)多数並べて形成されている。また、単位プリズム形状12は、上下方向において上下対称な形状となっており、上方、及び、下方の斜面がスクリーン面の法線となす角度は、5°であり、頂部の幅が40μm、谷底から頂部までの高さが200μmとなっている。また、単位プリズム形状12は、屈折率1.56の紫外線硬化樹脂により形成されている。ここで、スクリーン面とは、スクリーン全体として見たときにおけるスクリーンの平面方向となる面を示すものであり、以下の説明中、及び、特許請求の範囲においても同一の定義として用いている。
反射層13は、単位プリズム形状12の略楔形状の頂部に対応する部分にのみ設けられ、映像光を反射して前面側(映像源側)へ戻す層である。
本実施例における反射層13は、単位プリズム形状12の頂部に高反射のシルバー色塗料を塗布して形成されており、使用塗料としての反射率は、全光線反射率としてRt=約62.7%、拡散反射率Rd=39.1%である。
なお、反射層13を形成するシルバー色塗料としては、上述の他に、例えば、Rt=約68.9%、Rd=56.8%の塗料等、各種反射率の塗料を選択して使用すればよい。
光吸収部14は、単位プリズム形状12が並ぶ間に形成された光を吸収する作用を有した部分である。本実施例における光吸収部14は、不図示の黒色ビーズを満遍なく充填することにより形成されている。この黒色ビーズは、光を吸収する作用を有した微小ビーズであって、光吸収部14内でこのビーズが存在しない隙間は、空隙となっている。この構成により、光吸収部14が容易に変形することが可能となり、反射スクリーン10を巻き上げ式とするような場合には、必要な柔軟性を得るのに都合がよい構成である。
前面処理層15は、アンチグレア処理、反射防止処理、帯電防止処理、ハードコート処理、防汚処理等の各種表面処理が施される層であり、本実施例では、反射防止処理が施されている。なお、この前面処理層15に施す処理は、必要に応じて適宜選択すればよい。
裏面保護層16は、光吸収部14に充填されている不図示の黒色ビーズを保持するために裏面側の全面を覆う層である。光吸収部14に充填した黒色ビーズは、この裏面保護層16が存在しないとすると単位プリズム形状12同士の隙間に安定的に保持し続けることが難しい。そこで、本実施例では、裏面の全面に紫外線硬化樹脂を滴下して覆い、これに紫外線を照射して硬化させて裏面保護層16を形成した。なお、紫外線硬化樹脂を用いる手法の他、粘着フィルムなどを張り合わせて黒色ビーズを固定してもよく、これにより、柔軟性が高くなるので、巻き上げ時にはより都合がよい。
次に、本実施例における反射スクリーン10の製造方法について説明する。
(単位プリズム形状賦型工程)
まず、電離放射線硬化性樹脂をベース部11上に塗布して、型を当てつけた状態において電離放射線を照射して硬化させることにより単位プリズム形状12を賦型する。この単位プリズム形状賦型工程に使用する電離放射線硬化性樹脂は、紫外線、及び、電子線硬化性の樹脂、アクリレート、エポキシアクリレート、シリコンアクリレート、シロキサン等の多官能単量体を主成分とする光架橋型のものを用いるのがよい。ここで電離放射線とは、電磁波又は荷電粒子線のうち分子を重合、架橋し得るエネルギ量子を有するものを意味し、通常、紫外線、電子線が用いられる。
なお、単位プリズム形状12の形成は、電離放射線硬化による形成ではなく、アクリル樹脂、ペット(ポリエチレンテレフタレート)樹脂などを用いた熱溶融押出し成型により行ってもよい。
(反射層形成工程)
単位プリズム形状12を形成した後、単位プリズム形状12の楔形状の頂部に反射層13をグラビアリバースコートにより形成した。本実施例における反射層13のシルバー色塗料の膜厚は約20μmとして塗装した。この厚みに塗装することにより、上述した反射率を得ることができる。
単位プリズム形状12の頂部が突出しているので、光吸収部14を形成する予定の谷部分にシルバー色塗料が付着することを防ぎながら、反射層13をこの頂部のみに形成することが容易に行える。
なお、反射層13の形成方法としては、この他に、スプレー塗装、スクリーン印刷、コンマコート、インクジェットによる塗布、蒸着(アルミニウム、銀、クロムなど、反射率の高い金属を用いることが望ましい)等を用いることができる。
また、反射層13の形成に用いる塗料としては、シルバー色塗料以外にも、塗装後の表面がマット状となるつや消しの白色系の塗料、塗装後の表面の写りこみの大きい(テカリの強い)グロス白系の塗料、銀色系(メタリック)の塗料、パール系塗料、マイカ(雲母)やビーズを適宜混入させた塗料を使用してもよい。これらを適宜使い分けることにより、観察領域や輝度、光源の映り込み防止効果等を制御することができる。
(光吸収部形成工程)
反射層形成工程に続いて、黒色ビーズを反射層13の形成された裏面側の全面に散布した。そして、単位プリズム形状12の間に満遍なく充填させるために、スキージング(ワイピング)を行った。なお、黒色ビーズの直径は、1〜10μm程度が望ましい。それよりも小さいとスキージングによるかきとりが難しくなり、10μmを越えると単位プリズム形状12の隙間への充填が困難となり、充填不足となるからである。この光吸収部形成工程により外光を十分に遮断することができる光吸収部14が得られた。
反射層13を既に必要な部分である単位プリズム形状12の頂部のみに形成しているので、光吸収部14は、裏面全体に付着してしまっていてもよく、この光吸収部形成工程を簡単に行うことができる。
なお、本実施例では、スキージングを行ったので、図1に示すように黒色ビーズは、単位プリズム形状12の間の谷部分にのみ形成されている形態となっているが、反射層13の上(裏面側表面)が黒色ビーズにより覆われていてもよい。
(裏面保護層形成工程)
光吸収部14を形成した後に、この裏面の全面を覆う形で、紫外線硬化樹脂を滴下して覆い、紫外線を照射して硬化させて裏面保護層16を形成した。
(前面処理層形成工程)
最後に、前面側の最表面に前面処理層15を形成した。本実施例では、反射防止処理の施されている反射防止シートをラミネート加工することにより、前面処理層15とした。
以上の各工程を行うことにより、反射スクリーン10を得た。
以上説明した反射スクリーン10では、図1に示すように映像源Lから投影される映像光線L1,L2は、単位プリズム形状12内を導波して光吸収部14との境界面で全反射を行う。光吸収部14は、黒色ビーズを充填しているが、その隙間は、空隙であることから、光吸収部14の屈折率は、単位プリズム形状12の屈折率よりも屈折率が低く、したがって、この境界面において臨界角よりも大きな角度で入射する光は、全反射する。
そして、単位プリズム形状12と光吸収部14との境界面で全反射した映像光は、反射層13に到達して反射され、その後さらに全反射するなどして観察可能な光線として観察者方向へ戻される。
一方、反射スクリーン10の上方に設けられた室内照明Gなどからの外光G1,G2は、反射スクリーン10に対する入射角度が大きいことから、単位プリズム形状12と光吸収部14との境界面における入射角度が小さくなり、臨界角を超えない成分が多く、全反射をすることなく光吸収部14に入射して、黒色ビーズにより吸収される。したがって、外光が観察位置に戻る割合を非常に少なくすることができる。
反射スクリーン10に実際に映像光を投影すると、投影画像については高い反射率を有し、外光については十分に吸収することができた。
このように、本実施例によれば、コントラストが高く、高輝度であって映り込みのない画像を得ることができ、また、この反射スクリーン10は、上述したように容易に製造することができる。
図2は、実施例2における反射スクリーン20を示した断面図である。
実施例2は、実施例1における単位プリズム形状12の形状を改良して単位プリズム形状22とした例である。したがって、前述した実施例1と同様の機能を果たす部分には、末尾に同一の符号を付して、重複する説明を適宜省略する。
図3は、単位プリズム形状22の具体的な形状を示す図である。
単位プリズム形状22は、その並ぶ方向(使用状態における上下方向)において非対称な形状となっており、上方に位置する第1のプリズム面22aと、下方に位置する第2のプリズム面22bを有している。
第1のプリズム面22aは、1つの平面により形成されており、スクリーン面に対する法線との成す角度が5°である。
第2のプリズム面22bは、裏面に近い位置に形成された第1の平面22b−1と、第1の平面22b−1よりも映像源側に形成された第2の平面22b−2との2種類の平面を有している。
第1の平面22b−1は、第1のプリズム面22aと対称な平面の一部により形成されており、スクリーン面に対する法線との成す角度が5°である。
第2の平面22b−2がスクリーン面の法線と成す角度は、15°であり、第1の平面22b−1がスクリーン面の法線と成す角度よりも大きくなっている。
また、単位プリズム形状22は、頂部の幅が40μmであり、谷底から頂部までの高さが200μm、前面側の幅が100μmとなっている。
本実施例では、第2の平面22b−2がスクリーン面の法線と成す角度をより大きくしたことにより、第2の平面22b−2に対する外光の入射角度が小さくなるようにして、外光がこの第2の平面22b−2で全反射することなく光吸収部24に到達しやすくしている。また、下方への間口が広がることにより、下方からの映像光が単位プリズム形状22に入射し易くなっている。
図4は、実施例2における反射スクリーン20に対して入射角度30度で下方から映像光が投影された場合を示す図である。
図5は、実施例2における反射スクリーン20に対して入射角度10度で下方から映像光が投影された場合を示す図である。
図6は、実施例2における反射スクリーン20に対して入射角度30度で上方から外光が到達した場合を示す図である。
なお、図4〜図6では、簡単のためにベース部21は別層として示さず、また、前面処理層25を省略している。
下方からの映像光は、適度に拡散されながら観察方向へ反射されている(図4,5)のに対して、上方からの外光については、その大部分が吸収されて出射しないことが分かる(図6)。
実施例2における反射スクリーン20に対して、反射率の角度依存性を評価した。
図7は、実施例2における反射スクリーン20の反射率の角度依存性の評価結果である。
図7において、横軸の+側は、スクリーン上方からの入射光に対する反射率を示し、−側は、スクリーン下方からの入射光に対する反射率を示している。通常のフロント投影プロジェクターの投影角度は、スクリーン下端付近で入射角度0°近傍であり、上端において入射角度−30°程度である。図7のグラフにおいて、この映像光の入射角度範囲に相当するのは、横軸の−30°〜0°の範囲であり、その範囲で高反射率を維持していることが明らかである。一方、主に上方から差し込む外光は、図7のグラフにおいて、横軸中+側が相当する。この外光の入射角度に相当する範囲では、およそ上方からの20°を越える角度の光に対しては、反射率10%未満であり、外光遮断の特性が十分発揮されている。
本実施例によれば、第2の平面22b−2をさらに設けたことにより、上方からの外光の反射を防ぎながら、映像光を反射するという効果をより高めることができる。したがって、よりコントラストが高く、高輝度であって映り込みのない画像を観察することが可能となる。
図8は、実施例3における反射スクリーン30を映像源側上方から見た斜視図である。
図9は、実施例3における反射スクリーン30を示した断面図である。
反射スクリーン30は、ベース部31,単位プリズム形状32,反射層33,光吸収部34,正反射防止層35,接着層37等を備えている。
ベース部31,単位プリズム形状32,光吸収部34については、実施例2におけるベース部21,単位プリズム形状22と同様であるので、詳細な説明は省略する。
反射層33は、高反射率(Rt=70.6%,Rd=60.8%)のアルミニウム板であって、紫外線硬化型の接着剤により形成された接着層37により単位プリズム形状32及び光吸収部34の裏面側に接着固定されている。このような構成とするために、あらかじめ単位プリズム形状32の間に光吸収部34を形成しておき、その後に反射層33を透過性の高い接着層37により接着する。なお、接着層37の代わりに粘着層を用いることもできる。
ここで、反射層33は、反射率が40%以上であることが望ましく、さらに、拡散反射率Rdが10%以上、かつ、70%以下の範囲内であることが望ましい。拡散反射率Rdが低すぎると、鏡面反射の状態なので、視域が非常に狭くなり実用に適さない。また、拡散反射率Rdが高すぎると、視域は広がるが、拡散反射した光が光吸収部に吸収される割合が増え、反射効率が低下してしまう。検討の結果10〜70%であれば、このバランスがよいことが判った。なお、この反射層の反射率及び拡散反射率Rdの条件は、上述の実施例1及び実施例2においても同様に好ましい条件である。
また、反射層33となるアルミニウム板と単位プリズム形状32及び光吸収部34との間隔、すなわち、接着層37の厚さtは、単位プリズム形状32の反射層33側(裏面側)の幅(図9中の幅A)の1/2以下であることが望ましい。間隔がこれ以上離れてしまうと、反射層33により反射した後に再び単位プリズム形状32へ入射させるべき反射光の多くが光吸収部34へ入射してしまい、スクリーンとしての反射効率が著しく低下してしまうからである。
正反射防止層35は、表面に多数の微細凹凸形状が無作為に形成された層であり、本実施例では、全透過効率≒90%、拡散透過率≒37%、ヘイズ値≒42%である市販の拡散フィルム(株式会社きもと製TL−4)を使用した。なお、図8では、作図上の都合により、正反射防止層35の表面に波型形状が多数斜めに形成されているかのようにも見える図となっているが、本実施例における正反射防止層35の表面形状は、そのような方向性を有したものではなく、いわゆるマット面のように、不規則な凹凸形状が多数無作為に並んだものである。
正反射防止層35は、以下の機能を有している。
(1)プロジェクター光源エンジン部が反射スクリーン最表面に映り込んで観察されてしまうことを防止する。
(2)反射スクリーンに投影された画像の観察可能な角度を広げる。
ここで、上記(1)の機能については、層内部に拡散材を混入させたタイプの拡散層(拡散フィルム)を用いたのでは、達成することができない。この機能を達成するためには、表面に微細な凹凸形状を有していることが必要である。そして、この微細凹凸形状による光の拡散度に応じて映像源の映り込み防止効果の程度を調節することができる。拡散の度合いが少なすぎると映り込みを抑えきれないが、かといって拡散度合いを強くしすぎるとスクリーンが白みがかって観察されてしまう。そこで、拡散度の異なる多数の拡散フィルムを評価したところ、正反射防止層35のヘイズ値としては、ヘイズ値25%以上、90%以下の範囲とすると、白みがかってしまうことなく映り込みを効果的に防止することができることが判った。
ただし、ヘイズ値が上記範囲にあったとしても、表面の形状によっては、上記(1)の機能を達成できない場合があった。
図10は、正反射防止層の表面形状の違いによる映像源の映り込み防止効果の違いについて説明する図である。
図10(a)のようにスクリーン面と平行となる平坦面が多数存在していると、その平坦面において正反射する成分が多数存在することから、映像源の映り込みが発生してしまう。一方、仮に、図10(a)と図10(b)とがヘイズ値としては同じ値を示すとしても、図10(b)のように、スクリーン面と平行となる平坦面が実質的に形成されておらず、全面が凹凸形状に覆われていることが上記(1)の映像源の映り込みを防止するために望ましい。なお、スクリーン面と並行ではないとしても、同一の方向を向いた平坦面が多数存在していても、特定の方向から観察すると映像源の映り込みが生じる恐れがあるので、平坦面ができる限りすくないことがより望ましい。
本実施例によれば、アルミニウム板を接着して反射層としたので、反射層を非常に簡単に、かつ、安定して形成することができる。また、正反射防止層を設けたので、視域を広げ、さらに、映像源の映り込みも完全に防止することができる。
図11は、実施例4における反射スクリーン40を映像源側上方から見た斜視図である。
図12は、実施例4における反射スクリーン40を示した断面図である。
反射スクリーン40は、ベース部41,単位プリズム形状42,反射層43,光吸収部44,正反射防止層45,接着層47,異形拡散層48等を備えている。
ベース部41,単位プリズム形状42,反射層43,光吸収部44,正反射防止層45,接着層47については、実施例3における単位プリズム形状32,反射層33,光吸収部34,正反射防止層35,接着層37と同様であるので、詳細な説明は省略する。
異形拡散層48は、ベース部41と正反射防止層45との間に不図示の接着剤により貼り付けられており、略5μmの干渉縞パターンが凹凸形状として記録されているホログラフィックディフューザであり、透過する光を特定の方向についてのみ強く拡散する作用を有している。本実施例の異形拡散層48は、水平方向のヘイズ値≒70%、垂直方向のヘイズ値≒35%となるようにして配置されている。
本実施例によれば、異形拡散層48を設けたので、単位プリズム形状42による垂直方法の制御に加えて、水平方向についても光の拡散を適度に制御することができ、視域をより広くすることができる。
図13は、実施例5における反射スクリーン50に反射層53を形成する前の状態を裏面側上方から見た斜視図である。
図14は、実施例5における反射スクリーン50を示した断面図である。
反射スクリーン50は、ベース部51,単位プリズム形状52,反射層53,光吸収部54,正反射防止層45等を備えている。
ベース部51,単位プリズム形状52,光吸収部54,正反射防止層55については、実施例3における単位プリズム形状32,光吸収部34,正反射防止層35と同様であるので、詳細な説明は省略する。
図13に示すように、反射層53を形成する前の状態において、単位プリズム形状52の裏面側の上底面52cには、単位プリズム形状52及び光吸収部54の長手方向が延在する方向(水平方向)と直行する方向(垂直方向)に意図的に細かい筋目が残るように仕上げている(ヘアライン加工)。本実施例では、#400のサンドペーパーにより上底面52cを擦ることにより垂直方向に筋目(擦掻筋)を形成した。そして、筋目が形成された上底面52cに反射率≒68%、拡散反射率≒52%の高反射塗料をスプレー塗布して反射層53とした。
このように垂直方向に筋目が形成された上底面52cに反射層53を形成したことにより、反射面に微細な筋目が形成されていることになる。このように、反射層53の表面に表面拡散処理を施すことにより、水平方向の拡散作用の強度が垂直方向よりも非常に強くなっている。
本実施例によれば、水平方向の視域を広げ、どのような位置からも観やすい反射スクリーンとすることができる。
図15は、実施例6における反射スクリーン60を映像源側上方から見た斜視図である。
図16は、実施例6における反射スクリーン60を示した断面図である。
反射スクリーン60は、ベース部61,単位プリズム形状62,反射層63,光吸収部64,正反射防止層65,レンチキュラーレンズ層69等を備えている。
ベース部61,単位プリズム形状62,反射層63,光吸収部64,正反射防止層65については、実施例5における単位プリズム形状52,反射層53,光吸収部54,正反射防止層55と同様であるので、詳細な説明は省略する。
レンチキュラーレンズ層69は、実施例5において上底面52c形成した垂直方向の筋目の代わりに設けた、レンチキュラーレンズ形状である。レンチキュラーレンズ層69のレンズ形状は、楕円筒形状の一部形状を単位形状として、この単位形状の楕円筒が水平方向に多数並んで配置されている。したがって、水平断面の形状が同一断面形状を保って垂直方向に延在している。
レンチキュラーレンズ層69を形成した後に、実施例5と同様にして反射層63を形成した。
本実施例によれば、レンチキュラーレンズ形状とすることにより、水平方向の拡散作用をより細かく制御することができる。
図17は、実施例7における反射スクリーン70を示す図である。図17(a)は、背面側から見た図であり、図17(b)は、断面図である。
実施例7における反射スクリーン70は、実施例1における反射層13を改良した反射層73を用いている他は、実施例1と同様な形態である。従って、前述した実施例1と同様の機能を果たす部分には、同一の符号を付して、重複する説明を適宜省略する。
反射層73は、正反射層73aと拡散反射層73bとを組み合わせて形成されている。
正反射層73aは、拡散反射率Rd(73a)が拡散反射層73bの拡散反射率Rd(73b)よりも小さな反射層であり、反射層を形成する前に光吸収部14を形成し、その後に、スクリーン印刷で、部分的に(例えば、図17に示すようなドット状、又は、網目状)に印刷して形成された層である。
拡散反射層73bは、上述のように、拡散反射率Rd(73b)が正反射層73aの拡散反射率Rd(73a)よりも高い層であり、正反射層73aを形成した後に全面に印刷形成される層である。
このように拡散反射率Rdの異なる複数の領域を組み合わせて反射層を形成したので、これら各領域の占める面積比率を変更することにより、正反射の強い反射光と拡散反射の強い反射光との割合を適宜設定することができる。よって、正面のピーク輝度と、観察角度分布の割合を任意に制御することができる。
図18は、実施例8における反射スクリーン80を示した断面図である。
実施例8は、実施例1における単位プリズム形状12を改良して単位プリズム形状82とし、また、反射層の形態を変更した例である。したがって、前述した実施例1と同様の機能を果たす部分には、末尾に同一の符号を付して、重複する説明を適宜省略する。
本実施例のベース部81は、実施例1のベース部11と同様な部分であり、スクリーンの使用状態で観察面側となる表面にマット加工処理を施したポリエチレンテレフタレート樹脂製のフィルムを使用している。
単位プリズム形状82は、図18の断面において、裏面側における幅より映像源側における幅が広い略楔形状となっている。単位プリズム形状82は、スクリーン面に沿って(図18に示したスクリーンの使用状態では上下方向に)多数並べて形成されている。また、単位プリズム形状82は、単位プリズム形状82の間に形成される光吸収部84との境界面となる斜面のうち、上方の斜面82a、及び、下方の斜面82bがスクリーン面の法線となす角度が、いずれもθで等しく、スクリーンの使用状態で上下対称な形状となっている。
なお、単位プリズム形状82の裏面を形成している台形の頂部である上底面82cの幅をwtとする。
単位プリズム形状82は、例えば、紫外線硬化型樹脂をベース部81上に塗布し、型を当てつけた状態で紫外線を照射して硬化させることにより、上述の形状が賦型される。この単位プリズム形状82の材料としては、紫外線硬化型樹脂に限らず、電離放射線硬化型樹脂等の光硬化型樹脂、例えば、アクリレート、エポキシアクリレート、シリコンアクリレート、シロキサン等の多官能単量体を主成分とする光架橋型の樹脂を用いることができる。ここで、電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合、架橋し得るエネルギー量子を有するものを意味する。
本実施例では、屈折率1.56である紫外線硬化型樹脂をベース基材部81に滴下して金型を当て、紫外線を照射して硬化させることにより形成されている。
なお、単位プリズム形状82は、紫外線硬化による形成ではなく、アクリル樹脂、ポリエチレンテレフタレート樹脂等を用いた熱溶融押し出し成型により行ってもよい。
光吸収部84は、スクリーン面に沿って単位プリズム形状82と交互に並べて形成され、光を吸収する作用を有する部分である。本実施例では、光吸収部84は、光を吸収する微小ビーズとして、平均粒径が6μmである黒色顔料を含有する紫外線硬化型樹脂(屈折率1.49)をワイピング(スキージング)することにより、単位プリズム形状82の間に充填し、紫外線を照射して形成されている。
なお、光吸収部84の裏面を形成している略二等辺三角形の底辺部84aの幅をwaとする。
本実施例の反射層83は、反射スクリーン80の裏面全体を覆うように、高反射性を有する白色塗料をコンマコーティングすることにより形成され、その膜厚は20μmである。また、使用した白色塗料の反射率は、全光線の反射率Rt=83%、拡散反射率Rd=72%である。
なお、反射層83の形成方法としては、スプレー塗装、グラビアリバースコート、スクリーン印刷、インクジェット方式による塗布、蒸着(アルミニウム、銀、クロム等、反射率の高い金属を用いることが望ましい)等の形成方法を用いることができる。
紫外線吸収層85は、映像源及び外光等に含まれる紫外線を吸収する紫外線吸収作用を有した層であり、最も映像源側に配置されている。本実施例の紫外線吸収層85は、ベース部81の映像源側にグラビアコートにより紫外線吸収剤をコーティングして形成されている。この紫外線吸収層85を設けることにより、ベース部81及び単位プリズム形状82の紫外線による黄変を防止できる。なお、裏面側には、反射層83が形成されているので、裏面側からの紫外線の影響を考慮する必要はない。
ここで、本実施例では、上底面82cの幅wtと底辺部84aの幅waとの比wt/waについて、以下の関係式を満足する形状となるように、単位プリズム形状82及び光吸収部84が形成されている。
1/4≦wt/wa≦2・・・式(1)
また、単位プリズム形状82と光吸収部84との境界面である斜面82a,82bがスクリーン面に対する法線となす角度θについて、以下の関係式を満足する形状となるように、単位プリズム形状82及び光吸収部84が形成されている。
5°≦θ≦15°・・・式(2)
本実施例では、上記式(1)及び式(2)を満足する具体的な形態として、具体例1〜具体例5の反射スクリーンを作成した。
具体例1の反射スクリーンは、wt=13μm,wa=52μm(wt/wa=1/4),θ=9°となるように、単位プリズム形状82及び光吸収部84が形成されている。
具体例2の反射スクリーンは、wt=22μm,wa=43μm(wt/wa≒1/2),θ=9°となるように、単位プリズム形状82及び光吸収部84が形成されている。
具体例3の反射スクリーンは、wt=32.5μm,wa=32.5μm(wt/wa=1),θ=9°となるように、単位プリズム形状82及び光吸収部84が形成されている。
具体例4の反射スクリーンは、wt=43.3μm,wa=21.7μm(wt/wa≒2),θ=9°となるように、単位プリズム形状82及び光吸収部84が形成されている。
具体例5の反射スクリーンは、wt=26μm,wa=39μm(wt/wa=2/3),θ=5°となるように、単位プリズム形状82及び光吸収部84が形成されている。
具体例6の反射スクリーンは、wt=26μm,wa=39μm(wt/wa=2/3),θ=12°となるように、単位プリズム形状82及び光吸収部84が形成されている。
具体例7の反射スクリーンは、wt=26μm,wa=39μm(wt/wa=2/3),θ=15°となるように、単位プリズム形状82及び光吸収部84が形成されている。
また、これらと比較するために、比較例1〜比較例4の反射スクリーンを作成した。
比較例1の反射スクリーンは、wt=26μm,wa=156μm(wt/wa=1/6),θ=9°となるように、単位プリズム形状82及び光吸収部84が形成されている。
比較例2の反射スクリーンは、wt=57μm,wa=8μm(wt/wa=57/8),θ=9°となるように、単位プリズム形状82及び光吸収部84が形成されている。
比較例3の反射スクリーンは、wt=26μm,wa=39μm(wt/wa=2/3),θ=3°となるように、単位プリズム形状82及び光吸収部84が形成されている。
比較例4の反射スクリーンは、wt=26μm,wa=39μm(wt/wa=2/3),θ=20°となるように、単位プリズム形状82及び光吸収部84が形成されている。
これら具体例1〜具体例7及び比較例1〜比較例4について、コントラストを比較して評価した。
コントラストの評価は、各反射スクリーンに映像源Lから光を投射し、輝度計を用いて各反射スクリーンの輝度を測定した。
ここで、コントラストとは、映像源Lが白を再現する光を投射したときの反射スクリーンの輝度と、映像源Lが黒を再現する光を投射したときの反射スクリーンの輝度との比である。この比が大きいほど、コントラストは高く、鮮明な画像となり、この比が低いほど、コントラストは低く、画像は白っぽくなり、不鮮明なものとなる。
測定に使用した本実施例の反射スクリーン80の具体例1〜具体例4及び比較例1、比較例2の反射スクリーンは、スクリーンの使用状態での垂直方向の大きさが90cm、水平方向の大きさが120cmである。
映像源Lは、具体例1〜具体例4、比較例1,比較例2の反射スクリーンのスクリーン面から、水平方向に230cm離れた位置に固定され、光束は、各反射スクリーンの中央より15cm下方となる位置(位置Pとする)に対して水平に投射される。なお、本測定に使用した映像源Lは、EMPTW200H(セイコーエプソン株式会社製)であり、投射する光束は、1500lmである。
輝度計は、各スクリーンのスクリーン面から170cm離れ、上述の位置Pを通る法線と、位置Pと輝度計とを通る直線がなす角度が、5°となる位置で輝度を測定した。なお、この5°だけ角度をずらして測定を行ったのは、投射する光束を輝度計により遮ってしまわないようにするためである。本測定に使用した輝度計は、LS110(ミノルタ株式会社製)である。なお、映像源L,輝度計,位置Pは、床面からの高さがともに100cmであり、床面からの高さが等しい同一平面内に配置されている。
測定は、床面からの高さが100cmでの照明(外光源)による明るさ(照度)が1000lxである明室環境下で行われ、床面から天井までの距離は300cmである。
また、コントラストの測定に加えてゲインについても測定して評価した。
ここで、ゲインとは、完全拡散面を有した反射拡散板と比較したときの各反射スクリーンの相対輝度であり、このゲインが高いほど、明るい映像を観察可能となる。
ゲインの測定条件は、上述したコントラストの測定条件と略等しい条件で行った。ただし、コントラストの測定は、明室環境下(1200lx)で行ったのに対して、ゲインの測定は、暗室環境下(1lx)で行った。この条件で、各反射スクリーンに加えて、完全拡散面を有した反射拡散板の輝度を測定し、ゲインを算出した。
なお、コントラスト及びゲインについては、コントラストが9以上、ゲインが1.5以上であれば、十分に高品位な映像を得ることができる。また、ゲインが1.7以上あれば、さらに明るく高品位な映像とできる。
Figure 2006301588
表1には、具体例1〜具体例4及び比較例1、比較例2の結果を、wt/waに着目してまとめて示している。表1の結果から分かるように、具体例1〜具体例4では、wt/waが先に示した式(1)を満たしており、コントラスト及びゲインが高い値を示している。
そして、より高いコントラスト及びゲインを得るためには、wt/waは、以下の関係式を満足するとよいことが具体例2,具体例3の結果から分かる。
1/2≦wt/wa≦1・・・式(3)
Figure 2006301588
表2には、具体例3,具体例5〜具体例7、及び比較例3、比較例4の結果を、θに着目してまとめて示している。表2の結果から分かるように、具体例3,具体例5〜具体例7では、θが先に示した式(2)を満たしており、コントラスト及びゲインが高い値を示している。
そして、より高いコントラストを得るためには、θは、以下の関係式を満足するとよいことが具体例3,具体例5,具体例6の結果から分かる。
5°≦θ≦12°・・・式(4)
本実施例によれば、式(1)及び式(2)の少なくとも一方の関係を満たすことにより、明るくコントラストの高い映像を表示できる。また、式(3)及び式(4)の少なくとも一方の関係を満たすことにより、さらに明るくコントラストの高い高品位な映像を表示できる。
また、本実施例によれば、紫外線吸収層85を形成したので、紫外線の影響による反射スクリーンの黄変を防止できる。
単位プリズム形状及び光吸収部を備えた本発明の反射スクリーンは、先にも述べたように、外光の影響を排除し、明室環境下においても、高いコントラストで明るい映像を表示可能である。したがって、明るい環境下で使用される場合も多くなり、明るい環境下に常設される場合も想定される。そのような場合であっても、紫外線吸収層85を形成したことにより、黄変が生じることなく、長期間にわたって製造当初の外観を維持できる。
(変形例)
以上説明した実施例に限定されることなく、種々の変形や変更が可能であって、それらも本発明の均等の範囲内である。
(1)各実施例において、単位プリズム形状は、平面を組み合わせた形状である例を示したが、これに限らず、例えば、その一部又は全てが曲面を組み合わせた形状となっていてもよい。また、単位プリズム形状とせずに、裏面側及び映像源側の幅が等しい単なる光透過部であってもよい。
(2)各実施例において、反射層形成工程の後に光吸収部形成工程を行う例を示したが、これに限らず、例えば、光吸収部形成工程の後に反射層形成工程を行ってもよい。そのような工程順とすることによって、光吸収部をワイピングなどにより単位プリズム形状の間に充填した後に、反射層を裏面の全面に形成するだけでよく、光吸収部の形成が容易な場合に特に有効な方法である。
(3)各実施例において、単位プリズム形状及び光吸収部は、水平方向に同一断面形状で延在し、垂直方向に多数並んでいる例を示したが、これに限らず、例えば、外光及び映像光の方向が水平方向であればそれに併せて90度回転した形態としてもよいし、単位プリズム形状及び光吸収部の組合せを2層設けて、互いに直交するように配置してもよい。
(4)各実施例において、光吸収部は、黒色ビーズを充填することにより形成した例を示したが、これに限らず、例えば、黒色ビーズを混練した樹脂により形成してもよい。その場合、単位プリズム形状を形成する材料の屈折率よりも屈折率が低い樹脂に黒色ビーズを混練して光吸収部を形成するとよい。
(5)各実施例において、固定式の反射スクリーンの例を挙げて説明したが、これに限らず、例えば、不使用時に巻き上げて収納可能な巻き上げ式としてもよい。
(6)実施例3から実施例6において、正反射防止層として市販の拡散フィルムを用いた例を示したが、これに限らず、例えば、正反射防止層として多数の微小ビーズとこれを固着するバインダとを混練して、微小ビーズが固着されずにバインダのみとなっている部分よりも微小ビーズが固着されている部分を映像源側へ突出させて微細凹凸形状を形成してもよい。
(7)実施例3から実施例6において、正反射防止層として不規則なマット状の微細凹凸形状を用いた例を示したが、これに限らず、例えば、微小な単位レンズ形状を一次元、又は、2次元方向に配列したレンズアレイを形成して、このレンズアレイにより正反射する成分を低減させるようにしてもよい。
また、この場合において、単位レンズ形状を一次元方向に配列して形成されたレンチキュラーレンズアレイを用いて、単位レンズ形状が同一断面形状で延在する方向を光透過部及び光吸収部が同一断面形状で延在する方向と略直交するようにして、視域の制御も合わせて行うようにしてもよい。
さらに、上記場合において、単位レンズ形状を二次元方向に配列して形成されたマイクロレンズアレイを用いたときには、単位レンズ形状をスクリーンの法線方向から観察したときの長手方向が光透過部及び光吸収部が同一断面形状で延在する方向と略直交するようにして、視域の制御も合わせて行うようにしてもよい。
(8)実施例3から実施例6において、正反射防止層のさらに映像源側に、帯電防止処理、ハードコート処理、防汚処理の少なくとも一つの処理を正反射防止層の表面形状に沿って施してもよい。そうすることにより、正反射防止層の正反射する成分を低減させる機能を保ったまま帯電防止、ハードコート、防汚の機能を追加することができる。
(9)実施例3又は実施例4において、接着層37,47中に光拡散材を混入して視域を広げるようにしてもよい。
(10)実施例4において、異形拡散層48を正反射防止層45に隣接した位置に形成した例を示したが、これに限らず、例えば、異形拡散層の表面の映り込みが少なければ異形拡散層を最映像源側に配置してもよいし、反射層に隣接して配置してもよい。
(11)実施例8において、単位プリズム形状が対象形状となっている反射スクリーンにおいて式(1)から式(4)を満たすようにした例を示したが、これに限らず、例えば、実施例2等のように単位プリズム形状が非対称な形状となっている反射シートにおいて、これらの式のいずれかを満足するようにしてもよい。
(12)実施例8において、式(1)及び式(2)の両方を満たす例を示したが、これに限らず、例えば、式(1)のみを満たしていてもよいし、式(2)のみを満たしていてもよい。
(13)実施例8において、紫外線吸収層85は、ベース部81に直接コーティングして形成した例を示したが、これに限らず、例えば、実施例1等における前面処理層中に紫外線吸収剤を含めたり、実施例3等における正反射防止層中に紫外線吸収剤を含めたりして、紫外線吸収層を兼ねる前面処理層、正反射防止層としてもよい。また、前面処理層、正反射防止層の表面に紫外線吸収層を形成してもよい。
(14)実施例8において、紫外線吸収層85は、コーティングにより形成する例を示したが、これに限らず、例えば、紫外線吸収作用を有したフィルム等を貼り付けることにより形成してもよい。その場合、例えば、単位プリズム形状82を形成した後にロールtoロール(ロール状に巻き取られた素材を、加工後、再びロール状に巻き取る加工方法の総称)により紫外線吸収作用を有したフィルムをラミネートするとよい。又は、枚葉に断裁した後に、反射層を塗装後、ラミネートしてもよい。
また、紫外線吸収作用を有したフィルム等をベース部等に貼り合わせるときに使用する接着剤にも紫外線吸収剤を含めてもよい。
実施例1における反射スクリーン10を示した断面図である。 実施例2における反射スクリーン20を示した断面図である。 単位プリズム形状22の具体的な形状を示す図である。 実施例2における反射スクリーン20に対して入射角度30度で下方から映像光が投影された場合を示す図である。 実施例2における反射スクリーン20に対して入射角度10度で下方から映像光が投影された場合を示す図である。 実施例2における反射スクリーン20に対して入射角度30度で上方から外光が到達した場合を示す図である。 実施例2における反射スクリーン20の反射率の角度依存性の評価結果である。 実施例3における反射スクリーン30を映像源側上方から見た斜視図である。 実施例3における反射スクリーン30を示した断面図である。 正反射防止層の表面形状の違いによる映像源の映り込み防止効果の違いについて説明する図である。 実施例4における反射スクリーン40を映像源側上方から見た斜視図である。 実施例4における反射スクリーン40を示した断面図である。 実施例5における反射スクリーン50に反射層53を形成する前の状態を裏面側上方から見た斜視図である。 実施例5における反射スクリーン50を示した断面図である。 実施例6における反射スクリーン60を映像源側上方から見た斜視図である。 実施例6における反射スクリーン60を示した断面図である。 実施例7における反射スクリーン70を示す図である。 実施例8における反射スクリーン80を示した断面図である。
符号の説明
10,20,30,40,50,60,70 反射スクリーン
11,21,31,41,51,61 ベース部
12,22,32,42,52,62 単位プリズム形状
22a,32a,42a,52a,62a 第1のプリズム面
22b,32b,42b,52b,62b 第2のプリズム面
22b−1 第1の平面
22b−2 第2の平面
13,23,33,43,53,63 反射層
14,24,34,44,54,64 光吸収部
15,25 前面処理層
35,45,55,65 正反射防止層
16,26 裏面保護層
37,47 接着層
48 異形拡散層
69 レンチキュラーレンズ層

Claims (38)

  1. 映像源から投影された映像光を反射させて観察可能にする反射スクリーンであって、
    スクリーン面に対して直交する断面において、
    光を透過可能な光透過部と、
    光を吸収する光吸収部と、
    を備え、
    前記光透過部と前記光吸収部とが、スクリーン面に沿って交互に形成されており、
    少なくとも前記光透過部の裏面側には、前記光透過部を通過した前記映像光を反射する反射層を備える反射スクリーン。
  2. 請求項1に記載の反射スクリーンにおいて、
    前記光透過部は、スクリーン面に対して直交する断面において、裏面側における幅より前記映像源側における幅が広い略楔形状であってスクリーン面に沿って多数並べて形成された単位プリズム形状であること、
    を特徴とする反射スクリーン。
  3. 請求項1又は請求項2に記載の反射スクリーンにおいて、
    前記光吸収部は、前記単位プリズム形状を形成する材料の屈折率よりも屈折率が低いこと、
    を特徴とする反射スクリーン。
  4. 請求項1又は請求項2に記載の反射スクリーンにおいて、
    前記光吸収部は、光を吸収する微小ビーズを含むこと、
    を特徴とする反射スクリーン。
  5. 請求項4に記載の反射スクリーンにおいて、
    前記光吸収部は、前記単位プリズム形状を形成する材料の屈折率よりも屈折率が低い樹脂に前記微小ビーズを混練することにより形成されていること、
    を特徴とする反射スクリーン。
  6. 請求項1から請求項5までのいずれか1項に記載の反射スクリーンにおいて、
    前記反射層は、前記光透過部又は前記単位プリズム形状の略楔形状の頂部に対応する部分にのみに形成されていること、
    を特徴とする反射スクリーン。
  7. 請求項2から請求項6までのいずれか1項に記載の反射スクリーンにおいて、
    前記単位プリズム形状は、その並ぶ方向において非対称な第1のプリズム面及び第2のプリズム面を有していること、
    を特徴とする反射スクリーン。
  8. 請求項7に記載の反射スクリーンにおいて、
    前記第1のプリズム面は、1種類の面により形成されており、
    前記第2のプリズム面は、少なくとも2種類の面により形成されていること、
    を特徴とする反射スクリーン。
  9. 請求項7又は請求項8に記載の反射スクリーンにおいて、
    前記第1のプリズム面は、1つの平面により形成されており、
    前記第2のプリズム面は、裏面に近い位置に形成された第1の平面と、前記第1の平面よりも映像源側に形成された第2の平面との2種類の平面を有しており、
    前記第1の平面は、前記第1のプリズム面と対称な平面により形成されており、
    前記第2の平面がスクリーン面の法線と成す角度は、前記第1の平面がスクリーン面の法線と成す角度よりも大きいこと、
    を特徴とする反射スクリーン。
  10. 請求項1から請求項9までのいずれか1項に記載の反射スクリーンにおいて、
    前記光透過部と前記光吸収部との境界面がスクリーン面に対する法線となす角度をθとすると、
    5°≦θ≦15°
    の関係を満たすこと、
    を特徴とする反射スクリーン。
  11. 請求項1から請求項10までのいずれか1項に記載の反射スクリーンにおいて、
    映像源側の表面には、アンチグレア処理、反射防止処理、帯電防止処理、ハードコート処理、防汚処理の少なくとも一つの処理が施されていること、
    を特徴とする反射スクリーン。
  12. 請求項1から請求項11までのいずれか1項に記載の反射スクリーンにおいて、
    映像源側の表面には、正反射する成分を低減させる正反射防止層が形成されていること、
    を特徴とする反射スクリーン。
  13. 請求項12に記載の反射スクリーンにおいて、
    前記正反射防止層によるヘイズ値は、25%以上、かつ、90%以下の範囲内にあること、
    を特徴とする反射スクリーン。
  14. 請求項12又は請求項13に記載の反射スクリーンにおいて、
    前記正反射防止層は、表面に微細凹凸形状が形成されており、前記微細凹凸形状により正反射する成分を低減させること、
    を特徴とする反射スクリーン。
  15. 請求項14に記載の反射スクリーンにおいて、
    前記正反射防止層は、多数の微小ビーズと、前記微小ビーズを固着するバインダと、を有しており、
    前記微小ビーズが固着されている部分は、前記微小ビーズが固着されずに前記バインダのみとなっている部分よりも映像源側へ突出して前記微細凹凸形状が形成されていること、
    を特徴とする反射スクリーン。
  16. 請求項14又は請求項15に記載の反射スクリーンにおいて、
    前記微細凹凸形状には、スクリーン面と平行となる平坦面が実質的に形成されていないこと、
    を特徴とする反射スクリーン。
  17. 請求項12又は請求項13に記載の反射スクリーンにおいて、
    前記正反射防止層は、微小な単位レンズ形状を一次元、又は、2次元方向に配列したレンズアレイが形成されており、前記レンズアレイにより正反射する成分を低減させること、
    を特徴とする反射スクリーン。
  18. 請求項17に記載の反射スクリーンにおいて、
    前記レンズアレイは、単位レンズ形状を一次元方向に配列して形成されたレンチキュラーレンズアレイであって、
    前記単位レンズ形状が同一断面形状で延在する方向は、前記光透過部及び前記光吸収部が同一断面形状で延在する方向と略直交していること、
    を特徴とする反射スクリーン。
  19. 請求項17に記載の反射スクリーンにおいて、
    前記レンズアレイは、単位レンズ形状を二次元方向に配列して形成されたマイクロレンズアレイであって、
    前記単位レンズ形状をスクリーンの法線方向から観察したときの長手方向は、前記光透過部及び前記光吸収部が同一断面形状で延在する方向と略直交していること、
    を特徴とする反射スクリーン。
  20. 請求項12から請求項19までのいずれか1項に記載の反射スクリーンにおいて、
    前記正反射防止層のさらに映像源側には、帯電防止処理、ハードコート処理、防汚処理の少なくとも一つの処理が前記正反射防止層の表面形状に沿って施されており、
    前記正反射防止層の正反射する成分を低減させる機能を保ったまま帯電防止、ハードコート、防汚の機能を有していること、
    を特徴とする反射スクリーン。
  21. 請求項1から請求項20までのいずれか1項に記載の反射スクリーンにおいて、
    前記反射層は、反射率が40%以上であること、
    を特徴とする反射スクリーン。
  22. 請求項1から請求項21までのいずれか1項に記載の反射スクリーンにおいて、
    前記反射層は、拡散反射率Rdが10%以上、かつ、70%以下の範囲内であること、
    を特徴とする反射スクリーン。
  23. 請求項22に記載の反射スクリーンにおいて、
    前記反射層は、その表面に表面拡散処理が施されていることにより前記拡散反射率Rdを前記所定の範囲内としていること、
    を特徴とする反射スクリーン。
  24. 請求項23に記載の反射スクリーンにおいて、
    前記反射層は、方向により拡散作用の強度が異なること、
    を特徴とする反射スクリーン。
  25. 請求項24に記載の反射スクリーンにおいて、
    前記反射層は、スクリーンの使用状態における垂直方向よりも水平方向の拡散作用が強いこと、
    を特徴とする反射スクリーン。
  26. 請求項1から請求項25までのいずれか1項に記載の反射スクリーンにおいて、
    前記反射層は、拡散反射率Rdの異なる複数の領域を組み合わせて形成されていること、
    を特徴とする反射スクリーン。
  27. 請求項1から請求項26までのいずれか1項に記載の反射スクリーンにおいて、
    透過する光を特定の方向についてのみ強く拡散させる異形拡散層を設けたこと、
    を特徴とする反射スクリーン。
  28. 請求項27に記載の反射スクリーンにおいて、
    前記異形拡散層が透過した光を強く拡散させる方向は、前記光透過部及び前記光吸収部が同一断面形状で延在する方向と一致していること、
    を特徴とする反射スクリーン。
  29. 請求項1から請求項28までのいずれか1項に記載の反射スクリーンにおいて、
    前記反射層は、高反射率の反射フィルム、又は、反射板により形成されており、
    前記反射フィルム、又は、前記反射板は、前記光透過部及び前記光吸収部に対して接着層、又は、粘着層を用いて積層されていること、
    を特徴とする反射スクリーン。
  30. 請求項29に記載の反射スクリーンにおいて、
    前記反射フィルム又は前記反射板と前記光透過部及び前記光吸収部との間隔は、前記光透過部の前記反射層側の幅の1/2以下であること、
    を特徴とする反射スクリーン。
  31. 請求項29又は請求項30に記載の反射スクリーンにおいて、
    前記接着層、又は、前記粘着層には、光拡散材が混入されていること、
    を特徴とする反射スクリーン。
  32. 請求項1から請求項31までのいずれか1項に記載の反射スクリーンにおいて、
    スクリーン面に対して直交する断面での前記光透過部の裏面側の幅をwtとし、前記光吸収部の裏面側の幅をwaとすると、
    1/4≦wt/wa≦2
    の関係を満たすこと、
    を特徴とする反射スクリーン。
  33. 請求項1から請求項32までのいずれか1項に記載の反射スクリーンにおいて、
    映像源側の表面には、紫外線吸収作用を有した紫外線吸収層が設けられていること、
    を特徴とする反射スクリーン。
  34. 請求項1から請求項33までのいずれか1項に記載の反射スクリーンにおいて、
    不使用時には、巻き上げることが可能であること、
    を特徴とする反射スクリーン。
  35. 請求項2から請求項34までのいずれか1項に記載の反射スクリーンにおいて、
    前記単位プリズム形状が並ぶ方向と直交する方向に並ぶ第2の単位プリズム形状が前記単位プリズム形状よりもさらに映像源側に形成されていること、
    を特徴とする反射スクリーン。
  36. 請求項2から請求項34までのいずれか1項に記載の反射スクリーンの製造方法であって、
    前記単位プリズム形状を樹脂により賦型する単位プリズム形状賦型工程と、
    形成された前記単位プリズム形状の略楔形状の頂部に対応する部分にのみ前記反射層を形成する反射層形成工程と、
    前記反射層を形成した後に、前記光吸収部を形成する光吸収部形成工程と、
    を備える反射スクリーンの製造方法。
  37. 請求項2から請求項34までのいずれか1項に記載の反射スクリーンの製造方法であって、
    前記単位プリズム形状を樹脂により賦型する単位プリズム形状賦型工程と、
    形成された前記単位プリズム形状の間に前記光吸収部を形成する光吸収部形成工程と、
    前記光吸収部を形成した後に前記反射層を形成する反射層形成工程と、
    を備える反射スクリーンの製造方法。
  38. 請求項36又は請求項37に記載の反射スクリーンの製造方法において、
    前記光吸収部形成工程は、ワイピングにより前記光吸収部を形成する材料を前記単位プリズム形状の間に充填すること、
    を特徴とする反射スクリーンの製造方法。
JP2006016795A 2005-02-02 2006-01-25 反射スクリーン、及び、反射スクリーンの製造方法 Expired - Fee Related JP5250933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016795A JP5250933B2 (ja) 2005-02-02 2006-01-25 反射スクリーン、及び、反射スクリーンの製造方法

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005026354 2005-02-02
JP2005026354 2005-02-02
JP2005084008 2005-03-23
JP2005084008 2005-03-23
JP2006016795A JP5250933B2 (ja) 2005-02-02 2006-01-25 反射スクリーン、及び、反射スクリーンの製造方法

Publications (2)

Publication Number Publication Date
JP2006301588A true JP2006301588A (ja) 2006-11-02
JP5250933B2 JP5250933B2 (ja) 2013-07-31

Family

ID=37469885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016795A Expired - Fee Related JP5250933B2 (ja) 2005-02-02 2006-01-25 反射スクリーン、及び、反射スクリーンの製造方法

Country Status (1)

Country Link
JP (1) JP5250933B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191613A (ja) * 2007-02-08 2008-08-21 Dainippon Printing Co Ltd 遠隔会議システム
JP2009031322A (ja) * 2007-07-24 2009-02-12 Dainippon Printing Co Ltd 光学シート及び該光学シートを備える表示装置
WO2009034992A1 (ja) * 2007-09-12 2009-03-19 Dai Nippon Printing Co., Ltd. 光学シート、表示装置及び光学シートの製造方法
JP2009098635A (ja) * 2007-09-27 2009-05-07 Dainippon Printing Co Ltd 反射スクリーン
KR100967874B1 (ko) 2008-03-13 2010-07-05 엘지전자 주식회사 반사 스크린
JP2011253107A (ja) * 2010-06-03 2011-12-15 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム、反射スクリーンの製造方法
JP2012514774A (ja) * 2009-01-08 2012-06-28 スリーエム イノベイティブ プロパティズ カンパニー 乾式消去可能投射物品及びシステム
JP2012226047A (ja) * 2011-04-18 2012-11-15 Dainippon Printing Co Ltd 反射スクリーン及び反射スクリーンの製造方法
JP2012252096A (ja) * 2011-06-01 2012-12-20 Dainippon Printing Co Ltd 反射型スクリーン、及び反射型投射システム
WO2013088471A1 (ja) * 2011-12-14 2013-06-20 株式会社有沢製作所 スクリーン及びスクリーンの製造方法
JP2013137571A (ja) * 2013-03-14 2013-07-11 Dainippon Printing Co Ltd 光学シートの製造方法
JP2013213882A (ja) * 2012-03-31 2013-10-17 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
JP2014013369A (ja) * 2012-06-06 2014-01-23 Dainippon Printing Co Ltd スクリーン、及びスクリーンの製造方法
JP2016006528A (ja) * 2015-08-07 2016-01-14 大日本印刷株式会社 反射スクリーン
KR20160033927A (ko) * 2014-09-19 2016-03-29 엘지전자 주식회사 반사형 프로젝터용 스크린
JP2017195201A (ja) * 2017-07-20 2017-10-26 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. 照明システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214547A (ja) * 1990-03-13 1992-08-05 Dainippon Printing Co Ltd 反射形スクリーンとその製造方法
JPH0736118A (ja) * 1993-07-20 1995-02-07 Matsushita Electric Ind Co Ltd 高コントラスト画像投影装置及び高コントラスト画像投影スクリーン
JPH1026803A (ja) * 1996-07-12 1998-01-27 Dainippon Printing Co Ltd 反射型スクリーン
JP2002540445A (ja) * 1999-03-19 2002-11-26 スリーエム イノベイティブ プロパティズ カンパニー 反射投影スクリーンおよび投影システム
JP2003050307A (ja) * 2001-08-06 2003-02-21 Dainippon Printing Co Ltd 光拡散シートおよびプロジェクションスクリーン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214547A (ja) * 1990-03-13 1992-08-05 Dainippon Printing Co Ltd 反射形スクリーンとその製造方法
JPH0736118A (ja) * 1993-07-20 1995-02-07 Matsushita Electric Ind Co Ltd 高コントラスト画像投影装置及び高コントラスト画像投影スクリーン
JPH1026803A (ja) * 1996-07-12 1998-01-27 Dainippon Printing Co Ltd 反射型スクリーン
JP2002540445A (ja) * 1999-03-19 2002-11-26 スリーエム イノベイティブ プロパティズ カンパニー 反射投影スクリーンおよび投影システム
JP2003050307A (ja) * 2001-08-06 2003-02-21 Dainippon Printing Co Ltd 光拡散シートおよびプロジェクションスクリーン

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191613A (ja) * 2007-02-08 2008-08-21 Dainippon Printing Co Ltd 遠隔会議システム
JP2009031322A (ja) * 2007-07-24 2009-02-12 Dainippon Printing Co Ltd 光学シート及び該光学シートを備える表示装置
US8888303B2 (en) 2007-09-12 2014-11-18 Dai Nippon Printing Co., Ltd. Optical sheet controlling external light, display device and method for producing optical sheet
WO2009034992A1 (ja) * 2007-09-12 2009-03-19 Dai Nippon Printing Co., Ltd. 光学シート、表示装置及び光学シートの製造方法
JP2009069416A (ja) * 2007-09-12 2009-04-02 Dainippon Printing Co Ltd 光学シート、表示装置及び光学シートの製造方法
JP2009098635A (ja) * 2007-09-27 2009-05-07 Dainippon Printing Co Ltd 反射スクリーン
KR100967874B1 (ko) 2008-03-13 2010-07-05 엘지전자 주식회사 반사 스크린
JP2012514774A (ja) * 2009-01-08 2012-06-28 スリーエム イノベイティブ プロパティズ カンパニー 乾式消去可能投射物品及びシステム
JP2011253107A (ja) * 2010-06-03 2011-12-15 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム、反射スクリーンの製造方法
JP2012226047A (ja) * 2011-04-18 2012-11-15 Dainippon Printing Co Ltd 反射スクリーン及び反射スクリーンの製造方法
JP2012252096A (ja) * 2011-06-01 2012-12-20 Dainippon Printing Co Ltd 反射型スクリーン、及び反射型投射システム
WO2013088471A1 (ja) * 2011-12-14 2013-06-20 株式会社有沢製作所 スクリーン及びスクリーンの製造方法
JPWO2013088471A1 (ja) * 2011-12-14 2015-04-27 株式会社有沢製作所 スクリーン及びスクリーンの製造方法
US9188847B2 (en) 2011-12-14 2015-11-17 Arisawa Mfg. Co., Ltd. Screen and screen manufacturing method
JP2013213882A (ja) * 2012-03-31 2013-10-17 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
JP2014013369A (ja) * 2012-06-06 2014-01-23 Dainippon Printing Co Ltd スクリーン、及びスクリーンの製造方法
JP2013137571A (ja) * 2013-03-14 2013-07-11 Dainippon Printing Co Ltd 光学シートの製造方法
KR20160033927A (ko) * 2014-09-19 2016-03-29 엘지전자 주식회사 반사형 프로젝터용 스크린
KR102303191B1 (ko) * 2014-09-19 2021-09-15 엘지전자 주식회사 반사형 프로젝터용 스크린
JP2016006528A (ja) * 2015-08-07 2016-01-14 大日本印刷株式会社 反射スクリーン
JP2017195201A (ja) * 2017-07-20 2017-10-26 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. 照明システム

Also Published As

Publication number Publication date
JP5250933B2 (ja) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5250933B2 (ja) 反射スクリーン、及び、反射スクリーンの製造方法
WO2006082870A1 (ja) 反射スクリーン、反射スクリーンの製造方法、および反射型投影システム
US7349154B2 (en) Reflection type screen
KR100882992B1 (ko) 광 확산 시트 및 투과형 스크린
US7110176B2 (en) Reflex-type screen
JP2006330145A (ja) 反射スクリーン、反射投影システム、及び、反射スクリーンの製造方法
JP2006065266A (ja) 反射スクリーン、反射投影システム、及び、反射スクリーンの製造方法
JP5034533B2 (ja) 反射スクリーン
JP2006243693A (ja) 半透過型反射スクリーン、及び、半透過型反射スクリーンの製造方法
JP2004286996A (ja) 透過型スクリーン
JP5630076B2 (ja) 反射スクリーン、映像表示システム、反射スクリーンの製造方法
JP2006215162A (ja) 反射スクリーン及び反射投影システム
JP4083191B2 (ja) 反射型スクリーン
JP6272013B2 (ja) 反射型スクリーン、映像表示システム
JP5949355B2 (ja) 反射スクリーン、映像表示システム
JP2012252228A (ja) 反射型スクリーンの製造方法、及び反射型スクリーン
JP4725198B2 (ja) 反射スクリーン、反射スクリーンの製造方法
JP5699369B2 (ja) 立体映像表示用の反射スクリーン、立体映像表示システム
JP2009098635A (ja) 反射スクリーン
JP2010204573A (ja) 反射スクリーン、映像表示システム
JP2015014649A (ja) 反射型スクリーン、映像表示システム
JP2007133209A (ja) 表面保護シートおよび透過型スクリーン
JP2008032777A (ja) 光制御シート
JP5103817B2 (ja) 反射スクリーン、映像表示システム
JP6398517B2 (ja) 反射型スクリーン、映像表示システム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees