JP2006297596A - レンズ加工方法 - Google Patents

レンズ加工方法 Download PDF

Info

Publication number
JP2006297596A
JP2006297596A JP2006208630A JP2006208630A JP2006297596A JP 2006297596 A JP2006297596 A JP 2006297596A JP 2006208630 A JP2006208630 A JP 2006208630A JP 2006208630 A JP2006208630 A JP 2006208630A JP 2006297596 A JP2006297596 A JP 2006297596A
Authority
JP
Japan
Prior art keywords
lens
processing
processed
cutter
end mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006208630A
Other languages
English (en)
Inventor
Takashi Igarashi
尚 五十嵐
Shuichi Sato
修一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006208630A priority Critical patent/JP2006297596A/ja
Publication of JP2006297596A publication Critical patent/JP2006297596A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Abstract

【課題】 精度の高い加工及び良好な仕上げ面を有する加工を行う。
【解決手段】 レンズの材種に応じて加工スピードを選択できるようにし、更にレンズ周縁厚さを選択することにより、レンズの周面荒加工時、周面仕上げ加工時、レンズ周面に対する溝彫り加工時、エッジ部の面取り加工時の各送りスピード(レンズ軸回転速度)と工具回転速度の組み合わせを個別に設定できるようにした。
【選択図】 図20

Description

本発明は、眼鏡レンズ等の被加工レンズをレンズ枠に枠入れするために、該被加工レンズの周縁を所定形状に加工するレンズ加工方法に関する。
特開平4−315563号公報や特開平5−4156号公報に、砥石(周面加工用の回転加工工具)でレンズの周面を研削してレンズ周縁を所定形状に加工する場合に、レンズの割れを防いだり、適切な加工を効率良く行ったりすることを目的として、レンズ周縁厚さに応じて、砥石の研削荷重を設定変更する技術が開示されている。
しかし、上記公報の技術のように、砥石の研削荷重をレンズ周縁厚さに応じて設定変更するだけでは、精度の良い加工や良好な仕上げ面を有する加工を行うことができなかった。
本発明は、上記事情を考慮し、より精度の高い加工及びより良好な仕上げ面を有する加工を行うことのできるレンズ加工方法を提供することを目的とする。
請求項1及び請求項2の発明は、被加工レンズをレンズ中心部で保持し、保持した被加工レンズの周面を周面加工用の回転加工工具により削り取ると共に、被加工レンズをレンズ中心回りに周回させることにより、被加工レンズの全周にわたって周面を削り取り、それにより所定の周縁形状のレンズを加工する方法において、被加工レンズの材種またはレンズ周縁厚さに応じて、周面切削用の回転加工工具の回転速度と、被加工レンズの周回時の回転速度と、所定削り代だけ削り取るための被加工レンズの周回数との少なくともいずれかを設定変更することを特徴とする。
前記周面加工用の回転加工工具としては、被加工レンズの周面を外周に設けた切削刃で切削するカッタの場合(請求項3)と、被加工レンズの周面を研削する砥石の場合(請求項4)とがある。
例えばプラスチックレンズの場合、軟らかい材種と硬い材種がある。また、眼鏡レンズの場合、度数によりレンズ周縁厚さ(コバ厚)が異なる。これを一様な加工条件で加工すると、材種の硬さやレンズ周縁厚さに応じて当然加工負荷が異なってくるので、加工負荷の違いにより加工精度にバラツキが出る上、加工能率にも影響が出る可能性がある。そこで、請求項1〜4の発明では、材種やレンズ周縁厚さに応じて、加工条件を設定変更するようにしている。
この場合の加工条件としては、カッタや砥石等の周面切削用回転加工工具の回転速度と、被加工レンズの周回時の回転速度と、所定削り代だけ削り取るための被加工レンズの周回数とがあり、少なくともこれらのパラメータのうちの1つを設定変更することにより、加工条件の適切化を図る。
例えば、眼鏡レンズの場合、最終的な仕上げ形状に近づくにつれて、レンズ周縁形状が円形ではなくなるので、回転中心から加工ポイント(工具をレンズに干渉させて、実際にレンズを削り取っているポイント)までの動径(半径)が、被加工レンズの回転角度によって変化する。そこで、レンズの回転による加工ポイントの周速を均一にするべく、レンズの回転時の角速度を制御する。そうすることにより、工具に対するレンズの移動速度(加工ポイントの移動速度)が等しくなるので、全周をほぼ等しい条件で加工することができる。
また、レンズの回転角速度は変化させずに、回転加工工具側の回転速度を加工ポイントの移動に従って変化させることにより、全周をほぼ等しい条件で加工することもできる。
請求項5の発明は、所定の周縁形状に加工された被加工レンズの周面に回転溝彫り工具を突き当てながら、被加工レンズをレンズ中心回りに周回させることにより、被加工レンズの周面に溝を形成するレンズ加工方法において、被加工レンズの材種に応じて、回転溝彫り工具の回転速度と、被加工レンズの周回時の回転速度との少なくともいずれかを設定変更することを特徴とする。
請求項6の発明は、所定の周縁形状に加工された被加工レンズの周面とレンズ面との交差エッジ部に回転面取り工具を押し当てながら、被加工レンズをレンズ中心回りに周回させることにより、前記エッジ部に面取りを施すレンズ加工方法において、被加工レンズの材種に応じて、回転面取り工具の回転速度と、被加レンズの周回時の回転速度との少なくともいずれかを設定変更することを特徴とするレンズ加工方法。
溝彫りと面取りは、大きな削り代を削り取る加工ではないので、1回だけレンズを周回させれば、加工を完了する。従って、周面加工の場合にはレンズの周回数を設定変更可能なパラメータとして加えていたが、ここではそれをパラメータから外している。また、溝彫り加工と面取り加工は、レンズ周縁厚さの違いによって加工負荷に影響を受ける加工項目ではないので、レンズ周縁厚さについても条件から外してある。そして、条件としては被加工レンズの材種だけを残し、パラメータとして、回転溝彫り工具や面取り工具の回転速度と、被加工レンズの周回時の回転速度とを設定変更するようにしている。
このように、2つのパラメータのうちの少なくとも1つを、被加工レンズの材種に応じて設定変更することにより、加工条件の適切化を図ることができる。
以上説明したように、請求項1、2の発明によれば、レンズの材種やレンズ周縁厚さに応じて周面加工時の加工条件を設定変更するようにしたので、精度の高い加工及び良好な仕上げ面を有する加工を行うことができる。例えば、加工負荷を揃えるように加工条件を設定することにより、レンズサイズやレンズ形状(ヤゲン位置を含む)を正確に均一に仕上げることができるし、加工箇所をきれいに仕上げることができる。また、適正な加工条件の選択によって、加工応力の低減を図ってレンズ軸のずれを少なくできるし、工具寿命を延ばしたり、加工時間を短縮したりすることもできる。これは、周面加工用の回転加工工具として、カッタを使用する場合も砥石を使用する場合も同様である(請求項3、4)。
また、請求項5の発明や請求項6の発明のように、溝彫りや面取りを行う場合にも、レンズの材種に応じて、回転溝彫り工具や面取り工具の回転速度と、レンズの周回時の回転速度(送りスピード)との少なくともいずれかを設定変更することにより、前記と同様の効果を奏することが可能となる。
以下、本発明の実施形態を図面に基づいて説明する。
ここではまず、本発明の実施形態のレンズ加工方法を実施するためのレンズ加工装置を説明する。本発明のレンズ加工方法は、このレンズ加工装置でレンズの加工を行う際に実施される。図1はレンズ加工装置の全体構成を示す斜視図、図2は同全体構成を示す平面図、図3は同全体構成を装置手前側から見た正面図である。
この加工装置10は、従来公報の技術のように、砥石でレンズ周面を研削する研削式のものではなく、回転切削工具でレンズ周面を強制切削する切削式レンズ加工装置である。この種の切削式レンズ加工装置は、プラスチックレンズの場合に有効であり、加工効率の向上を図ることができる。
この加工装置10は、各機構部が基台11に取り付けられることにより構成されている。基台11の基板11aは水平に設けられており、この基板11a上には、レンズ保持ユニット12と、レンズの周面切削加工を行うカッタ回転機構部13と、溝加工並びに面取り加工を行うエンドミル回転機構部14とが設けられている。これらは、基板11a上のほぼ同じ平面内にレイアウトされ、カッタ回転機構部13とエンドミル回転機構部14とが、共に装置の手前側に配置され、レンズ保持ユニット12が装置に奥側に配置されている。
また、基板11aには測定ユニット15が設けられている。測定ユニット15は、レンズ形状測定手段としての測定ヘッド16を有しており、該測定ユニット16は、カッタ回転機構部13とエンドミル回転機構部14との干渉を避けるために、カッタ回転機構部13とエンドミル回転機構部14の上方の空きスペースに配設されている。
レンズ保持ユニット12は、被加工レンズ1を保持すると共に、レンズ周方向の加工位置を移動するために、被加工レンズ1をレンズ中心回りに周回させるものである。カッタ回転機構部13は、被加工レンズ1の周縁を強制切削するカッタ(回転切削工具)131を有しており、該カッタ131を水平な軸回りに回転させることで、被加工レンズ1の周面の平切削並びにヤゲン切削を行うものである。エンドミル回転機構部14は、加工工具としてボールエンドミル(以下、単に「エンドミル」という)141を有しており、該エンドミル141を水平な軸回りに回転させることで、レンズ1の周面に溝(この溝は、リムレスフレームにレンズを装着する際にナイロンなどの糸を通すためのもの)を形成したり、被加工レンズ1の周面とレンズ面との交差エッジ部に面取りを施したりするものであ
る。
測定ユニット15は、レンズ1のコバ厚及びコバ厚方向のレンズ位置を測定する測定ヘッド16を有しており、該測定ヘッド16を必要に応じて上下方向に旋回させることのできるものである。
レンズ保持ユニット12は、後述する機構により、基板11aの面と平行で且つカッタ131の軸と垂直な方向(以後Y軸方向と呼ぶ)にスライド可能に設けられると共に、基板11aの面と平行で且つカッタ131の軸と平行な方向(以後Z軸方向と呼ぶ)にスライド可能に設けられている。
カッタ回転機構部13は、基板11a上に固定されている。カッタ回転機構部13のカッタ131はスピンドル132に取り付けられており、カッタ回転用モータ133の回転をベルト134でスピンドル132に伝えることで、自身の軸芯回りに回転させられる。
基板11aには切り込み動作機構部24が設けられている。切り込み動作機構部(加工動作機構部に相当)24は、レンズ保持ユニット12をY軸方向に移動させて、レンズ1をカッタ131やボールエンドミル141に対して切り込み動作させる機構である。
基板11aの下側には、加工粉の吸引除去手段を構成する図示略のダクトが配されており、そのダクトが、基板11aに開口された掃除口993に接続されている。掃除口993の上方には、空気噴射手段としてのエアー噴射ノズル992が複数配されている。これらエアー噴射ノズル992は、カッタ131の近傍及びエンドミル141の近傍に配されており、レンズ保持ユニット12に装着された被加工レンズ1に対して周面切削加工や溝彫り加工あるいは面取り加工を行っているときの加工粉をエアー噴射ノズル992で吹き飛ばし、吹き飛ばした加工粉を掃除口993から吸引除去するようになっている。
レンズ加工装置10の各機構部は、基板11a下側等に設けられた後述の制御装置(図示略)によって、電気的に制御される。
基台11の基板11a上には、Y軸方向に移動するYテーブル20が設けられている。このYテーブル20は、Y軸方向に向くように基板11aに固定された平行な2本のレール21、21上に摺動可能に設けられると共に、前述の切り込み動作機構部24と連結されており、該切り込み動作機構部24によりY軸方向へ移動制御される。
Yテーブル20の上面には、Z軸方向に向くように2本のレール31、31が固定されている。これらレール31、31には、Zテーブル30が摺動可能に設けられている。Zテーブル30は、Yテーブル20上に固定されたZテーブル移動機構部(レンズをその軸芯方向に移動させる軸芯方向移動機構部)33によって移動制御される。Zテーブル移動機構部33には、Z軸用モータ331が設けられている。Z軸用モータ331の回転軸には、ボールネジ332が連結されており、このボールネジ332には、Zテーブル30に固定されたスライドブロック333が螺合している。Z軸用モータ331は、後述の制御装置からの指令に応じて、正逆両方向に回転する。
Z軸用モータ331が回転することにより、ボールネジ332が回転する。そして、このボールネジ332の回転によってスライドブロック333が移動し、スライドブロック333と一体にZテーブル30が、レール31,31に沿って移動する。Zテーブル30の上面には、レンズ保持ユニット12が固定されている。
図4はレンズ保持ユニット12の詳細構成を示す平面図である。
レンズ保持ユニット12は、カッタ131(図2参照)の軸と平行なレンズ保持軸121を有している。レンズ保持軸121は、レンズ保持ユニット12内の回転機構部によって回転させられる。レンズ保持軸121の先端には、レンズホルダ受け121aが固定され、レンズホルダ受け121aには、被加工レンズ1が固定されたレンズホルダ19が着脱自在に取り付けられている。
また、レンズ保持ユニット12には、前記レンズ保持軸121と同軸に、レンズ押さえ軸(これもレンズ保持軸と言える)122がアーム部122bを介してレンズ保持軸121方向にスライド可能に取り付けられている。レンズ押さえ軸122は、エアシリンダ123の圧力を受けてレンズ1側に移動し、その先端のレンズ押さえ122aによってレンズ1を押圧し、レンズ保持軸121との間でレンズ1を挟み込んで保持する。
この場合、レンズホルダ19の端面(凹面状に形成されている)に、両面接着パッド191を介して、レンズ1の凸側レンズ面1Aが接着されており、レンズ押さえ122aは、レンズ1の凹側レンズ面1Bに圧接する。また、レンズ押さえ122aは、レンズ押さえ軸122の先端に全方向揺動自在に取り付けられており、レンズ1の凹側レンズ面1Bに片当たりせずに、バランスよく圧接するようになっている。
レンズ保持ユニット12のケース12a内に設けられた前記エアーシリンダ123は、外部に設けられた図示されていないエアーポンプから送られるエアーの圧力によって、そのロッド123aをZ軸方向に移動させる。ロッド123aの先端には、アーム123bが固定され、ロッド123aと一体に移動するように設けられている。このアーム123bには、ガイドテーブル123c及びレンズ押さえ軸122のアーム部122bが固定されている。レンズ押さえ軸122は、ケース12aに形成されたZ軸方向に延びる長穴12bに沿って移動できるように設けられている。レンズ押さえ軸122の先端には、レンズ押さえ122aがZ軸周りに正逆自由回転できるよう設けられている。
ガイドテーブル123cは、レール台124の側面にZ軸方向に平行となるように設けられたレール124aに摺動可能に嵌合している。これにより、エアーシリンダ123のロッド123aが移動すると、これと一体にアーム123b、ガイドテーブル123c、及びレンズ押さえ軸122がZ軸方向に移動して、レンズ押さえ122aがレンズ1に対して圧接したり、離間したりする。
また、ケース12a内には、レンズ回転用モータ125が設けられている。このレンズ回転用モータ125の軸125aには、カップリング125bを介して小径のギア125cが連結されている。このギア125cは、大径のギア125dに連結されている。さらにギア125dの同軸にはプーリ125eが設けられており、このプーリ125eは、ベルト125fを介して、前記軸121上に固定されたプーリ121bに連結されている。
これにより、レンズ回転用モータ125が駆動されると、軸125aの回転がカップリング125b、ギア125cに伝達され、さらに、ギア125dで減速され、この減速された回転がプーリ125e、ベルト125f、プーリ121bを介してレンズ保持軸121に伝達され、レンズ1が回転する。
また、レンズ保持軸121にはスリット板121cが固定されており、このスリット板121cの回転位置を、ケース12a内に固定された光センサ126が検出することにより、レンズ保持軸121に保持されたレンズ1の原点位置が検出される。
このような構成のレンズ保持ユニット12では、レンズホルダ受け121aにレンズ1が固定されると、エアシリンダ123が駆動して、レンズ押さえ軸122が図面左側に移動する。そして、レンズ1をレンズ押さえ122aによって押圧することにより、レンズ1が固定される。レンズ1の加工時及びレンズ測定時は、レンズ回転用モータ125が駆動して、レンズ保持軸121が回転し、それによりレンズ1が回転する。また、レンズ1が回転することにより、レンズ押さえ122aも一体に回転する。
図5(a)はY軸方向移動機構としての切り込み動作機構部24の概略構成を示す平面図、図5(b)は(a)図のVb−Vb矢視図である。切り込み動作機構部24は、基板11aの開口下面に取り付けた凹形部材68の凹部上面に固定されている。凹形部材68の凹部上面には、間隔をおいて2つの軸受支持部材61、61が設けられ、これら支持部材61、61にY軸方向を向いたボールネジ62が回転自在に取り付けられている。ボールネジ62の一端は、凹形部材68に固定された切り込み用モータ63の軸と連結されている。
切り込み用モータ63は、後述の制御装置からの指令に従って正逆両方向に回転し、この切り込み用モータ63の回転と連動してボールネジ62が回転する。ボールネジ62には、移動ブロック64が螺合されており、この移動ブロック64が、前述したYテーブル20に連結されている。よって、Yテーブル20及びレンズ保持ユニット12は、切り込み動作機構部24の移動ブロック64と一体にY軸方向に移動する。これにより、レンズ1のカッタ131への切り込み動作が行われる。
移動ブロック64にはスイッチ片641が取り付けられている。このスイッチ片641は、移動ブロック64が切り込み量計測の基準となる原点位置にあるときに、凹形部材68に固定された光センサ642をオンにする。また、移動ブロック64が一方のリミット位置にあるときに、凹形部材68に固定された光センサ643をオンにする。また、移動ブロック64が他方のリミット位置にあるときに、凹形部材68に固定された光センサ644をオンにする。
次に、エンドミル回転機構部14について説明する。エンドミル回転機構部14は、カッタ回転機構部13のカッタ131に隣接して配設されており、基板11aの上に、エンドミル141の軸線を、レンズ保持ユニット12のレンズ保持軸121及びレンズ押さえ軸122と垂直な方向で且つ基板11aと平行な方向に向けて固定されている。しかも、エンドミル141の軸線とカッタ131の軸線とレンズ保持軸121及びレンズ押さえ軸122の軸線は、同じ高さに位置している。エンドミル回転機構部14には、エンドミル141を回転駆動するスピンドルモータ142が設けられている。
次に、図6〜図8を参照して測定ユニット15について説明する。測定ユニット15は、一対のスタイラス161,162を備えた測定ヘッド16を有する。図8に示すように、測定ヘッド16は、基板11a上に間隔をおいて立設した2つの支持壁151,151に、旋回軸152を介して取り付けられている。旋回軸152は、カッタ131の軸と平行に配されており、支持壁151,151の上端近くの高さに、上下方向回動可能に支持されている。この旋回軸152には、測定ヘッド16の下方に突設した2本のアーム163,163が固定されており、これにより、旋回軸152を回すことで、測定ヘッド16が、図6(a)及び図7(a)に示すアンロード位置(測定に供しないときの待避位置)と、図6(b)及び図7(b)に示すロード位置(測定に供するときの位置
)との間で回動するようになっている。
旋回軸152は一端が片方の支持壁151から水平方向に突出しており、この突出端が、基板11a上に架台154を介して固定されたエア駆動式の測定ヘッド回転アクチュエータ155の回転軸155aに、カップリング152aを介して連結されている。測定ヘッド16は、エア駆動式の回転アクチュエータ155によってアンロード位置とロード位置とに移動させられるので、アンロード位置とロード位置には、測定ヘッド16が確実に止まるように、ストッパ156、157が設けられている(図6参照)。ストッパ156、157は、非旋回側の部材、つまり支持壁151に固定されたブラケット156a、157aに設けられており、これらのストッパ156、157に測定ヘッド16の特定箇所が当たることで、測定ヘッド16の位置決めが行われるようになっている。
アンロード位置側のストッパ156は、特に正確な位置決め機能を発揮する必要のないものであるが、ロード位置側のストッパ157は、測定ヘッド16による計測精度に影響を及ぼすため、きわめて正確な位置決め機能を発揮する必要がある。そのため、ロード側のストッパ157としては、位置決め位置を精度よく調整できるマイクロヘッド(1/1000mm)が用いられている。このマイクロヘッド式のストッパ157で位置決めすることにより、ロード位置に移動させられた測定ヘッド16のスタイラス161、162は、レンズ保持軸121の回転中心やカッタ131の回転中心と同一の高さレベルに正確に保持される。
また、回転アクチュエータ155で測定ヘッド16をアンロード位置またはロード位置に移動したとき、ストッパ156、157に測定ヘッド16の特定箇所が衝突すると衝撃が生じるおそれがあるので、測定ヘッド16のアーム163及び支持壁151に固定されたブラケット156aには、衝撃吸収作用を果たす緩衝器(ショックアブソーバー)158、159が設けられている。これらの緩衝器158、159は、測定ヘッド16がストッパ156、157に当たる直前に、相手側部材に当接して緩衝作用を発揮し、ストッパ156、157への測定ヘッド16の当たりを軟らかくする役目を果たす。
また、測定ヘッド16をロード位置に移動したときには、ロード位置に測定ヘッド16が倒れていることを確認しておく必要があるので、図6、図7に示すように、ロード位置側には、支持壁151に固定されたブラケット160aに光学センサ160を設けて、測定ヘッド16の有無を検出するようにしている。
このようにロード位置とアンロード位置間で旋回可能に構成されることで、測定ヘッド16は、必要なときに、上方から測定すべき位置(ロード位置)に供給され、不必要なときには、上方の待避位置(アンロード位置)へ待避することができようになっている。従って、こうしてカッタ131やエンドミル141による作業の邪魔にならないように測定ヘッド16が搭載されていることにより、いったんレンズ保持ユニット12によりレンズ1を保持したら、測定から加工までチャッキングを解かずに、ワンチャックで作業を進めることができる。また、特殊な場合として、レンズ1の加工途中で必要に応じて測定を実行する場合にも、レンズ1のチャッキングを解かずに、そのままレンズ1を保持した状態で、レンズ1のコバ厚等を測定することができる。
測定ヘッド16の具体的な構成を述べると、図2や図7(a)に示すように、測定ヘッド16には、レンズ保持ユニット12に保持された被加工レンズ1の凸側レンズ面及び凹側レンズ面に接触する一対のスタイラス(測定子)161,162が設けられている。一対のスタイラス161、162は、レンズ厚み方向(旋回軸152と平行な方向)に平行な一直線上に位置しており、互いに球状の先端部を対向させて配されている。
図9は測定ヘッド17の原理構成を示す図である。
各スタイラス161、162は、図示しない案内機構により平行移動するように配されたアーム164、165に取り付けられている。スタイラス161(もう一方のスタイラス162も同じ構成)は、図9(b)、(c)に詳細を示すように、棒状のスタイラス本体161aの先端に、真球状のスチールボール(摩耗や形状変形に強い超鋼製の2φ程度の鋼球)161bを取り付けた構造のものである。スタイラス本体161aの側面には平坦面が形成されており、スチールボール161bは、その平坦面側に寄せてスタイラス本体161aに偏心して溶接により取り付けられている。
この場合、スタイラス本体の真ん中にスチールボールを取り付けることがまず考えられるが、そうすると取付誤差や加工誤差により実際は真ん中から外れた位置にスチールボールが付いてしまうおそれが大きく、そうするとスタイラスの中心座標のずれ補正が難しい。この点、前記のようにスタイラス本体161aの側面に平坦面を形成し、その平坦面の延長面上にスチールボール161bの外周が接するようにスチールボール161bを取り付けるようにすれば、スチールボール161bの中心位置は、スタイラス本体161aの平坦面からスチールボール161bの半径分の距離のところに配置されることになる。従って、正確にスチールボール161bの中心位置座標を把握することができるようになり、それを測定に反映させることができる。
このようなスタイラス161、162を取り付けたアーム164、165は、平行移動することにより、相互の間隔を開いたり閉じたりする。アーム164、165は、バネ(図示例では圧縮バネ)166a,167aを内蔵したリニアエンコーダ166、167の可動子166b、167bに連結されおり、バネ166a,167aによって互いに閉じ方向に付勢されている。リニアエンコーダ166、167は、可動子166b、167bの移動位置を電気的に検出するもので、各リニアエンコーダ166、167によりスタイラス161,162の位置が検出される。
上記のようにスタイラス161、162は、バネ166a,167aによって閉じ方向に付勢されていて自動的に閉じるが、開き方向には何らかの駆動機構で動かしてやらなければならない。そこで、アーム164、165の上方には、一対のプーリ171、172に巻回されたループ状のベルト173が配され、プーリ171をスタイラス開閉用DCモータ170で回転させてベルト173を周回動させることにより、ベルト173に設けた係合片173a、173bで、アーム164,165を引っ掛けて、開き方向に動かすようになっている。
なお、この場合も、光センサ174、175で係合片173aの位置を検出することにより、スタイラス161、162が開いているか閉じているかを検出できるようになっている。また、光センサ176、177によって、各アーム164、165が原点位置にあるか否かを検出できるようになっている。
図10、図11に測定ヘッド16のスタイラス161、162によるレンズ位置の測定の原理を示す。スタイラス161、162は、レンズ保持軸121と平行な同一直線上で対向している。ここで、図9のベルト173を駆動して、スタイラス161、162を開いた状態で、両スタイラス161、162の先端間にレンズ1を移動し、ベルト173を反対側に戻すと、リニアエンコーダ166、167内のバネ166a、167aの作用で、スタイラス161、162が閉じて、図10に示すように、一方のスタイラス161はレンズ1の凸側レンズ面1Aに先端が当接し、他方のスタイラス162はレンズ1の凹側レンズ面1Bに先端が当接する。
今、レンズ枠形状データ(=形状データ)に基づいてレンズ1を移動制御すると、図11に示すように、スタイラス161、162は、形状データに沿った軌跡Sをトレースする。
例えば、形状データとして動径情報(ρi,θi)が与えられている場合、動径長ρiに基づく量だけ切り込み動作機構部24を制御することで、レンズ1がスタイラス161、162に対してレンズ半径方向に移動し、スタイラス161、162が、レンズ保持軸121の中心軸線から動径長ρiの位置に位置付けられる。また、動径角θiに基づく量だけレンズ保持ユニット12のレンズ回転機構部を制御することで、レンズ1がスタイラス161、162に対して動径角θiだけ回転させられる。スタイラス161、162の先端は、レンズ1の凸側レンズ面1A及び凹側レンズ面1B上をトレースするので、スタイラス161、162の移動量をリニアエンコーダ166、167で検出することにより、動径情報に対応したコバ厚方向(Z軸方向)のレンズ位置データ(Zi)を得ることができる。そして、この検出動作を動径情報(ρi,θi)の全てについて実行するこ
とで、レンズ動径形状軌跡(ρi,θi)上における凸側レンズ面1Aの位置データ及び凹側レンズ面1Bの位置データ(ρi,θi,Zi)を得ることができる。そして、これら凸側レンズ面1Aの位置データ及び凹側レンズ面1Bの位置データにより、レンズ動径形状軌跡(ρi,θi)上におけるレンズ厚さ(コバ厚)を算出することができる。
次にカッタ回転機構部13のカッタ131について説明する。
図12はカッタ131の構成を示している。このカッタ131は、図12(b)に示すように、外周面に突出した形の2枚の切削刃131aを有しており、切削刃131aは円周方向に180度間隔で設けられている。カッタ131は、図12(a)に示すように、小ヤゲン溝Y1aを有する小ヤゲンカッタY1(例:メタルフレーム用)と、大ヤゲン溝Y2aを有する大ヤゲンカッタY2(例:プラスチックセルフレーム用)と、ヤゲン溝のない平削り用カッタH1(例:縁無しフレーム用)との3つのカッタを同一軸線上に並べて一体に連結したものであり、加工種目に応じて各カッタ部分を使い分けられるようになっている。
ヤゲン溝Y1a、Y2aは、図12(c)に示すようになっている。ヤゲン角度は例えば110〜125度、ヤゲン高さは、小ヤゲンの場合は例えば0.4〜0.68mm、大ヤゲンの場合は例えば0.7〜0.9mmになっている。また、ヤゲン溝Y1a、Y2aの隣りの平面部は、片側のみ例えば3.5〜5度のテーパ面となっている。これは、ヤゲンの隣りにフレームに対する逃げを作るためである。
図13にカッタ131によるレンズ1の周縁切削の原理を示す。
カッタ131とレンズ1の干渉部位で見ると、カッタ131は上から下に回転し、レンズ1は下から上に回転する。そして、干渉部位でカッタ131の切削刃131aがレンズ1を、設定された切り込み量だけ強制切削する。今、レンズ枠形状データ(=形状データ)に基づいて加工プログラムを作成し、その加工プログラムに従ってレンズ1を移動制御すると、カッタ131はレンズ1の移動内容に応じてレンズ1の周面を削っていく。
平削りの場合は、平削り用カッタH1の前の適正位置にレンズ1を位置決めして、カッタ131を回転させながら、切り込み動作機構部24を駆動することにより加工を行う。また、ヤゲン加工の場合は、図14に示すように、ヤゲンカッタY1、Y2の前の適正位置にレンズ1を位置決めして、Zテーブル移動機構部33のZ軸方向の移動と合わせて、カッタ131を回転させながら、切り込み動作機構部24を駆動することにより加工を行う。図において、1aはヤゲンを示す。
図15、図16、図17(a)、(b)に、エンドミル141による溝彫りとコバ(レンズ周面)の両端エッジ部の面取りの原理を示す。形状加工されたレンズ1の端面(周面)に溝1bを彫る場合は、図15、図16に示すように、レンズ1を移動制御することで、回転するエンドミル141の先端に対するレンズ端面のアプローチを行う。
アプローチが完了したら、レンズ1を回転させながら、切り込み量を切り込み動作機構部24により適当に設定する。そうすると、レンズ1の回転にともなって、レンズ端面に、予め設定された深さ(切り込み量)の溝1bが連続形成される。加工中は、レンズ1の形状データに基づいて、エンドミル141が現在接触している端面位置とレンズ中心との距離を計算し、この距離に応じてレンズ1のY軸方向の位置を移動制御する。また、加工中は、形状データに基づいて、端面の特定の位置、例えば端面の幅方向(コバ厚方向)の中心位置、あるいは、レンズ前面(凸側レンズ面1A)から一定距離の位置にエンドミル141の先端が常に位置するように、レンズ1をZ軸方向に移動制御する。
このような制御を継続してレンズ1が1回転することにより、レンズ端面には溝1bがレンズ全周にわたって形成される。エンドミル141は、元の開始点に戻ると、アプローチのときとは逆方向に移動してレンズ1から離れる。
また、コバの両端エッジ部(レンズ周面とレンズ面との交差エッジ部)に割れや欠け防止のための糸面取りを施す場合は、図17に示すように、エンドミル141の先端のR部を利用する。図(a)はレンズ周面に溝1bを加工したものについて面取りを行う場合、図(b)はレンズ周面にヤゲン1aを加工したものについて面取りを行う場合をそれぞれ示している。凸面側のエッジ部1cや凹面側のエッジ部1dをエンドミル141の先端で落とす場合、エンドミル141の先端R部の肩部分を利用する。
このとき、エッジ部1c、1dの位置座標データを利用して、エンドミル141に対するレンズ1の位置出し(面取りのための)を行う。つまり、エッジ部1c、1dの形状等により面取り寸法(ΔZ,ΔY)がほぼ決まるから、面取りを行うエンドミル141の中心位置及びR部の半径とエッジ部1c,1dの位置データとを計算に入れることで、レンズ1のエッジ部1c、1dとエンドミル141の先端間の相互位置関係である、取り代Q11、Q12、Q21、Q22が決まる。よって、エンドミル141の中心の座標と、前記取り代Q11、Q12、Q21、Q22のデータにより、制御すべきレンズ1のエッジ部1c、1dの位置座標データを決定することができ、その位置座標データに基づいてレンズ1をY軸方向及びZ軸方向に位置制御すると共に周回動作させることにより、適正
な面取りのためのレンズ1とエンドミル141の相互位置出しが行われる。つまり、レンズ1をY軸方向及びZ軸方向に移動し且つ周回動作させることにより、加工すべきエッジ部1c、1dを、固定位置で回転駆動されているエンドミル141の先端R部に対して正確に位置出しすることができる。これは、エンドミル141の形状及び位置情報とレンズ1の位置情報とを正確に把握していることからできることである。なお、凸面側の面取りと凹面側の面取りは、それぞれエンドミル141に対するレンズ1のアプローチを含めて独立して行われる。
図18はレンズ加工装置10における制御装置を中心とした電気的な接続関係を示すブロック図である。ただし、ここでは、主要な構成のみを示す。制御装置は、サーボモータ制御部1001とI/O制御部1002とからなる。両制御部1001、1002は互いにデータのやりとりを行い、且つ、図示略のホストコンピュータともデータのやりとりを行う。加工システム全体を管理するホストコンピュータからは、レンズの形状データ(動径情報、レンズ厚、外径等を含む)や加工情報等が送られ、制御部1001、1002は、この送られた形状データや加工情報に基づいて、レンズに対し必要な加工を施す。
サーボモータ制御部1001は、X軸サーボモータ(レンズ回転用モータ125)、Y軸サーボモータ(切り込み動作用モータ63)、Z軸サーボモータ(Z方向移動用モータ331)の駆動制御を行う。また、I/O制御部1002は、カッタ回転機構部13のカッタ回転用モータ(TOOL用モータ)133、面取りモータ(エンドミル回転機構部14のスピンドルモータ142)、レンズチャックエアーシリンダ123、測定ヘッド用回転アクチュエータ155、冷却用エアブロー1010、スタイラス開閉用DCモータ170を、制御部や電磁弁1021〜1026を介して駆動制御し、必要な動作を行わせる。その際、各種センサの信号を制御に利用する。
また、I/O制御部1002は、測定用リニアエンコーダ166、167の検出信号をカウンタユニット1030でカウントして取り込む。更に、表示操作部1100に対して必要な表示を行うと共に、操作信号を取り込む。また、集塵機インターフェースや搬送ロボットインターフェースに必要な信号を送る。
次に図19のフローチャートに従って、制御部1001及び1002で行われる制御の流れを説明する。
被加工レンズ1をレンズ保持ユニット12にセットしてスタートの操作を行うと、最初に、ホストコンピュータより送られて来る測定軌跡データを入力する(ステップS1)。次いで、測定ヘッド16を下降させてロード位置に位置決めし(ステップS2)、スタイラス161,162をレンズ1に対してローディングし(ステップS3)、レンズ位置を測定して(ステップS4)、その測定データをホストコンピュータへ送る(ステップS5)。
レンズの全周について測定が完了すると、スタイラス161、162をレンズ1からアンローディングし(ステップS6)、測定ヘッド16をアンロード位置に上昇させる(ステップS7)。次に、ホストコンピュータより加工軌跡データを入力し(ステップS8)、カッタ回転機構部13のモータ(TOOLモータ)133を回転させると共に、エアーブローを開始し(ステップS9)、集塵機を運転する(ステップS10)。
そして、所定回転数でカッタ131を回すことで荒加工を強制切削により実施し(ステップS11)、次にカッタ用のモータ133の回転速度を変更して(ステップS12)、仕上げ加工を同じくカッタ131による強制切削で行う(ステップS13)。このとき、ヤゲン加工が必要な場合は、ヤゲンカッタY1、Y2を選択して加工を行う。
仕上げ加工が終了すると、カッタ131を停止し(ステップS14)、面取りモータ142を回転して(ステップS15)、エンドミル141により凸側レンズ面及び凹側レンズ面のエッジ部に対する面取りを行う(ステップS17)。その前に、ヤゲン加工の代わりに、レンズ周面に対する溝彫り加工が必要な場合には、面取り加工に先立って、面取りモータ142でエンドミル141を回して、レンズ端面の溝彫りを実行する(ステップS16)。面取りが全周にわたり完了したら、面取りモータ142及びエアーブローを停止し(ステップS18)、集塵機も停止して(ステップS19)、1個のレンズの加工を終了する。
上記の荒加工及び仕上げ加工は同じカッタで行う。即ち、平削りの場合は平削りカッタH1、小ヤゲンの場合は小ヤゲンカッタY1、大ヤゲンの場合は大ヤゲンカッタY2を選択し、同一カッタで荒加工から仕上げ加工まで行う。従って、工程移動を行わずにワンチャックで連続的な加工が可能であり、加工時間の短縮や装置の小型化を実現することができる。また、荒加工用と仕上げ加工用の工具を別に用意しなくてよいので、工具の配置スペースを小さくできる上、工具の管理も楽になる。
また、カッタ131でレンズ1を強制切削するので、切り込み量を適当に設定しながら切削を進めることができる。従って、仕上げ形状に至るまでの過程を、形状データに最適な加工条件で決めることができる。例えば、何回の回転で切削を完了するかとか、何秒で切削を完了するかとかの目標設定が任意にできるようになるので、加工時間の短縮と加工精度の向上を図ることができる。
また、面取り加工を溝彫り用の小径のエンドミル141の先端のR部で行うので、砥石に比べて、他の箇所との干渉が少なく、小さな面取りを正確に仕上げることができる。特に、1個のエンドミル141を溝彫り加工と面取り加工に兼用するので、工具数を減らすことができてコスト削減に寄与することができるし、溝彫り加工と面取り加工を、ワンチャックのままほぼ連続して行うことができるため、加工時間の短縮も図れる。また、工具の兼用により駆動系が1つで済むため、装置の小型化及びコストの削減を図ることができる。また、工具の数を増やさないため、工具の管理も楽になる。
また、本レンズ加工装置10の場合、加工手段としてのカッタ131やエンドミル141の上方に、レンズ測定を行う測定ヘッド16を配置し、必要なときにだけ、測定ヘッド16を前に倒して、レンズ保持ユニット12に保持されたレンズ1の測定が行えるようにしているので、測定ヘッド16を無理なレイアウトをせずに加工装置10上に搭載することができる。また、カッタ131やエンドミル141の上方の空きスペースを有効利用して測定ヘッド16を加工装置10上に搭載しているので、加工装置10の平面面積を拡大せずに済み、加工装置10の小型化を図ることができる。また、レンズ保持ユニット12にレンズを保持した状態で、測定から加工までの一連の工程を全てこなすことができるので、工程移動のためのレンズの持ち替えが全くなくなり、レンズの持ち替えによる加工精度の低下の心配もなくなって、レンズ形状を正確に仕上げることができる。
次に、加工精度の向上や加工効率等の向上を図るために、本レンズ加工装置10において実行される加工方法について説明する。
まず、このレンズ加工装置10では、カッタ131の回転速度、カッタ131による周面切削時のレンズ保持軸121の回転速度(送りスピード)、周面切削加工(特に荒加工)のためのレンズ1の周回数、溝彫り時や面取り時のエンドミル141の回転速度、そのときのレンズ保持軸121の回転速度(送りスピード)等を変更可能なパラメータとして持っており、レンズ1の材種(硝種=ここではプラスチックの種類)や度数(レンズのコバ厚)、仕上げ加工と荒加工の加工工程の別などに応じて、それらパラメータの設定を行うことにより、最適な加工条件を選べるようになっている。
例えば、レンズ1の材種(硝種)や度数(コバ厚)に応じてパラメータ(カッタ回転速度、レンズ保持軸回転速度、加工周回数)を変えることにより、レンズ1の材種や度数によらず、加工負荷を揃えることができるようになって、レンズサイズやレンズ形状(ヤゲン位置を含む)を正確に均一に仕上げることができるし、加工箇所をきれいに仕上げることができる。また、適正な加工条件の選択により、加工応力の低減を図ってレンズ軸のずれを少なくできるし、工具寿命を延ばしたり、加工時間を短縮したりすることもできる。
また、仕上げ加工と荒加工の加工工程の別に応じて、パラメータ(カッタ回転速度、レンズ保持軸回転速度)を変えることにより、同じカッタで加工しながらも、仕上げ面を良好にすることができるし、レンズサイズやレンズ形状(ヤゲン位置を含む)を正確に仕上げることができる。また、適正な加工条件の選択により、加工応力の低減を図ってレンズ軸のずれを少なくできるし、工具寿命を延ばすこともできる。
また、同じ加工工程において、カッタ131の回転速度やレンズの回転角速度を変えることで、切削速度の均一化を図ることができるので、加工面を均質な状態に仕上げることができる。
また、エンドミル141による溝彫り加工時あるいは面取り加工時にも、レンズ1の材種(硝種=ここではプラスチックの種類)に応じて、パラメータ(エンドミル回転速度、レンズ保持軸回転速度)を変えることにより、レンズ1の材種によらず、精度良く溝や面取り部を形成することができる。また、適正な加工条件の選択により、工具寿命を延ばしたり、加工時間を短縮したりすることもできる。
図20は、前述のパラメータの設定を行うためのテーブル表を示す。このテーブル表では、横軸HYと縦軸HTに設定してあるファクターを組み合わせることで、パラメータの値を自由に選択できるようになっている。
まず、横軸HYのファクターを説明する。
横軸HYには、加工スピードと、コバ厚の2つのファクターHY1、HY2が示されている。ここでは、レンズの硝種(材種)に応じて加工スピード〔加工の周回数(1〜10回程度)〕が複数区分に設定されている。プラスチックレンズの硝種としては、材質的に分類すると、ポリカーボネート系、アクリル系、ジエチレングリコールビスアリルカーボネート系、ポリウレタン系などがある。これらの硝種に応じたテーブル値が、テーブルの上段の加工スピードとして設定されている。この硝種による加工スピードの区分は、材質特性に依存し、例えばポリカーボネート系やアクリル系は材質が硬く、高い切削能力が必要とされるので、周回数が多く設定され、ジエチレングリコールビスアリルカーボネート系は最も加工性がよいので、他のものと比較すると、周回数が少なく設定されている。但
し、加工性は材質の硬さのみによらず、粘性等のファクターにも依存するので、材質が柔らかいからといって切削性がよいとは限らない。従って、そのトータル的な加工特性に応じて周回数が設定されている。
また、コバ厚(度数)については、厚いか薄いかの2つのテーブルがあり、コバ厚の選択ができるようになっている。レンズ厚が大きいほど切削量も多くなるので、高い切削能力を必要とする。例えば、レンズの度数が高い場合、つまり強度処方の場合(例えば3.00Dを超えた場合)には、切削能力を高めるように設定してある。また、レンズの度数が低い場合、つまり弱度処方の場合(例えば3.00D以下の場合)には、切削能力を低めるように設定してある。この例では、区分は2通りであるが、より精度を高めるにはこの区分を増やすこともできる。
次に、縦軸HTのファクターについて説明する。
縦軸HTには、周面荒加工HT1、周面仕上げ加工HT2、溝彫り加工HT3、面取り加工HT4の各加工モードにおけるレンズ軸の回転速度、工具回転速度が予め設定されており、そのテーブル値を使用できるようになっている。
ここで示す周面荒加工(いわゆる荒摺り工程)とは、未加工レンズに対してカッタでレンズ端面からレンズ中心方向へ加工軌跡がまずスパイラル状になるように切り込んでいき、更に最後にスパイラル軌跡を修正し、ある一定の均一に切削代を残した状態(ON SIZE+α)まで加工することを言う。通常、スパイラル軌跡を複数周回、そして最後の補正軌跡を1周回実施する。同様に周面仕上げ加工とは、周面荒加工工程で、ある一定の切削代が残された状態になったレンズを最終形状(ON SIZE)になるまで切削することを言う。通常、1周回数で達成するように設定されている。
溝彫り加工、面取り加工の場合は、加工工具としてエンドミルを使用する。溝彫りは、特別なナイロンや金属の細い線でリム(フレーム枠)の代わりにレンズを支持する縁無しフレーム用に用いるもので、一般的なレンズに対応するものではない。
また、これらの各加工モードの中には、送りスピードと工具回転速度の2つのファクターがテーブル表に備えられている。送りスピードは、レンズ保持軸の回転速度を示し、例えば外径50φ程度のレンズでは、荒加工の場合、1周10sec〜30sec程度の値を4つに区分して設定し、仕上げ加工の場合、荒加工より、より高速に30〜70sec程度で4区分程度に設定する。
溝彫り、面取り加工の場合には、前述の荒加工、仕上げ加工ほど送りスピードの多くの変化区分を設定しておらず、荒加工の場合の低速の値程度で1種類に設定して簡素化させている。無論、より精度を求めるためには変化区分を多く設定してよい。
工具回転速度は、荒加工、仕上げ加工では同一の切削ツールであるカッタの回転速度を示し、例えば2500〜10000rpm程度の値で、6ランク程度に区分して設定されている。本例では、荒加工と仕上げ加工とでは、荒加工の方がより高速に回転させるようになっていて、切削能力を高めている。
溝彫り、面取り加工の場合は、加工工具としてエンドミルを使用し、例えば20000〜30000rpmの高速で回転させる。本例では効率を高めるために両加工工程ともに共通で1区分に固定し設定しているが、複数区分設定してもよい。
なお、図20の表内における数値はテーブルのコード表の一部であり、送りスピードが「02」であれば、15回とか、工具回転速度が「05」であれば、9600rpmとか決められている。詳細は省略する。
以上で本発明の実施形態を説明したが、本発明は、上記実施形態のような切削式レンズ加工装置に限らず、上述した従来公報のような砥石式レンズ加工装置にも適用することができる。
本発明の実施形態のレンズ加工方法を実施するためのレンズ加工装置の全体構成を示す斜視図である。 同加工装置の全体構成を示す平面図である。 同加工装置の全体構成を示す正面図である。 同加工装置におけるレンズ保持ユニットの詳細構成を示す平面図である。 (a)は同加工装置における切り込み動作機構部の詳細構成を示す平面図、(b)は(a)図のVb−Vb矢視図である。 同加工装置における測定ユニットの側面図であり、(a)は測定ヘッドがアンロード位置にある状態を示し、(b)はロード位置にある状態を示す。 同加工装置における測定ユニットの平面図であり、(a)は測定ヘッドがアンロード位置にある状態を示し、(b)はロード位置にある状態を示す。 同加工装置における測定ユニットの正面図である。 (a)は前記測定ヘッドの原理構成図、(b)はスタイラスの先端部の詳細を示す側面図、(c)は同正面図である。 前記測定ヘッドのスタイラスをレンズにローディングした状態を示す平面図である。 前記測定ヘッドのスタイラスをレンズにローディングした状態を示す側面図である。 同加工装置におけるカッタ回転機構部のカッタの構成を示し、(a)は半断面図、(b)は側面図、(c)はヤゲンカッタの要部拡大図である。 前記カッタでレンズを加工している状態を示す側面図である。 前記ヤゲンカッタでレンズを加工している状態を示す平面図である。 前記加工装置におけるエンドミル回転機構部のエンドミルでレンズ端面に溝彫りを行っている状態及びレンズ端面のエッジ部に面取りを行っている状態を示す平面図である。 前記エンドミルで溝彫りまたは面取りを行っている状態を示す側面図である。 (a)は同エンドミルで溝彫り及び面取りを行う場合の説明に用いる拡大図、(b)はヤゲンのある場合の面取りの説明図である。 前記加工装置の電気的構成の概略を示すブロック図である。 同加工装置で行われる加工プロセスを示すフローチャートである。 同加工装置の加工条件のパラメータ設定表を示す図である。
符号の説明
1 レンズ
12 レンズ保持ユニット
131 カッタ(周面加工用の回転加工工具)
141 エンドミル(回転溝彫り工具、回転面取り工具)

Claims (2)

  1. 被加工レンズを所定の縁なし眼鏡フレームの周縁形状に切削加工する工程と、
    前記周縁形状に加工された被加工レンズの周面に回転溝彫り工具を突き当てながら、前記レンズをレンズ中心回りに周回させることにより、被加工レンズの周面に溝を形成する工程と、
    前記周縁形状に加工された被加工レンズの周面とレンズ面との交差エッジ部に回転面取り工具を押し当てながら、前記レンズをレンズ中心回りに周回させることにより、前記エッジ部に面取りを施す工程とを有し、
    前記回転溝彫り工具と回転面取り工具とは同一のボールエンドミルを使用して行い、かつ、前記ボールエンドミルの回転数は、前記周縁形状加工する時に使用された切削加工工具の回転数よりも、高速回転に制御して加工されることを特徴とするレンズ加工方法。
  2. 前記レンズの材種に応じて、前記ボールエンドミルの回転速度と、レンズの周回時の回転速度との少なくともいずれかを設定変更することを特徴とする請求項1記載のレンズ加工方法。
JP2006208630A 1999-07-19 2006-07-31 レンズ加工方法 Pending JP2006297596A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208630A JP2006297596A (ja) 1999-07-19 2006-07-31 レンズ加工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20479699 1999-07-19
JP2006208630A JP2006297596A (ja) 1999-07-19 2006-07-31 レンズ加工方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22459599A Division JP3969905B2 (ja) 1999-07-19 1999-08-06 レンズ加工方法

Publications (1)

Publication Number Publication Date
JP2006297596A true JP2006297596A (ja) 2006-11-02

Family

ID=37466279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208630A Pending JP2006297596A (ja) 1999-07-19 2006-07-31 レンズ加工方法

Country Status (1)

Country Link
JP (1) JP2006297596A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419752U (ja) * 1990-06-04 1992-02-19
JPH0639697A (ja) * 1992-04-14 1994-02-15 Wernicke & Co Gmbh 眼鏡レンズ縁部加工機
JPH06310153A (ja) * 1993-04-19 1994-11-04 Sanyo Electric Co Ltd 燃料電池用セパレータの加工方法
JPH08323603A (ja) * 1995-05-31 1996-12-10 Osaka Kiko Co Ltd レンズ加工用取付具
JPH106118A (ja) * 1996-06-25 1998-01-13 Japan Atom Energy Res Inst 両面加工装置
JPH11156622A (ja) * 1997-11-25 1999-06-15 Hitachi Tool Eng Ltd 球状刃エンドミル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419752U (ja) * 1990-06-04 1992-02-19
JPH0639697A (ja) * 1992-04-14 1994-02-15 Wernicke & Co Gmbh 眼鏡レンズ縁部加工機
JPH06310153A (ja) * 1993-04-19 1994-11-04 Sanyo Electric Co Ltd 燃料電池用セパレータの加工方法
JPH08323603A (ja) * 1995-05-31 1996-12-10 Osaka Kiko Co Ltd レンズ加工用取付具
JPH106118A (ja) * 1996-06-25 1998-01-13 Japan Atom Energy Res Inst 両面加工装置
JPH11156622A (ja) * 1997-11-25 1999-06-15 Hitachi Tool Eng Ltd 球状刃エンドミル

Similar Documents

Publication Publication Date Title
EP1238733B1 (en) Lens processing device and lens processing method
EP1310327B1 (en) Eyeglass lens processing apparatus
US6991525B2 (en) Method and device for the surface machining of workpieces composed of non-brittle materials in optical lens manufacturing and tool for this purpose
US9776293B2 (en) Eyeglass lens processing apparatus
US20030087583A1 (en) Eyeglass lens processing apparatus
JP2006312233A (ja) 光学的なワークピース、特にプラスチックの眼鏡レンズを加工する装置および方法
JPH04507069A (ja) 光学レンズの縁加工方法および装置
JP2004142057A (ja) ドリル研削装置
JP3895075B2 (ja) レンズホルダ
JP3740326B2 (ja) 眼鏡レンズ加工方法及び眼鏡レンズ並びに眼鏡レンズ加工装置
JP2001088000A (ja) レンズ加工方法
JP3730812B2 (ja) レンズ加工方法
JP3785292B2 (ja) レンズ測定方法、レンズ測定装置及びレンズ加工方法
JP3969905B2 (ja) レンズ加工方法
JP4023956B2 (ja) レンズの面取り方法及びレンズ加工装置
JP2006297596A (ja) レンズ加工方法
JP4151774B2 (ja) レンズ加工装置、レンズ加工方法及びレンズ測定方法
JP3766237B2 (ja) レンズ加工装置
JPH09309051A (ja) レンズ加工装置およびレンズ加工方法
JP2006099137A (ja) レンズ加工装置
JP2007038407A (ja) 眼鏡レンズ加工装置
CN114310536B (zh) 一种拼接浴缸接缝打磨方法及打磨装置
AU2004210580B2 (en) Lens processing device, lens processing method, and lens measuring method
JP2001047343A (ja) レンズ加工装置
JP2000153430A (ja) コニカルカッタを用いた旋盤

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A131 Notification of reasons for refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629