JP2006294783A - Electric component cooling device - Google Patents

Electric component cooling device Download PDF

Info

Publication number
JP2006294783A
JP2006294783A JP2005111848A JP2005111848A JP2006294783A JP 2006294783 A JP2006294783 A JP 2006294783A JP 2005111848 A JP2005111848 A JP 2005111848A JP 2005111848 A JP2005111848 A JP 2005111848A JP 2006294783 A JP2006294783 A JP 2006294783A
Authority
JP
Japan
Prior art keywords
electrical component
circuit board
cooling device
thermoelectric conversion
component cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005111848A
Other languages
Japanese (ja)
Inventor
Takushi Kita
拓志 木太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005111848A priority Critical patent/JP2006294783A/en
Publication of JP2006294783A publication Critical patent/JP2006294783A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an electric component cooling device with high cooling efficiency for heat generating electric components, which can also thin a circuit substrate along the thickness direction of the circuit substrate. <P>SOLUTION: A contiguous arrangement of a thin wall tabular plate 42 of a p-type thermoelectric material along parallel one way to the surface of a circuit board 16, and a thin wall tabular plate 44 of an n-type thermoelectric material, are carried out, and an endothermic part 46 of a joined part of the plates 42 and 44 is made to contact from a parallel direction to the surface of the circuit board 16 further to a periphery of electric parts 18 generating heat. By considering it as such a structure, a temperature gradient arises in the parallel direction to the surface of the circuit board 16. Consequently, an increase in size along a thickness direction of the circuit board 16 of a thermoelectric conversion member 40 can be controlled very effectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、回路基板上に設けられて動作中に発熱する電気部品を冷却するための電気部品冷却装置に関する。   The present invention relates to an electrical component cooling device for cooling electrical components that are provided on a circuit board and generate heat during operation.

パーソナルコンピュータ等に搭載される回路基板上に設けられた電気部品の中でも、電界効果トランジスタ(MOSFET)やCPU等の半導体素子は動作中に発熱する。このような発熱が過剰になると、半導体素子が誤作動を起こしたり、また、破損する可能性があることや、このような半導体素子の周囲の他の電気部品に悪影響を及ぼす可能性があることから冷却装置を設けて発熱した半導体素子を冷却している。   Among electrical components provided on a circuit board mounted on a personal computer or the like, semiconductor elements such as field effect transistors (MOSFETs) and CPUs generate heat during operation. If such heat generation is excessive, the semiconductor element may malfunction, may be damaged, and may adversely affect other electrical components around the semiconductor element. A cooling device is provided to cool the semiconductor element that has generated heat.

この種の冷却装置の中でも一般的なのは、モータの駆動力でファンを回転させ、回路基板を収容する筐体内に外気を送り込み、この外気により半導体素子を冷却する強制空冷式の冷却装置である(一例として下記特許文献1を参照)。   A general type of this type of cooling device is a forced air cooling type cooling device that rotates a fan with a driving force of a motor, sends outside air into a housing that houses a circuit board, and cools semiconductor elements by this outside air ( As an example, see Patent Document 1 below).

しかしながら、このような空冷式の冷却装置の場合、モータの動作音やファンの風切り音が生じることから静粛性能が低いと言う問題がある。また、モータ自体の薄型化が難しく、このような強制空冷式の冷却装置を適用することで、装置全体の厚さが増すと言う問題がある。   However, in the case of such an air-cooling type cooling device, there is a problem that the quiet performance is low because the operation noise of the motor and the wind noise of the fan are generated. Further, it is difficult to reduce the thickness of the motor itself, and there is a problem that the thickness of the entire apparatus increases by applying such a forced air cooling type cooling device.

一方、下記特許文献2には、所謂「ゼーベック効果」や「ペルチェ効果」の熱電効果を電子部品の冷却に用いた構成が示されている。なお、ゼーベック効果やペルチェ効果に関しては周知の技術であるため、その詳細に関する説明は省略する。   On the other hand, the following Patent Document 2 shows a configuration in which a so-called “Seebeck effect” or “Peltier effect” thermoelectric effect is used for cooling an electronic component. Since the Seebeck effect and the Peltier effect are well-known techniques, a detailed description thereof is omitted.

特許文献2に開示された構成では、回路基板上に設けられた発熱する電子部品の上にゼーベック効果に基づく熱電機能部品が取り付けられている。また、他の電子部品にはペルチェ効果に基づく熱電機能部品が取り付けられている。   In the configuration disclosed in Patent Document 2, a thermoelectric functional component based on the Seebeck effect is attached on an electronic component that generates heat provided on a circuit board. In addition, thermoelectric functional parts based on the Peltier effect are attached to other electronic parts.

ゼーベック効果に基づく熱電機能部品とペルチェ効果に基づく熱電機能部品とは導線によって電気的に接続されている。ゼーベック効果に基づく熱電機能部品が取り付けられた電子部品が発熱すると、熱電機能部品の電子部品に対向する側を高温側、その反対側を低温側とする温度勾配が生じ、ゼーベック効果により熱電機能部品に直流電流が生じると共に、高温側から低温側へ熱が移動する。   The thermoelectric functional component based on the Seebeck effect and the thermoelectric functional component based on the Peltier effect are electrically connected by a conductive wire. When an electronic component to which a thermoelectric functional component based on the Seebeck effect is attached generates heat, a temperature gradient is generated with the thermoelectric functional component facing the electronic component on the high temperature side and the opposite side on the low temperature side. As a direct current is generated, heat moves from the high temperature side to the low temperature side.

ゼーベック効果で生じた直流電流がペルチェ効果に基づく熱電機能部品に流れると、この熱電機能部品はペルチェ効果により電子部品側で吸熱現象が生じ、電子部品とは反対側で放熱現象が生じる。   When a direct current generated by the Seebeck effect flows to a thermoelectric functional component based on the Peltier effect, the thermoelectric functional component generates a heat absorption phenomenon on the electronic component side due to the Peltier effect, and a heat dissipation phenomenon occurs on the side opposite to the electronic component.

このような、ゼーベック効果やペルチェ効果による吸熱、放熱現象によって電子部品が冷却される。
特許第2710750号公報 実公平7-15140号公報
Electronic components are cooled by such heat absorption and heat dissipation due to the Seebeck effect and the Peltier effect.
Japanese Patent No. 2710750 No. 7-15140

ところで、特許文献2に開示された構造では、ゼーベック効果に基づく熱電機能部品が電子部品上に取り付けられている。このため、回路基板が収容される筐体を薄型化しようとすると、熱電機能部品を薄型化しなくてはならない。   Incidentally, in the structure disclosed in Patent Document 2, a thermoelectric functional component based on the Seebeck effect is mounted on the electronic component. For this reason, if it is going to thin the housing | casing in which a circuit board is accommodated, the thermoelectric functional component must be thinned.

しかしながら、この熱電機能部品では電子部品が発熱した際に熱電機能部品の電子部品の側とその反対側との間で温度勾配が生じるため、熱電機能部品を薄型化することで本来は低温側となる電子部品とは反対側も電子部品に接近してしまい、十分な温度勾配が生じ難くなる。このため、特許文献2に開示された構造では熱電機能部品の電子部品とは反対側に放熱用のフィンを設けているが、このようなフィンを設けること自体が薄型化を妨げる要因の1つになる。   However, in this thermoelectric functional component, when the electronic component generates heat, a temperature gradient is generated between the electronic component side of the thermoelectric functional component and the opposite side. Therefore, by reducing the thickness of the thermoelectric functional component, The side opposite to the electronic component is also close to the electronic component, and a sufficient temperature gradient is unlikely to occur. For this reason, in the structure disclosed in Patent Document 2, a heat-dissipating fin is provided on the opposite side of the thermoelectric functional component from the electronic component. However, the provision of such a fin itself is one of the factors that hinder thinning. become.

このように、特許文献2に開示された構造では、基板の厚さ方向に沿った装置全体の薄型化が極めて難しいと言う問題がある。   Thus, the structure disclosed in Patent Document 2 has a problem that it is very difficult to reduce the thickness of the entire apparatus along the thickness direction of the substrate.

本発明は、上記事実を考慮して、回路基板の厚さ方向に沿った薄型化を実現でき、しかも、発熱する電気部品の冷却効果が高い電気部品冷却装置を得ることが目的である。   An object of the present invention is to obtain an electrical component cooling device that can realize a reduction in thickness along the thickness direction of a circuit board in consideration of the above fact, and that has a high cooling effect on electrical components that generate heat.

請求項1に記載の本発明に係る電気部品冷却装置は、回路基板に設けられた発熱する電気部品を冷却するための電気部品冷却装置であって、前記電気部品に対向する吸熱部でP型熱電材料とN型熱電材料とが電気的且つ機械的に接合されて、前記電気部品が発熱した際に、前記吸熱部の側と前記回路基板の表面の向きに対して交差した方向に沿って前記吸熱部とは反対側との間で生じる温度勾配で電流が流れる熱電変換部材を備える、ことを特徴としている。   An electrical component cooling device according to the present invention as set forth in claim 1 is an electrical component cooling device for cooling an electrical component that generates heat provided on a circuit board, and has a P-type at a heat absorption part facing the electrical component. When the thermoelectric material and the N-type thermoelectric material are electrically and mechanically joined and the electrical component generates heat, along the direction intersecting the direction of the heat absorbing portion and the surface of the circuit board. It is characterized by comprising a thermoelectric conversion member through which a current flows with a temperature gradient generated between the heat absorption part and the opposite side.

請求項1に記載の本発明に係る電気部品冷却装置では、回路基板に設けられた電気部品が発熱すると、電気部品に対向する熱電変換部材の吸熱部を高温側、回路基板の表面の向きに対して交差した方向に沿った熱電変換部材の吸熱部とは反対側を低温側として温度勾配が生じる。   In the electrical component cooling device according to the first aspect of the present invention, when the electrical component provided on the circuit board generates heat, the heat absorption part of the thermoelectric conversion member facing the electrical component is placed on the high temperature side, the direction of the surface of the circuit board. On the other hand, a temperature gradient occurs with the opposite side of the thermoelectric conversion member along the intersecting direction as the low temperature side.

熱電変換部材は、P型熱電材料とN型熱電材料とが上記の吸熱部でP型熱電材料とN型熱電材料とが電気的且つ機械的に接合されることで形成される。   The thermoelectric conversion member is formed by electrically and mechanically joining the P-type thermoelectric material and the N-type thermoelectric material at the heat absorption part.

このため、上記のような温度勾配が生じるとゼーベック効果によって吸熱部にて吸収された熱エネルギーの一部が電気エネルギーに変換されてN型熱電材料から吸熱部を介してP型熱電材料へ電流が流れると共に、上記の低温側(すなわち、回路基板の表面の向きに対して交差した方向に沿った熱電変換部材の吸熱部とは反対側)へ熱が移動する。   For this reason, when the temperature gradient as described above occurs, a part of the thermal energy absorbed by the endothermic part is converted into electric energy by the Seebeck effect, and current flows from the N-type thermoelectric material to the P-type thermoelectric material via the endothermic part. Flows, the heat moves to the low temperature side (that is, the side opposite to the heat absorption part of the thermoelectric conversion member along the direction intersecting the direction of the surface of the circuit board).

このように電気部品で生じた熱を吸収することで、電気部品の過剰な発熱が防止又は効果的に軽減され、電気部品の故障や、他の電気部品に対する熱の影響を防止又は効果的に軽減できる。   By absorbing the heat generated in the electrical component in this way, excessive heat generation of the electrical component is prevented or effectively reduced, and the failure of the electrical component and the influence of heat on other electrical components are prevented or effectively prevented. Can be reduced.

ここで、本発明に係る電気部品冷却装置における熱電変換部材は、上記のように電気部品が発熱すると、吸熱部と、回路基板の表面の向きに対して交差した方向に沿って吸熱部とは反対側との間で温度勾配が生じる。したがって、回路基板の厚さ方向に温度勾配を生じさせなくてもよいため、回路基板の厚さ方向への熱電変換部材の寸法の増加を極めて効果的に抑制でき、回路基板を含めて構成される装置を小型化(特に、回路基板の厚さ方向に沿った薄型化)できる。   Here, in the thermoelectric conversion member in the electric component cooling device according to the present invention, when the electric component generates heat as described above, the heat absorption portion and the heat absorption portion along the direction intersecting the direction of the surface of the circuit board are A temperature gradient occurs between the opposite side. Accordingly, since it is not necessary to generate a temperature gradient in the thickness direction of the circuit board, an increase in the dimension of the thermoelectric conversion member in the thickness direction of the circuit board can be extremely effectively suppressed, and the circuit board is configured to be included. The device can be reduced in size (in particular, reduced in thickness along the thickness direction of the circuit board).

請求項2に記載の本発明に係る電気部品冷却装置は、請求項1に記載の本発明において、前記回路基板の表面の向きに対して交差する方向に沿って前記電気部品と前記吸熱部とを対向させた、ことを特徴としている。   According to a second aspect of the present invention, there is provided the electric component cooling device according to the first aspect of the present invention, wherein the electric component and the heat absorbing portion are arranged along a direction intersecting the direction of the surface of the circuit board. It is characterized by facing each other.

請求項2に記載の本発明に係る電気部品冷却装置では、熱電変換部材の吸熱部が、回路基板の表面の向きに対して交差する方向に沿って電気部品と対向している。すなわち、本発明に係る電気部品冷却装置では、熱電変換部材と電気部品とが回路基板の厚さ方向に対向しない。このため、回路基板を含めて構成される装置を更に小型化(特に、回路基板の厚さ方向に沿った薄型化)できる。   In the electrical component cooling device according to the second aspect of the present invention, the heat absorption part of the thermoelectric conversion member faces the electrical component along a direction intersecting the direction of the surface of the circuit board. That is, in the electrical component cooling device according to the present invention, the thermoelectric conversion member and the electrical component do not face each other in the thickness direction of the circuit board. For this reason, the apparatus comprised including a circuit board can be further reduced in size (especially thinning along the thickness direction of a circuit board).

請求項3に記載の本発明に係る電気部品冷却装置は、請求項1又は請求項2に記載の本発明において、前記P型熱電材料と前記N型熱電材料とを、前記回路基板の表面の向きに対して交差した方向に沿って空隙を介して隣接配置した、ことを特徴としている。   According to a third aspect of the present invention, there is provided the electrical component cooling apparatus according to the first or second aspect, wherein the P-type thermoelectric material and the N-type thermoelectric material are disposed on the surface of the circuit board. It is characterized by being arranged adjacent to each other through a gap along a direction intersecting the direction.

請求項3に記載の本発明に係る電気部品冷却装置における熱電変換部材は、P型熱電材料とN型熱電材料とが回路基板の表面の向きに対して交差する方向に沿って空隙を介して互いに隣接配置されると共に、吸熱部でP型熱電材料とN型熱電材料とが電気的且つ機械的に接合されることで形成される。   The thermoelectric conversion member in the electrical component cooling device according to the third aspect of the present invention includes a P-type thermoelectric material and an N-type thermoelectric material via a gap along a direction intersecting the direction of the surface of the circuit board. The P-type thermoelectric material and the N-type thermoelectric material are electrically and mechanically joined to each other at the heat absorption portion.

すなわち、本発明に係る電気部品冷却装置では、熱電変換部材を構成するP型熱電材料とN型熱電材料とが回路基板の表面の向きに隣り合うことがない。このため、回路基板の厚さ方向への熱電変換部材の寸法の増加を更に抑制でき、回路基板を含めて構成される装置を小型化(特に、回路基板の厚さ方向に沿った薄型化)できる。   That is, in the electrical component cooling device according to the present invention, the P-type thermoelectric material and the N-type thermoelectric material constituting the thermoelectric conversion member are not adjacent to each other in the direction of the surface of the circuit board. For this reason, the increase of the dimension of the thermoelectric conversion member to the thickness direction of a circuit board can further be suppressed, and the apparatus comprised including a circuit board is reduced in size (especially thickness reduction along the thickness direction of a circuit board). it can.

請求項4に記載の本発明に係る電気部品冷却装置は、請求項1乃至請求項3の何れか1項に記載の本発明において、各々の前記吸熱部が互いに異なる方向から前記電気部品に対向した複数の前記熱電変換部材を備える、ことを特徴としている。   The electrical component cooling device according to a fourth aspect of the present invention is the electrical component cooling device according to the first aspect of the present invention, wherein each of the heat absorbing portions faces the electrical component from different directions. The thermoelectric conversion member is provided.

請求項4に記載の本発明に係る電気部品冷却装置では、複数の熱電変換部材の各吸熱部が、回路基板の表面の向きに対して交差すると共に互いに異なる方向から電気部品に対向する。   In the electric component cooling device according to the fourth aspect of the present invention, each heat absorbing portion of the plurality of thermoelectric conversion members intersects the direction of the surface of the circuit board and faces the electric component from different directions.

このように、電気部品の周囲に設けられた複数の熱電変換部材の各吸熱部が電気部品にて生じた熱を吸収することで、電気部品の過剰な発熱がより一層効果的に防止又は軽減され、電気部品の故障や、他の電気部品に対する熱の影響を防止又は効果的に軽減できる。   In this way, each heat absorption part of the plurality of thermoelectric conversion members provided around the electrical component absorbs heat generated in the electrical component, thereby preventing or reducing excessive heat generation of the electrical component more effectively. Thus, it is possible to prevent or effectively reduce the failure of the electrical components and the influence of heat on other electrical components.

請求項5に記載の本発明に係る電気部品冷却装置は、請求項1乃至請求項4の何れか1項に記載の本発明において、前記熱電変換部材を前記回路基板に対して電気的に直接又は間接的に接続し、前記熱電変換部材にて生じた電流を前記回路基板に流す、ことを特徴としている。   An electrical component cooling device according to a fifth aspect of the present invention is the electrical component cooling device according to any one of the first to fourth aspects, wherein the thermoelectric conversion member is directly electrically connected to the circuit board. Or it is connected indirectly and the electric current which arose in the said thermoelectric conversion member is sent through the said circuit board, It is characterized by the above-mentioned.

請求項5に記載の本発明に係る電気部品冷却装置では、ゼーベック効果により熱電変換部材において熱エネルギーの一部が電気エネルギーに変換されることで生じた電流が回路基板に流される。   In the electrical component cooling apparatus according to the fifth aspect of the present invention, a current generated by converting a part of thermal energy into electrical energy in the thermoelectric conversion member by the Seebeck effect is caused to flow through the circuit board.

これにより、ゼーベック効果により熱電変換部材で生じた電気エネルギーが回路基板の負荷に供される。このため、負荷に供されるバッテリー等の電気エネルギーの消耗を軽減できる。   Thereby, the electrical energy generated in the thermoelectric conversion member by the Seebeck effect is provided to the load of the circuit board. For this reason, it is possible to reduce the consumption of electric energy such as a battery supplied to the load.

請求項6に記載の本発明に係る電気部品冷却装置は、請求項1乃至請求項5の何れか1項に記載の本発明において、前記P型熱電材料及び前記N型熱電材料の各々を、厚さ方向が前記回路基板の厚さ方向に沿った薄肉板状又はシート状に形成した、ことを特徴としている。   According to a sixth aspect of the present invention, there is provided the electrical component cooling apparatus according to the first aspect of the present invention, wherein the P-type thermoelectric material and the N-type thermoelectric material are It is characterized in that the thickness direction is formed into a thin plate shape or a sheet shape along the thickness direction of the circuit board.

請求項6に記載の本発明に係る電気部品冷却装置によれば、P型熱電材料及びN型熱電材料の各々は、厚さ方向が回路基板の厚さ方向に沿った板状又は薄肉シート状に形成される。したがって、回路基板の厚さ方向への熱電変換部材の寸法の増加をより一層効果的に抑制でき、回路基板を含めて構成される装置を小型化(特に、回路基板の厚さ方向に沿った薄型化)できる。   According to the electrical component cooling device of the present invention described in claim 6, each of the P-type thermoelectric material and the N-type thermoelectric material has a plate shape or a thin sheet shape in which the thickness direction is along the thickness direction of the circuit board. Formed. Therefore, the increase in the dimension of the thermoelectric conversion member in the thickness direction of the circuit board can be further effectively suppressed, and the device configured including the circuit board can be downsized (particularly along the thickness direction of the circuit board). (Thinner).

請求項7に記載の本発明に係る電気部品冷却装置は、請求項1乃至請求項6の何れか1項に記載の本発明において、厚さ方向が前記回路基板の厚さ方向に沿った薄肉板状又はシート状に形成され、厚さ方向一方の面で前記熱電変換部材を支持する支持体を備える、ことを特徴としている。   According to a seventh aspect of the present invention, there is provided the electrical component cooling device according to the first aspect of the present invention, wherein the thickness direction is a thin wall along the thickness direction of the circuit board. It is formed in a plate shape or a sheet shape, and includes a support body that supports the thermoelectric conversion member on one surface in the thickness direction.

請求項7に記載の本発明に係る電気部品冷却装置によれば、回路基板の厚さ方向に沿って厚さ方向とされた薄肉板状又はシート状の支持体の厚さ方向一方の面に熱電変換部材が支持される。これにより、回路基板のプリント配線等にP型熱電材料やN型熱電材料が接触することを防止できる。   According to the electrical component cooling device of the present invention as set forth in claim 7, on the one surface in the thickness direction of the thin plate-like or sheet-like support body that is formed in the thickness direction along the thickness direction of the circuit board. A thermoelectric conversion member is supported. Thereby, it can prevent that a P-type thermoelectric material and an N-type thermoelectric material contact a printed wiring etc. of a circuit board.

また、このような支持体に接着剤を塗布しておくことで、回路基板を収容したケース等に支持体を貼着することで、容易に熱電変換部材を取り付けることができる。   In addition, by applying an adhesive to such a support, the thermoelectric conversion member can be easily attached by sticking the support to a case or the like containing a circuit board.

請求項8に記載の本発明に係る電気部品冷却装置は、請求項1乃至請求項7の何れか1項に記載の本発明において、前記P型熱電材料及び前記N型熱電材料の各々の比抵抗及び熱伝導率に基づいて前記P型熱電材料及び前記N型熱電材料の各々の形状を設定する、ことを特徴としている。   The electrical component cooling device according to the present invention described in claim 8 is the ratio of each of the P-type thermoelectric material and the N-type thermoelectric material according to any one of claims 1 to 7. Each of the P-type thermoelectric material and the N-type thermoelectric material is set based on resistance and thermal conductivity.

請求項8に記載の本発明に係る電気部品冷却装置によれば、熱電変換部材を構成するP型熱電材料及びN型熱電材料の各々の形状は、P型熱電材料及びN型熱電材料の各々の比抵抗及び熱伝導率に基づいて設定される。これにより、熱電変換部材における熱電効果が十分に発揮され、電気部品を効果的に冷却できる。   According to the electrical component cooling device of the present invention described in claim 8, the shapes of the P-type thermoelectric material and the N-type thermoelectric material constituting the thermoelectric conversion member are the P-type thermoelectric material and the N-type thermoelectric material, respectively. It is set based on the specific resistance and thermal conductivity. Thereby, the thermoelectric effect in a thermoelectric conversion member is fully exhibited, and an electrical component can be cooled effectively.

以上説明したように、本発明に係る電気部品冷却装置では、回路基板の厚さ方向に沿った寸法を増大させることなく効果的に電気部品を冷却できる。   As described above, in the electrical component cooling device according to the present invention, the electrical component can be effectively cooled without increasing the dimension along the thickness direction of the circuit board.

<本実施の形態の構成>
図4には本発明の一実施の形態に係る電気部品冷却装置10を適用した電気回路ユニット12の構造の概略が断面図によって示されている。この図に示されるように、電気回路ユニット12はケース14を備えている。
<Configuration of the present embodiment>
FIG. 4 is a sectional view schematically showing the structure of the electric circuit unit 12 to which the electric component cooling apparatus 10 according to the embodiment of the present invention is applied. As shown in this figure, the electric circuit unit 12 includes a case 14.

ケース14は、例えば、合成樹脂材等の絶縁性を有する材料によって比較的厚さ寸法が短い箱状に形成されており、その内側には回路基板16が収容されている。回路基板16は合成樹脂材等の絶縁性の材料によって平板状に形成されている。   The case 14 is formed in a box shape having a relatively short thickness with an insulating material such as a synthetic resin material, for example, and a circuit board 16 is accommodated inside the case 14. The circuit board 16 is formed in a flat plate shape by an insulating material such as a synthetic resin material.

回路基板16上には図示しないプリント配線が施されていると共に、動作状態で発熱する電界効果トランジスタ(MOSFET)等の電気部品18が設けられている。また、回路基板16の厚さ方向一方の側には回路基板20が設けられている。   On the circuit board 16, printed wiring (not shown) is provided, and an electrical component 18 such as a field effect transistor (MOSFET) that generates heat in an operating state is provided. A circuit board 20 is provided on one side in the thickness direction of the circuit board 16.

回路基板20は回路基板16と同様には合成樹脂材等の絶縁性の材料によって平板状に形成されており、ケース14の内部で回路基板16に対して平行に配置されている。回路基板20上には図示しないプリント配線が施されている。また、回路基板20上には動作状態で発熱する電界効果トランジスタ(MOSFET)等の複数の電気部品22、24、26が互いに隣接した状態で設けられている。   Similarly to the circuit board 16, the circuit board 20 is formed in a flat plate shape by an insulating material such as a synthetic resin material, and is arranged in parallel to the circuit board 16 inside the case 14. Printed wiring (not shown) is provided on the circuit board 20. On the circuit board 20, a plurality of electric components 22, 24, and 26 such as field effect transistors (MOSFETs) that generate heat in an operating state are provided adjacent to each other.

これらの回路基板16、20に構成される電気回路は、図5の回路図に示される負荷28を構成しており、これらの回路基板16、20に構成された電気回路はバッテリー30に接続されている。   The electric circuits configured on these circuit boards 16 and 20 constitute the load 28 shown in the circuit diagram of FIG. 5, and the electric circuits configured on these circuit boards 16 and 20 are connected to the battery 30. ing.

一方、図4に示されるように、回路基板16の電気部品18が設けられている側には、本実施の形態に係る電気部品冷却装置10を構成する複数の熱電変換部材40が設けられている。図1及び図3に示されるように、各々の熱電変換部材40は一対のプレート42、44を備えている。プレート42はP型の半導体や金属により構成された熱電材料によって回路基板16に対して略平行な薄肉板状に形成されている。   On the other hand, as shown in FIG. 4, a plurality of thermoelectric conversion members 40 constituting the electrical component cooling device 10 according to the present embodiment are provided on the side of the circuit board 16 where the electrical components 18 are provided. Yes. As shown in FIGS. 1 and 3, each thermoelectric conversion member 40 includes a pair of plates 42 and 44. The plate 42 is formed in a thin plate shape substantially parallel to the circuit board 16 by a thermoelectric material made of a P-type semiconductor or metal.

これに対して、プレート44はN型の半導体や金属により構成された熱電材料によって回路基板16に対して略平行な薄肉板状に形成されている。これらのプレート42、44は各々の厚さ方向側の面に対して平行な方向に隣接配置され、ケース14の裏面に一体的に固着されている。   On the other hand, the plate 44 is formed in a thin plate shape substantially parallel to the circuit board 16 by a thermoelectric material made of an N-type semiconductor or metal. These plates 42 and 44 are arranged adjacent to each other in the direction parallel to the thickness direction surface, and are integrally fixed to the back surface of the case 14.

このようなプレート42、44で構成された熱電変換部材40は全体的に略矩形の薄肉平板状に構成されている。さらに、上記の電気部品18の平面視での形状又は電気部品18の設置範囲の形状を略矩形とみなした場合に、本実施の形態では、これらのプレート42とプレート44とで対を成す熱電変換部材40が、電気部品18又は電気部品18の設置範囲の角部で回路基板16の厚さ方向(すなわち、回路基板16の表面の向き)に対して直交する方向に沿って隣接して設けられている。   The thermoelectric conversion member 40 constituted by such plates 42 and 44 is generally formed in a substantially rectangular thin plate shape. Further, in the present embodiment, when the shape of the electric component 18 in plan view or the shape of the installation range of the electric component 18 is regarded as a substantially rectangular shape, in this embodiment, the thermoelectric power that forms a pair with the plate 42 and the plate 44 is used. The conversion member 40 is provided adjacently along the direction perpendicular to the thickness direction of the circuit board 16 (that is, the direction of the surface of the circuit board 16) at the corner of the electrical component 18 or the installation range of the electrical component 18. It has been.

熱電変換部材40のうち、電気部品18又は電気部品18の設置範囲の角部に対向した部分は吸熱部46とされており、電気部品18の外周部に接触している。吸熱部46及び吸熱部46の近傍ではプレート42とプレート44とが互いに接合されており電気的に導通している。   A portion of the thermoelectric conversion member 40 that faces the corner of the electric component 18 or the installation range of the electric component 18 is a heat absorbing portion 46, and is in contact with the outer peripheral portion of the electric component 18. In the vicinity of the heat absorbing portion 46 and the heat absorbing portion 46, the plate 42 and the plate 44 are joined to each other and are electrically connected.

さらに、熱電変換部材40には空隙としてのスリット48が形成されている。スリット48は、吸熱部46を介して電気部品18又は電気部品18の設置範囲の角部とは反対側に形成されており、吸熱部46及びその近傍でのプレート42とプレート44との接合部分を除いてスリット48がプレート42とプレート44とを隔てている。   Further, the thermoelectric conversion member 40 is formed with a slit 48 as a gap. The slit 48 is formed on the side opposite to the corner of the electric component 18 or the installation range of the electric component 18 via the heat absorbing portion 46, and the joining portion of the plate 42 and the plate 44 in the vicinity of the heat absorbing portion 46. A slit 48 separates the plate 42 and the plate 44 except for.

また、以上の構成の熱電変換部材40のうち、各々の厚さ方向に対して直交する方向に沿って互いに隣接した熱電変換部材40の間にはスリット50が形成されており、隣接する熱電変換部材40の間が基本的に絶縁状態とされている。   In addition, among the thermoelectric conversion members 40 having the above-described configuration, slits 50 are formed between the thermoelectric conversion members 40 adjacent to each other along the direction orthogonal to each thickness direction, and adjacent thermoelectric conversions are performed. The members 40 are basically insulated.

また、図2に示されるように、回路基板20の電気部品22、24、26が設けられている側にも本実施の形態に係る電気部品冷却装置10を構成する複数の熱電変換部材40が設けられている。   Further, as shown in FIG. 2, a plurality of thermoelectric conversion members 40 constituting the electrical component cooling device 10 according to the present embodiment are also provided on the side of the circuit board 20 where the electrical components 22, 24, 26 are provided. Is provided.

図2に示されるように、各々の熱電変換部材40は基本的に先に説明した電気部品18の周囲に設けられた熱電変換部材40と同じ構成で、電気部品22、24、26の設置範囲の形状を略矩形とみなした場合に、電気部品22、24、26の設置範囲の角部で回路基板20の厚さ方向(すなわち、回路基板20の表面の向き)に対して直交する方向に沿って隣接して設けられ、吸熱部46が電気部品22、24、26の何れかの外周部に接触している。   As shown in FIG. 2, each thermoelectric conversion member 40 has basically the same configuration as the thermoelectric conversion member 40 provided around the electric component 18 described above, and the installation range of the electric components 22, 24, 26. When the shape of the circuit board 20 is regarded as a substantially rectangular shape, in the direction perpendicular to the thickness direction of the circuit board 20 (that is, the direction of the surface of the circuit board 20) at the corners of the installation range of the electrical components 22, 24, 26 The heat absorption part 46 is in contact with the outer peripheral part of any one of the electrical components 22, 24, and 26.

さらに、電気部品22、24、26の設置範囲の周囲に設けられた熱電変換部材40と回路基板20との間には、支持体としてのベースプレート56が設けられている。ベースプレート56は合成樹脂材等の絶縁性を有する材料により回路基板20に対して平行な薄肉板状に形成されており、ケース14の所定部位や、回路基板16又は回路基板20の所定部位に支持されている。ベースプレート56の表面に電気部品22、24、26の設置範囲の周囲に設けられた熱電変換部材40が貼着されている。   Further, a base plate 56 as a support is provided between the thermoelectric conversion member 40 provided around the installation range of the electrical components 22, 24 and 26 and the circuit board 20. The base plate 56 is formed in a thin plate shape parallel to the circuit board 20 by an insulating material such as a synthetic resin material, and is supported on a predetermined part of the case 14 or a predetermined part of the circuit board 16 or the circuit board 20. Has been. A thermoelectric conversion member 40 provided around the installation range of the electrical components 22, 24, and 26 is attached to the surface of the base plate 56.

以上の構成の熱電変換部材40のプレート42、44の各々には接続線52の一端が電気的且つ機械的に接続されている。接続線52の一端は、プレート42、44の厚さ方向に対して直交する方向に沿って電気部品18、22、24、26の設置位置とは反対側のプレート42、44の端部で直接的又は間接的に接続されている。   One end of a connection line 52 is electrically and mechanically connected to each of the plates 42 and 44 of the thermoelectric conversion member 40 having the above configuration. One end of the connection line 52 is directly at the end of the plate 42, 44 opposite to the installation position of the electrical components 18, 22, 24, 26 along the direction orthogonal to the thickness direction of the plates 42, 44. Connected indirectly or indirectly.

図5に示されるように、これらの接続線52は、ケース14内に設けられた(例えば、回路基板16、20の少なくとも一方に設けられた)電位差調整回路54の入力端子に接続されている。電位差調整回路54では入力された電圧をバッテリー30の電圧と同等の大きさに調整して出力する機能を有しており、この電位差調整回路54の出力端子はバッテリー30の両端子に接続されている。   As shown in FIG. 5, these connection lines 52 are connected to input terminals of a potential difference adjustment circuit 54 provided in the case 14 (for example, provided on at least one of the circuit boards 16 and 20). . The potential difference adjusting circuit 54 has a function of adjusting and outputting the input voltage to the same level as the voltage of the battery 30, and the output terminal of the potential difference adjusting circuit 54 is connected to both terminals of the battery 30. Yes.

<本実施の形態の作用、効果>
次に、本電気部品冷却装置10の作用並びに効果について説明する。回路基板16、20上の電気回路、すなわち、図5に示される負荷28が通電されて負荷28が動作すると、回路基板16、20上に設けられた電気部品18、22、24、26が発熱する。上述したように、これらの電気部品18、22、24、26の外周部には熱電変換部材40の吸熱部46が接触しているため、電気部品18、22、24、26にて生じた熱は吸熱部46に伝わる。
<Operation and effect of the present embodiment>
Next, the operation and effect of the electrical component cooling apparatus 10 will be described. When the electrical circuit on the circuit boards 16 and 20, that is, the load 28 shown in FIG. 5 is energized and the load 28 operates, the electrical components 18, 22, 24 and 26 provided on the circuit boards 16 and 20 generate heat. To do. As described above, since the heat absorbing portion 46 of the thermoelectric conversion member 40 is in contact with the outer peripheral portions of these electric components 18, 22, 24, 26, the heat generated in the electric components 18, 22, 24, 26. Is transmitted to the heat absorption part 46.

吸熱部46に電気部品18、22、24、26にて生じた熱が伝わることで、熱電変換部材40には、吸熱部46側が高温側で、接続線52の一端が接続された部分の側が低温側となるような温度勾配が生じる。このような温度勾配が熱電変換部材40に生じると、所謂「ゼーベック効果」により、吸熱部46で吸収した熱エネルギーの一部が電気エネルギーに変換されてプレート44に接続された接続線52からプレート44、プレート42を介してプレート42に接続された接続線52へと電流が流れると共に、プレート42、44の接続線52が接続された部分及びその近傍で放熱が生じる。   The heat generated in the electrical components 18, 22, 24, and 26 is transmitted to the heat absorbing portion 46, so that the thermoelectric conversion member 40 has a side where the heat absorbing portion 46 is on the high temperature side and one end of the connection line 52 is connected. A temperature gradient is generated so as to be on the low temperature side. When such a temperature gradient is generated in the thermoelectric conversion member 40, a part of the heat energy absorbed by the heat absorption part 46 is converted into electric energy by the so-called “Seebeck effect” and connected from the connection line 52 connected to the plate 44 to the plate. 44, current flows to the connection line 52 connected to the plate 42 via the plate 42, and heat is radiated at and near the portion of the plates 42 and 44 where the connection line 52 is connected.

ケース14の裏面に貼着された熱電変換部材40の場合には、更に、プレート42、44から放出された熱はケース14に伝わり、ケース14の外部へ放熱される。また、ベースプレート56に貼着された熱電変換部材40の場合には、更に、プレート42、44から放出された熱はベースプレート56に伝わるか、又は、プレート42、44からケース14の内部に放出される。   In the case of the thermoelectric conversion member 40 attached to the back surface of the case 14, the heat released from the plates 42 and 44 is further transmitted to the case 14 and radiated to the outside of the case 14. Further, in the case of the thermoelectric conversion member 40 attached to the base plate 56, the heat released from the plates 42 and 44 is further transmitted to the base plate 56 or released from the plates 42 and 44 to the inside of the case 14. The

このように、電気部品18、22、24、26の熱が熱電変換部材40により吸収されることで、これらの電気部品18、22、24、26の温度上昇を防止又は抑制でき、過剰な温度上昇による電気部品18、22、24、26の破壊や、負荷28の誤作動等を効果的に防止できる。   Thus, the heat | fever of the electrical components 18, 22, 24, and 26 is absorbed by the thermoelectric conversion member 40, and the temperature rise of these electrical components 18, 22, 24, and 26 can be prevented or suppressed, and excess temperature It is possible to effectively prevent the electrical components 18, 22, 24, 26 from being broken and the load 28 from malfunctioning due to the rise.

また、このような電気部品18、22、24、26の温度上昇の防止や抑制は、回路基板16、20上やその近傍にファン等の送風機構を設けることでも達成は可能である。しかしながら、このような送風機構は動作音が発生するため静粛性能が悪く、また、送風機構をケース14内に設けることで、ケース14が大型化してしまい、特に、ケース14の厚さ寸法が増大してしまう。   Moreover, prevention and suppression of such temperature rise of the electrical components 18, 22, 24, and 26 can also be achieved by providing a blower mechanism such as a fan on or near the circuit boards 16 and 20. However, since such a blowing mechanism generates an operation sound, the quiet performance is poor, and the provision of the blowing mechanism in the case 14 increases the size of the case 14, and particularly increases the thickness dimension of the case 14. Resulting in.

これに対して本実施の形態では、熱電変換部材40のゼーベック効果によって電気部品18、22、24、26を冷却する構成であるため、作動音が発生せず、静粛性能が極めて高い。さらに、熱電変換部材40は薄肉の板状に形成されている。このため、ケース14の厚さ寸法の増大、すなわち、ケース14の大型化を極めて効果的に抑制できる。   On the other hand, in this Embodiment, since it is the structure which cools the electrical components 18, 22, 24, and 26 by the Seebeck effect of the thermoelectric conversion member 40, an operation sound does not generate | occur | produce and silence performance is very high. Further, the thermoelectric conversion member 40 is formed in a thin plate shape. For this reason, an increase in the thickness dimension of the case 14, that is, an increase in the size of the case 14 can be extremely effectively suppressed.

しかも、熱電変換部材40の吸熱部46は、熱電変換部材40の厚さ方向に対して直交した側で電気部品18、22、24、26に対向して接触する構造である。このような構造とすることでもケース14の厚さ寸法の増大、すなわち、ケース14の大型化を極めて効果的に抑制できるのみならず、吸熱部46で吸収した熱を放熱する部分、すなわち、プレート42、44の接続線52の一端が接続された部分と吸熱部46との間隔(寸法)をケース14の厚さ寸法の増加させることなく十分に確保できる。   And the heat absorption part 46 of the thermoelectric conversion member 40 is a structure which opposes and contacts the electrical components 18, 22, 24, and 26 on the side orthogonal to the thickness direction of the thermoelectric conversion member 40. Even with such a structure, an increase in the thickness of the case 14, that is, an increase in the size of the case 14 can be extremely effectively suppressed, and a portion that radiates heat absorbed by the heat absorbing portion 46, that is, a plate The distance (dimension) between the end of the connection line 52 connected to one end of the connecting lines 52 and the heat absorbing portion 46 can be sufficiently secured without increasing the thickness dimension of the case 14.

これによっても、プレート42、44の接続線52の一端が接続された部分と吸熱部46との間での温度勾配を十分に生じさせることができ、また、電気部品18、22、24、26から十分に離れた位置で放熱できる。これにより、熱電変換部材40による電気部品18、22、24、26の冷却効果を向上させることができる。   Also by this, a sufficient temperature gradient can be generated between the portion where the one end of the connection line 52 of the plates 42 and 44 is connected and the heat absorbing portion 46, and the electrical components 18, 22, 24, 26 can be obtained. Can dissipate heat at a position sufficiently away from the Thereby, the cooling effect of the electrical components 18, 22, 24, and 26 by the thermoelectric conversion member 40 can be improved.

さらに、熱電変換部材40で生じた電流は電位差調整回路54に入力されると、電位差調整回路54でバッテリー30の電圧と同等の電圧まで変圧されて負荷28に供給される。このように、熱電変換部材40が電気エネルギーに変換した熱エネルギーを負荷28に供給することで、負荷28が消費するバッテリー30の電力を軽減できる。   Furthermore, when the current generated in the thermoelectric conversion member 40 is input to the potential difference adjustment circuit 54, the potential difference adjustment circuit 54 transforms the voltage to a voltage equivalent to the voltage of the battery 30 and supplies the voltage to the load 28. Thus, the electric power of the battery 30 consumed by the load 28 can be reduced by supplying the load 28 with the thermal energy converted into electric energy by the thermoelectric conversion member 40.

さらに、上記のように熱電変換部材40でのゼーベック効果により電気部品18、22、24、26で生じた熱を吸収して電気部品18、22、24、26を冷却する構成であることから、ファン等の送風機構とは異なり機械的な駆動部分を持たない。このため、駆動部分での動作不良等がそもそも生じることがなく、安定した吸熱効果(冷却効果)を得ることができる。   Furthermore, since the heat generated in the electrical components 18, 22, 24, 26 is absorbed by the Seebeck effect in the thermoelectric conversion member 40 as described above, the electrical components 18, 22, 24, 26 are cooled. Unlike a blower mechanism such as a fan, it does not have a mechanical drive part. For this reason, a malfunction in the driving portion does not occur in the first place, and a stable heat absorption effect (cooling effect) can be obtained.

<熱電変換部材40の変形例>
次に、熱電変換部材40の変形例について説明する。図6には熱電変換部材40の変形例である熱電変換部材60の構成の概略が図4に対応した平面図によって示されている。
<Modification of Thermoelectric Conversion Member 40>
Next, a modified example of the thermoelectric conversion member 40 will be described. 6 shows a schematic configuration of a thermoelectric conversion member 60, which is a modification of the thermoelectric conversion member 40, in a plan view corresponding to FIG.

熱電変換部材60を構成するプレート42(すなわち、P型の金属又は半導体)は、電気部品18と対向する部位を頂部とする略直角三角形状とされている。また、熱電変換部材60を構成するプレート44(すなわち、N型の金属又は半導体)は、電気部品18と対向する部位を頂部とするプレート42とは略線対称の略直角三角形状とされている。   The plate 42 (that is, P-type metal or semiconductor) constituting the thermoelectric conversion member 60 has a substantially right triangle shape with a portion facing the electrical component 18 as a top. Further, the plate 44 (that is, N-type metal or semiconductor) constituting the thermoelectric conversion member 60 has a substantially right-angled triangle shape that is substantially line symmetric with the plate 42 having a portion facing the electrical component 18 at the top. .

これらのプレート42、44は頂部と直角部とを結ぶ辺で互いに隣り合っており、このため、熱電変換部材60全体としては平面視で電気部品18と対向する部位を頂部とする略二等辺三角形状とされている。プレート42、44は、電気部品18の側(すなわち、上記の頂部側)が吸熱部46とされており、この吸熱部46とその近傍部分でプレート42とプレート44とが互いに接合されて電気的に導通している。さらに、各プレート42、44の底辺部分にはそれぞれ接続線52の一端が接続されている。   These plates 42 and 44 are adjacent to each other at a side connecting the top part and the right-angled part. For this reason, the thermoelectric conversion member 60 as a whole is a substantially isosceles triangle having a part facing the electrical component 18 in plan view. It is made into a shape. The plates 42 and 44 have an endothermic portion 46 on the side of the electrical component 18 (that is, the top side), and the plate 42 and the plate 44 are joined to each other at the endothermic portion 46 and the vicinity thereof. Is conducting. Further, one end of a connection line 52 is connected to the bottom portion of each plate 42, 44.

一方、図7には熱電変換部材40の変形例である熱電変換部材70の構成の概略が図4に対応した平面図によって示されている。熱電変換部材70はプレート44(すなわち、N型の金属又は半導体)を備えている。   On the other hand, FIG. 7 shows a schematic configuration of a thermoelectric conversion member 70, which is a modification of the thermoelectric conversion member 40, in a plan view corresponding to FIG. The thermoelectric conversion member 70 includes a plate 44 (that is, an N-type metal or semiconductor).

但し、熱電変換部材70のプレート44は平面視で略矩形とされており、その設置範囲は、概ね、電気部品18の平面視での設置範囲の形状を略矩形とみなした場合に、電気部品18の平面視での長手方向及び幅方向の各々略中央よりも一方の側に設けられる。複数の熱電変換部材70を構成する各プレート44は互いに隣接して配置されており、各プレート44の間にはスリット72が形成されて各プレート44同士は電気的に絶縁状態とされている。   However, the plate 44 of the thermoelectric conversion member 70 is substantially rectangular in a plan view, and the installation range thereof is generally an electrical component when the shape of the installation range in the plan view of the electrical component 18 is regarded as a substantially rectangular shape. 18 are provided on one side of the center in the longitudinal direction and the width direction in plan view. The plates 44 constituting the plurality of thermoelectric conversion members 70 are disposed adjacent to each other, and slits 72 are formed between the plates 44 so that the plates 44 are electrically insulated from each other.

さらに、上記のスリット72の内側にはプレート42が設けられている。熱電変換部材70のプレート42はプレート44に比べると十分に細幅でスリット72に沿って長手の板状(又は、棒状、或いは線状)に形成されており、その長手方向に沿った電気部品18側の端部が吸熱部46とされ、隣り合うプレート44の一方に接合されている。   Further, a plate 42 is provided inside the slit 72. The plate 42 of the thermoelectric conversion member 70 is sufficiently narrower than the plate 44 and is formed in a long plate shape (or a rod shape or a line shape) along the slit 72, and an electrical component along the longitudinal direction thereof. The end portion on the 18th side is a heat absorbing portion 46, and is joined to one of the adjacent plates 44.

また、プレート42の長手方向他端部と電気部品18とは反対側でのプレート44の端部には、それぞれ接続線52の一端が接続されている。   Further, one end of a connection line 52 is connected to the other end of the plate 42 in the longitudinal direction and the end of the plate 44 on the opposite side of the electrical component 18.

以上のような変形例の熱電変換部材60、70は、平面視での各プレート42、44の形状が熱電変換部材40とは異なるものの、P型の金属又は半導体によりプレート42が形成されて、N型の金属又は半導体によりプレート42が形成されている点では熱電変換部材40と構成は同じである。   Although the thermoelectric conversion members 60 and 70 of the above modified examples are different from the thermoelectric conversion member 40 in the shape of the plates 42 and 44 in plan view, the plate 42 is formed of P-type metal or semiconductor, The configuration is the same as that of the thermoelectric conversion member 40 in that the plate 42 is formed of an N-type metal or semiconductor.

また、プレート42、44の厚さ方向に対して直交した側の端部を吸熱部46としてプレート42、44の厚さ方向に対して直交した方向から吸熱部46を電気部品18に接触させた点も熱電変換部材40と構成は同じである。したがって、このような熱電変換部材60、70を用いても基本的には熱電変換部材40と同様の作用を奏し、同様の効果を得ることができる。   Further, the end portion on the side orthogonal to the thickness direction of the plates 42 and 44 is used as the heat absorption portion 46, and the heat absorption portion 46 is brought into contact with the electrical component 18 from the direction orthogonal to the thickness direction of the plates 42 and 44. The point is the same as that of the thermoelectric conversion member 40. Therefore, even if such thermoelectric conversion members 60 and 70 are used, the same effect as the thermoelectric conversion member 40 can be basically obtained, and the same effect can be obtained.

<プレート42、44に用いる材料と、熱電変換部材の形状の選択>
ところで、熱電変換部材40、60、70のプレート42を構成するP型の半導体や金属には様々な種類があり、次の表1に示されるように、その一例としては鉄(Fe)、銅(Cu)、銀(Ag)、アルミニウム(Al)とクロム(Cr)の合金であるニクロム、クロム(Cr)とニッケル(Ni)の合金であるクロメル、アンチモン(Sb)をドープしたビスマス−テルル合金(Bi2Te3)等がある。
<Selection of material used for plates 42 and 44 and shape of thermoelectric conversion member>
By the way, there are various types of P-type semiconductors and metals that constitute the plate 42 of the thermoelectric conversion members 40, 60, and 70. As shown in the following Table 1, examples include iron (Fe) and copper. Bismuth-tellurium alloy doped with (Cu), silver (Ag), nichrome which is an alloy of aluminum (Al) and chromium (Cr), chromel which is an alloy of chromium (Cr) and nickel (Ni), antimony (Sb) (Bi 2 Te 3 ) and the like.

一方、プレート44を構成するN型の半導体や金属にも様々な種類があり、次の表1に示されるように、その一例としては、アルミニウム(Al)とニッケル(Ni)の合金であるアルメル、銅(Cu)とニッケル(Ni)の合金であるコンスタンタン、セレン(Se)をドープしたビスマス−テルル合金(Bi2Te3)等がある。 On the other hand, there are various types of N-type semiconductors and metals constituting the plate 44. As shown in the following Table 1, as an example, an alumel that is an alloy of aluminum (Al) and nickel (Ni) is used. , Constantan which is an alloy of copper (Cu) and nickel (Ni), bismuth-tellurium alloy (Bi 2 Te 3 ) doped with selenium (Se), and the like.

Figure 2006294783
ところで、本実施の形態のように、P型の熱電変換材料とN型の熱電変換材料とを部分的に接合した構造で、P型の熱電変換材料の長さをLP、幅をWP、厚さをTP、比抵抗をρP、熱伝導率をκPとして、N型の熱電変換材料の長さをLN、幅をWN、厚さをTN、比抵抗をρN、熱伝導率をκNとした場合に、以下の式(1)を満たすと熱電変換の効率(すなわち、放熱効率)が良い。

(LN・WP・TP)/(LP・WN・TN)=(ρP・κP)/(ρN・κN)・・・(1)

すなわち、プレート42の比抵抗ρPと熱伝導率κPとの積に比べてプレート44の比抵抗ρNと熱伝導率κNとの積が極めて大きい場合(すなわち、ρP・κP<<ρN・κNの場合)には、プレート42の断面積をプレート44の断面積に比べて小さくすることで、熱電変換の効率を高めることができる。
Figure 2006294783
By the way, as in the present embodiment, a P-type thermoelectric conversion material and an N-type thermoelectric conversion material are partially joined, and the length of the P-type thermoelectric conversion material is L P and the width is W P. , Thickness is T P , specific resistance is ρ P , thermal conductivity is κ P , length of N type thermoelectric conversion material is L N , width is W N , thickness is T N , specific resistance is ρ N When the thermal conductivity is κ N and the following formula (1) is satisfied, the efficiency of thermoelectric conversion (that is, the heat dissipation efficiency) is good.

(L N · W P · T P ) / (L P · W N · T N ) = (ρ P · κ P ) / (ρ N · κ N ) (1)

That is, when the product of the specific resistance ρ N and the thermal conductivity κ N of the plate 44 is extremely larger than the product of the specific resistance ρ P of the plate 42 and the thermal conductivity κ P (that is, ρ P · κ P < In the case of <ρ N · κ N ), the efficiency of thermoelectric conversion can be increased by making the cross-sectional area of the plate 42 smaller than the cross-sectional area of the plate 44.

したがって、例えば、表1のA群に含まれる材料でプレート42を形成して表1のD群に含まれる材料でプレート44を形成したような場合には、熱電変換部材70のような構造とすることで熱電変換の効率を高めることができる。   Therefore, for example, when the plate 42 is formed of the material included in Group A of Table 1 and the plate 44 is formed of the material included in Group D of Table 1, the structure like the thermoelectric conversion member 70 is used. By doing so, the efficiency of thermoelectric conversion can be increased.

一方、プレート42の比抵抗ρPと熱伝導率κPとの積に比べてプレート44の比抵抗ρNと熱伝導率κNとの積が極めて小さい場合(すなわち、ρP・κP>>ρN・κNの場合)には、プレート42の断面積をプレート44の断面積に比べて大きくすることで、熱電変換の効率を高めることができる。 On the other hand, when the product of the specific resistance ρ N and the thermal conductivity κ N of the plate 44 is extremely smaller than the product of the specific resistance ρ P of the plate 42 and the thermal conductivity κ P (that is, ρ P · κ P > In the case of> ρ N · κ N ), the efficiency of thermoelectric conversion can be increased by making the cross-sectional area of the plate 42 larger than the cross-sectional area of the plate 44.

したがって、例えば、表1のB群に含まれる材料でプレート42を形成して表1のC群に含まれる材料でプレート44を形成したような場合には、熱電変換部材70におけるプレート42の形状とプレート44の形状とを替えた構造とすることで熱電変換の効率を高めることができる。   Therefore, for example, when the plate 42 is formed of the material included in Group B of Table 1 and the plate 44 is formed of the material included in Group C of Table 1, the shape of the plate 42 in the thermoelectric conversion member 70 And the efficiency of thermoelectric conversion can be increased by using a structure in which the shape of the plate 44 is changed.

これに対して、プレート42の比抵抗ρPと熱伝導率κPとの積とプレート44の比抵抗ρNと熱伝導率κNとの積との差異が比較的小さい場合には、プレート42の断面積をプレート44の断面積との差異を小さくするすることで、熱電変換の効率を高めることができる。 On the other hand, when the difference between the product of the specific resistance ρ P of the plate 42 and the thermal conductivity κ P and the product of the specific resistance ρ N of the plate 44 and the thermal conductivity κ N is relatively small, By reducing the difference between the cross-sectional area of 42 and the cross-sectional area of the plate 44, the efficiency of thermoelectric conversion can be increased.

したがって、例えば、表1のA群に含まれる材料でプレート42を形成して表1のC群に含まれる材料でプレート44を形成したような場合や表1のB群に含まれる材料でプレート42を形成して表1のD群に含まれる材料でプレート44を形成したような場合には、熱電変換部材40や熱電変換部材60のような構造とすることで熱電変換の効率を高めることができ、特に、プレート42の比抵抗ρPと熱伝導率κPとの積とプレート44の比抵抗ρNと熱伝導率κNとの積との差異が極めて小さい場合には、熱電変換部材60のようにプレート42とプレート44とを対称構造とすることで熱電変換の効率を飛躍的に高めることができる。 Therefore, for example, when the plate 42 is formed of the material included in Group A of Table 1 and the plate 44 is formed of the material included in Group C of Table 1, the plate is formed of the material included in Group B of Table 1. In the case where the plate 44 is formed of the material included in the D group of Table 1 by forming 42, the structure of the thermoelectric conversion member 40 or the thermoelectric conversion member 60 is used to increase the efficiency of thermoelectric conversion. In particular, when the difference between the product of the specific resistance ρ P of the plate 42 and the thermal conductivity κ P and the product of the specific resistance ρ N of the plate 44 and the thermal conductivity κ N is extremely small, the thermoelectric conversion By making the plate 42 and the plate 44 symmetrical like the member 60, the efficiency of thermoelectric conversion can be dramatically increased.

以上のように、プレート42の比抵抗ρPと熱伝導率κPとの積とプレート44の比抵抗ρNと熱伝導率κNとの積の差異に基づいてプレート42、44の形状を設定することで、効率よく電気部品18を冷却できる。 As described above, the shapes of the plates 42 and 44 are determined based on the difference between the product of the specific resistance ρ P of the plate 42 and the thermal conductivity κ P and the product of the specific resistance ρ N of the plate 44 and the thermal conductivity κ N. By setting, the electric component 18 can be efficiently cooled.

なお、本実施の形態では、電気部品18の角部又は電気部品22、24、26の設置範囲を矩形状とみなした際の設置範囲の角部で、回路基板16や回路基板20の厚さ方向(すなわち、回路基板16の表面の向き)に対して直交する方向に沿って熱電変換部材40を隣接させた。しかしながら、特許請求の範囲の請求項1に記載の本発明の観点からすると、本発明がこのような構成に限定されるものではない。   In the present embodiment, the thickness of the circuit board 16 or the circuit board 20 is the corner of the electrical component 18 or the corner of the installation range when the installation range of the electrical components 22, 24, 26 is regarded as a rectangular shape. The thermoelectric conversion member 40 was made to adjoin along the direction orthogonal to the direction (that is, the direction of the surface of the circuit board 16). However, from the viewpoint of the present invention described in claim 1 of the claims, the present invention is not limited to such a configuration.

すなわち、各プレート42、44の吸熱部46が形成する略矩形状の孔58を、電気部品18の平面視での外周形状よりも小さく形成し、回路基板16の厚さ方向に沿って各プレート42、44の吸熱部46と電気部品18とを対向させつつ、例えば、図1に示される各プレート42、44と同様にケース14に固着する構成としてもよい。   That is, the substantially rectangular holes 58 formed by the heat absorbing portions 46 of the plates 42 and 44 are formed to be smaller than the outer peripheral shape of the electrical component 18 in plan view, and each plate is formed along the thickness direction of the circuit board 16. For example, it may be configured to be fixed to the case 14 similarly to the plates 42 and 44 shown in FIG.

このような構成とした場合には次のようなメリットがある。例えば、電気部品18の側方に設けられた他の電気部品の高さ寸法(すなわち、回路基板16の厚さ方向に沿った寸法)が電気部品18以上の場合には、孔58の内側に電気部品18を入り込ませるように各プレート42、44を配置すると、他の電気部品がプレート42、44に干渉してしまう。   Such a configuration has the following advantages. For example, when the height dimension (that is, the dimension along the thickness direction of the circuit board 16) of another electrical component provided on the side of the electrical component 18 is equal to or greater than the electrical component 18, the inside of the hole 58 is provided. If the plates 42 and 44 are arranged so that the electrical component 18 can enter, other electrical components interfere with the plates 42 and 44.

このように、孔58の内側に電気部品18を入り込ませるように各プレート42、44を配置した際には、他の電気部品がプレート42、44に干渉するような構造であっても、回路基板16の厚さ方向に沿って各プレート42、44の吸熱部46と電気部品18とを対向させる構造とすることで、プレート42、44が回路基板18の厚さ方向に沿って他の電気部品の側方に配置される。これにより、他の電気部品がプレート42、44に干渉することを防止できる。   In this way, when the plates 42 and 44 are arranged so that the electrical component 18 enters the inside of the hole 58, even if the other electrical components interfere with the plates 42 and 44, the circuit By adopting a structure in which the heat absorbing portion 46 of each plate 42, 44 and the electrical component 18 are opposed to each other along the thickness direction of the substrate 16, the plates 42, 44 are connected to the other electrical components along the thickness direction of the circuit board 18. Located on the side of the part. Thereby, it is possible to prevent other electrical components from interfering with the plates 42 and 44.

なお、このような構造とした場合には、孔58の内周形状をできる限り小さくする方が吸熱部46における受熱面積を増大できるので好ましい。   In the case of such a structure, it is preferable to make the inner peripheral shape of the hole 58 as small as possible because the heat receiving area in the heat absorbing portion 46 can be increased.

本発明の一実施の形態に係る電気部品冷却装置の要部の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the principal part of the electrical component cooling device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る電気部品冷却装置の他の要部の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the other principal part of the electrical component cooling device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る電気部品冷却装置の要部の構成を示す平面図である。It is a top view which shows the structure of the principal part of the electrical component cooling device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る電気部品冷却装置を適用した電気回路ユニットの構成の概略を示す断面図である。It is sectional drawing which shows the outline of a structure of the electric circuit unit to which the electric component cooling device which concerns on one embodiment of this invention is applied. 本発明の一実施の形態に係る電気部品冷却装置と電気回路ユニットとの関係を示す概略的な回路図である。It is a schematic circuit diagram which shows the relationship between the electrical component cooling device which concerns on one embodiment of this invention, and an electrical circuit unit. 本発明の一実施の形態に係る電気部品冷却装置の要部の変形例を示す図3に対応した平面図である。It is a top view corresponding to FIG. 3 which shows the modification of the principal part of the electrical component cooling device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る電気部品冷却装置の要部の他の変形例を示す図3に対応した平面図である。It is a top view corresponding to FIG. 3 which shows the other modification of the principal part of the electrical component cooling device which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

10 電気部品冷却装置
16 回路基板
18 電気部品
20 回路基板
22 電気部品
40 熱電変換部材
42 プレート(P型熱電材料)
44 プレート(N型熱電材料)
46 吸熱部
48 スリット(空隙)
56 ベースプレート(支持体)
60 熱電変換部材
70 熱電変換部材
DESCRIPTION OF SYMBOLS 10 Electrical component cooling device 16 Circuit board 18 Electrical component 20 Circuit board 22 Electrical component 40 Thermoelectric conversion member 42 Plate (P type thermoelectric material)
44 Plate (N-type thermoelectric material)
46 Endothermic part 48 Slit (gap)
56 Base plate (support)
60 thermoelectric conversion member 70 thermoelectric conversion member

Claims (8)

回路基板に設けられた発熱する電気部品を冷却するための電気部品冷却装置であって、
前記電気部品に対向する吸熱部でP型熱電材料とN型熱電材料とが電気的且つ機械的に接合されて、前記電気部品が発熱した際に、前記吸熱部の側と前記回路基板の表面の向きに対して交差した方向に沿って前記吸熱部とは反対側との間で生じる温度勾配で電流が流れる熱電変換部材を備える、
ことを特徴とする電気部品冷却装置。
An electrical component cooling device for cooling a heated electrical component provided on a circuit board,
When the P-type thermoelectric material and the N-type thermoelectric material are electrically and mechanically joined at the heat absorption portion facing the electric component, and the electric component generates heat, the heat absorption portion side and the surface of the circuit board A thermoelectric conversion member in which a current flows along a temperature gradient generated between the heat absorption part and the opposite side along a direction intersecting the direction of
An electrical component cooling device.
前記回路基板の表面の向きに対して交差する方向に沿って前記電気部品と前記吸熱部とを対向させた、
ことを特徴とする請求項1に記載の電気部品冷却装置。
The electrical component and the heat absorbing portion are opposed to each other along a direction intersecting with the direction of the surface of the circuit board.
The electrical component cooling apparatus according to claim 1.
前記P型熱電材料と前記N型熱電材料とを、前記回路基板の表面の向きに対して交差した方向に沿って空隙を介して隣接配置した、cc
ことを特徴とする請求項1又は請求項2に記載の電気部品冷却装置。
The P-type thermoelectric material and the N-type thermoelectric material are arranged adjacent to each other through a gap along a direction intersecting the direction of the surface of the circuit board.
The electrical component cooling apparatus according to claim 1 or 2, wherein
各々の前記吸熱部が互いに異なる方向から前記電気部品に対向した複数の前記熱電変換部材を備える、
ことを特徴とする請求項1乃至請求項3の何れか1項に記載の電気部品冷却装置。
Each of the heat absorption parts includes a plurality of the thermoelectric conversion members opposed to the electrical component from different directions.
The electrical component cooling device according to any one of claims 1 to 3, wherein the electrical component cooling device according to any one of claims 1 to 3 is provided.
前記熱電変換部材を前記回路基板に対して電気的に直接又は間接的に接続し、前記熱電変換部材にて生じた電流を前記回路基板に流す、
ことを特徴とする請求項1乃至請求項4の何れか1項に記載の電気部品冷却装置。
The thermoelectric conversion member is electrically connected directly or indirectly to the circuit board, and a current generated in the thermoelectric conversion member is passed through the circuit board.
The electrical component cooling device according to any one of claims 1 to 4, wherein the electrical component cooling device according to any one of claims 1 to 4 is provided.
前記P型熱電材料及び前記N型熱電材料の各々を、厚さ方向が前記回路基板の厚さ方向に沿った薄肉板状又はシート状に形成した、
ことを特徴とする請求項1乃至請求項5の何れか1項に記載の電気部品冷却装置。
Each of the P-type thermoelectric material and the N-type thermoelectric material was formed into a thin plate shape or a sheet shape whose thickness direction was along the thickness direction of the circuit board.
The electrical component cooling device according to any one of claims 1 to 5, wherein the electrical component cooling device according to any one of claims 1 to 5 is provided.
厚さ方向が前記回路基板の厚さ方向に沿った薄肉板状又はシート状に形成され、厚さ方向一方の面で前記熱電変換部材を支持する支持体を備える、
ことを特徴とする請求項1乃至請求項6の何れか1項に記載の電気部品冷却装置。
A thickness direction is formed in a thin plate shape or a sheet shape along the thickness direction of the circuit board, and includes a support body that supports the thermoelectric conversion member on one surface in the thickness direction.
The electrical component cooling apparatus according to any one of claims 1 to 6, wherein the electrical component cooling apparatus is any one of the above.
前記P型熱電材料及び前記N型熱電材料の各々の比抵抗及び熱伝導率に基づいて前記P型熱電材料及び前記N型熱電材料の各々の形状を設定する、
ことを特徴とする請求項1乃至請求項7の何れか1項に記載の電気部品冷却装置。
Setting the shape of each of the P-type thermoelectric material and the N-type thermoelectric material based on the specific resistance and thermal conductivity of each of the P-type thermoelectric material and the N-type thermoelectric material;
The electrical component cooling device according to any one of claims 1 to 7, wherein the electrical component cooling device according to any one of claims 1 to 7 is provided.
JP2005111848A 2005-04-08 2005-04-08 Electric component cooling device Pending JP2006294783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111848A JP2006294783A (en) 2005-04-08 2005-04-08 Electric component cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111848A JP2006294783A (en) 2005-04-08 2005-04-08 Electric component cooling device

Publications (1)

Publication Number Publication Date
JP2006294783A true JP2006294783A (en) 2006-10-26

Family

ID=37415046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111848A Pending JP2006294783A (en) 2005-04-08 2005-04-08 Electric component cooling device

Country Status (1)

Country Link
JP (1) JP2006294783A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009119175A1 (en) * 2008-03-26 2011-07-21 日本電気株式会社 Semiconductor device
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
JP2016092015A (en) * 2014-10-29 2016-05-23 リンテック株式会社 Heat radiation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009119175A1 (en) * 2008-03-26 2011-07-21 日本電気株式会社 Semiconductor device
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
US9322580B2 (en) 2011-02-05 2016-04-26 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
JP2016092015A (en) * 2014-10-29 2016-05-23 リンテック株式会社 Heat radiation device

Similar Documents

Publication Publication Date Title
JPWO2008029636A1 (en) Motor control device
JPWO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic device using the same
JP2007234913A (en) Electronic circuit structure, electronic equipment having it, method for generating thermo-electromotive force and auxiliary electric power, and semiconductor bare chip
JPWO2008029637A1 (en) Motor control device
JP2006271063A (en) Cooling structure of bus bar
JP2006294783A (en) Electric component cooling device
JP4438526B2 (en) Power component cooling system
JP2005136211A (en) Cooling device
JPH10126924A (en) Electric connector
JP2009283840A (en) Electronic circuit module
JP3985453B2 (en) Power converter
JP2004056054A (en) Semiconductor switch equipment
JP2009017624A (en) Motor controller
JP4578457B2 (en) Power module device
JP2005150454A (en) Cooling structure of electric power conversion system
JP2008103577A (en) Heat dissipating structure for power module, and motor controller equipped with the same
JP2018166184A (en) Power module
WO2020080248A1 (en) Circuit structure and electrical junction box
JP2013131520A (en) Heat dissipation structure of electronic apparatus and electronic apparatus
KR100463519B1 (en) CPU cooling system
JP2014170834A (en) Heat radiation structure of power semiconductor and audio device using the same
JP2012023166A (en) Flexible printed wiring board and heater element radiation structure
JP4200876B2 (en) Electronic equipment cooling structure
JP2018163932A (en) Power module
JP2018182149A (en) Heat radiator