JP2006291310A - Crankshaft and producing method therefor - Google Patents

Crankshaft and producing method therefor Download PDF

Info

Publication number
JP2006291310A
JP2006291310A JP2005115112A JP2005115112A JP2006291310A JP 2006291310 A JP2006291310 A JP 2006291310A JP 2005115112 A JP2005115112 A JP 2005115112A JP 2005115112 A JP2005115112 A JP 2005115112A JP 2006291310 A JP2006291310 A JP 2006291310A
Authority
JP
Japan
Prior art keywords
mass
steel
less
hardness
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115112A
Other languages
Japanese (ja)
Inventor
Hisato Takeuchi
久人 竹内
Katsunori Takada
勝典 高田
Yutaka Kurebayashi
豊 紅林
Yoshiki Mizuno
孝樹 水野
Hideki Matsuda
英樹 松田
Seiji Kobayashi
誠司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005115112A priority Critical patent/JP2006291310A/en
Priority to US11/401,450 priority patent/US20060225814A1/en
Priority to DE102006017263A priority patent/DE102006017263A1/en
Publication of JP2006291310A publication Critical patent/JP2006291310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crankshaft having both of machinability and high fatigue strength. <P>SOLUTION: In the crankshaft made of a steel, a soft-nitriding treatment is applied on the steel surface and the steel contains as alloy components, by mass%, 0.10-0.30% C, 0.05-0.3% Si, 0.5-1.5% Mn, 0.8-2.0% Mo, 0.1-1.0% Cr, 0.1-0.5% V and the balance Fe with inevitable impurities. Then, when the steel sample picked up from the center part is cooled so that the cooling rate to 900-300°C becomes 0.5°C/second after austenizing at 1,200°C for 1 hr, the ratio of bainite occupying the structure is ≥80% and Vickers hardness measured at the cross section is 260-330 Hv and the surface hardness in the soft-nitriding layer is ≥650 Hv and the whole hardened layer depth is ≥0.3 mm and the hardness of the core part is ≥340 Hv. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面に軟窒化層を有した鋼からなるクランクシャフトと、その製造方法に関する。   The present invention relates to a crankshaft made of steel having a nitrocarburized layer on the surface and a method for manufacturing the crankshaft.

特開平10−030632号公報JP-A-10-030632 特開平06−128690号公報Japanese Patent Laid-Open No. 06-128690 特開平05−279795号公報Japanese Patent Laid-Open No. 05-279795 特開平05−279794号公報JP 05-279794 A

自動車用のクランクシャフトは、大きなねじり負荷と曲げ負荷とが繰り返し作用する環境下で使用されるため、静的強度と疲労強度とに優れていることが要求される。他方、非常に大形で形状も複雑な部材なので、基本的には熱間鍛造後、焼入焼き戻しを行なわない非調質鋼にて製造するのが一般的である。この場合、強度確保のため最終的には鋼表面の硬化処理が必要であるが、特許文献1〜4には、その表面効果処理として軟窒化処理を用いる方法が開示されている。軟窒化処理は、A1変態点以下、一般には570℃程度の温度で、例えばアンモニアガス雰囲気中で被処理物を処理して、窒素とともに一部の炭素を鋼中に浸入させ、窒化物や炭窒化物を生成させて表層部を硬化させるものである。このような軟窒化処理は、浸炭焼入法のように被処理物に歪を生じることが少なく、また窒化法のように処理に長時間を要することもないため、自動車用の大形エンジン部品であるクランクシャフトの量産に適している。   A crankshaft for an automobile is required to be excellent in static strength and fatigue strength because it is used in an environment where a large torsional load and a bending load repeatedly act. On the other hand, since it is a very large and complicated member, it is generally manufactured from non-tempered steel that is not subjected to quenching and tempering after hot forging. In this case, in order to ensure strength, the steel surface must be finally hardened, but Patent Documents 1 to 4 disclose a method using soft nitriding as the surface effect treatment. The soft nitriding treatment is performed at a temperature below the A1 transformation point, generally at a temperature of about 570 ° C., for example, in an ammonia gas atmosphere, so that a part of carbon is infiltrated into the steel together with nitrogen, and nitride or carbon is treated. The surface layer portion is hardened by generating nitride. Such soft nitriding treatment is unlikely to cause distortion in the workpiece as in the case of carburizing and quenching, and does not require a long time for processing as in the nitriding method. It is suitable for mass production of crankshafts.

ところで、軟窒化処理においては、クランクシャフト表層部は窒素の侵入によって大幅な硬さの増加が期待されるが、一般的に実施されている数時間の軟窒化処理では、0.5mm以上の深さで窒素拡散させることは難しく、クランクシャフト内部を強化することはできない。むしろ、軟窒化処理では、鋼が600℃前後で加熱保持されることになるため、窒素の侵入しない内部は軟窒化の熱履歴により軟化し、処理前よりも却って低硬度となることが一般的である。   By the way, in the soft nitriding process, the crankshaft surface layer portion is expected to increase significantly in hardness due to the penetration of nitrogen. However, in the general nitrocarburizing process of several hours, the depth of 0.5 mm or more is expected. Now, it is difficult to diffuse nitrogen, and the inside of the crankshaft cannot be strengthened. Rather, in the nitrocarburizing treatment, the steel is heated and held at around 600 ° C., so that the inside where nitrogen does not penetrate is softened by the thermal history of nitrocarburizing and is generally harder than before the treatment. It is.

他方、軟窒化処理前の鋼内部の強度を鋼への成分添加等により高めようとした場合、鋼の機械加工性が大幅に損なわれ、軟窒化前に実施するクランクシャフト形状への加工の能率が下がって、工業的な部品生産が困難となる。また、機械加工後に焼入れ処理などを施して、軟窒化前の硬さを高めることもできるが、焼入れ処理によって部品に変形が生じたり、焼入れ時のスケール除去などの工程も必要となるなど、品質を低下させる上、加工コストを大幅に増加させることになる。   On the other hand, when trying to increase the strength of the steel before soft nitriding by adding components to the steel, etc., the machinability of the steel is greatly impaired, and the efficiency of processing into the crankshaft shape performed before soft nitriding is reduced. As a result, industrial parts production becomes difficult. In addition, it is possible to increase the hardness before soft nitriding by performing a quenching process after machining, but the quality of the parts such as deformation of the parts caused by the quenching process and the need for scale removal during quenching is also required. In addition, the processing cost is significantly increased.

また、一般的なクランクシャフトは形状が複雑であり、熱間鍛造後の切削加工が必須である。ここで、従来のクランクシャフトでは、焼準処理後の切削加工工程において、発生する切屑が製品に巻き付いたり、あるいは工具磨耗を低減する観点から、切屑破砕性向上元素としてPbを含有させることが一般的に行なわれていた。しかしながら、Pbは、環境保護に対する関心が地球規模で高まりつつある近年では次第に敬遠されるようになっており、その使用も制限されつつある。   Moreover, the shape of a general crankshaft is complicated, and cutting after hot forging is essential. Here, in the conventional crankshaft, in the cutting process after the normalizing treatment, it is common to include Pb as a chip friability improving element from the viewpoint of cutting generated chips around the product or reducing tool wear. It was done. However, Pb is gradually shunned in recent years when the concern for environmental protection is increasing on a global scale, and its use is also being restricted.

本発明の課題は、表面に軟窒化処理が施されているにも拘わらず、優れた機械加工性を備え、高い疲労強度を両立させたクランクシャフトと、その製造方法を提供することにある。   An object of the present invention is to provide a crankshaft that has excellent machinability and achieves both high fatigue strength and a method for manufacturing the crankshaft, regardless of whether the surface is soft-nitrided.

課題を解決するための手段及び作用・効果Means and actions / effects for solving the problems

上記の課題を解決するために、本発明のクランクシャフトは、
表面に軟窒化処理が施された鋼よりなるピン部及びジャーナル部を有したクランクシャフトであって、前記鋼が合金成分として、
C:0.10質量%以上0.30質量%以下、
Si:0.05質量%以上0.3質量%以下、
Mn:0.5質量%以上1.5質量%以下、
Mo:0.8質量%以上2.0質量%以下、
Cr:0.1質量%以上1.0質量%以下
V:0.1質量%以上0.5質量%以下、
を含有し、残部がFe及び不可避不純物からなり、
2.3質量%≦C+Mo+5V≦3.7質量%
2.0質量%≦Mn+Cr+Mo≦3.0質量%
2.7質量%≦2.16Cr+Mo+2.54V≦4.0質量%
の各範囲にあり、
かつ、軟窒化処理の影響を受けていない中心部から採片した鋼試料を1200℃にて1時間オーステナイト化した後、900℃〜300℃までの温度範囲を通過する際の冷却速度が0.5℃/秒となるように室温まで冷却したときの、鋼組織に占めるベイナイトの比率が80%以上であり、かつ、断面にて測定したビッカース硬さが260Hv以上330Hv以下であり、
さらに、ピン部及びジャーナル部にて、軟窒化層の表面硬さが650Hv以上、軟窒化層の形成深さが0.3mm以上であり、中心部硬さが340Hv以上であることを特徴とする。
In order to solve the above problems, the crankshaft of the present invention is
A crankshaft having a pin part and a journal part made of steel subjected to soft nitriding on the surface, wherein the steel is an alloy component,
C: 0.10% by mass to 0.30% by mass,
Si: 0.05 mass% or more and 0.3 mass% or less,
Mn: 0.5% by mass or more and 1.5% by mass or less,
Mo: 0.8 mass% or more and 2.0 mass% or less,
Cr: 0.1% by mass or more and 1.0% by mass or less V: 0.1% by mass or more and 0.5% by mass or less,
And the balance consists of Fe and inevitable impurities,
2.3 mass% ≦ C + Mo + 5V ≦ 3.7 mass%
2.0 mass% ≦ Mn + Cr + Mo ≦ 3.0 mass%
2.7 mass% ≦ 2.16Cr + Mo + 2.54V ≦ 4.0 mass%
In each range of
And after the steel sample extracted from the center part which is not influenced by the soft nitriding process is austenitized at 1200 degreeC for 1 hour, the cooling rate at the time of passing through the temperature range from 900 degreeC to 300 degreeC is 0.00. When cooled to room temperature so as to be 5 ° C./second, the ratio of bainite in the steel structure is 80% or more, and the Vickers hardness measured in the cross section is 260 Hv or more and 330 Hv or less,
Further, in the pin portion and the journal portion, the surface hardness of the soft nitride layer is 650 Hv or more, the formation depth of the soft nitride layer is 0.3 mm or more, and the center hardness is 340 Hv or more. .

また、本発明のクランクシャフトの製造方法は、上記本発明のクランクシャフトの製造方法であって、
前記鋼を、前記ピン部及びジャーナル部を有した形状に、900℃以上鋼の融点未満で熱間鍛造後又は該熱間鍛造に続いて溶体化処理した後に、前記ピン部及びジャーナル部にて冷却速度が0.3℃/秒以上2℃/秒以下となるように冷却することにより、鋼組織に占めるベイナイトの比率を80%以上とし、
その後、該ピン部及びジャーナル部を切削加工し、さらに表面に軟窒化処理を施すことを特徴とする。
Further, the crankshaft manufacturing method of the present invention is the crankshaft manufacturing method of the present invention,
After the steel is subjected to a solution treatment after hot forging at a temperature of 900 ° C. or higher and lower than the melting point of the steel in the shape having the pin portion and the journal portion, By cooling so that the cooling rate is 0.3 ° C./second or more and 2 ° C./second or less, the ratio of bainite in the steel structure is 80% or more,
Thereafter, the pin portion and the journal portion are cut and subjected to soft nitriding treatment on the surface.

クランクシャフトは、回転軸線方向に所定の間隔にて配置されたクランクアームを、前記回転軸線と中心軸線が一致するように配置されるクランクジャーナルと、前記回転軸線から半径方向に一定距離隔たった位置に中心軸線を有するクランクピンとにより、交互に連結した構造を有するものとして構成できる。   The crankshaft is a crank arm arranged at a predetermined interval in the rotation axis direction, a crank journal arranged so that the rotation axis and the center axis coincide with each other, and a position spaced apart from the rotation axis by a certain distance in the radial direction. And a crankpin having a central axis line, and can be configured to have a structure of being alternately connected.

上記本発明のクランクシャフト及びその製造方法においては、軟窒化処理前の素材硬さを低減して機械加工性を確保することができ、かつ、軟窒化処理によって高い表面硬さが得られるとともに、軟窒化処理時の加熱保持によって、鋼内部も硬化させることができ、優れた疲労強度も両立することができる。   In the crankshaft of the present invention and the manufacturing method thereof, the material hardness before soft nitriding can be reduced to ensure machinability, and high surface hardness can be obtained by soft nitriding, By heating and holding during the soft nitriding treatment, the inside of the steel can be hardened and both excellent fatigue strength can be achieved.

本発明のクランクシャフトは、軟窒化処理時の加熱保持によって内部硬さを増加できる鋼組成を採用している。該鋼は、必須合金成分としてMo、V及びTiを含有する。これらの元素は、炭化物生成元素として知られているが、本発明のクランクシャフトの構成素材となる鋼においては、これらは炭化物生成元素として機能させるに留まらず、クランクシャフト形状を得るために熱間鍛造後に空冷した場合の、鋼マトリックスの組織制御、具体的にはベイナイト組織に制御するための元素としても機能するように、その添加量が調整される。   The crankshaft of the present invention employs a steel composition that can increase the internal hardness by heating and holding during soft nitriding. The steel contains Mo, V and Ti as essential alloy components. These elements are known as carbide generating elements, but in the steel that is the constituent material of the crankshaft of the present invention, these are not limited to functioning as carbide generating elements, and in order to obtain a crankshaft shape, they are hot. The amount of addition is adjusted so that it functions as an element for controlling the structure of the steel matrix, specifically, the bainite structure when air-cooled after forging.

Mo、V及びTiの添加により、軟窒化処理温度前後で鋼を保持すると、これら元素の炭化物による2次析出強化が期待できる。しかし、軟窒化処理前の素材状態を、焼入れ焼戻し処理によるマルテンサイト組織にすると、素材状態Fでの硬さが増大しすぎて加工性に問題を生ずる上、焼入れ歪による問題も生じやすいし、炭化物析出による硬さ向上効果も顕著でなくなり、高価な炭化物析出元素を敢えて添加する意義も明確でなくなる。そこで、本発明では、Mo、V及びTiの含有量を適切に調整することで、軟窒化処理前の鋼の素材状態をベイナイト組織とする。ベイナイト組織はマルテンサイト組織の比較すると低硬度であり、切削加工も含めた機械的加工も比較的容易である。その結果、軟窒化処理前の良好な加工性を確保しつつ、軟窒化処理により内部硬さを十分に増加でき、疲労強度の向上を図ることができる。さらに、ベイナイト組織となることで、切削切り屑の連続化を抑制でき、クランクシャフト形状に切削加工する際も、切り屑が加工治具に巻き付く等の不具合を効果的に抑制できる。   If the steel is held around the soft nitriding temperature by the addition of Mo, V and Ti, secondary precipitation strengthening by carbides of these elements can be expected. However, when the material state before soft nitriding is made into a martensite structure by quenching and tempering treatment, the hardness in the material state F increases too much, causing problems in workability, and also causing problems due to quenching strain, The effect of improving the hardness due to carbide precipitation is not significant, and the significance of intentionally adding an expensive carbide precipitation element is not clear. Therefore, in the present invention, by appropriately adjusting the contents of Mo, V, and Ti, the material state of the steel before the soft nitriding treatment is made a bainite structure. The bainite structure has a lower hardness than the martensite structure, and mechanical processing including cutting is relatively easy. As a result, while ensuring good workability before the soft nitriding treatment, the internal hardness can be sufficiently increased by the soft nitriding treatment, and the fatigue strength can be improved. Furthermore, by having a bainite structure, it is possible to suppress the continuity of cutting chips, and when cutting into a crankshaft shape, it is possible to effectively suppress problems such as chip wrapping around the processing jig.

クランクシャフトは熱間鍛造などによって素形を製造されるが熱間鍛造後の冷却速度は、クランクの寸法や形状によって異なり、広い冷却範囲でベイナイト組織が得られることが望ましい。本発明のクランクシャフトに採用する鋼は、軟窒化処理前の組織に占めるベイナイトの比率(面積)が80%以上であり、かつ、硬さが260Hv以上330Hv以下の硬さとなるように組成調整される。しかし、最終的に軟窒化処理を施したクランクシャフトにおいては、軟窒化処理前の組織を直接特定することはできない。他方、実部品での冷却速度を求めた結果、クランク熱間鍛造後に空冷した場合の平均の冷却速度は強度が必要とされるピン部、ジャーナル部で0.3℃/秒以上2℃/秒以下の範囲にあることが確認された。そこで、軟窒化後の鋼の、該軟窒化処理の影響を受けていない中心部から鋼試料を採片し、軟窒化処理の影響を受けていない中心部から採片した鋼試料を1200℃にて1時間オーステナイト化した後、900℃〜300℃までの温度範囲を通過する際の冷却速度が0.5℃/秒となるように冷却する。これにより、鋼組織に占めるベイナイトの比率が80%以上であり、かつ、断面にて測定したビッカース硬さが260Hv以上330Hv以下であれば、熱間鍛造後に空冷するクランクシャフトの製造工程において、軟窒化前においてほぼ同様の範囲のベイナイト比率及び硬さレベルを達成することができる。   The crankshaft is manufactured by hot forging or the like, but the cooling rate after hot forging varies depending on the dimensions and shape of the crank, and it is desirable to obtain a bainite structure in a wide cooling range. The composition of the steel employed in the crankshaft of the present invention is adjusted so that the ratio (area) of bainite in the structure before soft nitriding is 80% or more and the hardness is 260 Hv or more and 330 Hv or less. The However, in a crankshaft that has been finally subjected to soft nitriding, the structure before the soft nitriding cannot be directly specified. On the other hand, as a result of obtaining the cooling rate of the actual parts, the average cooling rate when air-cooled after crank hot forging is 0.3 ° C / second or more and 2 ° C / second at the pin portion and journal portion where strength is required. It was confirmed that it was in the following range. Therefore, a steel sample taken from the central part of the steel after soft nitriding which is not affected by the soft nitriding treatment, and the steel sample taken from the central part which is not affected by the soft nitriding treatment is heated to 1200 ° C. And austenite for 1 hour, and then cooled so that the cooling rate when passing through the temperature range from 900 ° C to 300 ° C is 0.5 ° C / second. Accordingly, if the ratio of bainite in the steel structure is 80% or more and the Vickers hardness measured in the cross section is 260 Hv or more and 330 Hv or less, in the manufacturing process of the crankshaft that is air-cooled after hot forging, A substantially similar range of bainite ratio and hardness level can be achieved before nitriding.

以下、本発明にて採用する鋼組成及び数値パラメータの限定理由について説明する。
C:0.10質量%以上0.30質量%以下
Cは強度を確保するために必要な元素であるが、0.10質量%未満では強度が確保されない。一方、0.30質量%を超えると、切削加工前の素材(熱間鍛造後、焼準処理後、あるいは溶体化後の素材)の硬さが過剰となり、切削加工性を劣化させる。
Hereinafter, the reasons for limiting the steel composition and numerical parameters employed in the present invention will be described.
C: 0.10% by mass or more and 0.30% by mass or less C is an element necessary for ensuring the strength, but if it is less than 0.10% by mass, the strength is not ensured. On the other hand, if it exceeds 0.30% by mass, the hardness of the material before cutting (after hot forging, after normalizing treatment, or after solution treatment) becomes excessive, and the machinability is deteriorated.

Si:0.05質量%以上0.30質量%以下
Siは鋼溶製時の脱酸剤として含有され、また疲労強度を向上させる元素である。0.05質量%未満では所望の効果が得られず、0.30質量%を超えて多量に添加されると軟窒化性が低下し、所定の表面硬さを得ることができなくなる。
Si: 0.05 mass% or more and 0.30 mass% or less Si is an element contained as a deoxidizer during steel melting and improves fatigue strength. If it is less than 0.05% by mass, the desired effect cannot be obtained, and if it is added in a large amount exceeding 0.30% by mass, the soft nitriding property is lowered, and a predetermined surface hardness cannot be obtained.

Mn:0.3質量%以上1.5質量%以下
Mnは本発明において重要な役割を果たす元素であり、軟窒化前の素材の組織においてベイナイト組織を生成させるために不可欠な元素である。詳細にはCr、Moの含有量によって調整されるが、0.3質量%未満ではベイナイト組織の生成が安定しないため0.3質量%以上の添加が必要である。一方、1.5質量%を越して多量に含有すると素材硬さが増加すると同時に、軟窒化処理後の内部硬さの増加が期待できなくなる。
Mn: 0.3% by mass or more and 1.5% by mass or less Mn is an element that plays an important role in the present invention, and is an indispensable element for generating a bainite structure in the structure of the material before soft nitriding. Although it adjusts with content of Cr and Mo in detail, since the production | generation of a bainite structure will not become stable if less than 0.3 mass%, addition of 0.3 mass% or more is required. On the other hand, if the content exceeds 1.5% by mass, the material hardness increases, and at the same time, the increase in internal hardness after the soft nitriding treatment cannot be expected.

Mo:0.8質量%以上2.0質量%以下
V:0.1質量%以上0.5質量%以下
Mo,Vは本発明において重要な役割を果たす元素であり、軟窒化処理時の加熱によって内部硬さを増加させるために積極的に添加する。Moは添加量の増加に伴って内部硬さを増加させる作用を有するが、0.8質量%以下の含有量では目標とする硬さ増加の効果を得ることができない。他方、2.0質量%を超えて添加すると、内部硬さの増加は達成されるものの、素材状態でのベイナイトの硬さが過剰となり、被削性が低下する。Vは熱間鍛造後の放冷によってV炭化物を析出し素材硬度を上昇させる作用を有するが、添加量の増加に伴って内部硬さを増加させる作用を有するが、0.1質量%以下の含有量では目標とする硬さ増加の効果を得ることができない。他方、0.5質量%を超えて添加すると、内部硬さの増加は達成されるものの、素材状態でのベイナイトの硬さが過剰となり、被削性が低下する。
Mo: 0.8% by mass or more and 2.0% by mass or less V: 0.1% by mass or more and 0.5% by mass or less Mo and V are elements that play an important role in the present invention. To actively add to increase the internal hardness. Mo has the effect of increasing the internal hardness as the addition amount increases, but if the content is 0.8% by mass or less, the target effect of increasing the hardness cannot be obtained. On the other hand, when the content exceeds 2.0% by mass, an increase in internal hardness is achieved, but the hardness of bainite in the raw material state becomes excessive and machinability is lowered. V has the effect of precipitating V carbide and allowing the material hardness to increase by allowing to cool after hot forging, but it has the effect of increasing the internal hardness as the amount of addition increases, but it is 0.1% by mass or less. With the content, the target effect of increasing the hardness cannot be obtained. On the other hand, when the addition exceeds 0.5% by mass, an increase in internal hardness is achieved, but the hardness of bainite in the raw material state becomes excessive and machinability is reduced.

Cr:0.1質量%以上1.0質量%以下
Crも本発明において重要な役割を果たす元素であり、軟窒化処理後の表面硬さを安定させ650Hv以上の硬さを得るために添加する。0.1質量%以下の添加量では軟窒化処理後の硬さが十分に得られず、1.0質量%を超えて含有させてもその効果は飽和する。
Cr: 0.1% by mass or more and 1.0% by mass or less Cr is also an element that plays an important role in the present invention, and is added to stabilize the surface hardness after soft nitriding and to obtain a hardness of 650 Hv or more. . When the addition amount is 0.1% by mass or less, the hardness after the soft nitriding treatment cannot be sufficiently obtained, and even if the content exceeds 1.0% by mass, the effect is saturated.

2.0質量%≦Mn+Cr+Mo≦3.0質量%
2.3質量%≦C+Mo+5V≦3.7質量%
2.7質量%≦2.16Cr+Mo+2.54V≦4.0質量%
本発明においては、軟窒化処理時の加熱保持によって内部硬さを増加させることを特徴としているが、炭化物生成元素としてMo,V(あるいは、任意添加元素として後述のTi、Nb)を単純に添加しても十分な効果を得る事はできない。炭化物の2次析出は600℃前後の温度域で認められる現象であり、焼入れ焼戻し処理では一般に用いられている技術である。しかし、焼入れ焼戻し処理のように素材状態をマルテンサイト組織とした場合には、炭化物の析出によって内部硬さを高めることは困難であり、焼入れ硬さよりも高い硬さを得る事はできない。
2.0 mass% ≦ Mn + Cr + Mo ≦ 3.0 mass%
2.3 mass% ≦ C + Mo + 5V ≦ 3.7 mass%
2.7 mass% ≦ 2.16Cr + Mo + 2.54V ≦ 4.0 mass%
In the present invention, the internal hardness is increased by heating and holding during soft nitriding, but Mo and V (or Ti and Nb described later as optional additional elements) are simply added as carbide generating elements. However, sufficient effects cannot be obtained. Secondary precipitation of carbide is a phenomenon observed in a temperature range of about 600 ° C., and is a technique generally used in quenching and tempering treatment. However, when the material state is a martensite structure as in the quenching and tempering treatment, it is difficult to increase the internal hardness by precipitation of carbides, and a hardness higher than the quenching hardness cannot be obtained.

本発明の要旨は、この問題を解決するために、素材状態をベイナイト組織とすることで、素材状態では低硬度であり、600℃程度の温度で加熱保持を行う事で内部硬さを増加でき、素材状態よりも硬さを増加できるようにする。本発明者らは、種々の調査によって安定してベイナイト組織を得るための合金元素の添加量を検討した結果、2.0質量%≦Mn+Cr+Mo≦3.0質量%であることを見出した。クランクシャフトは熱間鍛造などによって素形を製造されるが熱間鍛造後の冷却速度は、クランクの寸法や形状によって異なり、広い冷却範囲でベイナイト組織が得られることが望ましい。前述のごとく、クランクシャフト形状に熱間鍛造後に空冷した場合の平均の冷却速度が、強度が必要とされるピン部、ジャーナル部で0.3℃/秒以上2℃/秒以下の範囲にある。   In order to solve this problem, the gist of the present invention is that the material state is a bainite structure, the material state has low hardness, and the internal hardness can be increased by heating and holding at a temperature of about 600 ° C. , To be able to increase the hardness than the material state. As a result of examining the addition amount of the alloy element for obtaining a bainite structure stably by various investigations, the present inventors have found that 2.0 mass% ≦ Mn + Cr + Mo ≦ 3.0 mass%. The crankshaft is manufactured by hot forging or the like, but the cooling rate after hot forging varies depending on the dimensions and shape of the crank, and it is desirable to obtain a bainite structure in a wide cooling range. As described above, the average cooling rate when air-cooled after hot forging into a crankshaft shape is in the range of 0.3 ° C./second or more and 2 ° C./second or less at the pin portion and journal portion where strength is required. .

そして、さらに鋭意検討した結果、熱間鍛造過程でベイナイト組織を得るためには、2.0質量%>Mn+Cr+Moでは、ベイナイトの生成割合が80%以上の面積率とならず、加熱保持による硬度の増加が期待できないことがわかった。他方、ベイナイト組織の生成はC量とも関係するが、Mn+Cr+Mo>3.0質量%では、素材硬さが増加しすぎて被削性が悪化する。   And as a result of further intensive studies, in order to obtain a bainite structure in the hot forging process, in 2.0 mass%> Mn + Cr + Mo, the generation ratio of bainite does not become an area ratio of 80% or more, and the hardness by heating holding It turned out that the increase cannot be expected. On the other hand, the formation of the bainite structure is also related to the amount of C, but if Mn + Cr + Mo> 3.0% by mass, the material hardness increases too much and the machinability deteriorates.

また、加熱保持により硬度を適度に増加させるには、2.3質量%≦C+Mo+5V≦3.7質量%とすることが必要である。2.3質量%>C+Mo+5Vでは加熱保持による硬度の増加代が不十分となり、C+Mo+5V>3.7質量%では、素材硬さが増加しすぎて被削性が悪化する。さらに、窒化により表面硬度を適度に増加させるには、2.7質量%≦2.16Cr+Mo+2.54V≦4.0質量%とすることが必要である。2.7質量%>2.16Cr+Mo+2.54Vでは窒化による硬度の増加代が不十分となり、2.16Cr+Mo+2.54V>4.0質量%では、素材硬さが増加しすぎて被削性が悪化する。   Further, in order to increase the hardness moderately by heating and holding, it is necessary to satisfy 2.3 mass% ≦ C + Mo + 5V ≦ 3.7 mass%. If 2.3% by mass> C + Mo + 5V, the increase in hardness due to heating is insufficient, and if C + Mo + 5V> 3.7% by mass, the material hardness increases too much and the machinability deteriorates. Furthermore, in order to increase the surface hardness appropriately by nitriding, it is necessary to satisfy 2.7 mass% ≦ 2.16Cr + Mo + 2.54V ≦ 4.0 mass%. When 2.7% by mass> 2.16Cr + Mo + 2.54V, the increase in hardness due to nitriding becomes insufficient, and when 2.16Cr + Mo + 2.54V> 4.0% by mass, the material hardness increases too much and the machinability deteriorates. .

また、軟窒化処理前の組織に占めるベイナイト組織の比率を80%以上とし、ビッカース硬さを260Hv以上330Hv以下とするのは、以下の通りである。既に説明したごとく、軟窒化処理と同時に内部硬さを増加させるためには、軟窒化前の組織状態をベイナイト組織とすることが必要である。その理由は、軟窒化前の組織形態に関係なく600℃程度の温度域に鋼を加熱保持すると炭化物が析出するが、析出強化による硬度の向上を顕著とするためには、素材状態の組織をベイナイト組織とすることが必要であるからである。また、熱間鍛造後の組織を焼きなまし処理などによって軟化させて機械加工した後に、再度、加熱冷却して組織調整・硬さ調整をすることは可能であるが、熱処理の追加によるコストの増加を生じ、また、加熱冷却による酸化スケールの発生などの課題が発生する。そこで、熱間鍛造ままの状態で所定の組織、硬さに調整されることが望ましいといえる。この際には、熱間鍛造後の状態で機械加工されることになるため、被削性の確保が必要であり、強度とのバランスを考慮して、上記のビッカース硬さを260Hv以上330Hv以下とする。   Moreover, the ratio of the bainite structure to the structure before the soft nitriding treatment is set to 80% or more, and the Vickers hardness is set to 260 Hv or more and 330 Hv or less as follows. As already described, in order to increase the internal hardness simultaneously with the soft nitriding treatment, it is necessary to change the structure state before soft nitriding to a bainite structure. The reason for this is that when steel is heated and held in a temperature range of about 600 ° C. regardless of the structure before soft nitriding, carbide precipitates. However, in order to increase the hardness by precipitation strengthening, This is because a bainite structure is required. It is possible to soften the structure after hot forging by annealing, etc. and machine it, and then heat and cool it again to adjust the structure and hardness.However, additional heat treatment increases the cost. In addition, problems such as generation of oxide scale due to heating and cooling occur. Therefore, it can be said that it is desirable to adjust to a predetermined structure and hardness in a hot forged state. In this case, since machining is performed in a state after hot forging, it is necessary to ensure machinability, and considering the balance with strength, the above-mentioned Vickers hardness is 260 Hv or more and 330 Hv or less. And

さらに、軟窒化処理後の表面硬さが650Hv以上、全硬化層深さ0.3mm以上、かつ、心部硬さが330Hv以上とする理由は以下の通りである。すなわち、クランクには曲げ応力やねじり応力が繰返し作用するので、曲げ疲労強度とねじり疲労強度が必要とされる。いずれの疲労現象においても最大の負荷応力は最表面に作用するので、疲労強度を改善するには表層硬さを増加することが重要であり表層硬さが硬いほど有利であるといえる。軟窒化処理においてはCr、Alなどの添加によって表面硬さが増加することが確認されているが、これらの元素が添加されると硬化層深さが浅くなる傾向にある。本発明者らが実部品による強度評価を行った結果、表層硬度を高めても硬化層深さが浅い場合には強度が低下することが確認された。そこで、十分な疲労強度を確保するための最適な表層硬さと硬化層深さのバランスについて鋭意検討した結果、表層硬さを650Hv以上(例えば950Hv以下)とし、全硬化層深さ0.3mm以上(例えば1.5mm以下)、さらに心部の硬さを330Hv以上(例えば430Hv以下)とすることが好適であることが判明した。   Furthermore, the reason why the surface hardness after soft nitriding is 650 Hv or more, the total hardened layer depth is 0.3 mm or more, and the core hardness is 330 Hv or more is as follows. That is, since bending stress and torsional stress repeatedly act on the crank, bending fatigue strength and torsional fatigue strength are required. In any fatigue phenomenon, the maximum load stress acts on the outermost surface, so it is important to increase the surface hardness in order to improve the fatigue strength, and it can be said that the harder the surface hardness, the more advantageous. In soft nitriding, it has been confirmed that the surface hardness increases by adding Cr, Al, etc., but when these elements are added, the hardened layer depth tends to be shallow. As a result of the strength evaluation by the actual parts by the present inventors, it was confirmed that the strength is lowered when the hardened layer depth is shallow even if the surface layer hardness is increased. Therefore, as a result of intensive studies on the balance between the optimum hardness of the surface layer and the cured layer depth to ensure sufficient fatigue strength, the surface layer hardness is set to 650 Hv or more (for example, 950 Hv or less), and the total cured layer depth is 0.3 mm or more. (For example, 1.5 mm or less) Further, it has been found that the hardness of the core is preferably 330 Hv or more (for example, 430 Hv or less).

本発明のクランクシャフトに採用する鋼には、さらに以下の元素を含有させることができる。
Nb:0.02質量%以上0.2質量%以下、
Ti:0.005質量%以上0.2質量%以下
Nb、TiはMoと同様に軟窒化時の加熱保持によって炭化物を析出することによって内部硬さを増加する作用を有するので、必要に応じて添加する。また、Nb、Tiは、軟窒化時の加熱保持によって炭化物を析出して心部硬さを増加する作用を有するので、必要に応じて添加する。しかし、上記上限値を超えて過剰に添加すると、鋼を通常の方法で製造する際の鋳造工程において大型の晶出物を生成し、内部硬さの増加に寄与する有効なNb、Tiを得ることができなくなるので、Nb、Ti量の上限は、それぞれ0.2質量%とする。
The steel employed in the crankshaft of the present invention can further contain the following elements.
Nb: 0.02 mass% or more and 0.2 mass% or less,
Ti: 0.005% by mass or more and 0.2% by mass or less Nb and Ti have the effect of increasing the internal hardness by precipitating carbides by heating and holding during soft nitriding, similar to Mo. Added. Moreover, Nb and Ti have the effect | action which precipitates a carbide | carbonized_material by heating holding | maintenance at the time of soft nitriding, and increases a core part hardness, Therefore It adds as needed. However, if it is added excessively in excess of the above upper limit value, large crystals are produced in the casting process when steel is produced by a normal method, and effective Nb and Ti that contribute to an increase in internal hardness are obtained. Therefore, the upper limit of the amount of Nb and Ti is 0.2% by mass, respectively.

Al:0.003質量%以上0.1質量%以下
Alは表面硬さを増加する目的で添加可能である。ただし、0.003質量%以下では表面硬さを増加させる効果が顕著でなくなる。他方、Al量が増加すると表面硬さも比例して増加するが、軟窒化時の窒素の内部への拡散を阻害し硬化層深さを浅くするため、硬化層深さへの悪影響は小さく、表面硬さの増加のみにその作用が期待できる範囲として、Al添加量の上限は0.1質量%に限定する。
Al: 0.003 mass% or more and 0.1 mass% or less Al can be added for the purpose of increasing the surface hardness. However, the effect of increasing the surface hardness is not significant at 0.003% by mass or less. On the other hand, as the Al content increases, the surface hardness also increases proportionally. However, since the hardened layer depth is reduced by inhibiting the diffusion of nitrogen into the soft nitriding, the adverse effect on the hardened layer depth is small, and the surface The upper limit of the amount of Al added is limited to 0.1% by mass as a range in which the effect can be expected only by increasing the hardness.

S:0.01質量%以上0.1質量%以下
Ca:0.0010質量%以上0.010質量%以下
S、Caは機械加工における被削性を改善するために用いる元素であり、MnSやCa酸化物、Ca硫化物を素地に分散させることによって、被削性の改善を図る。いずれも上記下限値未満では被削性改善の効果が顕著でなく、上限値を超えると鋼の靭性低下を招く。
S: 0.01% by mass or more and 0.1% by mass or less Ca: 0.0010% by mass or more and 0.010% by mass or less S and Ca are elements used for improving the machinability in machining, such as MnS and The machinability is improved by dispersing Ca oxide and Ca sulfide in the substrate. In any case, if the amount is less than the lower limit, the effect of improving the machinability is not remarkable, and if the upper limit is exceeded, the toughness of the steel is reduced.

なお、本発明にて使用する鋼には、本発明の前述の効果が損なわれない範囲にて上記必須成分以外の成分、例えばCu、Ni、P及びOなどが含有されていてもよい。Cu及びNiは、0.10質量%程度までであれば、スクラップ等から不可避不純物として混入する可能性もある。また、P及びOは製鋼工程上の不可避不純物として混入しうる元素であるが、Pは鋼の靭性を低下させるので、その含有率は0.0030質量%以下とするのがよい。   The steel used in the present invention may contain components other than the above essential components, for example, Cu, Ni, P and O, as long as the effects of the present invention are not impaired. If Cu and Ni are up to about 0.10% by mass, they may be mixed as inevitable impurities from scrap or the like. P and O are elements that can be mixed as inevitable impurities in the steel making process, but P decreases the toughness of the steel, so the content is preferably 0.0030% by mass or less.

図1は、本発明のクランクシャフトの一例を示すものである。該クランクシャフト1は、回転軸線Oの方向に所定の間隔にて配置されたクランクアーム2を、回転軸線Oと中心軸線が一致するように配置されるクランクジャーナル4と、回転軸線Oから半径方向に一定距離隔たった位置に中心軸線を有するクランクピン5とにより、交互に連結した構造を有してなる。クランクピン5には、注油用の孔部8が形成されている。クランクアーム2は、隣接するクランクアーム2と対向する面が平面状の基面2aとされた基面形成部を形成する。クランクジャーナル4及びクランクピン5(軸状部)の突出基端部には、基面2a側に向かうほど外径を漸増させるフィレット部7が形成されている。突出基端縁は凹状であり、曲げ負荷が作用したときに応力集中しやすいが、上記のようなフィレット部7を形成しておくと、応力集中が緩和され、曲げ強度を高めることができる。   FIG. 1 shows an example of the crankshaft of the present invention. The crankshaft 1 includes a crank arm 2 disposed at a predetermined interval in the direction of the rotational axis O, a crank journal 4 disposed so that the central axis coincides with the rotational axis O, and a radial direction from the rotational axis O. And a crank pin 5 having a central axis at a predetermined distance from each other. The crankpin 5 is formed with a hole 8 for lubrication. The crank arm 2 forms a base surface forming portion whose surface facing the adjacent crank arm 2 is a flat base surface 2a. A fillet portion 7 that gradually increases the outer diameter toward the base surface 2a side is formed at the protruding proximal end portions of the crank journal 4 and the crank pin 5 (shaft-shaped portion). The protruding base end edge is concave and tends to concentrate stress when a bending load is applied. However, if the fillet portion 7 as described above is formed, the stress concentration is relaxed and the bending strength can be increased.

クランクジャーナル4及びクランクピン5はいずれも円形断面の軸状に形成されてなり、既に説明した組成の鋼を熱間鍛造後、その外周面全体に軟窒化処理層が形成されている。このようなクランクシャフト1は、以下のようにして製造される。まず、既に詳しく説明した組成の鋼が得られるように原料を溶解・鋳造後、分塊された鋼素材を熱間鍛造後、空冷する。空冷により、クランクジャーナル4及びクランクピン5での冷却速度は0.3℃/秒以上2℃/秒以下の範囲となるが、上記の組成の採用により、軟窒化前の鋼素材は窒化処理前の組織に占めるベイナイトの比率(面積)が80%以上となり、かつ、硬さが260Hv以上330Hv以下となる。組織が主としてベイナイトになっていることで、切削によりクランクシャフト形状に容易に加工できる。該切削加工後、部材にはアンモニアガス雰囲気中で軟窒化処理を施す。軟窒化処理は550℃以上700℃以上(例えば600℃)で行なわれるが、内部がベイナイト組織になっているため、マルテンサイトからなる焼入れ組織と異なり、該軟窒化処理中に微細な炭化物が顕著に析出し、鋼内部の強度が向上する。軟窒化処理後の表面硬さは650Hv以上、全硬化層深さは0.3mm以上、かつ、心部硬さは340Hv以上とする。その後、矯正ロール等を用いた周知の冷間矯正加工を施して、軟窒化処理時に生じた部材の変形や歪等を矯正する。   Each of the crank journal 4 and the crankpin 5 is formed in a shaft shape having a circular cross section, and after the hot forging of the steel having the composition described above, a soft nitriding layer is formed on the entire outer peripheral surface. Such a crankshaft 1 is manufactured as follows. First, the raw material is melted and cast so that a steel having the composition already described in detail is obtained, and then the agglomerated steel material is hot forged and then air-cooled. By cooling with air, the cooling rate at the crank journal 4 and the crankpin 5 is in the range of 0.3 ° C./second to 2 ° C./second. However, by adopting the above composition, the steel material before soft nitriding is not subjected to nitriding treatment. The ratio (area) of bainite in the structure is 80% or more, and the hardness is 260 Hv or more and 330 Hv or less. Since the structure is mainly bainite, it can be easily processed into a crankshaft shape by cutting. After the cutting, the member is subjected to soft nitriding in an ammonia gas atmosphere. Soft nitriding is performed at 550 ° C. or higher and 700 ° C. or higher (for example, 600 ° C.). However, since the inside has a bainite structure, fine carbides are prominent during the soft nitriding treatment, unlike a quenched structure made of martensite. The strength inside the steel is improved. The surface hardness after soft nitriding is 650 Hv or more, the total hardened layer depth is 0.3 mm or more, and the core hardness is 340 Hv or more. Thereafter, a known cold straightening process using a straightening roll or the like is performed to correct the deformation or distortion of the member generated during the soft nitriding treatment.

以下、本発明の効果を確認するために行なった実験結果について説明する。
表1に示す化学組成を有する鋼を5tonアーク炉、又は150kg高周波真空誘導炉にて溶製した。得られた鋼塊は、直径90mmの丸棒に圧延又は鍛造した。
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
Steel having the chemical composition shown in Table 1 was melted in a 5 ton arc furnace or a 150 kg high frequency vacuum induction furnace. The obtained steel ingot was rolled or forged into a round bar having a diameter of 90 mm.

Figure 2006291310
Figure 2006291310

まず、発明鋼の基礎特性を求めるために90mm丸棒を熱間鍛造し、45mm丸棒を製造した。続いて、長さ250mmに切断し、大気炉中に装入して900℃に加熱して60分保持し、0.5℃/秒の冷却速度で常温まで冷却して評価用の素材とした。通常のクランクシャフトの製造工程では熱間鍛造ままの状態で用いることも有るが、ここでは、鍛造時のバラツキなどを極力抑える目的から焼準処理を追加した。なお、汎用のクランクシャフトのピン部、ジャーナル部の直径が40mm以上50mm程度であり、熱間鍛造後に空冷された場合の冷却速度が0.4℃以上0.7℃/秒の範囲にあることが確認されたので、焼準処理時の冷却速度も上記の範囲に制御した。   First, in order to obtain the basic characteristics of the invention steel, a 90 mm round bar was hot forged to produce a 45 mm round bar. Subsequently, it was cut into a length of 250 mm, charged into an atmospheric furnace, heated to 900 ° C. and held for 60 minutes, and cooled to room temperature at a cooling rate of 0.5 ° C./second to obtain a material for evaluation. . In normal crankshaft manufacturing processes, hot forging may be used as it is, but here we have added a normalization process to minimize variations during forging. The diameter of the pin part and journal part of the general-purpose crankshaft is about 40 mm to 50 mm, and the cooling rate when air-cooled after hot forging is in the range of 0.4 ° C. to 0.7 ° C./second. Therefore, the cooling rate during the normalizing process was also controlled within the above range.

次に、直径45mm、長さ250mmの丸棒中央部の横断面で表層下10mm位置の硬さをビッカース硬度計で5点測定した。また、同一位置における組織観察を行ってベイナイト組織の面積率を画像解析装置によって求めた。また、本発明鋼では、疲労強度の改善と同時に機械加工性を維持させることも目的としているので、45mm丸棒の被削性の評価を行った。被削性の評価は、クランクシャフトの加工の中で最も重要とされておる油孔の加工を模擬したガンドリル加工性の評価を行った。ガンドリル穴あけ加工の評価は、異音や工具折損による切削不能になるまでの加工穴数を切削性の指標として評価した。なお、切削条件は、直径6mmの超硬製ガンドリルで、切削速度:150m/min、送り:0.04mm/rev、穴深さ:60mmとした。以上の結果を表1に示す。   Next, the hardness at a position 10 mm below the surface layer was measured with a Vickers hardness meter in a cross section of a central portion of a round bar having a diameter of 45 mm and a length of 250 mm, using a Vickers hardness meter. Moreover, the structure observation in the same position was performed and the area ratio of the bainite structure was calculated | required with the image-analysis apparatus. In addition, since the steel of the present invention aims to maintain the machinability at the same time as improving the fatigue strength, the machinability of a 45 mm round bar was evaluated. The machinability was evaluated by gun drilling workability simulating oil hole machining, which is the most important of crankshaft machining. In the evaluation of gun drilling, the number of drilled holes until cutting became impossible due to abnormal noise or tool breakage was evaluated as an index of machinability. The cutting conditions were a carbide gun drill with a diameter of 6 mm, cutting speed: 150 m / min, feed: 0.04 mm / rev, and hole depth: 60 mm. The results are shown in Table 1.

次に、軟窒化処理後の硬化特性と疲労強度の評価を行った。上記で得られた直径45mm、長さ250mmの丸棒から機械加工によって直径15mm、長さ210mmに試験片素材を採取し、さらに、機械加工で切欠を有する小野式回転曲げ疲労試験片を作製した。切欠は試験へ中央部にノッチ底1R、ノッチ底直径8mmであり、応力集中係数(α)は約1.8である。この小野式回転曲げ試験片を量産に適用されているガス軟窒化炉に装入し、600℃、120分の軟窒化処理を施した。各試験片について、軟窒化前の内部硬さ(試験片断面の中心位置)、軟窒化後の表層硬さ、全硬化層深さ、内部硬さをビッカース硬度計で測定した。また、丸棒素材については、ミクロ観察用の試料を製造して、1質量%ナイタル試薬で組織を腐食して顕微鏡観察を行い、画像解析装置によって光学顕微鏡5視野(各視野の寸法:1.0×1.5mm)における平均のベイナイトの面積率を算出した。なお、このベイナイト比率は、軟窒化後において、軟窒化の影響を受けていない心部から寸法10×10×70mmの小寸法の試験片を切り出し、これを1200℃にて1時間オーステナイト化した後、900℃〜300℃までの温度範囲を通過する際の冷却速度が0.5℃/秒となるように冷却したときの、鋼組織に占めるベイナイトの比率とほぼ一致した。さらに、小野式回転曲げ疲労試験機により、10回で破壊しない繰り返し応力を測定し、これを疲労限度とした。以上の結果を表1に示す。すなわち、本発明の要件を充足するクランクシャフトは、表面に軟窒化処理が施されているにも拘わらず、被削性にも優れ、高い疲労強度も同時に達成できていることがわかる。 Next, the hardening characteristics and fatigue strength after the soft nitriding treatment were evaluated. A test piece material was collected from a round bar having a diameter of 45 mm and a length of 250 mm obtained above by machining to a diameter of 15 mm and a length of 210 mm, and further, an Ono type rotary bending fatigue test piece having a notch was produced by machining. . The notch has a notch bottom 1R and a notch bottom diameter of 8 mm at the center of the test, and the stress concentration factor (α) is about 1.8. This Ono-type rotating bending test piece was placed in a gas nitrocarburizing furnace used for mass production and subjected to nitrocarburizing treatment at 600 ° C. for 120 minutes. For each test piece, the internal hardness before soft nitriding (center position of the cross section of the test piece), the surface layer hardness after soft nitriding, the total hardened layer depth, and the internal hardness were measured with a Vickers hardness meter. As for the round bar material, a sample for micro observation is manufactured, the structure is corroded with 1% by mass of a night reagent, and microscopic observation is performed, and an optical microscope with five fields of view (size of each field: 1. The average area ratio of bainite at 0 × 1.5 mm) was calculated. This bainite ratio is obtained by cutting a small test piece having a size of 10 × 10 × 70 mm from a core part not affected by soft nitriding after soft nitriding, and austenizing it at 1200 ° C. for 1 hour. The ratio of bainite occupying the steel structure was substantially the same as when the cooling rate when passing through the temperature range from 900 ° C to 300 ° C was 0.5 ° C / second. Furthermore, repeated stress that did not break in 10 7 times was measured by an Ono type rotating bending fatigue tester, and this was used as the fatigue limit. The results are shown in Table 1. That is, it can be seen that a crankshaft that satisfies the requirements of the present invention is excellent in machinability and achieves high fatigue strength at the same time even though the surface is soft-nitrided.

クランクシャフトの一例を示す正面図。The front view which shows an example of a crankshaft.

Claims (5)

表面に軟窒化処理が施された鋼よりなるピン部及びジャーナル部を有したクランクシャフトであって、前記鋼が合金成分として、
C:0.10質量%以上0.30質量%以下、
Si:0.05質量%以上0.3質量%以下、
Mn:0.5質量%以上1.5質量%以下、
Mo:0.8質量%以上2.0質量%以下、
Cr:0.1質量%以上1.0質量%以下
V:0.1質量%以上0.5質量%以下、
を含有し、残部がFe及び不可避不純物からなり、
2.3質量%≦C+Mo+5V≦3.7質量%
2.0質量%≦Mn+Cr+Mo≦3.0質量%
2.7質量%≦2.16Cr+Mo+2.54V≦4.0質量%
の各範囲にあり、
かつ、軟窒化処理の影響を受けていない中心部から採片した鋼試料を1200℃にて1時間オーステナイト化した後、900℃〜300℃までの温度範囲を通過する際の冷却速度が0.5℃/秒となるように室温まで冷却したときの、鋼組織に占めるベイナイトの比率が80%以上であり、かつ、断面にて測定したビッカース硬さが260Hv以上330Hv以下であり、
さらに、前記ピン部及びジャーナル部にて、前記軟窒化層の表面硬さが650Hv以上、軟窒化層の形成深さが0.3mm以上であり、中心部硬さが340Hv以上であることを特徴とするクランクシャフト。
A crankshaft having a pin part and a journal part made of steel subjected to soft nitriding on the surface, wherein the steel is an alloy component,
C: 0.10% by mass to 0.30% by mass,
Si: 0.05 mass% or more and 0.3 mass% or less,
Mn: 0.5% by mass or more and 1.5% by mass or less,
Mo: 0.8 mass% or more and 2.0 mass% or less,
Cr: 0.1% by mass or more and 1.0% by mass or less V: 0.1% by mass or more and 0.5% by mass or less,
And the balance consists of Fe and inevitable impurities,
2.3 mass% ≦ C + Mo + 5V ≦ 3.7 mass%
2.0 mass% ≦ Mn + Cr + Mo ≦ 3.0 mass%
2.7 mass% ≦ 2.16Cr + Mo + 2.54V ≦ 4.0 mass%
In each range of
And after the steel sample extracted from the center part which is not influenced by the soft nitriding process is austenitized at 1200 degreeC for 1 hour, the cooling rate at the time of passing through the temperature range from 900 degreeC to 300 degreeC is 0.00. When cooled to room temperature so as to be 5 ° C./second, the ratio of bainite in the steel structure is 80% or more, and the Vickers hardness measured in the cross section is 260 Hv or more and 330 Hv or less,
Furthermore, in the pin part and the journal part, the surface hardness of the soft nitride layer is 650 Hv or more, the formation depth of the soft nitride layer is 0.3 mm or more, and the center hardness is 340 Hv or more. And crankshaft.
前記鋼は、Pbの含有量が0.03質量%以下である請求項1記載のクランクシャフト。 The crankshaft according to claim 1, wherein the steel has a Pb content of 0.03% by mass or less. 前記鋼は、
Nb:0.02質量%以上0.2質量%以下、
Ti:0.005質量%以上0.2質量%以下、及び、
Al:0.003質量%以上0.1質量%以下
の1種又は2種以上を含有する請求項1又は請求項2に記載のクランクシャフト。
The steel is
Nb: 0.02 mass% or more and 0.2 mass% or less,
Ti: 0.005 mass% or more and 0.2 mass% or less, and
The crankshaft according to claim 1 or 2, containing Al: one or more of 0.003% by mass to 0.1% by mass.
前記鋼は、
S:0.01質量%以上0.1質量%以下、及び、
Ca:0.0010質量%以上0.010質量%以下
の一種又は2種を含有する請求項1ないし請求項3のいずれか1項に記載のクランクシャフト。
The steel is
S: 0.01 mass% or more and 0.1 mass% or less, and
The crankshaft according to any one of claims 1 to 3, comprising one or two of Ca: 0.0010 mass% or more and 0.010 mass% or less.
請求項1ないし請求項4のいずれか1項に記載のクランクシャフトの製造方法であって、
前記鋼を、前記ピン部及びジャーナル部を有した形状に、900℃以上鋼の融点未満で熱間鍛造後又は該熱間鍛造に続いて溶体化処理した後に、前記ピン部及びジャーナル部にて冷却速度が0.3℃/秒以上2℃/秒以下となるように冷却することにより、鋼組織に占めるベイナイトの比率を80%以上とし、
その後、該ピン部及びジャーナル部を切削加工し、さらに表面に軟窒化処理を施すことを特徴とするクランクシャフトの製造方法。
A method of manufacturing a crankshaft according to any one of claims 1 to 4,
After the steel is subjected to a solution treatment after hot forging at a temperature of 900 ° C. or higher and lower than the melting point of the steel in the shape having the pin portion and the journal portion, By cooling so that the cooling rate is 0.3 ° C./second or more and 2 ° C./second or less, the ratio of bainite in the steel structure is 80% or more,
Thereafter, the pin portion and the journal portion are cut and further subjected to soft nitriding treatment on the surface.
JP2005115112A 2005-04-12 2005-04-12 Crankshaft and producing method therefor Pending JP2006291310A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005115112A JP2006291310A (en) 2005-04-12 2005-04-12 Crankshaft and producing method therefor
US11/401,450 US20060225814A1 (en) 2005-04-12 2006-04-11 Crankshaft and method for manufacturing same
DE102006017263A DE102006017263A1 (en) 2005-04-12 2006-04-12 Crankshaft and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115112A JP2006291310A (en) 2005-04-12 2005-04-12 Crankshaft and producing method therefor

Publications (1)

Publication Number Publication Date
JP2006291310A true JP2006291310A (en) 2006-10-26

Family

ID=37068120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115112A Pending JP2006291310A (en) 2005-04-12 2005-04-12 Crankshaft and producing method therefor

Country Status (3)

Country Link
US (1) US20060225814A1 (en)
JP (1) JP2006291310A (en)
DE (1) DE102006017263A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328457A (en) * 2005-05-25 2006-12-07 Sumitomo Metal Ind Ltd Steel for soft nitriding, and soft-nitrided component
JP2012193416A (en) * 2011-03-17 2012-10-11 Sumitomo Metal Ind Ltd Age-hardenable steel and method for manufacturing machine part
JP2013253265A (en) * 2012-05-07 2013-12-19 Daido Steel Co Ltd Age-hardenable bainite non-tempered steel
US8876988B2 (en) 2010-11-17 2014-11-04 Nippon Steel & Sumitomo Metal Corporation Steel for nitriding and nitrided part
KR20150110804A (en) * 2013-10-02 2015-10-02 신닛테츠스미킨 카부시키카이샤 Age-hardening steel
US10272960B2 (en) * 2015-11-05 2019-04-30 Caterpillar Inc. Nitrided track pin for track chain assembly of machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089452A (en) * 2009-05-15 2011-06-08 新日本制铁株式会社 Steel for nitrocarburizing and nitrocarburized parts
AT12365U1 (en) * 2010-12-23 2012-04-15 Advanced Manufacture Technology Ct Camtc A FORMAT
BR112017010674A2 (en) * 2014-12-10 2018-01-09 Nippon Steel & Sumitomo Metal Corporation method for producing forged crankshaft
CN104651858B (en) * 2015-03-09 2017-01-11 湖南大学 Composite heat treatment process for improving surface compactness of nitro-carburizing strengthened layer
CN105179453A (en) * 2015-07-16 2015-12-23 浙江瑞朗锻造有限公司 Multi-connecting-rod transmission crankshaft component
PL3591081T3 (en) * 2018-07-05 2021-10-25 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Method for producing a case-hardened steel component

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085514A (en) * 1973-12-05 1975-07-10
JPS52120912A (en) * 1976-04-06 1977-10-11 Mitsubishi Steel Mfg Production of nitrided low loaded articles
JPH02149616A (en) * 1988-11-30 1990-06-08 Mazda Motor Corp Manufacture of nitrided steel member
JPH04154936A (en) * 1990-10-16 1992-05-27 Aichi Steel Works Ltd Precipitation hardening nitriding steel
JPH0565592A (en) * 1991-09-07 1993-03-19 Toyota Motor Corp High fatigue strength steel for structural purpose and steel member made of the same
JPH07157842A (en) * 1993-12-03 1995-06-20 Sumitomo Metal Ind Ltd Steel for soft-nitriding
JPH09227992A (en) * 1996-02-17 1997-09-02 Sanyo Special Steel Co Ltd Soft-nitriding steel for structural purpose
JPH09279295A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
JPH09279296A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
JPH11124653A (en) * 1997-10-21 1999-05-11 Mitsubishi Seiko Muroran Tokushuko Kk Nitriding steel and nitrding treatment therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2455285B2 (en) * 1974-11-22 1977-12-15 Mtu Friedrichshafen Gmbh HARDENING PROCESS FOR CRANKSHAFT

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085514A (en) * 1973-12-05 1975-07-10
JPS52120912A (en) * 1976-04-06 1977-10-11 Mitsubishi Steel Mfg Production of nitrided low loaded articles
JPH02149616A (en) * 1988-11-30 1990-06-08 Mazda Motor Corp Manufacture of nitrided steel member
JPH04154936A (en) * 1990-10-16 1992-05-27 Aichi Steel Works Ltd Precipitation hardening nitriding steel
JPH0565592A (en) * 1991-09-07 1993-03-19 Toyota Motor Corp High fatigue strength steel for structural purpose and steel member made of the same
JPH07157842A (en) * 1993-12-03 1995-06-20 Sumitomo Metal Ind Ltd Steel for soft-nitriding
JPH09227992A (en) * 1996-02-17 1997-09-02 Sanyo Special Steel Co Ltd Soft-nitriding steel for structural purpose
JPH09279295A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
JPH09279296A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
JPH11124653A (en) * 1997-10-21 1999-05-11 Mitsubishi Seiko Muroran Tokushuko Kk Nitriding steel and nitrding treatment therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328457A (en) * 2005-05-25 2006-12-07 Sumitomo Metal Ind Ltd Steel for soft nitriding, and soft-nitrided component
JP4526440B2 (en) * 2005-05-25 2010-08-18 住友金属工業株式会社 Soft nitriding steel and soft nitriding parts
US8876988B2 (en) 2010-11-17 2014-11-04 Nippon Steel & Sumitomo Metal Corporation Steel for nitriding and nitrided part
JP2012193416A (en) * 2011-03-17 2012-10-11 Sumitomo Metal Ind Ltd Age-hardenable steel and method for manufacturing machine part
JP2013253265A (en) * 2012-05-07 2013-12-19 Daido Steel Co Ltd Age-hardenable bainite non-tempered steel
KR20150110804A (en) * 2013-10-02 2015-10-02 신닛테츠스미킨 카부시키카이샤 Age-hardening steel
KR101709883B1 (en) 2013-10-02 2017-02-23 신닛테츠스미킨 카부시키카이샤 Age-hardening steel
US10272960B2 (en) * 2015-11-05 2019-04-30 Caterpillar Inc. Nitrided track pin for track chain assembly of machine

Also Published As

Publication number Publication date
US20060225814A1 (en) 2006-10-12
DE102006017263A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP2006291310A (en) Crankshaft and producing method therefor
JP5123335B2 (en) Crankshaft and manufacturing method thereof
JP5597563B2 (en) Nitriding steel and nitride parts
JP5567747B2 (en) Soft nitriding steel, soft nitriding component and manufacturing method thereof
JP4581966B2 (en) Induction hardening steel
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP2018035408A (en) Steel for machine structural use for induction hardening and induction-hardened steel component
JP2013151719A (en) Rolled steel bar or wire rod for hot forging
JP5206271B2 (en) Carbonitriding parts made of steel
JP6693206B2 (en) Crankshaft, manufacturing method thereof, and crankshaft steel
JP2006348321A (en) Steel for nitriding treatment
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
JP2005023375A (en) High hardness steel having excellent cold workability, heat resistance and wear resistance
JP6431456B2 (en) Soft nitriding steel and parts, and methods for producing them
JP5472063B2 (en) Free-cutting steel for cold forging
JP4488228B2 (en) Induction hardening steel
JP6525115B1 (en) Nitriding bars and machine parts
JP2009167505A (en) Rough shaped article for quenched and tempered nitrocarburized crankshaft and quenched and tempered nitrocarburized crankshaft
JP2008223083A (en) Crankshaft and manufacturing method therefor
TWI630278B (en) Surface hardened steel
JP2006292108A (en) Crank shaft and its manufacturing method
JP6447064B2 (en) Steel parts
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406