JP2006284073A - Control device of cooling device - Google Patents

Control device of cooling device Download PDF

Info

Publication number
JP2006284073A
JP2006284073A JP2005103287A JP2005103287A JP2006284073A JP 2006284073 A JP2006284073 A JP 2006284073A JP 2005103287 A JP2005103287 A JP 2005103287A JP 2005103287 A JP2005103287 A JP 2005103287A JP 2006284073 A JP2006284073 A JP 2006284073A
Authority
JP
Japan
Prior art keywords
electric expansion
expansion valve
valve
control
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005103287A
Other languages
Japanese (ja)
Other versions
JP4573686B2 (en
Inventor
Masanobu Takeuchi
正信 竹内
Masayuki Tanji
雅之 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005103287A priority Critical patent/JP4573686B2/en
Publication of JP2006284073A publication Critical patent/JP2006284073A/en
Application granted granted Critical
Publication of JP4573686B2 publication Critical patent/JP4573686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/04Clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of a cooling device capable of preventing a failure of a valve caused by the accumulation of fine particulate matters such as abrasion powder by using an electric expansion valve as a pressure reducing means and controlling the electric expansion valve. <P>SOLUTION: This cooling device 1 constituted by successively circularly connecting a compressor 2, a condenser 3, the electric expansion valve 4 and a cooler 6 through piping, comprises the control device 30 for controlling the electric expansion valve 4 on the basis of a superheating degree of a refrigerant in the cooler 6, and the control device 30 executes valve cleaning operation in a state of fully opening the electric expansion valve 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、低温ショーケースや低温貯蔵庫などに設置される冷却装置、特に、電動膨張弁の制御を行う制御装置に関するものである。   The present invention relates to a cooling device installed in a low-temperature showcase, a low-temperature storage, or the like, and more particularly to a control device that controls an electric expansion valve.

従来より例えば低温ショーケースに採用される冷却装置は、圧縮機、凝縮器、減圧装置及び冷却器等を配管により順次環状に接続して所定の冷媒回路を形成すると共に、この冷媒回路内には所定量の冷媒が封入されて構成されている。そして、圧縮機が運転されると、冷媒は圧縮されて高温高圧のガス状態となり、凝縮器に流入する。凝縮器において冷媒は放熱し、凝縮液化した後、減圧装置にて減圧され、冷却器に供給される。冷却器内においては減圧された後の液冷媒が蒸発し、そのときに周囲から吸熱することにより冷却作用を発揮するものである。   Conventionally, for example, a cooling device employed in a low-temperature showcase forms a predetermined refrigerant circuit by sequentially connecting a compressor, a condenser, a decompression device, a cooler, and the like in a circular manner by piping, and in the refrigerant circuit, A predetermined amount of refrigerant is enclosed. When the compressor is operated, the refrigerant is compressed into a high-temperature and high-pressure gas state and flows into the condenser. In the condenser, the refrigerant dissipates heat and is condensed and liquefied, and then decompressed by the decompression device and supplied to the cooler. In the cooler, the liquid refrigerant after being depressurized evaporates, and at that time, it absorbs heat from the surroundings and exhibits a cooling action.

ここで、冷却器による冷却作用を精密に制御するため、減圧装置として電動膨張弁が用いられている(特許文献1参照)。通常、この電動膨張弁は、冷媒回路を循環する冷媒の流量を制御して、凝縮後の冷媒を減圧させるものであり、冷却負荷に応じて弁開度が調整される。   Here, in order to precisely control the cooling action by the cooler, an electric expansion valve is used as a decompression device (see Patent Document 1). Normally, this electric expansion valve controls the flow rate of the refrigerant circulating in the refrigerant circuit to depressurize the condensed refrigerant, and the valve opening degree is adjusted according to the cooling load.

このような電動膨張弁は、制御装置から出力される駆動電圧のパルス数に応じて、電動膨張弁に内蔵のステッピングモータを任意の角度だけ回転させ、この回転量を弁体の弁座に対する進退移動量に変換することにより、弁開度が調整される。
特許第2538444号公報
Such an electric expansion valve rotates a stepping motor built in the electric expansion valve by an arbitrary angle according to the number of pulses of the drive voltage output from the control device, and this rotation amount is advanced or retracted with respect to the valve seat of the valve element. The valve opening degree is adjusted by converting the movement amount.
Japanese Patent No. 2538444

従来の冷却装置では、減圧手段としてキャピラリーチューブの他に、制御装置に基づき圧力の調整を可能とする蒸発圧力調整弁や吸い込み圧力調整弁、電磁弁などが用いられている。この場合において、弁を構成する本体内が機械式で構成されているものについては、当該弁を構成する弁体と弁座との摩擦による摩耗粉や、配管内を流通する冷媒流による配管内壁との摩擦などにより生じる摩耗粉等の微粒物質が、弁本体内部に蓄積し、膨張弁が適切に作動しなくなる不都合が生じる。   In a conventional cooling device, an evaporation pressure adjusting valve, a suction pressure adjusting valve, an electromagnetic valve, etc. that can adjust the pressure based on a control device are used in addition to a capillary tube as a pressure reducing means. In this case, if the inside of the main body constituting the valve is a mechanical type, the inner wall of the pipe due to wear powder due to friction between the valve body constituting the valve and the valve seat, or the refrigerant flow circulating in the pipe Fine particles such as abrasion powder generated due to friction with the air accumulate in the valve body, causing a problem that the expansion valve does not operate properly.

当該弁の不良は、冷却器における冷却不良等の致命的な状態を生起するものであり、迅速に弁の不良に対応する必要があった。当該弁の不良には、機器の保守を行う作業者による弁交換等の作業が必要となり、迅速に対応することが困難であった。   The failure of the valve causes a fatal state such as a cooling failure in the cooler, and it is necessary to quickly cope with the failure of the valve. The failure of the valve requires work such as valve replacement by an operator who maintains the equipment, and it is difficult to respond quickly.

そこで、本発明は従来の技術的課題を解決するために成されたものであり、減圧手段として電動膨張弁を使用し、当該電動膨張弁を制御することで、摩耗粉等の微粒物質の堆積に基づく弁不良を未然に回避することができる冷却装置の制御装置を提供する。   Therefore, the present invention has been made to solve the conventional technical problem, and by using an electric expansion valve as a decompression means and controlling the electric expansion valve, accumulation of fine substances such as wear powders is achieved. Provided is a control device for a cooling device that can avoid a valve failure based on the above.

本発明の冷却装置の制御装置は、圧縮機、凝縮器、電動膨張弁及び冷却器を順次環状に配管接続して成る冷却装置において、冷却器における冷媒の過熱度に基づき、電動膨張弁を制御する制御手段を備え、制御手段は、電動膨張弁の開度を全開とする弁クリーニング動作を実行することを特徴とする。   The control device for the cooling device of the present invention is a cooling device in which a compressor, a condenser, an electric expansion valve, and a cooler are sequentially connected in a pipe, and controls the electric expansion valve based on the degree of superheat of the refrigerant in the cooler. And a control means for performing a valve cleaning operation for fully opening the opening of the electric expansion valve.

請求項2の発明は、上記発明において、制御手段は、電動膨張弁を所定開度に制御している状態から弁クリーニング動作を実行し、電動膨張弁を全開とした後、当該電動膨張弁を所定開度に復帰させることを特徴とする。   According to a second aspect of the present invention, in the above invention, the control means performs a valve cleaning operation from a state in which the electric expansion valve is controlled to a predetermined opening degree, opens the electric expansion valve, and then opens the electric expansion valve. It is characterized by returning to a predetermined opening.

請求項3の発明は、上記各発明において、制御手段は、電動膨張弁を全閉として冷却器の霜取運転を実行すると共に、該霜取運転の終了後、弁クリーニング動作を実行して電動膨張弁を全開としてから目標とする開度に調整することを特徴とする。   According to a third aspect of the present invention, in each of the above-mentioned inventions, the control means performs the defrosting operation of the cooler with the electric expansion valve fully closed, and executes the valve cleaning operation after the defrosting operation is completed. The expansion valve is fully opened and then adjusted to a target opening degree.

請求項4の発明は、上記各発明において、制御手段は所定の操作手段を備え、操作手段の操作に基づき、弁クリーニング動作を実行し、及び/又は、電動膨張弁を全閉とすることを特徴とする。   According to a fourth aspect of the present invention, in each of the above-mentioned inventions, the control means includes a predetermined operation means, performs a valve cleaning operation based on an operation of the operation means, and / or fully closes the electric expansion valve. Features.

請求項5の発明は、上記各発明において、冷却装置により冷却される被冷却空間の温度を検出する温度検出手段を備え、制御手段は、温度検出手段により検出される温度が目標温度から所定値より大きく離れている場合、冷却器における冷媒の過熱度に基づいて電動膨張弁を制御すると共に、温度検出手段により検出される温度が目標温度から所定値以内である場合、当該温度検出手段が検出する温度と冷却器の過熱度の双方に基づいて電動膨張弁を制御することを特徴とする。   According to a fifth aspect of the present invention, in each of the above-mentioned inventions, the temperature detecting means for detecting the temperature of the space to be cooled that is cooled by the cooling device is provided, and the control means is configured such that the temperature detected by the temperature detecting means is a predetermined value from the target temperature. When the temperature is farther away, the electric expansion valve is controlled based on the degree of superheat of the refrigerant in the cooler, and when the temperature detected by the temperature detecting means is within a predetermined value from the target temperature, the temperature detecting means detects The electric expansion valve is controlled based on both the temperature to be heated and the degree of superheat of the cooler.

請求項6の発明は、上記各発明において、制御手段は、電動膨張弁の制御に関する冷却装置固有の制御定数を複数有しており、冷却装置により冷却される被冷却空間の目標温度を含む所定の識別情報により識別された冷却装置固有の制御定数を択一的に採用し、当該制御定数に基づいて電動膨張弁を制御することを特徴とする。   According to a sixth aspect of the present invention, in each of the above inventions, the control means has a plurality of control constants specific to the cooling device relating to the control of the electric expansion valve, and includes a predetermined temperature including a target temperature of the space to be cooled that is cooled by the cooling device. The control constant specific to the cooling device identified by the identification information is alternatively adopted, and the electric expansion valve is controlled based on the control constant.

本発明によれば、圧縮機、凝縮器、電動膨張弁及び冷却器を順次環状に配管接続して成る冷却装置において、冷却器における冷媒の過熱度に基づき、電動膨張弁を制御する制御手段を備え、制御手段は、電動膨張弁の開度を全開とする弁クリーニング動作を実行することにより、電動膨張弁内部を構成する部材の摩耗により発生する摩耗粉等の微粒物質の堆積を当該電動膨張弁内部に一度に大量に流れ込む冷媒によって除去することが可能となる。   According to the present invention, in the cooling device in which the compressor, the condenser, the electric expansion valve, and the cooler are sequentially connected in a pipe, the control means for controlling the electric expansion valve based on the degree of superheat of the refrigerant in the cooler. And the control means executes a valve cleaning operation in which the opening degree of the electric expansion valve is fully opened, thereby accumulating particulate matter such as wear powder generated by wear of members constituting the electric expansion valve. It can be removed by the refrigerant flowing in a large amount into the valve at a time.

これにより、電動膨張弁の誤動作や不良発生を未然に抑制することが可能となり、好適に電動膨張弁を作動させることが可能となる。そのため、冷却器における冷却不良を未然に回避することができる。   Thereby, it becomes possible to prevent malfunction and failure of the electric expansion valve, and it is possible to operate the electric expansion valve suitably. Therefore, the cooling failure in the cooler can be avoided in advance.

請求項2の発明によれば、上記発明において、制御手段は、電動膨張弁を所定開度に制御している状態から弁クリーニング動作を実行し、電動膨張弁を全開とした後、当該電動膨張弁を所定開度に復帰させることにより、冷却装置による冷却運転を行っている場合にも弁クリーニング動作を実行することが可能となる。そのため、弁クリーニング動作を実行させるタイミングが限定されないため、利便性を向上させることができる。   According to the invention of claim 2, in the above invention, the control means executes the valve cleaning operation from a state in which the electric expansion valve is controlled to a predetermined opening degree, fully opens the electric expansion valve, and then performs the electric expansion. By returning the valve to a predetermined opening degree, it is possible to execute the valve cleaning operation even when the cooling operation by the cooling device is performed. Therefore, the timing for executing the valve cleaning operation is not limited, and convenience can be improved.

請求項3の発明によれば、上記各発明において、制御手段は、電動膨張弁を全閉として冷却器の霜取運転を実行すると共に、該霜取運転の終了後、弁クリーニング動作を実行して電動膨張弁を全開としてから目標とする開度に調整することにより、霜取運転の終了の度に弁クリーニング動作を実行することが可能となる。そのため、定期的に弁クリーニング動作をすることが可能となり、これによっても、電動膨張弁の誤動作や不良発生を未然に抑制することが可能となり、好適に電動膨張弁を作動させることが可能となる。   According to the invention of claim 3, in each of the above inventions, the control means performs the defrosting operation of the cooler with the electric expansion valve fully closed, and executes the valve cleaning operation after the defrosting operation is completed. By adjusting the opening degree after the electric expansion valve is fully opened, the valve cleaning operation can be executed every time the defrosting operation is completed. Therefore, it becomes possible to periodically perform the valve cleaning operation, which also makes it possible to prevent malfunction and failure of the electric expansion valve and to operate the electric expansion valve suitably. .

請求項4の発明によれば、上記各発明において、制御手段は所定の操作手段を備え、操作手段の操作に基づき、弁クリーニング動作を実行し、及び/又は、電動膨張弁を全閉とすることにより、任意のタイミングで操作手段を操作することで、弁クリーニング動作を実行し、また、電動膨張弁を全閉とすることが可能となる。これにより、例えば、組立完成時などにおいて試運転を行う場合にあっても、任意に弁クリーニング動作を実行することが可能となり、利便性が向上される。   According to the invention of claim 4, in each of the above-mentioned inventions, the control means comprises a predetermined operation means, performs a valve cleaning operation based on the operation of the operation means, and / or fully closes the electric expansion valve. Thus, by operating the operating means at an arbitrary timing, it is possible to execute the valve cleaning operation and fully close the electric expansion valve. Thus, for example, even when a trial operation is performed at the time of completion of assembly, the valve cleaning operation can be arbitrarily executed, and convenience is improved.

請求項5の発明によれば、上記各発明において、冷却装置により冷却される被冷却空間の温度を検出する温度検出手段を備え、制御手段は、温度検出手段により検出される温度が目標温度から所定値より大きく離れている場合、冷却器における冷媒の過熱度に基づいて電動膨張弁を制御すると共に、温度検出手段により検出される温度が目標温度から所定値以内である場合、当該温度検出手段が検出する温度と冷却器の過熱度の双方に基づいて電動膨張弁を制御することにより、被冷却空間が目標温度に近づくことで、流通する冷媒流量が減少し、オーバーシュートやこれに伴うハンチング現象の発生を抑制することができるようになる。また、温度制御の精度を向上させることが可能となる。   According to the invention of claim 5, in each of the above-mentioned inventions, the temperature detecting means for detecting the temperature of the space to be cooled that is cooled by the cooling device is provided, and the control means has a temperature detected by the temperature detecting means from the target temperature. If the temperature is greater than the predetermined value, the electric expansion valve is controlled based on the degree of superheat of the refrigerant in the cooler, and if the temperature detected by the temperature detection means is within the predetermined value from the target temperature, the temperature detection means By controlling the electric expansion valve based on both the detected temperature and the degree of superheat of the cooler, the refrigerant flow rate decreases as the space to be cooled approaches the target temperature, resulting in overshoot and hunting associated with this. Occurrence of the phenomenon can be suppressed. In addition, the accuracy of temperature control can be improved.

請求項6の発明によれば、上記各発明において、制御手段は、電動膨張弁の制御に関する冷却装置固有の制御定数を複数有しており、冷却装置により冷却される被冷却空間の目標温度を含む所定の識別情報により識別された冷却装置固有の制御定数を択一的に採用し、当該制御定数に基づいて電動膨張弁を制御することにより、それぞれの冷却装置に応じた温度制御を円滑に実行することが可能となり、また、設置時における設定作業の簡素化を図ることができ、利便性が向上させる。   According to the invention of claim 6, in each of the above inventions, the control means has a plurality of control constants specific to the cooling device relating to the control of the electric expansion valve, and sets the target temperature of the space to be cooled to be cooled by the cooling device. By selectively adopting a control constant unique to the cooling device identified by the predetermined identification information included and controlling the electric expansion valve based on the control constant, temperature control according to each cooling device is smoothly performed It is possible to execute the setting, and the setting work at the time of installation can be simplified, thereby improving convenience.

以下に図面に基づき本発明の実施形態を詳述する。図1は本発明を適用した実施例の冷却装置1の冷媒回路図、図2は図1の冷却装置1における電動膨張弁4の概略断面図、図3は冷却装置1の制御装置30の電気回路図、図4は電動膨張弁4の電気回路図を示している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 is a refrigerant circuit diagram of a cooling device 1 according to an embodiment to which the present invention is applied, FIG. 2 is a schematic sectional view of an electric expansion valve 4 in the cooling device 1 of FIG. 1, and FIG. FIG. 4 shows a circuit diagram of the electric expansion valve 4.

本実施例の冷却装置1は、例えば低温ショーケースに採用されるものであり、インバータ方式を採用した圧縮機2と、凝縮器3と、電動膨張弁4と、液管電磁弁5と、冷却器6とを配管7により順次環状に接続して冷媒回路が形成されると共に、回路内には所定量の冷媒が封入されている。また、圧縮機2の出口側には、三方管12を介してホットガス電磁弁13が接続された後、三方管14を介して冷却器6の入口側に接続されている。また、凝縮器3の近傍には、凝縮器用送風機8が設置されており、冷却器6の近傍には、冷却器用送風機9が設置されている。また、冷却器6の冷媒入口側及び冷媒出口側にはそれぞれの冷媒温度を検出するための冷媒入口側温度センサ10及び冷媒出口側温度センサ11が設けられている。   The cooling device 1 of the present embodiment is employed in, for example, a low-temperature showcase, and includes a compressor 2 that employs an inverter system, a condenser 3, an electric expansion valve 4, a liquid pipe electromagnetic valve 5, and a cooling device. A refrigerant circuit is formed by sequentially connecting the vessel 6 and the pipe 7 in a ring shape, and a predetermined amount of refrigerant is sealed in the circuit. A hot gas solenoid valve 13 is connected to the outlet side of the compressor 2 via a three-way pipe 12 and then connected to the inlet side of the cooler 6 via a three-way pipe 14. A condenser blower 8 is installed in the vicinity of the condenser 3, and a cooler blower 9 is installed in the vicinity of the cooler 6. Further, a refrigerant inlet side temperature sensor 10 and a refrigerant outlet side temperature sensor 11 for detecting the respective refrigerant temperatures are provided on the refrigerant inlet side and the refrigerant outlet side of the cooler 6.

電動膨張弁4は、冷却装置1を構成する冷媒回路内を流れる冷媒の流量を制御して、凝縮後の冷媒を減圧させるものであり、冷却負荷に応じて弁開度が調整される。ここで、図2を参照して電動膨張弁4の構成について説明する。電動膨張弁4は、弁駆動部を構成するステッピングモータ15の駆動力(即ち、駆動トルク)により弁体16が軸方向に直線移動されて、弁開度を調整するものであり、図3に示す如き汎用のマイクロコンピュータにより構成される制御装置30により制御される。   The electric expansion valve 4 controls the flow rate of the refrigerant flowing in the refrigerant circuit constituting the cooling device 1 to depressurize the condensed refrigerant, and the valve opening degree is adjusted according to the cooling load. Here, the configuration of the electric expansion valve 4 will be described with reference to FIG. In the electric expansion valve 4, the valve body 16 is linearly moved in the axial direction by the driving force (that is, driving torque) of the stepping motor 15 constituting the valve driving unit, and the valve opening degree is adjusted. It is controlled by a control device 30 constituted by a general-purpose microcomputer as shown.

図2に示すように電動膨張弁4は、本体17、弁体16、弁座18及びステッピングモータ15を備えて構成される。本体17には、入口継手19と出口継手20に連通する流路21が形成されると共に、当該流路21において弁体16の先端部を臨む位置に弁座18が突設される。弁体16の基端部は弁座18に対向して位置し、この弁体16の先端部に雄ネジ部22が固着される。これら雄ネジ部22と弁体16との少なくとも一方は、本体17に対し軸方向に移動可能で、軸周りに回転不能に構成される。また、ステッピングモータ15は、コイル25を備えたステータ26と、ロータ27とを備えて構成される。ロータ27の内周に、雄ネジ部22に螺合する雌ネジ部23が固着される。   As shown in FIG. 2, the electric expansion valve 4 includes a main body 17, a valve body 16, a valve seat 18 and a stepping motor 15. A flow path 21 communicating with the inlet joint 19 and the outlet joint 20 is formed in the main body 17, and a valve seat 18 protrudes at a position facing the tip of the valve body 16 in the flow path 21. The base end portion of the valve body 16 is positioned to face the valve seat 18, and the male screw portion 22 is fixed to the distal end portion of the valve body 16. At least one of the male screw portion 22 and the valve body 16 is configured to be movable in the axial direction with respect to the main body 17 and not rotatable about the axis. Further, the stepping motor 15 includes a stator 26 having a coil 25 and a rotor 27. On the inner periphery of the rotor 27, a female screw portion 23 that is screwed into the male screw portion 22 is fixed.

このステッピングモータ15におけるステータ26のコイル25へ、制御装置30から後述する如く駆動電圧のパルスが出力されると、このパルス数に応じて、ロータ27が任意の角度だけ回転して駆動し、この回転量が雌ネジ部23及び雄ネジ部22の作用で、弁体16の進退移動量に変換される。これにより、弁体16の先端部が弁座18に対し進退移動して、電動膨張弁4の弁開度が調整される。   When a drive voltage pulse is output from the control device 30 to the coil 25 of the stator 26 in the stepping motor 15 as will be described later, the rotor 27 is rotated by an arbitrary angle and driven according to the number of pulses. The amount of rotation is converted into the amount of forward / backward movement of the valve body 16 by the action of the female screw portion 23 and the male screw portion 22. Thereby, the front-end | tip part of the valve body 16 moves forward / backward with respect to the valve seat 18, and the valve opening degree of the electric expansion valve 4 is adjusted.

制御装置30には、図4に示す如くパルス発生回路32及び駆動回路33を介して電動膨張弁4が接続されている。制御装置30は、ステッピングモータ15の回転方向及び速度等を制御する。また、パルス発生回路32は、制御装置30からの信号に基づく駆動電圧のパルスを発生させ、このパルスをステータ26における例えば4つのコイル25へ、順序良く配分して出力する。また、駆動回路33は、駆動電圧のパルスを増幅、例えば5Vから12Vへ増幅して各コイル25へ出力する。   As shown in FIG. 4, the electric expansion valve 4 is connected to the control device 30 via a pulse generation circuit 32 and a drive circuit 33. The control device 30 controls the rotation direction and speed of the stepping motor 15. The pulse generation circuit 32 generates a drive voltage pulse based on a signal from the control device 30, and distributes and outputs the pulse to, for example, four coils 25 in the stator 26 in order. The drive circuit 33 amplifies the drive voltage pulse, for example, amplifies it from 5 V to 12 V, and outputs it to each coil 25.

また、制御装置30には、図3に示すように入力側には、冷却器6の冷媒入口側温度を検出する冷媒入口側温度センサ10と、冷却器6の冷媒出口側温度を検出する冷媒出口側温度センサ11と、当該冷却装置1により冷却される被冷却空間としての例えば庫内温度を検出する庫内温度センサ31が接続されている。更にまた、この制御装置30の入力側には、コントロールパネル35が接続されており、当該コントロールパネル35には、詳細は後述する弁クリーニング動作を指示するための弁クリーニングスイッチ36が設けられている。   Further, as shown in FIG. 3, the control device 30 includes, on the input side, a refrigerant inlet side temperature sensor 10 that detects a refrigerant inlet side temperature of the cooler 6 and a refrigerant that detects a refrigerant outlet side temperature of the cooler 6. An outlet side temperature sensor 11 and an internal temperature sensor 31 that detects, for example, an internal temperature as a space to be cooled that is cooled by the cooling device 1 are connected. Furthermore, a control panel 35 is connected to the input side of the control device 30, and the control panel 35 is provided with a valve cleaning switch 36 for instructing a valve cleaning operation to be described later in detail. .

他方、制御装置30の出力側には、前記電動膨張弁4以外にも、前記ホットガス電磁弁13と、液管電磁弁5、図3には図示しないが圧縮機2、凝縮器用送風機8や冷却器用送風機9等も接続されているものとする。   On the other hand, on the output side of the control device 30, besides the electric expansion valve 4, the hot gas solenoid valve 13 and the liquid pipe solenoid valve 5, although not shown in FIG. 3, the compressor 2, the condenser blower 8, The cooler blower 9 and the like are also connected.

以上の構成により、コントロールパネル35を操作することで、冷却装置1の運転が開始されると、圧縮機2の運転により圧縮機2の吐出側の冷媒配管から吐出された高温高圧のガス冷媒は、三方管12を経て制御装置30によりホットガス電磁弁13が閉鎖されていることから、凝縮器3に流入し、冷媒を凝縮液化する。この凝縮器9から流出した液化冷媒は、制御装置30により、電動膨張弁4が後述する如く開度制御が行われ、液管電磁弁5が開放されていることから、当該電動膨張弁4により減圧された後、液管電磁弁5、三方管14を介して冷却器6に流入する。   With the above configuration, when the operation of the cooling device 1 is started by operating the control panel 35, the high-temperature and high-pressure gas refrigerant discharged from the refrigerant pipe on the discharge side of the compressor 2 by the operation of the compressor 2 is Since the hot gas solenoid valve 13 is closed by the control device 30 via the three-way pipe 12, it flows into the condenser 3 and condenses and liquefies the refrigerant. The liquefied refrigerant that has flowed out of the condenser 9 is controlled by the control device 30 so that the electric expansion valve 4 is opened as described later, and the liquid pipe solenoid valve 5 is opened. After being depressurized, it flows into the cooler 6 through the liquid pipe solenoid valve 5 and the three-way pipe 14.

そして、冷却器6に流入した冷媒は、蒸発し、周囲から熱を奪って冷却作用を発揮する。この冷却器6と熱交換した冷気を前記冷却器用送風機9にて、被冷却空間内に循環させ、当該被冷却空間内を所定温度に冷却する。そして、冷却器6から流出した冷媒は、圧縮機2に帰還する。   And the refrigerant | coolant which flowed into the cooler 6 evaporates, takes heat from the circumference | surroundings, and exhibits a cooling effect | action. The cool air exchanged with the cooler 6 is circulated in the space to be cooled by the cooler blower 9 to cool the space to be cooled to a predetermined temperature. Then, the refrigerant that has flowed out of the cooler 6 returns to the compressor 2.

このとき、制御装置30は、冷却器6の冷媒の入口側及び出口側に設けられた温度センサ10、11の出力に基づき当該冷却器6における過熱度を演算し、当該過熱度及び前記庫内温度センサ31の出力に基づき電動膨張弁4の開度を制御する。   At this time, the control device 30 calculates the superheat degree in the cooler 6 based on the outputs of the temperature sensors 10 and 11 provided on the refrigerant inlet side and the outlet side of the cooler 6, and calculates the superheat degree and the inside of the warehouse. Based on the output of the temperature sensor 31, the opening degree of the electric expansion valve 4 is controlled.

即ち、庫内温度センサ31により検出された温度が予めコントロールパネル35によって設定された目標とする冷却温度から所定値より大きく離れている場合には、前記過熱度に基づき電動膨張弁4の開度を制御する。過熱度が所定値、例えば10degよりも高い場合には、制御装置30は、パルス発生回路32に電動膨張弁4の開度を上げる信号を発する。当該信号に基づきパルス発生回路32は、所定の駆動電圧のパルスを発生させ、駆動回路33にて当該駆動電圧のパルスを増幅させ、電動膨張弁4の各コイル25に出力する。これにより、ステッピングモータ15は、当該パルス信号数に応じて正回転させ、当該電動膨張弁4の冷媒流量を増加させる。   That is, when the temperature detected by the internal temperature sensor 31 is far from the target cooling temperature set in advance by the control panel 35, the opening degree of the electric expansion valve 4 is based on the degree of superheat. To control. When the degree of superheat is higher than a predetermined value, for example, 10 deg, the control device 30 issues a signal for increasing the opening degree of the electric expansion valve 4 to the pulse generation circuit 32. Based on the signal, the pulse generation circuit 32 generates a pulse of a predetermined drive voltage, the drive circuit 33 amplifies the pulse of the drive voltage, and outputs it to each coil 25 of the electric expansion valve 4. Thereby, the stepping motor 15 rotates forward according to the number of the pulse signals, and increases the refrigerant flow rate of the electric expansion valve 4.

他方、過熱度が所定値、例えば10degよりも低い場合には、制御装置30は、パルス発生回路32に電動膨張弁4の開度を下げる信号を発する。当該信号に基づきパルス発生回路32は、所定の駆動電圧のパルスを発生させ、駆動回路33にて当該駆動電圧のパルスを増幅させ、電動膨張弁4の各コイル25に出力する。これにより、ステッピングモータ15は、当該パルス信号数に応じて逆回転させ、当該電動膨張弁4の冷媒流量を減少させる。   On the other hand, when the degree of superheat is lower than a predetermined value, for example, 10 deg, the control device 30 issues a signal for lowering the opening degree of the electric expansion valve 4 to the pulse generation circuit 32. Based on the signal, the pulse generation circuit 32 generates a pulse of a predetermined drive voltage, the drive circuit 33 amplifies the pulse of the drive voltage, and outputs it to each coil 25 of the electric expansion valve 4. Thereby, the stepping motor 15 rotates reversely according to the number of pulse signals, and decreases the refrigerant flow rate of the electric expansion valve 4.

これにより、電動膨張弁4により、冷却器6に供給される冷媒流量は随時制御され、適度な過熱度にて冷却器6において冷媒の蒸発が行われる。そのため、過熱度が所定の値を下回ることにより生じる圧縮機2への液バックを未然に回避することができる。   Thus, the flow rate of the refrigerant supplied to the cooler 6 is controlled at any time by the electric expansion valve 4, and the refrigerant is evaporated in the cooler 6 with an appropriate degree of superheat. Therefore, the liquid back to the compressor 2 that occurs when the degree of superheat falls below a predetermined value can be avoided in advance.

上述した如く過熱度に基づく電動膨張弁4の開度制御により、庫内温度センサ31により検出される温度が、前記設定された目標とする冷却温度から所定値以内にまで低下した場合、制御装置30は、庫内温度センサ31により検出された温度と、前記過熱度の双方に基づいて、電動膨張弁4の開度制御を行う。   As described above, when the temperature detected by the internal temperature sensor 31 is lowered from the set target cooling temperature to within a predetermined value by the opening degree control of the electric expansion valve 4 based on the degree of superheat, the control device 30 controls the opening degree of the electric expansion valve 4 based on both the temperature detected by the internal temperature sensor 31 and the degree of superheat.

即ち、制御装置30の内部には、PID演算処理部30Aを備えており、このPID演算処理部30Aは、庫内温度センサ31により検出された温度と、コントロールパネル35により設定された目標とする冷却温度との偏差eから、比例(P)と、積分(I)と、微分(D)の演算を実行するものである。詳しくは、PID演算処理部30Aは、庫内温度センサ31により検出された温度と、目標とする冷却温度との偏差eに比例してそれを減らす方向の制御量を算出する比例動作と、偏差eの積分値を減らす方向の制御量を算出する積分動作と、偏差eの変化の傾き(微分値)を減らす方向の制御量を算出する微分動作を行い、これらの制御量を加算した制御量から電動膨張弁4の開度を決定する。そして、これに基づき上記過熱度による電動膨張弁4の開度制御と同様にパルス発生回路32に電動膨張弁4の開度を上げる若しくは下げる信号を発し、ステッピングモータ15を当該パルス信号数に応じて回転させ、当該電動膨張弁4の冷媒流量を制御する。なお、この場合には、前記過熱度に基づく電動膨張弁4の開度制御を加味して行っても良いものとする。   That is, a PID calculation processing unit 30A is provided inside the control device 30, and the PID calculation processing unit 30A is set to a temperature detected by the internal temperature sensor 31 and a target set by the control panel 35. The proportional (P), integral (I), and derivative (D) operations are executed from the deviation e from the cooling temperature. Specifically, the PID arithmetic processing unit 30A calculates a control amount in a direction in which the temperature is detected in proportion to the deviation e between the temperature detected by the internal temperature sensor 31 and the target cooling temperature, and the deviation. A control amount obtained by adding an integral operation for calculating a control amount in a direction to reduce the integral value of e and a differential operation for calculating a control amount in a direction to reduce the slope (differential value) of the change in deviation e. From this, the opening degree of the electric expansion valve 4 is determined. Based on this, a signal for raising or lowering the opening degree of the electric expansion valve 4 is issued to the pulse generation circuit 32 in the same manner as the opening degree control of the electric expansion valve 4 based on the degree of superheat, and the stepping motor 15 is caused to respond to the number of pulse signals. And the refrigerant flow rate of the electric expansion valve 4 is controlled. In this case, the opening degree control of the electric expansion valve 4 based on the degree of superheat may be taken into account.

これにより、被冷却空間の温度を精度良く目標温度に近づけることが可能となり、流通する冷媒流量が減少し、オーバーシュートやこれに伴うハンチング現象の発生を抑制することができるようになる。高精度に温度制御を実現することが可能となる。   As a result, the temperature of the space to be cooled can be brought close to the target temperature with high accuracy, the flow rate of the circulating refrigerant can be reduced, and the occurrence of overshooting and the accompanying hunting phenomenon can be suppressed. It becomes possible to realize temperature control with high accuracy.

また、この制御装置30は、上記PID演算処理部30AにおけるPID演算処理を行うための制御定数を複数記憶している。これは当該冷却装置1は、複数種類の冷却設備に設置可能とされており、これら冷却設備ごとに被冷却空間の条件、例えば、庫内状況、庫内容量、庫内の設定温度(例えば、冷蔵温度や冷凍温度)などが異なる。そのため、当該冷却装置1がそれぞれの冷却設備における冷却条件を満たす冷却運転を実行するため、それぞれの冷却設備における例えば被冷却空間の目標温度等の所定の識別情報ごとに対応するPID演算処理を行うための制御定数を複数保持している。   In addition, the control device 30 stores a plurality of control constants for performing PID calculation processing in the PID calculation processing unit 30A. This is because the cooling device 1 can be installed in a plurality of types of cooling facilities, and the conditions of the space to be cooled for each of these cooling facilities, for example, the condition in the warehouse, the capacity in the warehouse, the set temperature in the warehouse (for example, Refrigeration temperature and freezing temperature) are different. Therefore, in order for the cooling device 1 to perform a cooling operation that satisfies the cooling condition in each cooling facility, PID calculation processing corresponding to each predetermined identification information such as a target temperature of the space to be cooled in each cooling facility is performed. A plurality of control constants are held.

そして、冷却装置1が前記いずれかの冷却設備に設置された場合において、制御装置30に前記識別情報を入力することで、制御装置30は、係る冷却設備固有の前記制御定数を択一的に採用し、当該制御定数に基づいて上述した如き電動膨張弁4の制御を行うものとする。なお、識別情報の制御装置30への入力方法としては、予めコントロールパネル35に設けられた図示しないディップスイッチの操作若しくは、端子の接続、設定温度の入力などが挙げられる。   When the cooling device 1 is installed in any one of the cooling facilities, the control device 30 alternatively inputs the control constant unique to the cooling facility by inputting the identification information to the control device 30. It is assumed that the electric expansion valve 4 is controlled as described above based on the control constant. Examples of the method for inputting the identification information to the control device 30 include operation of a dip switch (not shown) provided in advance on the control panel 35, connection of a terminal, input of a set temperature, and the like.

これにより、冷却装置1がいずれの冷却設備に用いられた場合であっても、PID演算処理部30AにおけるPID演算処理を行うための制御定数を制御装置30が択一的に採用することで、設置時や試運転時等における作業を簡素化することができると共に、それぞれの冷却装置1に応じた温度制御を円滑に実行することが可能となる。利便性が向上される。   Thereby, even if it is a case where the cooling device 1 is used for any cooling equipment, the control device 30 alternatively adopts a control constant for performing the PID calculation processing in the PID calculation processing unit 30A. It is possible to simplify the operation during installation, trial operation, and the like, and it is possible to smoothly execute temperature control according to each cooling device 1. Convenience is improved.

一方、冷却装置1を、上述した如き冷却運転を連続して行うことにより、冷却器6に着霜が生じるため、制御装置30は、霜取運転を実行する。本実施例おいて、制御装置30は、一定の霜取周期毎、例えば8時間や9時間毎に霜取運転を実行する。   On the other hand, by continuously performing the cooling operation as described above for the cooling device 1, frost formation occurs in the cooler 6, so the control device 30 executes the defrosting operation. In the present embodiment, the control device 30 performs the defrosting operation every fixed defrost cycle, for example, every 8 hours or 9 hours.

冷却装置1による冷却時間が霜取周期を経過した場合には、霜取開始信号が発生し、制御装置30は、霜取運転を実行する。霜取運転開始時において、制御装置30は、冷却運転と継続して圧縮機2の運転を行うと共に、前記ホットガス電磁弁13を開放する。また、ホットガス電磁弁13が開放されてから所定時間経過後に、電動膨張弁4を全閉とすると共に、液管電磁弁5を閉鎖する。これにより、圧縮機2の吐出側の冷媒配管から吐出された高温高圧のガス冷媒は、三方管14を経てホットガス電磁弁13を介して、冷却器6に流入する。ここで、高温のガス冷媒が通過することにより、冷却器6は加熱され、当該冷却器6の霜取が行われる。冷却器6から流出した冷媒は、圧縮機2に帰還する。   When the cooling time by the cooling device 1 has passed the defrost cycle, a defrost start signal is generated and the control device 30 executes the defrost operation. At the start of the defrosting operation, the control device 30 continues the cooling operation and operates the compressor 2 and opens the hot gas solenoid valve 13. In addition, the electric expansion valve 4 is fully closed and the liquid pipe electromagnetic valve 5 is closed after a predetermined time has elapsed since the hot gas electromagnetic valve 13 was opened. As a result, the high-temperature and high-pressure gas refrigerant discharged from the refrigerant pipe on the discharge side of the compressor 2 flows into the cooler 6 through the three-way pipe 14 and the hot gas solenoid valve 13. Here, when the high-temperature gas refrigerant passes, the cooler 6 is heated and the cooler 6 is defrosted. The refrigerant that has flowed out of the cooler 6 returns to the compressor 2.

当該霜取運転の終了後、制御装置30は、電動膨張弁4内部に堆積した摩耗粉等の微粒物質を除去するための弁クリーニング動作を実行する。当該弁クリーニング動作では、制御装置30は、霜取運転において全閉とされていた電動膨張弁4を全開にまで開度を調整し、大量の冷媒を電動膨張弁4内に流入させる。   After completion of the defrosting operation, the control device 30 executes a valve cleaning operation for removing fine substances such as wear powder accumulated in the electric expansion valve 4. In the valve cleaning operation, the control device 30 adjusts the opening of the electric expansion valve 4 that has been fully closed in the defrosting operation until the electric expansion valve 4 is fully opened, and causes a large amount of refrigerant to flow into the electric expansion valve 4.

そのため、電動膨張弁4内部に構成される流路21内に堆積した摩耗粉等の微粒物質を係る弁クリーニング動作により、電動膨張弁4内部に一度に大量の冷媒を流入させることで除去することが可能となる。所定時間経過後、制御装置30は、電動膨張弁4の開度を上記制御における目標とする開度に調整する。   Therefore, fine substances such as wear powder accumulated in the flow path 21 configured in the electric expansion valve 4 are removed by flowing a large amount of refrigerant into the electric expansion valve 4 at a time by the valve cleaning operation. Is possible. After a predetermined time has elapsed, the control device 30 adjusts the opening degree of the electric expansion valve 4 to a target opening degree in the above control.

これにより、電動膨張弁4の誤動作や不良発生を未然に抑制することが可能となり、好適に電動膨張弁4を作動させることが可能となる。そのため、冷却器6における冷却不良等の致命的な状態を未然に回避することができる。   As a result, it is possible to prevent malfunction and failure of the electric expansion valve 4 and to operate the electric expansion valve 4 appropriately. Therefore, a fatal state such as a cooling failure in the cooler 6 can be avoided in advance.

特に、本実施例では、定期的な周期にて実行される霜取運転の終了後に、弁クリーニング動作を実行するため、霜取運転の終了の度に弁クリーニング動作を実行することが可能となる。そのため、定期的に弁クリーニング動作をすることが可能となり、これによっても、電動膨張弁4の誤動作や不良発生を未然に抑制することが可能となり、好適に電動膨張弁4を作動させることが可能となる。   In particular, in this embodiment, since the valve cleaning operation is performed after the defrosting operation that is executed at regular intervals, the valve cleaning operation can be performed every time the defrosting operation is completed. . Therefore, it is possible to periodically perform the valve cleaning operation, which also makes it possible to prevent malfunction and failure of the electric expansion valve 4 and to operate the electric expansion valve 4 appropriately. It becomes.

なお、当該弁クリーニング動作は、上述した如くコントロールパネル35に設けられた弁クリーニングスイッチ36を操作することによっても、実行することが可能である。即ち、冷却運転を行っている際に、弁クリーニングスイッチ36を操作することで、制御装置30は、電動膨張弁4の開度を全開に調整し、大量の冷媒を電動膨張弁4内に流入させ、弁内部の微粒物質の除去を行う。   The valve cleaning operation can also be executed by operating the valve cleaning switch 36 provided on the control panel 35 as described above. That is, by operating the valve cleaning switch 36 during the cooling operation, the control device 30 adjusts the opening degree of the electric expansion valve 4 to fully open, and a large amount of refrigerant flows into the electric expansion valve 4. To remove particulate matter inside the valve.

この場合、弁クリーニング動作の終了後、例えば、電動膨張弁4の開度を全開としてから所定時間経過後、制御装置30は、電動膨張弁4の開度を弁クリーニング動作を行う以前における開度に復帰させるものとする。   In this case, after the valve cleaning operation is completed, for example, after a predetermined time has elapsed since the opening of the electric expansion valve 4 is fully opened, the control device 30 sets the opening of the electric expansion valve 4 before the valve cleaning operation is performed. Shall be restored to

これより、冷却装置1による冷却運転を行っている場合にも弁クリーニング動作を実行することが可能となり、弁クリーニング動作を実行させるタイミングが限定されないため、例えば、組立完成時などにおいて試運転を行う場合にあっても、任意に弁クリーニング動作を実行することが可能となり、利便性が向上される。   As a result, the valve cleaning operation can be performed even when the cooling operation by the cooling device 1 is performed, and the timing for performing the valve cleaning operation is not limited. Even in this case, the valve cleaning operation can be arbitrarily executed, and the convenience is improved.

なお、弁クリーニングスイッチ36による操作による電動膨張弁4の制御は、上記に限られるものではなく、例えば、一度スイッチ36を操作することで制御装置30が電動膨張弁4を全閉とし、再度スイッチ36を操作することで制御装置が電動膨張弁4の開度を全開とする弁クリーニング動作を行っても良いものとする。これにより、一度、冷媒の流入を停止した後、再度電動膨張弁4の開度を全開とすることで、一度に弁内部に流入する冷媒量を増大させることができ、弁内部のクリーニング効果を向上させることが可能となる。   The control of the electric expansion valve 4 by the operation by the valve cleaning switch 36 is not limited to the above. For example, by operating the switch 36 once, the control device 30 fully closes the electric expansion valve 4 and switches it again. By operating 36, the control device may perform a valve cleaning operation that fully opens the opening of the electric expansion valve 4. Thereby, after stopping the inflow of the refrigerant once, the opening of the electric expansion valve 4 is fully opened again, the amount of refrigerant flowing into the valve at a time can be increased, and the cleaning effect inside the valve can be increased. It becomes possible to improve.

本発明を適用した冷却装置の冷媒回路図である。It is a refrigerant circuit figure of the cooling device to which this invention is applied. 図1の冷却装置における電動膨張弁の概略断面図である。It is a schematic sectional drawing of the electric expansion valve in the cooling device of FIG. 冷却装置の制御装置の電気回路図である。It is an electric circuit diagram of the control apparatus of a cooling device. 電動膨張弁の電気回路図である。It is an electric circuit diagram of an electric expansion valve.

符号の説明Explanation of symbols

1 冷却装置
2 圧縮機
3 凝縮器
4 電動膨張弁
6 冷却器
10 冷媒入口側温度センサ
11 冷媒出口側温度センサ
13 ホットガス電磁弁
30 制御装置
30A PID演算処理部
31 庫内温度センサ
32 パルス発生回路
33 駆動回路
35 コントロールパネル
36 弁クリーニングスイッチ
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Compressor 3 Condenser 4 Electric expansion valve 6 Cooler 10 Refrigerant inlet side temperature sensor 11 Refrigerant outlet side temperature sensor 13 Hot gas solenoid valve 30 Controller 30A PID arithmetic processing part 31 Internal temperature sensor 32 Pulse generation circuit 33 Drive circuit 35 Control panel 36 Valve cleaning switch

Claims (6)

圧縮機、凝縮器、電動膨張弁及び冷却器を順次環状に配管接続して成る冷却装置において、
前記冷却器における冷媒の過熱度に基づき、前記電動膨張弁を制御する制御手段を備え、
該制御手段は、前記電動膨張弁の開度を全開とする弁クリーニング動作を実行することを特徴とする冷却装置の制御装置。
In the cooling device comprising a compressor, a condenser, an electric expansion valve, and a cooler connected in a circular pipe in order,
Control means for controlling the electric expansion valve based on the degree of superheat of the refrigerant in the cooler,
The control unit is a control device for a cooling device, which performs a valve cleaning operation in which the opening of the electric expansion valve is fully opened.
前記制御手段は、前記電動膨張弁を所定開度に制御している状態から前記弁クリーニング動作を実行し、前記電動膨張弁を全開とした後、当該電動膨張弁を前記所定開度に復帰させることを特徴とする請求項1の冷却装置の制御装置。   The control means executes the valve cleaning operation from a state in which the electric expansion valve is controlled to a predetermined opening degree, and after opening the electric expansion valve fully, returns the electric expansion valve to the predetermined opening degree. The control device for a cooling device according to claim 1. 前記制御手段は、前記電動膨張弁を全閉として前記冷却器の霜取運転を実行すると共に、該霜取運転の終了後、前記弁クリーニング動作を実行して前記電動膨張弁を全開としてから目標とする開度に調整することを特徴とする請求項1又は請求項2の冷却装置の制御装置。   The control means performs the defrosting operation of the cooler with the electric expansion valve fully closed, and after the defrosting operation is completed, executes the valve cleaning operation to fully open the electric expansion valve and then the target. The control device for the cooling device according to claim 1, wherein the control device is adjusted to an opening degree. 前記制御手段は所定の操作手段を備え、該操作手段の操作に基づき、前記弁クリーニング動作を実行し、及び/又は、前記電動膨張弁を全閉とすることを特徴とする請求項1、請求項2又は請求項3の冷却装置の制御装置。   2. The control unit according to claim 1, wherein the control unit includes a predetermined operation unit, the valve cleaning operation is executed based on an operation of the operation unit, and / or the electric expansion valve is fully closed. The control device of the cooling device according to claim 2 or claim 3. 前記冷却装置により冷却される被冷却空間の温度を検出する温度検出手段を備え、
前記制御手段は、前記温度検出手段により検出される温度が目標温度から所定値より大きく離れている場合、前記冷却器における冷媒の過熱度に基づいて前記電動膨張弁を制御すると共に、
前記温度検出手段により検出される温度が前記目標温度から所定値以内である場合、当該温度検出手段が検出する温度と前記冷却器の過熱度の双方に基づいて前記電動膨張弁を制御することを特徴とする請求項1、請求項2、請求項3又は請求項4の冷却装置の制御装置。
Comprising a temperature detecting means for detecting the temperature of the space to be cooled cooled by the cooling device;
The control means controls the electric expansion valve based on the degree of superheat of the refrigerant in the cooler when the temperature detected by the temperature detection means is far from a predetermined value from the target temperature.
When the temperature detected by the temperature detecting means is within a predetermined value from the target temperature, the electric expansion valve is controlled based on both the temperature detected by the temperature detecting means and the degree of superheat of the cooler. The control device for a cooling device according to claim 1, 2, 3, or 4 characterized by the above.
前記制御手段は、前記電動膨張弁の制御に関する冷却装置固有の制御定数を複数有しており、前記冷却装置により冷却される被冷却空間の目標温度を含む所定の識別情報により識別された冷却装置固有の前記制御定数を択一的に採用し、当該制御定数に基づいて前記電動膨張弁を制御することを特徴とする請求項1、請求項2、請求項3、請求項4又は請求項5の冷却装置の制御装置。   The control means has a plurality of control constants specific to the cooling device related to the control of the electric expansion valve, and is a cooling device identified by predetermined identification information including a target temperature of a space to be cooled to be cooled by the cooling device The unique control constant is alternatively adopted, and the electric expansion valve is controlled based on the control constant, wherein the electric expansion valve is controlled. Cooling system control device.
JP2005103287A 2005-03-31 2005-03-31 Control device for cooling system Expired - Fee Related JP4573686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103287A JP4573686B2 (en) 2005-03-31 2005-03-31 Control device for cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103287A JP4573686B2 (en) 2005-03-31 2005-03-31 Control device for cooling system

Publications (2)

Publication Number Publication Date
JP2006284073A true JP2006284073A (en) 2006-10-19
JP4573686B2 JP4573686B2 (en) 2010-11-04

Family

ID=37406188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103287A Expired - Fee Related JP4573686B2 (en) 2005-03-31 2005-03-31 Control device for cooling system

Country Status (1)

Country Link
JP (1) JP4573686B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015006955A1 (en) * 2013-07-18 2015-01-22 杭州三花研究院有限公司 Method for controlling vehicle air-conditioning system, and vehicle air-conditioning system
WO2018211556A1 (en) * 2017-05-15 2018-11-22 三菱電機株式会社 Refrigeration cycle device
JP2019007666A (en) * 2017-06-23 2019-01-17 福島工業株式会社 Refrigeration device
CN111503277A (en) * 2019-01-31 2020-08-07 杭州三花研究院有限公司 Valve assembly and method of manufacturing the same
CN112556248A (en) * 2020-12-08 2021-03-26 东风汽车集团有限公司 Self-cleaning method of automobile air conditioner heat pump system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039183A (en) * 1989-06-07 1991-01-17 Saginomiya Seisakusho Inc Temperature type expansion valve
JPH0719621A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Operation controller for refrigerating plant
JPH1151514A (en) * 1997-07-30 1999-02-26 Hitachi Ltd Air conditioner
JP2004053070A (en) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit and vending machine using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039183A (en) * 1989-06-07 1991-01-17 Saginomiya Seisakusho Inc Temperature type expansion valve
JPH0719621A (en) * 1993-06-30 1995-01-20 Daikin Ind Ltd Operation controller for refrigerating plant
JPH1151514A (en) * 1997-07-30 1999-02-26 Hitachi Ltd Air conditioner
JP2004053070A (en) * 2002-07-17 2004-02-19 Fuji Electric Retail Systems Co Ltd Refrigerant cooling circuit and vending machine using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015006955A1 (en) * 2013-07-18 2015-01-22 杭州三花研究院有限公司 Method for controlling vehicle air-conditioning system, and vehicle air-conditioning system
KR101827182B1 (en) 2013-07-18 2018-02-07 항저우 산후아 리서치 인스티튜트 컴퍼니 리미티드 Method for controlling vehicle air-conditioning system, and vehicle air-conditioning system
US10486499B2 (en) 2013-07-18 2019-11-26 Hangzhou Sanhua Research Institute Co., Ltd. Method for controlling vehicle air-conditioning system, and vehicle air-conditioning system
WO2018211556A1 (en) * 2017-05-15 2018-11-22 三菱電機株式会社 Refrigeration cycle device
JPWO2018211556A1 (en) * 2017-05-15 2019-11-07 三菱電機株式会社 Refrigeration cycle equipment
CN110621944A (en) * 2017-05-15 2019-12-27 三菱电机株式会社 Refrigeration cycle device
CN110621944B (en) * 2017-05-15 2021-04-20 三菱电机株式会社 Refrigeration cycle device
JP2019007666A (en) * 2017-06-23 2019-01-17 福島工業株式会社 Refrigeration device
CN111503277A (en) * 2019-01-31 2020-08-07 杭州三花研究院有限公司 Valve assembly and method of manufacturing the same
CN112556248A (en) * 2020-12-08 2021-03-26 东风汽车集团有限公司 Self-cleaning method of automobile air conditioner heat pump system

Also Published As

Publication number Publication date
JP4573686B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
US10280928B2 (en) Centrifugal compressor with surge prediction
US20130025304A1 (en) Loading and unloading of compressors in a cooling system
US9459029B2 (en) Valve controller, valve controlling method, refrigeration and cold storage system, device and method for controlling the system
JP2006266533A (en) Valve control system and valve control method
JP4573686B2 (en) Control device for cooling system
US9003819B2 (en) Heat pump apparatus using supercooling degree to control expansion valve
JP2006284074A (en) Control device of cooling device
EP3403034B1 (en) Centrifugal compressor with hot gas injection
EP3164648B1 (en) Refrigerant cooling for variable speed drive
JP5386141B2 (en) Heat pump device control method, heat pump device outdoor unit and heat pump device
US10563673B2 (en) Centrifugal compressor with liquid injection
US10330106B2 (en) Centrifugal compressor with surge control
JP2011241760A (en) Motor-driven compressor, heat source machine, and method of controlling the heat source machine
JP5113776B2 (en) Refrigeration equipment
JP2012149857A (en) Motor-operated valve control system
JP2007017110A (en) Air conditioner
EP2597389A2 (en) Fan speed control for air-cooled condenser in precision cooling
CN107477925B (en) Device and method for detecting failure of pipeline insulating layers of indoor unit and outdoor unit of air conditioner
WO2016084341A1 (en) Heat pump cycle device
JP2000088363A (en) Heat pump type air conditioner
JP2010230258A (en) Refrigerating device
JP2005249261A (en) Freezer
JP2020026912A (en) Motor control device, integrated valve device, and heat exchanger
JPH01208677A (en) Refrigerating cycle controlling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100817

R151 Written notification of patent or utility model registration

Ref document number: 4573686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees