JP2006283243A - Conductive resin composition and molded product thereof - Google Patents

Conductive resin composition and molded product thereof Download PDF

Info

Publication number
JP2006283243A
JP2006283243A JP2005105845A JP2005105845A JP2006283243A JP 2006283243 A JP2006283243 A JP 2006283243A JP 2005105845 A JP2005105845 A JP 2005105845A JP 2005105845 A JP2005105845 A JP 2005105845A JP 2006283243 A JP2006283243 A JP 2006283243A
Authority
JP
Japan
Prior art keywords
metal
fiber
resin composition
conductive resin
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005105845A
Other languages
Japanese (ja)
Inventor
Masaru Nakano
中野  勝
Tsutomu Okutomi
勉 奥富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2005105845A priority Critical patent/JP2006283243A/en
Publication of JP2006283243A publication Critical patent/JP2006283243A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive resin composition that can produce conductive thermoplastic resin molded products having very little variation of conductivity between injection shots in the injection molding process. <P>SOLUTION: This conductive resin composition is prepared by impregnating metal-coated organic fiber with (a) a thermoplastic resin. The organic fiber is m-phthal aramid fiber and the metal used in the fiber coating is selected from copper, silver and gold and the amount of the metal for the fiber-coating is 10 to 30 wt.%. The molded products are produced by using the conductive resin composition and the thermoplastic resin (b) in combination. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属コート有機繊維を含む導電性樹脂組成物及びその成形品に関する。   The present invention relates to a conductive resin composition containing metal-coated organic fibers and a molded product thereof.

導電性を付与したプラスチック成形品を製造する場合、熱可塑性樹脂と導電性繊維とを含有したペレット状等の樹脂組成物が用いられている。この導電性繊維は、長繊維を一方向に揃えた状態で熱可塑性樹脂が含浸されたものであり、特に射出成形品の材料として評価されている。   When manufacturing a plastic molded article having conductivity, a resin composition such as a pellet containing a thermoplastic resin and conductive fibers is used. This conductive fiber is impregnated with a thermoplastic resin in a state in which long fibers are aligned in one direction, and is particularly evaluated as a material for an injection molded product.

導電性繊維としてはステンレス繊維、炭素繊維、金属コートガラス繊維、金属コート炭素繊維、はんだをコートした銅繊維等が用いられている。これらの中でステンレス繊維、炭素繊維及び金属コート炭素繊維が一般的である。   As the conductive fiber, stainless fiber, carbon fiber, metal-coated glass fiber, metal-coated carbon fiber, copper fiber coated with solder, or the like is used. Of these, stainless steel fibers, carbon fibers, and metal-coated carbon fibers are common.

近年、導電性を付与する新たな素材として、金属を被覆した有機繊維が開発されている。有機繊維は上記繊維と比べて溶融混練の際に折損しにくく好ましく用いられている。   In recent years, organic fibers coated with metal have been developed as a new material for imparting conductivity. Organic fibers are preferably used as they are less likely to break during melt-kneading than the above fibers.

例えば、特許文献1にはパラ系アラミド繊維に金、銀、銅、錫、アルミニウムまたはこれらの合金でメッキをし、2〜30mmの長さにカットしたメッキ繊維を編物、織物、あるいは抄紙して不織布を作成し、これに樹脂を含浸し熱プレスで成形板にする技術が開示されている。しかし、この成形方法では板状や曲面状等の単純な形状しか作成できず、射出成形で得られるような複雑な形状のものは作成できなかった。よってOA機器、光学系電子機器等のエレクトロニクス関連の成形筐体或いは精密な箱状の部品等への成形品展開は困難であった。   For example, in Patent Document 1, a para-aramid fiber is plated with gold, silver, copper, tin, aluminum or an alloy thereof, and a plated fiber cut to a length of 2 to 30 mm is knitted, woven, or paper-made. A technique for creating a nonwoven fabric, impregnating the nonwoven fabric with resin, and forming a molded plate by hot pressing is disclosed. However, in this molding method, only simple shapes such as a plate shape and a curved surface shape can be created, and a complicated shape such as that obtained by injection molding cannot be created. Therefore, it has been difficult to develop a molded product in an electronic-related molded casing such as an OA device or an optical electronic device or a precise box-shaped component.

また、ポリパラフェニレンテレフタルアミド繊維(東レ・デュポン株式会社製、商品名ケブラー)、コポリパラフェニレン−3,4´−ジフェニルエーテルテレフタルアミド繊維(帝人株式会社製、商品名テクノーラ)およびポリパラフェニレンベンゾビスオキサゾール(東洋紡績株式会社製、商品名ザイロン)等の高強度で耐熱性が優れている有機繊維は共に高価である上、金属コート前処理段階における繊維表面の処理が困難で金属コート膜と繊維表面間の密着強度が弱く用いることができなかった。   In addition, polyparaphenylene terephthalamide fiber (trade name Kevlar manufactured by Toray DuPont Co., Ltd.), copolyparaphenylene-3,4'-diphenyl ether terephthalamide fiber (trade name Technora manufactured by Teijin Limited) and polyparaphenylene benzobis Organic fibers such as oxazole (made by Toyobo Co., Ltd., trade name Zylon) with high strength and excellent heat resistance are both expensive, and it is difficult to treat the fiber surface in the pretreatment stage of the metal coat, and the metal coat film and fiber. The adhesion strength between the surfaces was weak and could not be used.

特許文献2は、金属被覆された短繊維を樹脂に混合して導電性を有するようにした樹脂組成物において、基体繊維に被覆した金属表面と基体繊維の接触面との密着強度をあげるために、基体繊維の結晶化温度以上かつ融解温度未満の温度で加熱処理することを特徴としている技術である。
しかし、金属被覆短繊維を基体繊維の結晶化温度以上かつ融解温度未満の温度で加熱処理することでは被覆金属と基体繊維表面との密着強度が弱く、金属被覆を有する短繊維を樹脂に混合して射出成形する場合、成形機のバレルとスクリュウ回転で受けるせん断力に耐えることが困難となり、金属メッキ膜が基体繊維から剥離して導電性を発現しにくかった。また、成形品間におけるバラツキも大きかった。
In Patent Document 2, in a resin composition in which metal-coated short fibers are mixed with a resin so as to have conductivity, the adhesion strength between the metal surface coated on the base fiber and the contact surface of the base fiber is increased. The heat treatment is performed at a temperature higher than the crystallization temperature of the substrate fiber and lower than the melting temperature.
However, heat-treating the metal-coated short fibers at a temperature higher than the crystallization temperature of the base fiber and lower than the melting temperature results in low adhesion strength between the coated metal and the base fiber surface, and the short fiber having a metal cover is mixed with the resin. When injection molding is performed, it becomes difficult to withstand the shearing force received by the barrel and screw rotation of the molding machine, and the metal plating film peels off from the base fiber and hardly exhibits conductivity. Moreover, the variation between molded products was also large.

特開2003−152389号公報JP 2003-152389 A 特開2002−358826号公報JP 2002-358826 A

本発明の課題は、導電性を有する金属コート有機繊維が、熱履歴や剪断履歴を受けても熱可塑性樹脂中に安定して均一分散し、各成形品毎の導電性のバラツキが少なくすることである。   The problem of the present invention is that the conductive metal-coated organic fibers are stably and uniformly dispersed in the thermoplastic resin even when subjected to thermal history and shear history, and the variation in conductivity among each molded product is reduced. It is.

すなわち、本発明の第1の発明は、金属コート有機繊維に熱可塑性樹脂(a)を含浸して得られる導電性樹脂組成物であって、有機繊維がメタ系アラミド繊維であり、金属コート有機繊維における金属が銅、銀、金から選ばれた金属であり、金属コート有機繊維における金属コート量が10〜30重量%である導電性樹脂組成物である。   That is, the first invention of the present invention is a conductive resin composition obtained by impregnating a metal-coated organic fiber with a thermoplastic resin (a), wherein the organic fiber is a meta-aramid fiber, and the metal-coated organic fiber In the conductive resin composition, the metal in the fiber is a metal selected from copper, silver, and gold, and the metal coat amount in the metal-coated organic fiber is 10 to 30% by weight.

第2の発明は、メタ系アラミド繊維が、ポリメタフェニレンイソフタルアミド繊維である第1の発明に記載の導電性樹脂組成物である。   A second invention is the conductive resin composition according to the first invention, wherein the meta-aramid fiber is a polymetaphenylene isophthalamide fiber.

第3の発明は、第1又は第2の発明に記載の導電性樹脂組成物と、熱可塑性樹脂(b)を用いて得られる成形品である。   3rd invention is a molded article obtained using the conductive resin composition as described in 1st or 2nd invention, and a thermoplastic resin (b).

第4の発明は、体積抵抗率が10−1〜10Ω・cmである第3の発明に記載の成形品である。 4th invention is a molded article as described in 3rd invention whose volume resistivity is 10 < -1 > -10 (omega | ohm) * cm.

本発明の導電性樹脂組成物は、金属コート有機繊維に熱可塑性樹脂(a)を含浸して得られる導電性樹脂組成物であって、有機繊維がメタ系アラミド繊維であり、金属コート有機繊維における金属が銅、銀、金から選ばれた金属であり、金属コート有機繊維における金属コート量が10〜30重量%なので、金属コート膜と有機繊維との密着性が良好である。   The conductive resin composition of the present invention is a conductive resin composition obtained by impregnating a metal-coated organic fiber with a thermoplastic resin (a), wherein the organic fiber is a meta-aramid fiber, and the metal-coated organic fiber The metal in is a metal selected from copper, silver, and gold, and the metal coat amount in the metal-coated organic fiber is 10 to 30% by weight, so the adhesion between the metal-coated film and the organic fiber is good.

本発明の導電性樹脂組成物は、メタ系アラミド繊維がポリメタフェニレンイソフタルアミド繊維なので、金属コートと有機繊維との密着性が更に良好であり、熱履歴や剪断履歴に伴い生じる繊維の折損や金属コート膜の剥離を抑制できる。   In the conductive resin composition of the present invention, since the meta-aramid fiber is a polymetaphenylene isophthalamide fiber, the adhesion between the metal coat and the organic fiber is further improved, and the fiber breakage caused by the thermal history and shear history can be reduced. The peeling of the metal coat film can be suppressed.

本発明の成形品は、上記導電性樹脂組成物と、熱可塑性樹脂(b)を用いて得られるので、金属コート有機繊維が熱可塑性樹脂中に安定して均一分散し、成形工程におけるショット間の導電性のバラツキが少ない。よって、成形不良品や導電性不良品が少なく、生産効率も向上でき成形品の品質が安定できる。   Since the molded article of the present invention is obtained using the conductive resin composition and the thermoplastic resin (b), the metal-coated organic fibers are stably and uniformly dispersed in the thermoplastic resin, and the shots in the molding process There is little variation in conductivity. Therefore, there are few molding inferior goods and electroconductive inferior goods, production efficiency can be improved, and the quality of a molded product can be stabilized.

更に、本発明の成形品は体積抵抗率が10−1〜10Ω・cmなので、良好な導電性が得られる。 Furthermore, since the molded article of the present invention has a volume resistivity of 10 −1 to 10 Ω · cm, good conductivity can be obtained.

<金属コート有機繊維>
本発明に用いられる有機繊維は、熱可塑性樹脂の含浸工程における温度下においても形状が保持されていること、また、成形品製造の際に、過剰な混錬等の物理的な力により有機繊維が折損したり、金属コート膜が繊維表面から剥離して導電性の低下を防ぐ観点から、成形工程の際の温度においても形状が保持されていることが必要である。
<Metal coated organic fiber>
The organic fiber used in the present invention is maintained in shape even under the temperature in the thermoplastic resin impregnation step, and the organic fiber is produced by physical force such as excessive kneading during the production of a molded product. From the viewpoint of preventing the metal coating film from being broken or the metal coat film from being peeled off from the fiber surface to prevent the conductivity from being lowered, it is necessary that the shape be maintained even at the temperature during the molding step.

本発明において用いられる有機繊維はメタ系アラミド繊維である。なかでもポリメタフェニレンイソフタルアミド繊維が好ましく用いられる。市販品として帝人株式会社製、商品名コーネックスが挙げられる。
ポリメタフェニレンイソフタルアミド繊維は耐熱性に優れ、金属コート前処理段階の繊維表面の処理が容易であり、金属コート膜と繊維表面間の密着強度が強固に発現する。
The organic fiber used in the present invention is a meta-aramid fiber. Of these, polymetaphenylene isophthalamide fiber is preferably used. As a commercial product, Teijin Limited, trade name Conex is mentioned.
The polymetaphenylene isophthalamide fiber is excellent in heat resistance, can be easily treated on the fiber surface in the pretreatment stage of the metal coat, and the adhesion strength between the metal coat film and the fiber surface is strongly expressed.

尚、本発明でいう金属コート膜と繊維表面間の密着強度の強弱とは、次の2通りの方法で得られた評価に基づいている。
(1)金属コート有機繊維を0.5重量%配合した透明な熱可塑性樹脂を射出成形してプレートを得、これを光学顕微鏡100〜200倍率にて観察する。プレート内の繊維表面からの金属コート膜の剥離状態を確認する。繊維表面からの金属剥離が多い場合は密着強度が弱い。
(2)金属コート有機繊維を6重量%配合した熱可塑性樹脂を射出成形してプレートを得、このプレートにおける電磁波の反射率を測定する。ショット回数が上がるにつれて反射率が下がる場合は密着強度が弱い。
The strength of adhesion strength between the metal coat film and the fiber surface in the present invention is based on the evaluation obtained by the following two methods.
(1) A transparent thermoplastic resin containing 0.5% by weight of a metal-coated organic fiber is injection-molded to obtain a plate, which is observed at an optical microscope of 100 to 200 magnifications. The peeling state of the metal coat film from the fiber surface in the plate is confirmed. The adhesion strength is weak when there is a lot of metal peeling from the fiber surface.
(2) A thermoplastic resin containing 6% by weight of metal-coated organic fibers is injection molded to obtain a plate, and the reflectance of electromagnetic waves on this plate is measured. If the reflectance decreases as the number of shots increases, the adhesion strength is weak.

金属コート有機繊維において用いられる金属としては、導電性が良好で酸化し難く展性の優れた銅、銀、金である。これらから選ばれた1種以上が用いられる。展性が良好なこれらの金属は有機繊維への追随性が良好であるため、金属コートした後は剪断力等がかかっても繊維表面に密着しはがれにくい。特に導電性の観点から金、銀、低コストの観点から銅が好ましい。有機繊維への金属コート方法は特に限定されないが、公知の無電解メッキによるのが一般的である。この他真空蒸着、スパッタリング等の方法でも可能である。   Examples of the metal used in the metal-coated organic fiber include copper, silver, and gold, which have good conductivity, hardly oxidize, and have excellent malleability. One or more selected from these are used. Since these metals having good malleability have good followability to organic fibers, even if a shearing force or the like is applied after metal coating, they are difficult to peel off from the fiber surface. In particular, gold, silver, and copper are preferable from the viewpoint of conductivity. The method for coating the organic fibers with the metal is not particularly limited, but is generally performed by known electroless plating. Other methods such as vacuum vapor deposition and sputtering are also possible.

本発明においては、金属コート有機繊維におけるコートされた金属量が10〜30重量%であることが必要である。特に15〜25重量%が好ましい。10重量%未満では導電性が不充分な傾向があり、30重量%より多いと繊維の柔軟性、屈曲性に追随できず繊維表面から金属コートの剥離が発生する傾向がある。   In the present invention, the amount of coated metal in the metal-coated organic fiber needs to be 10 to 30% by weight. 15 to 25 weight% is especially preferable. If it is less than 10% by weight, the conductivity tends to be insufficient, and if it exceeds 30% by weight, the flexibility and flexibility of the fiber cannot be followed and the metal coat tends to peel off from the fiber surface.

金属コート有機繊維の繊維径や本数等は特に限定されないが、含浸工程やその後の取り扱いの観点から1本あたりの繊維径が6〜20μm、1束あたりの本数が2500〜16000の範囲が好ましい。   The fiber diameter and the number of the metal-coated organic fibers are not particularly limited, but the fiber diameter per fiber is preferably 6 to 20 μm, and the number per bundle is 2500 to 16000 from the viewpoint of the impregnation step and subsequent handling.

本発明の導電性樹脂組成物における金属コート有機繊維の含有量は、ペレット成形性や充分な導電率効果の観点から20〜70重量%が好ましく、特に40〜60重量%が好ましい。   The content of the metal-coated organic fiber in the conductive resin composition of the present invention is preferably 20 to 70% by weight, particularly preferably 40 to 60% by weight, from the viewpoint of pellet moldability and sufficient conductivity effect.

<熱可塑性樹脂(a)>
本発明で用いられる熱可塑性樹脂(a)は、金属コート有機繊維に含浸されるものである。熱可塑性樹脂(a)の種類に格別の制限はないが、不飽和ポリエステル、ポリアミド、重合脂肪酸ポリアミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が好ましい。
<Thermoplastic resin (a)>
The thermoplastic resin (a) used in the present invention is impregnated in metal-coated organic fibers. Although there is no special restriction | limiting in the kind of thermoplastic resin (a), Unsaturated polyester, polyamide, polymeric fatty acid polyamide, polyethylene, a polypropylene, a polyethylene terephthalate, a polybutylene terephthalate etc. are preferable.

そして、金属コート有機繊維に良好に含浸されるための条件として、含浸時の温度条件下においてJISK 6862に規定された方法にて測定された溶融粘度の値が、4000mPa・s以下であることが好ましい。また、熱可塑性樹脂を高温状態に保つと上記溶融粘度が低下する傾向にあるが、4時間程度では上記溶融粘度は低下せずほぼ一定であることが作業効率及び品質管理の観点から好ましい。   As a condition for satisfactorily impregnating the metal-coated organic fiber, the melt viscosity value measured by the method defined in JISK 6862 under the temperature condition at the time of impregnation is 4000 mPa · s or less. preferable. Further, when the thermoplastic resin is kept at a high temperature, the melt viscosity tends to decrease, but in about 4 hours, the melt viscosity does not decrease and is almost constant from the viewpoint of work efficiency and quality control.

熱可塑性樹脂(a)の含浸方法は特に制限無く公知の方法を用いることができるが、含浸の温度は、含浸樹脂の融点または軟化温度より高いことが好ましい。含浸後、使用目的に合わせて任意の長さ(通常、数mm〜10数mm)に切断されてペレット化され、本発明の導電性樹脂組成物が得られる。   The impregnation method of the thermoplastic resin (a) can be any known method without particular limitation, but the impregnation temperature is preferably higher than the melting point or softening temperature of the impregnation resin. After impregnation, the conductive resin composition of the present invention is obtained by cutting into an arbitrary length (usually several mm to several tens mm) according to the purpose of use and pelletizing.

本発明において金属コート有機繊維は熱可塑性樹脂(a)の含浸工程により、繊維の束がコンパクト化されて取り扱い性が容易になる。更に成形品製造の際に、溶融混練物中において繊維が速やかに分散できる。すなわち、繊維が速やかに均一分散できるため、混練時間が少なく剪断力も最小限で済むので過剰な混練によって繊維が折損されたり金属コートが剥離したりして導電性を失うことが少ない。   In the present invention, the metal-coated organic fiber is made compact by the impregnation step of the thermoplastic resin (a), and the bundle of fibers is made compact, so that the handleability becomes easy. Further, the fibers can be quickly dispersed in the melt-kneaded product during the production of the molded product. That is, since the fibers can be quickly and uniformly dispersed, the kneading time is short and the shearing force is minimized, so that the fibers are not broken by excessive kneading or the metal coat is peeled off, so that the conductivity is hardly lost.

<成形品>
本発明の成形品は、導電性樹脂組成物(ペレット)と熱可塑性樹脂(b)ペレットとを均一に攪拌混合したものを射出成形機に投入し、成形されて得られる。
成形品製造の際に成形用樹脂(希釈樹脂)として用いられる熱可塑性樹脂(b)としては、ポリプロピレン、ポリエチレン、ポリカーボネート、ABS等が挙げられる。
<Molded product>
The molded product of the present invention is obtained by uniformly molding and mixing a conductive resin composition (pellet) and a thermoplastic resin (b) pellet into an injection molding machine.
Examples of the thermoplastic resin (b) used as a molding resin (diluted resin) in the production of a molded product include polypropylene, polyethylene, polycarbonate, ABS and the like.

成形品製造の際、導電性樹脂組成物中の樹脂部分が溶融し、金属コート有機繊維の束がばらばらになって熱可塑性樹脂(b)中に均一分散される。そして成形された成形品中において、金属コート有機繊維が互いに接した分散状態になることにより、繊維表面上の金属を介して導電性を有した状態になる。   During the production of a molded product, the resin portion in the conductive resin composition is melted, and the bundle of metal-coated organic fibers is separated and uniformly dispersed in the thermoplastic resin (b). In the molded product thus formed, the metal-coated organic fibers are in a dispersed state in contact with each other, so that the conductive state is obtained through the metal on the fiber surface.

本発明における成形品の好ましい体積抵抗率は10−1〜10Ω・cmである。尚、本発明における体積抵抗率とは、3mm×50mm×75mmの試験片の3mm×75mmの両側面に電極として銀ペーストを塗布し乾燥させた後、電極間の電気抵抗をデジタルマルチメーターにて測定し、δ=R・S/Lの式により算出した値である。(但し、δ:体積抵抗率、R:電気抵抗測定値、S:試験片の断面積、L:電極間の長さ を表す。) The preferred volume resistivity of the molded article in the present invention is 10 −1 to 10 Ω · cm. The volume resistivity in the present invention is a 3 mm × 50 mm × 75 mm test piece, a silver paste is applied as an electrode on both sides of 3 mm × 75 mm and dried, and then the electrical resistance between the electrodes is measured with a digital multimeter. Measured and calculated by the formula δ = R · S / L. (Where, δ: volume resistivity, R: measured electric resistance, S: cross-sectional area of test piece, L: length between electrodes)

上記の導電性を得る為には、成形品における金属コート有機繊維の含有量は1.5〜8重量%が好ましい。また、成形品における導電性樹脂組成物の割合は、充分な導電性、混練・成形の容易性及び成形品における機械強度等の観点から3〜20重量%が好ましい。   In order to obtain the above conductivity, the content of the metal-coated organic fiber in the molded product is preferably 1.5 to 8% by weight. The proportion of the conductive resin composition in the molded product is preferably 3 to 20% by weight from the viewpoints of sufficient conductivity, ease of kneading and molding, mechanical strength in the molded product, and the like.

本発明の成形品の例として高周波用配線材、電磁波シールド材が挙げられる。更に詳しくはOA機器、AV機器、測定機器、輸送機器、通信機器等のハウジング用途やコネクタ、包装材等が挙げられる。
尚、本発明の導電性樹脂組成物及び成形品には、本発明の効果を阻害しない範囲内で耐熱安定剤、耐侯剤、滑剤、スリップ剤、難燃剤、核剤、顔料、染料等を配合することが出来る。
Examples of the molded article of the present invention include high-frequency wiring materials and electromagnetic wave shielding materials. More specifically, examples include housing applications such as OA equipment, AV equipment, measuring equipment, transportation equipment, and communication equipment, connectors, and packaging materials.
The conductive resin composition and molded product of the present invention are blended with a heat stabilizer, anti-glare agent, lubricant, slip agent, flame retardant, nucleating agent, pigment, dye, etc. within the range not inhibiting the effects of the present invention. I can do it.

以下、実施例を挙げて本発明の構成及び作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらは全て本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and is appropriately within a range that can meet the gist of the present invention. It is also possible to carry out with modification, and they are all included in the technical scope of the present invention.

[実施例1]
(導電性樹脂組成物の作成条件−1)
下記の条件にて金属コート有機繊維42重量%、含浸用の熱可塑性樹脂58重量%から成る導電性樹脂組成物(導電性樹脂ペレット、比重1.2)を作成した。
金属コート有機繊維:銅コートポリメタフェニレンイソフタルアミド繊維(20重量%量の銅を無電解メッキした金属コート有機繊維、繊維径15μm、3400本/束)
含浸樹脂:重合脂肪酸ポリアミド樹脂(軟化温度140℃(JIS K 7234(環球法))、溶融粘度3000mPa・s(JIS K 6862、測定温度220℃))
含浸条件:樹脂温度 230〜250℃、引取速度18m/min、ノズル径 2.1mm
[Example 1]
(Condition for preparing conductive resin composition-1)
A conductive resin composition (conductive resin pellets, specific gravity 1.2) comprising 42% by weight of metal-coated organic fibers and 58% by weight of a thermoplastic resin for impregnation was prepared under the following conditions.
Metal-coated organic fiber: Copper-coated polymetaphenylene isophthalamide fiber (metal-coated organic fiber obtained by electroless plating of 20% by weight of copper, fiber diameter 15 μm, 3400 fibers / bundle)
Impregnating resin: Polymerized fatty acid polyamide resin (softening temperature 140 ° C. (JIS K 7234 (ring ball method)), melt viscosity 3000 mPa · s (JIS K 6862, measuring temperature 220 ° C.))
Impregnation conditions: Resin temperature 230 to 250 ° C., take-up speed 18 m / min, nozzle diameter 2.1 mm

(射出成形条件−1)
下記の条件にて導電性樹脂ペレット14.3重量%(金属コート有機繊維含有量6重量%)、成形用の熱可塑性樹脂ペレット85.7重量%の割合で配合し、矩形の試験片(寸法;3mm×50mm×75mm)を14枚成形した。最初の4ショットを廃棄し、5ショット目から番号付け(1〜10)した。
成形樹脂:ポリカーボネイト(三菱エンジニアリングプラスチックス(株)製、
商品名ユーピロンS−3000(比重1.20、融点152℃)
成形機:東芝機械製「IS100F−3A」
シリンダー温度:280〜290℃
金型温度:90℃
スクリュウ回転数:80rpm
スクリュウ径:36mm
射出速度:40mm/sec
冷却時間:30sec
(Injection molding condition-1)
Conductive resin pellets 14.3% by weight (metal-coated organic fiber content 6% by weight) and thermoplastic resin pellets 85.7% by weight for molding under the following conditions. 14 sheets of 3 mm × 50 mm × 75 mm) were formed. The first four shots were discarded and numbered (1-10) from the fifth shot.
Molding resin: Polycarbonate (Mitsubishi Engineering Plastics Co., Ltd.,
Product name Iupilon S-3000 (specific gravity 1.20, melting point 152 ° C.)
Molding machine: Toshiba Machine "IS100F-3A"
Cylinder temperature: 280-290 ° C
Mold temperature: 90 ℃
Screw rotation speed: 80rpm
Screw diameter: 36mm
Injection speed: 40mm / sec
Cooling time: 30 sec

(体積抵抗率の測定)
各試験片の体積抵抗率を以下の様に得、ショット間の変動を
1112242567812_0.gif
に示した。
電極塗布電極の材質:銀ペースト(シルコートRL−10:福田金属箔粉工業製)
試験片の3mm×75mmの両側面に銀ペーストを塗布し乾燥
測定機:デジタルマルチメーター(CDM−5000:CUSTOM社製)
体積抵抗率の算出方法δ=R・S/L(但し、δ:体積抵抗率、R:電気抵抗測定値、S:試験片の断面積、L:電極間の長さを表す。)
実施例1の全サンプルにおいて体積抵抗率のバラツキが少なく、かつ体積抵抗率は10−1〜10Ω・cmの範囲であった。
(Measurement of volume resistivity)
Obtain the volume resistivity of each specimen as follows,
1112242567812_0.gif
It was shown to.
Material of electrode applied electrode: Silver paste (Silcoat RL-10: Fukuda Metal Foil Powder Industry)
A silver paste is applied to both sides of a test piece of 3 mm × 75 mm and dried. Measuring machine: Digital multimeter (CDM-5000: manufactured by CUSTOM)
Volume resistivity calculation method δ = R · S / L (where δ: volume resistivity, R: measured electric resistance, S: cross-sectional area of test piece, L: length between electrodes)
In all the samples of Example 1, there was little variation in volume resistivity, and the volume resistivity was in the range of 10 −1 to 10 Ω · cm.

[実施例2]
(導電性樹脂組成物の作成条件−2)
下記の条件で金属コート有機繊維46重量%、含浸用の熱可塑性樹脂54重量%から成る導電性樹脂組成物(導電性樹脂ペレット、比重1.2)を作成した。
金属コート有機繊維:銀コートポリメタフェニレンイソフタルアミド繊維(25重量%量の銀を無電解メッキした金属コート有機繊維、繊維径15μm、3400本/束)
含浸樹脂:実施例1と同じ樹脂。
含浸条件:樹脂温度 230〜250℃、引取速度:20m/minノズル径:1.9mm
[Example 2]
(Condition for preparing conductive resin composition-2)
A conductive resin composition (conductive resin pellets, specific gravity 1.2) comprising 46% by weight of metal-coated organic fibers and 54% by weight of a thermoplastic resin for impregnation was prepared under the following conditions.
Metal-coated organic fiber: Silver-coated polymetaphenylene isophthalamide fiber (metal-coated organic fiber in which 25% by weight of silver is electrolessly plated, fiber diameter 15 μm, 3400 fibers / bundle)
Impregnating resin: the same resin as in Example 1.
Impregnation conditions: Resin temperature 230 to 250 ° C., take-up speed: 20 m / min Nozzle diameter: 1.9 mm

(射出成形条件−2)
実施例1と同様に、導電性樹脂ペレット12.4重量%(金属コート有機繊維含有量6重量%)、実施例1と同じ成形用の熱可塑性樹脂ペレット87.6重量%の割合で配合して試験片を成形し、体積抵抗率を測定した。
実施例2の全サンプルにおいて体積抵抗率のバラツキが少なく、かつ体積抵抗率は10−1〜10Ω・cmの範囲であった。
(Injection molding condition-2)
As in Example 1, 12.4% by weight of conductive resin pellets (metal coated organic fiber content: 6% by weight) and 87.6% by weight of thermoplastic resin pellets for molding as in Example 1 were blended. A test piece was molded and the volume resistivity was measured.
In all the samples of Example 2, there was little variation in volume resistivity, and the volume resistivity was in the range of 10 −1 to 10 Ω · cm.

[比較例1](導電性樹脂組成物の作成条件−3)
下記の条件にて金属コート有機繊維54重量%、含浸用の熱可塑性樹脂46重量%から成る導電性樹脂組成物(導電性樹脂ペレット、比重1.31)を作成した。
金属コート有機繊維:銅コートポリメタフェニレンイソフタルアミド繊維(36重量%量の銅を無電解メッキした金属コート有機繊維、繊維径15μm、3400本/束)
含浸樹脂:実施例1と同じ樹脂。
含浸条件:樹脂温度 230〜250℃、引取速度:20m/min、ノズル径:2.1mm
[Comparative Example 1] (Construction Condition-3 for Conductive Resin Composition)
A conductive resin composition (conductive resin pellets, specific gravity 1.31) comprising 54 wt% metal-coated organic fibers and 46 wt% thermoplastic resin for impregnation was prepared under the following conditions.
Metal-coated organic fiber: Copper-coated polymetaphenylene isophthalamide fiber (metal-coated organic fiber obtained by electroless plating of 36% by weight of copper, fiber diameter 15 μm, 3400 fibers / bundle)
Impregnating resin: the same resin as in Example 1.
Impregnation conditions: Resin temperature 230 to 250 ° C., take-up speed: 20 m / min, nozzle diameter: 2.1 mm

(射出成形条件−3)
実施例1と同様に、導電性樹脂ペレット13重量%(金属コート有機繊維含有量6重量%)、実施例1と同じ成形用の熱可塑性樹脂ペレット87重量%の割合で配合して成形し、各試片の体積抵抗率を測定した。
各サンプル間における体積抵抗率のバラツキが大きかった。また、体積抵抗率は10−1〜10Ω・cmの範囲を越え、ショット回数が上がるにつれて体積抵抗率が大きくなった。
(Injection molding condition-3)
In the same manner as in Example 1, 13% by weight of conductive resin pellets (metal-coated organic fiber content: 6% by weight) and the same proportion of 87% by weight of thermoplastic resin pellets for molding as in Example 1 were molded, The volume resistivity of each specimen was measured.
The variation in volume resistivity between the samples was large. The volume resistivity exceeded the range of 10 −1 to 10 Ω · cm, and the volume resistivity increased as the number of shots increased.

[比較例2]
(導電性樹脂組成物の作成条件−4)
下記の条件で金属コート有機繊維52重量%、含浸用の熱可塑性樹脂48重量%から成る導電性樹脂組成物(導電性樹脂ペレット、比重1.2)を作成した。
金属コート有機繊維:銀コートポリメタフェニレンイソフタルアミド繊維(8重量%のAgを無電解メッキした金属コート有機繊維、繊維径15μm、3400本/束)
含浸樹脂:実施例1と同じ樹脂。
含浸条件:実施例2と同じ条件。
[Comparative Example 2]
(Condition for preparing conductive resin composition-4)
A conductive resin composition (conductive resin pellets, specific gravity 1.2) comprising 52% by weight of metal-coated organic fibers and 48% by weight of a thermoplastic resin for impregnation was prepared under the following conditions.
Metal-coated organic fiber: Silver-coated polymetaphenylene isophthalamide fiber (metal-coated organic fiber electrolessly plated with 8% by weight of Ag, fiber diameter 15 μm, 3400 fibers / bundle)
Impregnating resin: the same resin as in Example 1.
Impregnation conditions: the same conditions as in Example 2.

(射出成形条件−4)
実施例1と同様に、導電性樹脂ペレット11.5重量%(金属コート有機繊維含有量6重量%)、実施例1と同じ成形用の熱可塑性樹脂ペレット88.5重量%の割合で配合して試験片を成形し、体積抵抗率を測定した。
各サンプル間における体積抵抗率のバラツキが比較的大きかった。また、体積抵抗率は10−1〜10Ω・cmの範囲を越え、導電性が不充分であった。
(Injection molding condition-4)
In the same manner as in Example 1, 11.5% by weight of conductive resin pellets (metal coated organic fiber content: 6% by weight) and 88.5% by weight of thermoplastic resin pellets for molding as in Example 1 were blended. A test piece was molded and the volume resistivity was measured.
The variation in volume resistivity between the samples was relatively large. Moreover, volume resistivity exceeded the range of 10 < -1 > -10 ohm * cm, and electroconductivity was inadequate.

[比較例3]
(導電性樹脂組成物の作成条件−5)
下記の条件にて金属コート有機繊維60重量%、含浸用の熱可塑性樹脂40重量%から成る導電性樹脂組成物(導電性樹脂ペレット、比重1.3)を作成した。
金属コート有機繊維:銅コートコポリパラフェニレン−3、4‘ジフェニレンエーテルテレフタルアミド繊維(20重量%の銅を無電解メッキした金属コート有機繊維、繊維径12μm、5000本/束)
含浸樹脂:実施例1と同じ。
含浸条件:比較例1と同じ。
[Comparative Example 3]
(Condition for preparing conductive resin composition-5)
A conductive resin composition (conductive resin pellets, specific gravity 1.3) comprising 60% by weight of metal-coated organic fibers and 40% by weight of a thermoplastic resin for impregnation was prepared under the following conditions.
Metal-coated organic fiber: Copper-coated copolyparaphenylene-3, 4 ′ diphenylene ether terephthalamide fiber (metal-coated organic fiber obtained by electroless plating of 20% by weight of copper, fiber diameter 12 μm, 5000 / bundle)
Impregnating resin: same as Example 1.
Impregnation conditions: the same as Comparative Example 1.

(射出成形条件−5)
実施例1と同様に、導電性樹脂ペレット9.8重量%(金属コート有機繊維含有量6重量%)、成形用の熱可塑性樹脂ペレット90.2重量%の割合で配合して成形し、各試片の体積抵抗率を測定した。
各サンプル間における体積抵抗率のバラツキが非常に大きかった。また、体積抵抗率は10−1〜10Ω・cmの範囲を越え、導電性が不充分であった。ショット回数が上がるにつれて体積抵抗率が大きくなった。
(Injection molding condition-5)
In the same manner as in Example 1, 9.8% by weight of conductive resin pellets (content of metal coated organic fiber 6% by weight) and 90.2% by weight of thermoplastic resin pellets for molding were molded and molded. The volume resistivity of the specimen was measured.
The variation in volume resistivity between samples was very large. Moreover, volume resistivity exceeded the range of 10 < -1 > -10 ohm * cm, and electroconductivity was inadequate. The volume resistivity increased as the number of shots increased.

本発明の導電性樹脂組成物は、金属コート有機繊維の熱可塑性樹脂への分散性が良好なので、導電性を安定して保つことが可能である。また、射出成形等複雑な形状の成形品も製造できる。また、成形工程中におけるショット間の導電性のバラツキが少ないので品質が良好な成形品が得られると共に機械物性も良好である。   Since the conductive resin composition of the present invention has good dispersibility of the metal-coated organic fibers in the thermoplastic resin, it is possible to keep the conductivity stable. Further, a molded product having a complicated shape such as injection molding can be manufactured. Further, since there is little variation in conductivity between shots during the molding process, a molded product with good quality can be obtained and the mechanical properties are also good.

実施例及び比較例における10ショット試験片における体積固有抵抗のグラフである。It is a graph of the volume specific resistance in the 10 shot test piece in an Example and a comparative example.

Claims (4)

金属コート有機繊維に熱可塑性樹脂(a)を含浸して得られる導電性樹脂組成物であって、
有機繊維がメタ系アラミド繊維であり、
金属コート有機繊維における金属が銅、銀、金から選ばれた金属であり、
金属コート有機繊維における金属コート量が10〜30重量%である導電性樹脂組成物。
A conductive resin composition obtained by impregnating a metal-coated organic fiber with a thermoplastic resin (a),
The organic fiber is a meta-aramid fiber,
The metal in the metal coated organic fiber is a metal selected from copper, silver and gold,
The conductive resin composition whose metal coat amount in a metal coat organic fiber is 10 to 30 weight%.
メタ系アラミド繊維が、ポリメタフェニレンイソフタルアミド繊維である請求項1に記載の導電性樹脂組成物。 The conductive resin composition according to claim 1, wherein the meta-aramid fiber is a polymetaphenylene isophthalamide fiber. 請求項1又は2に記載の導電性樹脂組成物と、熱可塑性樹脂(b)を用いて得られる成形品。 A molded article obtained by using the conductive resin composition according to claim 1 or 2 and a thermoplastic resin (b). 体積抵抗率が10−1〜10Ω・cmである請求項3に記載の成形品。
The molded article according to claim 3, wherein the volume resistivity is 10 −1 to 10 Ω · cm.
JP2005105845A 2005-04-01 2005-04-01 Conductive resin composition and molded product thereof Pending JP2006283243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105845A JP2006283243A (en) 2005-04-01 2005-04-01 Conductive resin composition and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105845A JP2006283243A (en) 2005-04-01 2005-04-01 Conductive resin composition and molded product thereof

Publications (1)

Publication Number Publication Date
JP2006283243A true JP2006283243A (en) 2006-10-19

Family

ID=37405445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105845A Pending JP2006283243A (en) 2005-04-01 2005-04-01 Conductive resin composition and molded product thereof

Country Status (1)

Country Link
JP (1) JP2006283243A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262246A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Resin composition for electromagnetic wave shielding and its molded product
JP2009019148A (en) * 2007-07-13 2009-01-29 Daicel Polymer Ltd Electroconductive resin composition
JP2012236944A (en) * 2011-05-13 2012-12-06 Mitsubishi Engineering Plastics Corp Fiber/resin composite composition pellet for shielding electromagnetic waves, resin composition for shielding electromagnetic waves and molded article thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513505A (en) * 1995-01-30 1998-12-22 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー How to Plating Aramid Fiber in Batch
JP2002358826A (en) * 2001-03-29 2002-12-13 Mitsubishi Materials Corp Conductive resin component, manufacturing method and use of the same
JP2003152389A (en) * 2001-11-12 2003-05-23 Du Pont Toray Co Ltd Electromagnetic wave shielding material
JP2003160673A (en) * 2001-09-11 2003-06-03 Toyo Ink Mfg Co Ltd Resin composition for electromagnetic wave shielding and utilization thereof
JP2005290086A (en) * 2004-03-31 2005-10-20 Toyo Ink Mfg Co Ltd Conductive resin composition and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513505A (en) * 1995-01-30 1998-12-22 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー How to Plating Aramid Fiber in Batch
JP2002358826A (en) * 2001-03-29 2002-12-13 Mitsubishi Materials Corp Conductive resin component, manufacturing method and use of the same
JP2003160673A (en) * 2001-09-11 2003-06-03 Toyo Ink Mfg Co Ltd Resin composition for electromagnetic wave shielding and utilization thereof
JP2003152389A (en) * 2001-11-12 2003-05-23 Du Pont Toray Co Ltd Electromagnetic wave shielding material
JP2005290086A (en) * 2004-03-31 2005-10-20 Toyo Ink Mfg Co Ltd Conductive resin composition and its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262246A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Resin composition for electromagnetic wave shielding and its molded product
JP2009019148A (en) * 2007-07-13 2009-01-29 Daicel Polymer Ltd Electroconductive resin composition
JP2012236944A (en) * 2011-05-13 2012-12-06 Mitsubishi Engineering Plastics Corp Fiber/resin composite composition pellet for shielding electromagnetic waves, resin composition for shielding electromagnetic waves and molded article thereof

Similar Documents

Publication Publication Date Title
CN101747619A (en) High performance emi/rfi shielding polymer composite
CN109691249B (en) Electronic equipment shell
KR101469683B1 (en) Methods for Preparing of Electromagnetic Shielding Composite Using Copper-Nickel Plated Carbon Fiber Prepared by Electroless-Electronic Continuous Process and Electromagnetic Shielding Material Prepared by the Methods
KR101212671B1 (en) Emi/rfi shielding polymer composite
JP2017082215A (en) Fiber reinforced thermoplastic resin molded article and fiber reinforced thermoplastic resin molding material
JP2013177560A (en) Method for producing carbon fiber reinforced molded product, and carbon fiber reinforced molded product
JP2016516611A (en) Moldable capsule and manufacturing method
CN107354752B (en) Surface-coated silver F-12 conductive fiber and preparation method thereof
WO2010075337A1 (en) Polymer compositions for metal coating, articles made therefrom and process for same
CN106674784A (en) Stretchable flexible conductive composite material as well as preparation method and application thereof
WO2018181480A1 (en) Integrally formed body, composite material including said integrally formed body, electrical contact terminal and printed wiring board
JP2006283243A (en) Conductive resin composition and molded product thereof
CN103975023A (en) Composite and molded product thereof
KR20030063122A (en) Composites comprising fibers dispersed in a polymer matrix having improved shielding with lower amounts of conductive fiber
JP5173143B2 (en) Electromagnetic wave shielding resin composition and molded product thereof
JP4302938B2 (en) Resin composition for electromagnetic wave shielding
JP2000071245A (en) Thermoplastic resin molding containing carbon fiber
CN108885926B (en) Coaxial cable
JPH01284000A (en) Composite element containing metallized fiber and manufacture of electromagnetic shielding molded product by employing the element
JP2003160673A (en) Resin composition for electromagnetic wave shielding and utilization thereof
JP4407351B2 (en) Conductive resin composition and use thereof
JP4161287B2 (en) Conductive resin composition and production method and use thereof
JP2005264096A (en) Method for producing resin coating composition
Pierozynski The effect of thermal treatments on the mechanical and electrical properties of nickel-coated carbon fibre composites
KR101508931B1 (en) Method for producing metal coated glass fiber yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525