JP2006281271A - Method for manufacturing steel sheet - Google Patents

Method for manufacturing steel sheet Download PDF

Info

Publication number
JP2006281271A
JP2006281271A JP2005104542A JP2005104542A JP2006281271A JP 2006281271 A JP2006281271 A JP 2006281271A JP 2005104542 A JP2005104542 A JP 2005104542A JP 2005104542 A JP2005104542 A JP 2005104542A JP 2006281271 A JP2006281271 A JP 2006281271A
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
temperature
steel plate
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104542A
Other languages
Japanese (ja)
Inventor
Toshikazu Akita
俊和 秋田
Kazuya Yamazaki
和也 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005104542A priority Critical patent/JP2006281271A/en
Publication of JP2006281271A publication Critical patent/JP2006281271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel sheet, by which the surface and the back face of the steel sheet are uniformly cooled. <P>SOLUTION: When accelerated cooling is applied to a steel sheet 2 after rolling while transporting in a cooling device A disposed following a rolling device, the transformation temperature of the steel sheet is previously calculated for each type of the steel sheets having the same type of steel composition. The temperatures of the surface and the back face of the steel sheet are measured at an inlet side 7 of the cooling device. The cooling amount for the surface and the back face of the steel sheet that has a temperature difference between its surface and its back face is calculated based on a predetermined target temperature for the steel sheet after cooling and on the relation between the transformation temperature and specific heat. The surface and the back face of the steel sheet are cooled based on the calculated cooling amount. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鋼板のオンライン加速冷却において、鋼板表裏面からの冷却を均一とすることで、材質特性が均一で、残留応力が小さく、また、鋼板形状が良好な鋼板の製造方法に関するものである。   The present invention relates to a method for producing a steel plate having uniform material properties, low residual stress, and good steel plate shape by making the cooling from the front and back surfaces of the steel plate uniform in online accelerated cooling of the steel plate. .

鋼板を圧延する圧延装置の後工程に配置された冷却装置によって行われる鋼板のオンライン加速冷却においては、鋼板の表面と裏面とが同一の温度の場合には、冷却を開始すると、冷却中において鋼板の表面および裏面(「表裏面」という)が同じ温度履歴をたどり、板厚方向の均一冷却を図ることができ、所望の鋼板を製造することができる。   In the online accelerated cooling of a steel plate performed by a cooling device arranged in a subsequent process of a rolling device for rolling the steel plate, when the front and back surfaces of the steel plate are at the same temperature, the cooling starts and the steel plate is being cooled. The front surface and the back surface (referred to as “front and back surfaces”) follow the same temperature history, can be uniformly cooled in the thickness direction, and a desired steel plate can be manufactured.

従来のオンライン冷却においては、冷却前の圧延工程における圧延寸法や該工程における冷却条件から、鋼板の表裏面の冷却量(上下水量比)を決定し、鋼板の表面および裏面に均一冷却を行っている。   In conventional online cooling, the amount of cooling of the front and back surfaces of the steel sheet (the ratio of water and water) is determined from the rolling dimensions in the rolling process before cooling and the cooling conditions in the process, and the front and back surfaces of the steel sheet are uniformly cooled. Yes.

また、特許文献1には、水量密度を限界能力に到達するまで高めて、収束冷却を実施するような方法も提案されている。
特開平10−211515号公報
Patent Document 1 also proposes a method in which the water density is increased until the limit capacity is reached and convergent cooling is performed.
Japanese Patent Laid-Open No. 10-211515

しかしながら、冷却装置前の圧延工程における圧延寸法および該工程の冷却条件毎に、鋼板の表裏面の水量比を設定するような方法では、圧延工程における加熱温度や、制御圧延時の温度調整時の水冷により、冷却開始前に、鋼板の表裏面に温度差が発生し、冷却中の温度履歴により、変態発熱量を含む伝熱量に差が生じ、鋼板表裏面で不均一な冷却が発生し、品質が悪化する。このような場合には、鋼板を再矯正せねばならず、鋼板総数に対する矯正の実施率が高いと、作業能率が低下する問題があった。   However, in the method of setting the water volume ratio between the front and back surfaces of the steel sheet for each rolling dimension in the rolling process before the cooling device and the cooling conditions of the process, the heating temperature in the rolling process and the temperature adjustment during the control rolling Due to water cooling, a temperature difference occurs on the front and back surfaces of the steel plate before the start of cooling, and due to the temperature history during cooling, a difference occurs in the amount of heat transfer including the transformation heat value, resulting in uneven cooling on the front and back surfaces of the steel plate, Quality deteriorates. In such a case, the steel sheet has to be re-corrected, and if the correction rate for the total number of steel sheets is high, there is a problem that the work efficiency decreases.

従って、本発明の目的は、上述の課題を解決し、オンライン加速冷却において鋼板の表裏面に均一な冷却を行うことができる鋼板の製造方法を提供することにある。   Therefore, the objective of this invention is providing the manufacturing method of the steel plate which solves the above-mentioned subject and can perform uniform cooling on the front and back of a steel plate in online accelerated cooling.

上記目的を達成するために、本発明は下記の構成を有している。
[1]熱間圧延された鋼板を搬送させながら鋼板の表面と裏面とを冷却する鋼板の製造方法であって、
冷却前の鋼板の表面および裏面に対し、冷却前の鋼板の表面および裏面の温度、予め定めた冷却後の鋼板の目標温度、予め求めておいた鋼板の変態温度および温度と比熱の関係に基づいて、鋼板の表面の冷却量、裏面の冷却量を求め、求めた冷却量に基づいて、鋼板の表面および裏面を冷却することを特徴とする鋼板の製造方法。
In order to achieve the above object, the present invention has the following configuration.
[1] A method for producing a steel sheet in which the front and back surfaces of the steel sheet are cooled while conveying the hot-rolled steel sheet,
Based on the surface temperature and back surface of the steel sheet before cooling, the temperature of the surface and back surface of the steel sheet before cooling, the predetermined target temperature of the steel sheet after cooling, the transformation temperature of the steel sheet determined in advance and the relationship between the temperature and specific heat A method for producing a steel sheet, comprising: obtaining a cooling amount on the surface of the steel sheet and a cooling amount on the back surface; and cooling the front surface and the back surface of the steel sheet based on the obtained cooling amount.

冷却装置による冷却開始前に表裏面で温度差が発生した鋼板に対し、鋼板表裏面温度の測定値をもとに、変態発熱を含めて伝熱計算を実施し、鋼板表裏面の冷却能力を変化させることにより、板厚方向に均一な冷却ができ、板厚方向の材質特性に優れ、形状の良好な鋼板が得られる。   Based on the measured values of the front and back surfaces of the steel plate, the heat transfer calculation including transformation heat generation was performed on the steel plate where the temperature difference occurred on the front and back surfaces before the cooling by the cooling device, and the cooling capacity of the front and back surfaces of the steel plate was calculated. By changing the thickness, uniform cooling can be performed in the plate thickness direction, and a steel plate having excellent material properties in the plate thickness direction and a good shape can be obtained.

次に、本発明の実施の形態を図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

オンライン加速冷却において、鋼板表裏面の不均一な冷却の発生については下記の原因が考えられる。   In online accelerated cooling, the following causes can be considered for the occurrence of uneven cooling on the front and back surfaces of the steel sheet.

圧延工程における加熱温度や制御圧延時の温度調整時の水冷により、冷却開始前に鋼板の表裏面に温度差が発生していると、冷却装置による冷却中に鋼板の表面と裏面とで温度履歴が相違してしまい、鋼板表裏面で不均一な冷却となり鋼板形状等の品質が悪化する。   If there is a temperature difference between the front and back surfaces of the steel plate before the start of cooling due to the heating temperature in the rolling process or the temperature adjustment during control rolling, the temperature history between the front and back surfaces of the steel plate during cooling by the cooling device Will be different, resulting in uneven cooling on the front and back surfaces of the steel sheet, and the quality of the steel sheet shape and the like will deteriorate.

従来は、鋼板の成分系の違いによる鋼種の差が及ぼす影響が冷却条件に考慮されていなかった。鋼板は変態すると発熱するが(変態発熱)、変態点は鋼種の違いにより異なるため、鋼種を考慮せずに冷却をすると変態点(変態発熱)の影響で均一冷却でなくなる恐れがある。図1は、ある鋼種Aの、変態発熱を考慮した比熱と鋼板温度との関係を示すグラフである。図1の例では、約600〜800℃の間で比熱(変態発熱を考慮した比熱)が上昇する。図2は、鋼板冷却時の必要冷却熱量を示すグラフである。比熱の影響で、約600〜800℃の間で、必要冷却量が上昇する。図3に示すような鋼種Aにおいて、冷却装置の入り側で、冷却前に鋼板の表面温度(Ts)と裏面温度(Tb)とに温度差が発生していると、冷却後の鋼板の表面温度(Ts´)と裏面温度(Tb´)とに差が生じる。すなわち、冷却開始時に鋼板の表裏面に温度差があると、表裏面を同じ条件で冷却すると図1に示すQ1(kcal)の変態発熱分だけ、冷却後に鋼板の表裏面に温度差が生じることを意味し、鋼板の表面と裏面で冷却過程での変体発熱の時期がずれることや、冷却後の鋼板の温度差が生じ、鋼板の形状不良の原因となるばかりでなく、材質的に不均一な鋼板となる。従って、鋼板の冷却後の目標温度を表裏面一定にするためには、表裏面の冷却熱量の差を考慮して鋼板の表裏面の冷却ができるように表裏面に対する冷却量を求める必要がある。   Conventionally, the effect of the difference in the steel type due to the difference in the component system of the steel sheet has not been considered in the cooling conditions. The steel plate generates heat when transformed (transformation heat generation), but the transformation point varies depending on the steel type. Therefore, when cooling is performed without considering the steel type, there is a possibility that uniform cooling may not be achieved due to the transformation point (transformation heat generation). FIG. 1 is a graph showing the relationship between the specific heat of steel type A in consideration of transformation heat generation and the steel plate temperature. In the example of FIG. 1, the specific heat (specific heat in consideration of transformation heat generation) increases between about 600 and 800 ° C. FIG. 2 is a graph showing the amount of cooling heat required when cooling the steel sheet. The required cooling amount increases between about 600 and 800 ° C. due to the influence of specific heat. In steel type A as shown in FIG. 3, when a temperature difference occurs between the surface temperature (Ts) and the back surface temperature (Tb) of the steel plate before cooling on the entry side of the cooling device, the surface of the steel plate after cooling There is a difference between the temperature (Ts ′) and the back surface temperature (Tb ′). That is, if there is a temperature difference between the front and back surfaces of the steel sheet at the start of cooling, cooling the front and back surfaces under the same conditions will cause a temperature difference on the front and back surfaces of the steel sheet after cooling by the amount of transformation heat generated by Q1 (kcal) shown in FIG. This means that the time of transformation heat generation in the cooling process is shifted between the front and back surfaces of the steel sheet, the temperature difference of the steel sheet after cooling occurs, and this causes not only the shape of the steel sheet but also the unevenness of the material. Steel plate. Therefore, in order to make the target temperature after cooling the steel plate constant, it is necessary to obtain the cooling amount for the front and back surfaces so that the front and back surfaces of the steel plate can be cooled in consideration of the difference in the amount of cooling heat between the front and back surfaces. .

次に、この発明の方法による鋼板冷却のフローを説明する。図4は、この発明の方法を実施するための冷却装置の一例を示す概略側面図、図5は、この発明の実施の形態に係るフローチャートである。   Next, the flow of steel sheet cooling by the method of the present invention will be described. FIG. 4 is a schematic side view showing an example of a cooling device for carrying out the method of the present invention, and FIG. 5 is a flowchart according to the embodiment of the present invention.

図4に示すように、冷却装置Aには、熱間圧延された高温の鋼板2をその上面および下面から拘束し、矢印方向に連続的に移送するための、上部ロール1aと下部ロール1bとからなる1対の移送ロール1が、所定ピッチで複数組設けられている。1対の移送ロール1の相互間の上面側には、上流側移送ロールから下流側移送ロールに向けたスリットノズル3が設けられており、その下面側には、水中に没した円管ノズル4が、板幅方向に所定ピッチで長さ方向に設けられている。5は表面冷却装置、6は裏面冷却装置である。冷却装置Aの入側7には鋼板の温度測定装置が設けられている(図示せず)。   As shown in FIG. 4, the cooling device A includes an upper roll 1a and a lower roll 1b for restraining the hot-rolled high-temperature steel plate 2 from the upper surface and the lower surface and continuously transferring the hot-rolled steel plate 2 in the arrow direction. A plurality of pairs of transfer rolls 1 are provided at a predetermined pitch. A slit nozzle 3 from the upstream transfer roll to the downstream transfer roll is provided on the upper surface side between the pair of transfer rolls 1, and a circular tube nozzle 4 submerged in water is provided on the lower surface side thereof. Are provided in the length direction at a predetermined pitch in the plate width direction. 5 is a surface cooling device, and 6 is a back surface cooling device. The inlet side 7 of the cooling device A is provided with a steel plate temperature measuring device (not shown).

図5により鋼板冷却のフローを説明する。まず、鋼板の比熱モデルの作成である。同じ成分系の鋼種毎に、変態発熱(フェライト変態、ベイナイト変態)を考慮し、温度と比熱との関係を算出する(図1参照)。成分系が同じであれば変態点は同じであるから、同じ成分系の鋼種毎に変態温度を求める。   The flow of steel plate cooling will be described with reference to FIG. First, the specific heat model of the steel sheet is created. For each steel type of the same component system, the relationship between temperature and specific heat is calculated in consideration of transformation heat generation (ferrite transformation, bainite transformation) (see FIG. 1). Since the transformation point is the same if the component system is the same, the transformation temperature is obtained for each steel type of the same component system.

圧延装置で鋼板が熱間圧延され、圧延された鋼板が冷却装置の入側に搬送されてくる。   The steel plate is hot-rolled by the rolling device, and the rolled steel plate is conveyed to the inlet side of the cooling device.

次いで、冷却装置の入り側において、冷却開始前の鋼板の表裏面の温度を測定する。そして、鋼板の表裏面に温度差がなければ(NO)、表裏面温度が均一となるように冷却装置Aの表面冷却装置5と裏面冷却装置6の水量比を一定とした冷却を実施する。通常冷却の場合、冷却開始温度と冷却停止温度から、冷却熱量Qが必要である(図2参照)。   Next, on the entry side of the cooling device, the temperature of the front and back surfaces of the steel plate before the start of cooling is measured. If there is no temperature difference between the front and back surfaces of the steel sheet (NO), cooling is performed with a constant water amount ratio between the surface cooling device 5 of the cooling device A and the back surface cooling device 6 so that the front and back surface temperatures are uniform. In the case of normal cooling, a cooling heat quantity Q is required from the cooling start temperature and the cooling stop temperature (see FIG. 2).

一方、鋼板の表裏面に温度差がある場合(YES)は、鋼板の表面および裏面の必要冷却熱量を計算する。計算式は下記となる。   On the other hand, when there is a temperature difference between the front and back surfaces of the steel plate (YES), the required cooling heat quantity of the front and back surfaces of the steel plate is calculated. The calculation formula is as follows.

鋼板表面:
Qs(kcal)=ΣQi=QTS+QT1+・・・+QTend
鋼板裏面:
Qb(kcal)=ΣQi=QTb+QT1+・・・+QTend
T1、QT2、QT3・・・QTendは、冷却開始温度Tsから冷却停止温度Tend間の各温度の熱量を示し、ΣQiはその和であり、鋼板の必要冷却量になる。そして、表裏面の熱量差を検出する。
Steel plate surface:
Qs (kcal) = ΣQi = Q TS + Q T1 +... + Q Tend
Steel plate back:
Qb (kcal) = ΣQi = Q Tb + Q T1 +... + Q Tend
Q T1 , Q T2 , Q T3, ..., Q Tend indicate the amount of heat at each temperature between the cooling start temperature Ts and the cooling stop temperature Tend, and ΣQi is the sum and becomes the required cooling amount of the steel sheet. And the calorie | heat amount difference of front and back is detected.

熱量差:Q1=Qs−Qb(図3参照)
次いで、水冷時の抜熱量を計算する。冷却開始温度実績から冷却時間(t)を算出する。計算式は下記となる。
Calorie difference: Q1 = Qs−Qb (see FIG. 3)
Next, the amount of heat removed during water cooling is calculated. The cooling time (t) is calculated from the actual cooling start temperature. The calculation formula is as follows.

鋼板裏面:
=A×k×q×t(冷却設備下部流量を一定とする)
=α×T
ここで、
A:冷却面積(m
Q:水冷時の抜熱量(kcal)
:熱流束(kcal/m・Hr)
t:冷却時間(Hr)
k:水温を考慮した定数
α:熱伝達率(kcal/m・Hr・℃)
T:鋼板表面温度
冷却設備下部(裏面)の水量密度を一定として、冷却時間tを算出する。このとき、水冷時の熱流束は下部水量密度をベースとしてテーブル化する。水冷時の熱伝達率、熱流束は、種々の温度の鋼板を冷却装置で冷却し、冷却後の温度等のデータから算出する。なお、表1のテーブルは、図5中の表1と同一の記載である。
Steel plate back:
Q b = A × k × q T × t (cooling equipment lower part flow rate is constant)
q T = α T × T
here,
A: Cooling area (m 2 )
Q: Heat removal during water cooling (kcal)
q T : heat flux (kcal / m 2 · Hr)
t: Cooling time (Hr)
k: Constant considering water temperature α T : Heat transfer coefficient (kcal / m 2 · Hr · ° C)
T: Steel plate surface temperature The cooling time t is calculated with the water density at the lower part (back surface) of the cooling equipment being constant. At this time, the heat flux during water cooling is tabulated based on the lower water density. The heat transfer coefficient and heat flux at the time of water cooling are calculated from data such as the temperature after cooling a steel plate of various temperatures with a cooling device. In addition, the table of Table 1 is the same description as Table 1 in FIG.

Figure 2006281271
次いで、計算した抜熱量を水量比に換算し上下水量比を設定する。鋼板表面の水冷時の抜熱量を計算し、Q1を補正した値となるように係数βを算出する。上記結果より上下水量密度を設定する。計算式は下記となる。
Figure 2006281271
Next, the calculated heat removal amount is converted into a water amount ratio, and the water amount ratio is set. The amount of heat removal at the time of water cooling of the steel sheet surface is calculated, and the coefficient β is calculated so as to be a value obtained by correcting Q1. Based on the above results, water density is set. The calculation formula is as follows.

鋼板表面:Qs=Qb+Q1=β×(k×q×t×A)
求めた冷却量に基づいて鋼板の表面および裏面を冷却する。
Steel plate surface: Qs = Qb + Q1 = β × (k × q T × t × A)
The front and back surfaces of the steel sheet are cooled based on the obtained cooling amount.

以上のように、冷却装置の入り側において、個々の鋼板毎に冷却開始前の鋼板表裏面温度を測定し、表裏面で温度差が発生している鋼板の変態温度の計算値から求めた変態発熱量を含めて鋼板の表面および裏面の伝熱量を計算し、この計算結果をもとに鋼板の表面および裏面の必要冷却量を算出して、上下水量比を鋼板毎に変更することにより、鋼板の表裏面に均一な冷却を行うことができ、板厚方向の材質特性に優れ、形状の良好な鋼板が得られる。   As described above, on the entry side of the cooling device, the front and back surfaces of the steel sheet before the start of cooling are measured for each individual steel sheet, and the transformation obtained from the calculated value of the transformation temperature of the steel sheet in which the temperature difference occurs between the front and back surfaces. By calculating the amount of heat transfer on the front and back surfaces of the steel sheet including the amount of heat generated, calculating the required cooling amount on the front and back surfaces of the steel sheet based on the calculation results, and changing the water and water ratio for each steel sheet, Uniform cooling can be performed on the front and back surfaces of the steel plate, and a steel plate having excellent material properties in the thickness direction and a good shape can be obtained.

次に、本発明を実施例により説明する。   Next, an example explains the present invention.

図4に示す冷却装置を用い、熱間圧延された鋼板に対して、本発明の方法により、3箇月の間、加速冷却を実施した。評価に供した鋼板の枚数は、約3000枚であった。3箇月の実施期間終了後、均一冷却が行われた良好な形状の鋼板はそのままとし、不均一な冷却が発生した鋼板については矯正を実施した。そして、この矯正の実施率を、矯正を実施した鋼板の枚数の、冷却した鋼板全枚数に対する割合(%)で示した。   Using the cooling device shown in FIG. 4, accelerated cooling was performed for 3 months on the hot-rolled steel sheet by the method of the present invention. The number of steel plates used for the evaluation was about 3000. After completion of the implementation period of 3 months, the steel plate having a good shape that was uniformly cooled was left as it was, and the steel plate that was unevenly cooled was corrected. And the implementation rate of this correction | amendment was shown by the ratio (%) with respect to the total number of sheets of the cooled steel plate of the number of the steel plates which performed correction.

比較例として、冷却前の圧延工程における圧延寸法および冷却条件によって鋼板表裏面の水冷比を決定する、従来から行われている冷却方法により、冷却を実施し、実施例と同様の方法で矯正の実施率を調べた。   As a comparative example, the water cooling ratio of the front and back surfaces of the steel sheet is determined according to the rolling dimensions and cooling conditions in the rolling step before cooling, cooling is performed by a conventional cooling method, and correction is performed in the same manner as in the examples. The implementation rate was examined.

この結果、本発明の実施により、比較例に比べ、50%の矯正実施率が低下した。以上より、本発明によれば、鋼板の表裏面に均一な冷却が行われ、板厚方向の材質特性に優れ、形状の良好な鋼板が得られ、従って、矯正の実施率が低く抑えられることが分かる。   As a result, the implementation rate of the correction decreased by 50% compared to the comparative example. As described above, according to the present invention, uniform cooling is performed on the front and back surfaces of the steel sheet, and a steel sheet having excellent material properties in the thickness direction and having a good shape can be obtained. I understand.

変態発熱を考慮した比熱と鋼板温度との関係を示すグラフである。It is a graph which shows the relationship between the specific heat and steel plate temperature which considered the transformation heat_generation | fever. 鋼板冷却時の必要冷却熱量を示すグラフである。It is a graph which shows the required cooling calorie | heat amount at the time of steel plate cooling. 鋼板表裏面の冷却熱量差を示すグラフである。It is a graph which shows the cooling calorie | heat amount difference of steel plate front and back. この発明の方法を実施するための冷却装置の一例を示す概略側面図である。It is a schematic side view which shows an example of the cooling device for enforcing the method of this invention. この発明の実施の形態に係るフローチャートである。It is a flowchart which concerns on embodiment of this invention.

符号の説明Explanation of symbols

A 冷却装置
1 移送ロール
1a 上部ロール
1b 下部ロール
2 鋼板
3 スリットノズル
4 円管ノズル
5 表面冷却装置
6 裏面冷却装置
7 入り側
A Cooling device 1 Transfer roll 1a Upper roll 1b Lower roll 2 Steel plate 3 Slit nozzle 4 Circular nozzle 5 Surface cooling device 6 Back surface cooling device 7 Entry side

Claims (1)

熱間圧延された鋼板を搬送させながら鋼板の表面と裏面とを冷却する鋼板の製造方法であって、
冷却前の鋼板の表面および裏面に対し、冷却前の鋼板の表面および裏面の温度、予め定めた冷却後の鋼板の目標温度、予め求めておいた鋼板の変態温度および温度と比熱の関係に基づいて、鋼板の表面の冷却量、裏面の冷却量を求め、求めた冷却量に基づいて、鋼板の表面および裏面を冷却することを特徴とする鋼板の製造方法。
A method of manufacturing a steel sheet that cools the front and back surfaces of a steel sheet while conveying the hot-rolled steel sheet,
Based on the surface temperature and back surface of the steel sheet before cooling, the temperature of the surface and back surface of the steel sheet before cooling, the predetermined target temperature of the steel sheet after cooling, the transformation temperature of the steel sheet determined in advance and the relationship between the temperature and specific heat A method for producing a steel sheet, comprising: obtaining a cooling amount on the surface of the steel sheet and a cooling amount on the back surface; and cooling the front surface and the back surface of the steel sheet based on the obtained cooling amount.
JP2005104542A 2005-03-31 2005-03-31 Method for manufacturing steel sheet Pending JP2006281271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104542A JP2006281271A (en) 2005-03-31 2005-03-31 Method for manufacturing steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104542A JP2006281271A (en) 2005-03-31 2005-03-31 Method for manufacturing steel sheet

Publications (1)

Publication Number Publication Date
JP2006281271A true JP2006281271A (en) 2006-10-19

Family

ID=37403706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104542A Pending JP2006281271A (en) 2005-03-31 2005-03-31 Method for manufacturing steel sheet

Country Status (1)

Country Link
JP (1) JP2006281271A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013935A (en) * 2011-06-07 2013-01-24 Nippon Steel & Sumitomo Metal Corp Cooling method of hot-rolled steel sheet
JP2013013936A (en) * 2011-06-07 2013-01-24 Nippon Steel & Sumitomo Metal Corp Cooling appararus and cooling method of hot-rolled steel sheet
US9186710B2 (en) 2011-06-07 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel sheet
US9211574B2 (en) 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet
US9566625B2 (en) 2011-06-07 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Apparatus for cooling hot-rolled steel sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013935A (en) * 2011-06-07 2013-01-24 Nippon Steel & Sumitomo Metal Corp Cooling method of hot-rolled steel sheet
JP2013013936A (en) * 2011-06-07 2013-01-24 Nippon Steel & Sumitomo Metal Corp Cooling appararus and cooling method of hot-rolled steel sheet
US9186710B2 (en) 2011-06-07 2015-11-17 Nippon Steel & Sumitomo Metal Corporation Method for cooling hot-rolled steel sheet
US9566625B2 (en) 2011-06-07 2017-02-14 Nippon Steel & Sumitomo Metal Corporation Apparatus for cooling hot-rolled steel sheet
US9211574B2 (en) 2011-07-27 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing steel sheet

Similar Documents

Publication Publication Date Title
JP2006281271A (en) Method for manufacturing steel sheet
EP3560616A1 (en) Method for cooling steel sheet, cooling device for steel sheet and method for manufacturing steel sheet
JP5327140B2 (en) Method for cooling hot rolled steel sheet
JP6090224B2 (en) Control cooling equipment and control cooling method
JP2008238241A (en) Manufacturing method of aluminum metal sheet
JPWO2014087524A1 (en) Hot-rolled steel sheet cooling method
JP2005074463A (en) Cooling method of steel plate
KR900002504B1 (en) Method of correcting warping of two-layer clad metal plate
WO2020162004A1 (en) Method of cooling control for thick steel plate, cooling control device, and method of producing thick steel plate
JP2016078045A (en) Rough rolling device for hot rolled steel sheet, and rough rolling method therefor
JP2004237346A (en) Method for controlling width of rolling stock in hot rolling
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JP2007069250A (en) Method for cooling hot-rolled steel sheet
JP6447836B2 (en) Hot-rolled steel strip manufacturing method and hot-rolled steel strip manufacturing equipment
JP4655684B2 (en) Heat treatment method for steel sheet
JP6614105B2 (en) Ingot rolling method for slabs
JP4258341B2 (en) Manufacturing method of high-strength steel sheet with excellent material uniformity in the longitudinal direction of the steel sheet
JP6269548B2 (en) Manufacturing method of hot-rolled steel sheet
JP5854177B1 (en) Hot rolling method for high carbon steel
KR20200099591A (en) Heating method and continuous annealing facility of steel sheet in continuous annealing
JP4089607B2 (en) Heat treatment method for steel sheet
JP2007283327A (en) Cooling equipment line and cooling method for thick steel plate
JP2012101237A (en) Method for controlling cooling of hot-rolled steel sheet
JPH07241613A (en) Method for controlling camber shape in width direction of steel plate
JP2004216438A (en) Cooling method and cooling apparatus for steel plate