JP2006281005A - Apparatus and method for treating water using photocatalyst - Google Patents

Apparatus and method for treating water using photocatalyst Download PDF

Info

Publication number
JP2006281005A
JP2006281005A JP2005100395A JP2005100395A JP2006281005A JP 2006281005 A JP2006281005 A JP 2006281005A JP 2005100395 A JP2005100395 A JP 2005100395A JP 2005100395 A JP2005100395 A JP 2005100395A JP 2006281005 A JP2006281005 A JP 2006281005A
Authority
JP
Japan
Prior art keywords
gas
water
treated
photocatalyst
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005100395A
Other languages
Japanese (ja)
Inventor
Hideki Kobayashi
秀樹 小林
Nobuhiro Oda
信博 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005100395A priority Critical patent/JP2006281005A/en
Publication of JP2006281005A publication Critical patent/JP2006281005A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment technique excellent in light and gas utilization efficiency when water is treated using a photocatalyst. <P>SOLUTION: An apparatus for carrying out oxidative decomposition of an organic substance to purify water to be treated R comprises an introduction part of the water to be treated, a reaction part 33 for carrying out oxidation treatment of the introduced water to be treated R and a gas supply part 34 for supplying gas G serving as an oxidizing assistant to the reaction part 33. The apparatus for treating water is provided in which the reaction part 33 includes at least a light transmissive filler 332 carrying the photocatalyst thereon and a light irradiation part 33 arranged so as to be able to irradiate the filler 332 with light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被処理水の有機物分解などを行って浄化する水処理技術に関する。より詳しくは、被処理水を光触媒の酸化反応によって処理することにより、有機物分解などを行って浄化する水処理装置及び水処理方法に関する。   The present invention relates to a water treatment technique for purifying water to be treated by decomposing organic matter. More specifically, the present invention relates to a water treatment apparatus and a water treatment method for purifying water to be treated by organic substance decomposition or the like by treating the water to be treated by an oxidation reaction of a photocatalyst.

種々の汚水、排水、廃水の殺菌処理、あるいは純水製造過程における有機物除去などを行う際の水処理技術では、細菌類などを酸化殺菌したり、含有有機物を酸化分解したりすることが行われている。例えば、オゾンや過酸化水素などの酸化剤を用いる技術、これらに紫外線照射を併用する技術などが広く普及している。   In water treatment technology for sterilization of various sewage, wastewater, wastewater, or removal of organic substances in the production process of pure water, bacteria are oxidized and sterilized, and contained organic substances are oxidatively decomposed. ing. For example, a technique using an oxidizing agent such as ozone and hydrogen peroxide, a technique using ultraviolet irradiation in combination with these, and the like are widely used.

しかしながら、オゾンは被処理水への溶解効率が悪く、水中での半減期が短く、また、オゾンは人体に有害であるため、気密装置や廃オゾン処理設備(例えば、活性炭設備)を付設する必要があり、ランニングコストが高くなるなどの問題を抱えている。   However, ozone has poor dissolution efficiency in treated water, has a short half-life in water, and is harmful to the human body, so it is necessary to install an airtight device and waste ozone treatment equipment (for example, activated carbon equipment). There are problems such as high running costs.

一方、過酸化水素を用いる技術や過酸化水素と紫外線を併用する促進酸化法と呼ばれる技術では、被処理水の酸化還元電位によって、過酸化水素が酸化剤にも還元剤にも作用して、反応条件を一定に維持することが困難であり、分解効率が非常に低いという問題がある。   On the other hand, in a technique called hydrogen peroxide or a technique called an accelerated oxidation method using hydrogen peroxide and ultraviolet rays, hydrogen peroxide acts on an oxidizing agent and a reducing agent depending on the oxidation-reduction potential of water to be treated. There is a problem that it is difficult to keep the reaction conditions constant and the decomposition efficiency is very low.

以上のような従来技術の短所や欠点を克服するため、近年、光触媒を利用した水処理技術が提案されている。即ち、光触媒は、紫外線などの光が照射されたときにその表面にOHラジカル等の活性酸素を生じるので、酸化殺菌や有機物の酸化分解に利用できることが知られている。   In order to overcome the disadvantages and disadvantages of the conventional techniques as described above, water treatment techniques using a photocatalyst have been proposed in recent years. That is, it is known that a photocatalyst generates active oxygen such as OH radicals on its surface when irradiated with light such as ultraviolet rays, and thus can be used for oxidative sterilization and oxidative decomposition of organic substances.

例えば、特許文献1には、被処理水中に粒子状の光触媒を混合した混合水を酸化分解槽内で強制循環させながら光触媒の励起光を照射する技術が開示されており、特許文献2には、被処理水中に粒子状の光触媒を混合する技術において、液体サイクロン若しくは電磁石を用いて固液分離するように工夫された技術が開示されている。これらの方法では、被処理水と光触媒粒子の固液分離工程が必要となってしまう。   For example, Patent Literature 1 discloses a technique of irradiating excitation light of a photocatalyst while forcibly circulating mixed water obtained by mixing particulate photocatalyst in water to be treated in an oxidative decomposition tank. In the technology of mixing particulate photocatalyst in water to be treated, a technology devised so as to perform solid-liquid separation using a liquid cyclone or an electromagnet is disclosed. In these methods, a solid-liquid separation step of water to be treated and photocatalyst particles is required.

特許文献3には、有機物含有汚水が流通する汚水流通管路内に、粒状に成形された光触媒を充填した汚水処理部と、汚水流通管路内の汚水に酸素を供給する酸素供給部と、設ける汚水処理装置が開示されている。   Patent Document 3 includes a sewage treatment section filled with a granular photocatalyst in a sewage circulation pipe through which organic matter-containing sewage circulates, an oxygen supply section that supplies oxygen to the sewage in the sewage circulation pipe, A provided sewage treatment apparatus is disclosed.

特許文献4には、無機質繊維スリーブに光触媒を担持させて形成した光触媒構造体を光透過性のある反応管内に充填し、外部から光を照射して被処理水の有機物を分解する技術が開示されている。
特開2001−070935号公報。 特開2003−181450号公報。 特開2001−17962号公報。 特開2002−102656号公報。
Patent Document 4 discloses a technology in which a photocatalyst structure formed by supporting a photocatalyst on an inorganic fiber sleeve is filled in a light-transmitting reaction tube, and the organic matter in the water to be treated is decomposed by irradiating light from the outside. Has been.
JP 2001-070935 A. JP2003-181450. Japanese Patent Application Laid-Open No. 2001-17962. JP 2002-102656 A.

本発明では、光触媒を用いて水処理を行う場合において、光利用効率やガス利用効率に優れた水処理技術を提供することを主な目的とする。   In the present invention, when water treatment is performed using a photocatalyst, a main object is to provide a water treatment technique excellent in light utilization efficiency and gas utilization efficiency.

本発明は、まず、有機物酸化分解を行って被処理水を浄化する装置であって、被処理水導入部と、導入された被処理水を酸化処理する反応部と、該反応部に酸化助剤となるガスを供給するガス供給部と、が設けられ、前記反応部は、光触媒を担持させた光透過性ラシヒリング充填材などの光透過性充填材と、該充填材に対し光を照射可能に配置された光照射部と、を少なくとも備える水処理装置を提供する。   The present invention is an apparatus for purifying water to be treated by oxidatively decomposing organic matter, and includes a water to be treated introduction portion, a reaction portion for oxidizing the introduced water to be treated, and an oxidation aid for the reaction portion. A gas supply unit that supplies a gas serving as an agent, and the reaction unit can irradiate light with a light-transmitting filler such as a light-transmitting Raschig ring filler carrying a photocatalyst. A water treatment device provided with at least a light irradiating unit disposed on the surface.

さらに、水処理装置内に供給されたガスの余剰分を、気体精製膜を介して回収ガスと廃ガスとに分離し、前記回収ガスを酸化助剤として再利用するガス再利用手段を設け、ガス利用効率の向上を達成し、装置内へ供給するガスは、酸素濃度高める処理が行われたガスを用いることによって、高濃度酸素条件での光触媒作用を達成し、該光触媒作用による殺菌及び有機物分解を効率よく進行させる。   Furthermore, a gas recycle means for separating the surplus gas supplied into the water treatment apparatus into a recovered gas and a waste gas through a gas purification membrane and reusing the recovered gas as an oxidizing aid is provided. The gas used to improve the gas utilization efficiency and to be supplied into the apparatus is a gas that has been subjected to a treatment for increasing the oxygen concentration, thereby achieving photocatalytic action under high-concentration oxygen conditions. Decomposes efficiently.

次に、本発明は、酸素濃度を高めるガス処理工程と、前記ガス処理工程を経たガスの供給を受けながら、被処理水を光触媒作用によって酸化処理して有機物分解を行う工程と、余剰ガスを回収ガスと廃ガスとに分離し、前記回収ガスを酸化助剤として再利用するガス再利用工程と、を有する水処理方法を提供する。この方法では、高い酸素濃度ガスの存在下で光触媒作用を効率的に行うとともに、余剰ガスから酸化助剤として再利用できるガスを回収して、有効利用する。   Next, the present invention includes a gas treatment step for increasing the oxygen concentration, a step of oxidizing the water to be treated by photocatalysis while decomposing organic matter while receiving the gas supplied through the gas treatment step, and an excess gas. There is provided a water treatment method including a gas recycling step of separating a recovered gas and a waste gas and reusing the recovered gas as an oxidizing aid. In this method, photocatalysis is efficiently performed in the presence of a high oxygen concentration gas, and a gas that can be reused as an oxidizing aid is recovered from the surplus gas and effectively used.

本発明は、光触媒による酸化作用を用いて水処理を行う場合において、光利用効率、光触媒作用、ガス利用効率に優れている。   The present invention is excellent in light utilization efficiency, photocatalytic action, and gas utilization efficiency when water treatment is performed using an oxidation action by a photocatalyst.

以下、本発明の好適な実施形態について説明する。なお、以下に説明する実施形態は、本発明に係る水処理装置の例、あるいは本発明に係る水処理方法を実施できる装置例を示すものであり、これらの例示された実施形態により、本発明が狭く限定されることはない。   Hereinafter, preferred embodiments of the present invention will be described. The embodiment described below shows an example of a water treatment apparatus according to the present invention or an example of an apparatus that can carry out a water treatment method according to the present invention, and the present invention is based on these illustrated embodiments. Is not narrowly limited.

まず、図1は、本発明に係る水処理装置の好適な実施形態の構成を簡略に示す図、図2は、同水処理装置の反応部(特に充填材周辺)の一例の拡大図である。   First, FIG. 1 is a diagram schematically illustrating a configuration of a preferred embodiment of a water treatment apparatus according to the present invention, and FIG. 2 is an enlarged view of an example of a reaction portion (particularly around a filler) of the water treatment apparatus. .

まず、図1に符号1で示された貯留槽は、処理対象の被処理水Rを一時的に貯留するために設けられている。被処理水Rは、殺菌や含有有機物の分解が要求される汚水、排水、廃水、純水製造用水などを広く包含するのであって、狭く限定されない。   First, the storage tank denoted by reference numeral 1 in FIG. 1 is provided to temporarily store the treated water R to be treated. The treated water R includes a wide range of sewage, waste water, waste water, pure water production water and the like that require sterilization and decomposition of contained organic substances, and is not limited to a narrow range.

貯留槽1に一時貯留された被処理水Rは、貯留槽1の排出口11から、隣設されたポンプ2へ送液され、該ポンプ2により水処理装置3に向けて送液される。送液されてきた被処理水Rは、被処理水導入部である、水処理装置の上方へ吐出して開口する液吹き込み管31を介して、水処理装置3の上方に配置された液分配板32へ散水されて導入される。この液分配板32によってその下方に設けられている反応部33に対して、均一に被処理水Rが供給される。   The treated water R temporarily stored in the storage tank 1 is sent from the discharge port 11 of the storage tank 1 to the adjacent pump 2, and is sent to the water treatment apparatus 3 by the pump 2. The treated water R that has been fed is a liquid distribution that is disposed above the water treatment device 3 via a liquid blowing pipe 31 that discharges and opens above the water treatment device, which is a treated water introduction unit. Water is introduced into the plate 32 and introduced. The treated water R is uniformly supplied to the reaction unit 33 provided below the liquid distribution plate 32.

続いて、被処理水Rは、反応部33内に多数配置された透明な石英管331の外部のスペースに装填された充填材332の表面を、液膜を形成しながら伝わって流下するようになる。ここで、本発明では、この充填材332の表面に光触媒を担持させるようにする。   Subsequently, the water R to be treated flows down the surface of the filler 332 loaded in the space outside the transparent quartz tube 331 arranged in the reaction unit 33 while forming a liquid film. Become. Here, in the present invention, a photocatalyst is supported on the surface of the filler 332.

反応部33内に装填される充填材332は、被処理水Rが液膜を形成しながら流下するように機能する材料であれば適宜採用でき、材料、形態とも特に限定されない。好適例を挙げると、ラシヒリング(Rashig Ring)状構造材のような充填材が好適である(図2参照)。その理由は、表面積が広く、かつその形状が中空であることにより、単位表面積が大きくとれるので、液膜とガスとの接触効率を高くすることができるためである。   The filler 332 loaded in the reaction unit 33 can be appropriately adopted as long as it is a material that functions so that the water to be treated R flows down while forming a liquid film, and the material and form are not particularly limited. As a preferred example, a filler such as a Rashig Ring-shaped structural material is suitable (see FIG. 2). The reason is that since the surface area is large and the shape is hollow, the unit surface area can be increased, so that the contact efficiency between the liquid film and the gas can be increased.

充填材332の表面に形成された光触媒層は、反応部33のさらに下方位置に配置されたガス供給部34から供給されてくるガス、即ち、反応部33において酸化助剤として機能するガスGの存在下で、光照射を受けて励起した光触媒の作用によって活性酸素を発生し、被処理水R中の細菌の含有有機物の酸化分解や殺菌を行う(有機物分解工程)。   The photocatalyst layer formed on the surface of the filler 332 is a gas supplied from a gas supply unit 34 disposed further below the reaction unit 33, that is, a gas G that functions as an oxidation aid in the reaction unit 33. In the presence, active oxygen is generated by the action of a photocatalyst excited by light irradiation, and oxidative decomposition and sterilization of organic substances contained in bacteria in the water to be treated R is performed (organic substance decomposition step).

より具体的には、反応部33内は、下方側のガス供給部34から散気状態で供給されたガスGで満たされている状態となっており、このガスGは充填材332の表面の液膜中へ高い溶解速度を保って溶解する。   More specifically, the inside of the reaction unit 33 is filled with the gas G supplied in a diffused state from the gas supply unit 34 on the lower side, and this gas G is on the surface of the filler 332. Dissolves into the liquid film while maintaining a high dissolution rate.

また、反応部33に配置された石英管331内には、図2示すように、光照射部333が設けられている。この光照射部333から出射される光で充填材332の表面の光触媒を励起することによって、該光触媒に接触する被処理水Rに酸化作用を及ぼして、効率よく殺菌や有機物を分解する。   In addition, a light irradiation unit 333 is provided in the quartz tube 331 disposed in the reaction unit 33 as shown in FIG. By exciting the photocatalyst on the surface of the filler 332 with the light emitted from the light irradiation unit 333, the water to be treated R that contacts the photocatalyst is oxidized to efficiently sterilize and decompose organic matter.

前記光照射部333は、例えば、水素放電管、キセノン放電管、水銀ランプ、レーザー光源、発光ダイオード(LED)などの中から、使用する光触媒材料の励起に適する光源を適宜採用することができ、これらを、例えば、透明な石英管331の内側に配置しておくようにする。光照射部333から出射された光は、石英管331を通過して、その外部のスペースに装填された充填材332へ照射される。   The light irradiation unit 333 may appropriately employ a light source suitable for excitation of a photocatalytic material to be used, for example, from among a hydrogen discharge tube, a xenon discharge tube, a mercury lamp, a laser light source, a light emitting diode (LED), and the like. These are arranged, for example, inside a transparent quartz tube 331. The light emitted from the light irradiation unit 333 passes through the quartz tube 331 and is irradiated to the filler 332 loaded in the external space.

本発明において、酸化助剤として機能させ得るガスGは、空気、酸素、オゾンのいずれを用いてもよいが、主にコスト面を考慮すれば、空気や酸素のいずれかを採用するのが望ましい。   In the present invention, the gas G that can function as an oxidation aid may be any of air, oxygen, and ozone, but it is desirable to adopt either air or oxygen mainly considering the cost. .

空気を採用する場合では、これを水処理装置3内へ供給する前段階で、酸素富化膜(気体分離膜)やPSA(Pressure Swing Adsorption:圧力変動吸着)などに代表される酸素分離装置35を用いて酸素濃度を高めるためのガス処理工程を行って窒素を取り除くようにする。このように、供給ガスGは、予め酸素濃度を高めるためのガス処理工程を行ってから、装置3内の反応部33の下方領域へ送り込まれるようにするのが特に望ましい。   In the case of employing air, an oxygen separation device 35 represented by an oxygen-enriched membrane (gas separation membrane), PSA (Pressure Swing Adsorption), etc., is a stage before supplying this into the water treatment device 3. Is used to remove nitrogen by performing a gas treatment step for increasing the oxygen concentration. As described above, it is particularly desirable that the supply gas G is sent to a lower region of the reaction unit 33 in the apparatus 3 after performing a gas treatment step for increasing the oxygen concentration in advance.

なお、酸素富化膜は、シリコンなどの薄膜の一方側の真空領域へ他方の側の酸素が窒素よりも早く通過するという原理により酸素を空気中から分離し、PSAは、吸着材のガスに対する吸着特性の違いを利用して、目的とするガス(本発明では酸素)を空気中から連続的に分離することができる装置である。   The oxygen-enriched film separates oxygen from the air on the principle that oxygen on the other side passes faster than nitrogen into the vacuum region on one side of a thin film such as silicon. The apparatus is capable of continuously separating the target gas (oxygen in the present invention) from the air by utilizing the difference in adsorption characteristics.

ここで、本発明で採用可能な光触媒は、特に制限はなく、酸化亜鉛、酸化タングステン、酸化チタン、酸化セリウムなどの金属酸化物、あるいは硫化亜鉛、硫化カドミウム、硫化水銀などの硫化金属を利用できる。   Here, the photocatalyst that can be employed in the present invention is not particularly limited, and metal oxides such as zinc oxide, tungsten oxide, titanium oxide, and cerium oxide, or metal sulfides such as zinc sulfide, cadmium sulfide, and mercury sulfide can be used. .

さらには、これらの金属に対して、窒素イオンや硫黄イオンなどの不純物イオンをドープした光触媒を採用することによって、380nm以上650nm以下の可視光領域でも光触媒能を発揮できる。これにより、紫外線照射装置以外の光照射装置も広く適用できるようになり、また、太陽光を光触媒の励起として利用できるという利点がある。また、これらの金属に対して、白金等の金属を担持させたものを採用した場合には、光反応における効率を向上させることができるという利点がある。   Furthermore, by using a photocatalyst doped with impurity ions such as nitrogen ions and sulfur ions for these metals, the photocatalytic ability can be exhibited even in the visible light region of 380 nm to 650 nm. Thereby, light irradiation apparatuses other than the ultraviolet irradiation apparatus can be widely applied, and there is an advantage that sunlight can be used as excitation of the photocatalyst. Moreover, when what carried | supported metals, such as platinum, is employ | adopted with respect to these metals, there exists an advantage that the efficiency in photoreaction can be improved.

なお、水処理装置3の外筒部334をガラスやアクリル樹脂などの光透過性材料によって形成し、太陽光を反応部33内部に採りこむことができるように工夫し、光触媒の励起効率をさらに高めてもよい。強度面を考慮すれば、外筒部334は、アクリル樹脂のような強化樹脂で形成するのが望ましい。   In addition, the outer cylinder part 334 of the water treatment apparatus 3 is formed of a light-transmitting material such as glass or acrylic resin, and is devised so that sunlight can be taken into the reaction part 33 to further increase the excitation efficiency of the photocatalyst. May be raised. Considering the strength, it is desirable to form the outer cylinder portion 334 with a reinforced resin such as an acrylic resin.

光触媒材料の中でも酸化チタンは、その触媒表面に大きな酸化力を有するヒドロキシラジカルとスーパーオキサイドイオンが生成し、被処理水中の有機物を強力に酸化分解する機能を発揮し、その構造安定性さらには取り扱い上の安定性等の観点からも好適に利用できる。   Among photocatalyst materials, titanium oxide produces hydroxy radicals and superoxide ions that have a large oxidizing power on the catalyst surface, and exhibits the ability to strongly oxidize and decompose organic substances in the water to be treated. Its structural stability and handling It can be suitably used from the viewpoint of the above stability.

酸化チタンとしては、汎用の二酸化チタンの他、メタチタン酸、オルトチタン酸、含水酸化チタン、水和酸化チタン、水酸化チタン、及び過酸化チタン等のチタン酸化物や水酸化チタンが挙げられる。中でもアナタースやルチル結晶構造を有する酸化チタンは比較的安価であり、また、性能的にも優れている。   Examples of titanium oxide include titanium oxide such as metatitanic acid, orthotitanic acid, hydrous titanium oxide, hydrated titanium oxide, titanium hydroxide, and titanium peroxide, as well as general-purpose titanium dioxide, and titanium hydroxide. Among these, titanium oxide having anatase or rutile crystal structure is relatively inexpensive and has excellent performance.

充填材332の表面に光触媒を担持させて光触媒層(光触媒膜)を形成する方法としては、光触媒を薄膜状態に形成できる方法であれば適宜採用できる。例えば、真空蒸着法、メッキ法、ゾルゲル法等を採用できる。また、微細粉末を固定化する方法も適用可能である。   As a method for forming the photocatalyst layer (photocatalyst film) by supporting the photocatalyst on the surface of the filler 332, any method that can form the photocatalyst in a thin film state can be adopted as appropriate. For example, a vacuum deposition method, a plating method, a sol-gel method, or the like can be employed. A method of immobilizing fine powder is also applicable.

次に、図1を再び参照すると、この図1中で示された装置36は、ガス再利用工程に使用される装置であって、水処理装置3に付設されたガス精製膜装置を示している。   Next, referring again to FIG. 1, the device 36 shown in FIG. 1 is a device used in the gas recycling process, and shows a gas purification membrane device attached to the water treatment device 3. Yes.

このガス精製膜装置36は、装置3内での余剰ガスGを再利用可能な回収ガスGaと再利用困難な廃ガスGbとに分離する役割を担う。分離された回収ガスGaは、ガス供給部34、あるいは酸素分離装置35とガス供給部34を介して、水処理装置3の内部へ再供給する。これにより、ガスGの利用効率の向上を図ることができる。 The gas purification membrane device 36 plays a role of separating the surplus gas G 1 in the device 3 into a reusable recovered gas G 1 a and a waste gas G 1 b that is difficult to recycle. The separated recovered gas G 1 a is resupplied to the inside of the water treatment device 3 via the gas supply unit 34 or the oxygen separation device 35 and the gas supply unit 34. Thereby, the utilization efficiency of gas G can be aimed at.

以上のような水処理装置3で気液接触による酸化処理された処理水Wは、装置3の底部37の排出口38から取り出され、隣設された貯留槽4に一旦貯留された後、ポンプ5を介して、所定の目的に利用又は排水するために吐出される。   The treated water W oxidized by gas-liquid contact in the water treatment apparatus 3 as described above is taken out from the discharge port 38 at the bottom 37 of the apparatus 3 and temporarily stored in the adjacent storage tank 4, and then pumped. 5 is discharged for use or drainage for a predetermined purpose.

本実験で使用した被処理水(R)は、超純水に界面活性剤を添加し、TOC(全有機炭素)として10mg/Lに調整した模擬排水である。また、酸素ガスを供給ガスとして採用した。光触媒は、実施例としては、石英製ラシヒリングにゾルゲル法を用いてアナタース型の粉末酸化チタンを担持したものを用い、比較例にはアナタース粒状酸化チタンを用いた。光触媒励起のための光照射用の光源としては、主波長365nmの高圧水銀ランプを用いた。なお、この高圧水銀ランプは発熱することから、石英ガラスを二重管に形成し、その管間に冷却水としての超純水を通水した。   The water to be treated (R) used in this experiment is simulated waste water adjusted to 10 mg / L as TOC (total organic carbon) by adding a surfactant to ultrapure water. In addition, oxygen gas was used as the supply gas. As an example, the photocatalyst used was a silica Raschig ring carrying anatase-type powdered titanium oxide using a sol-gel method, and anatase granular titanium oxide was used as a comparative example. As a light source for light irradiation for photocatalytic excitation, a high-pressure mercury lamp having a main wavelength of 365 nm was used. Since this high-pressure mercury lamp generates heat, quartz glass was formed in a double tube, and ultrapure water as cooling water was passed between the tubes.

(実施例1)。図1に示した水処理装置と同様の構成の反応部に対して、酸化チタンを担持した石英製ラシヒリングを充填材とし、供給ガスとして酸素ガスを用いて、反応部内を酸素雰囲気として処理を行った。   (Example 1). The reaction section having the same configuration as that of the water treatment apparatus shown in FIG. 1 is treated with a quartz Raschig ring supporting titanium oxide as a filler, oxygen gas as a supply gas, and an oxygen atmosphere in the reaction section. It was.

(比較例1)。酸素を供給しないで条件で光触媒処理を行った。   (Comparative Example 1). The photocatalytic treatment was performed under the condition without supplying oxygen.

(比較例2)。通常の散気装置を用いて、酸素分離しない空気を反応部の下方から曝気しながら光触媒処理をした。添付した図3は、以上の実施例1、比較例1、2の実験結果を示す図(図面代用グラフ)である。   (Comparative example 2). The photocatalyst treatment was performed using an ordinary air diffuser while aerated air not separated from the reaction part from below. Attached FIG. 3 is a diagram (drawing substitute graph) showing the experimental results of Example 1 and Comparative Examples 1 and 2 described above.

図3に示された結果からわかるように、酸素を供給しない条件の比較例1では、溶存酸素が明らかに不足するため、被処理水での有機物分解が非常に遅くなり、60分後のTOCは、6.0mg/Lであった。   As can be seen from the results shown in FIG. 3, in Comparative Example 1 where oxygen is not supplied, the dissolved oxygen is clearly insufficient, so the decomposition of organic matter in the water to be treated becomes very slow, and the TOC after 60 minutes. Was 6.0 mg / L.

通常の散気装置にて、酸素分離処理行わない空気を暴気した条件の比較例2では、比較例1と比較して反応速度が向上し、60分後のTOCは、1.0mg/Lまで低下した。しかしながら、TOCが低下するにつれて、反応速度が低下した(図3参照)。   In Comparative Example 2 under the condition where the air that was not subjected to oxygen separation treatment was ventilated with a normal air diffuser, the reaction rate was improved as compared with Comparative Example 1, and the TOC after 60 minutes was 1.0 mg / L. It dropped to. However, as the TOC decreased, the reaction rate decreased (see FIG. 3).

一方、実施例1では、供給ガスとして酸素ガスを用いているので、酸素の供給速度が向上している結果、TOCの分解速度が比較例1、2と比較して顕著に速くなり、5分後のTOCは0.5mg/Lにまで低下した(図3参照)。さらには、反応部の構成が液膜による処理を行う構成を採用しているため、光触媒と被処理物質との間の接触効率が高くなり、TOCが低濃度になったときでも、反応速度が低下することなく、直線的に分解が進行することが明らかになった(図3参照)。   On the other hand, in Example 1, since oxygen gas is used as the supply gas, the oxygen supply rate is improved. As a result, the decomposition rate of TOC is remarkably increased compared with Comparative Examples 1 and 2, and 5 minutes. Later TOC decreased to 0.5 mg / L (see FIG. 3). Furthermore, since the structure of the reaction part employs a structure that performs treatment with a liquid film, the contact efficiency between the photocatalyst and the material to be treated increases, and even when the TOC has a low concentration, the reaction rate is high. It was revealed that the decomposition progressed linearly without decreasing (see FIG. 3).

本発明は、種々の汚水、排水、廃水の有機物分解処理、あるいは純水製造過程における有機物除去などを行う際の水処理技術として利用できる。特に、光触媒を用いて水処理を行う場合における、利用効率やガス利用効率に優れており、有機物分解能力も高い気液接触型の水処理技術として利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a water treatment technique for performing organic matter decomposition treatment of various sewage, wastewater, wastewater, or removal of organic matter in a pure water production process. In particular, when water treatment is performed using a photocatalyst, it can be used as a gas-liquid contact type water treatment technique that is excellent in utilization efficiency and gas utilization efficiency and has high organic matter decomposition ability.

本発明に係る水処理装置の好適な実施形態の構成を簡略に示す図である。It is a figure which shows simply the structure of suitable embodiment of the water treatment apparatus which concerns on this invention. 同水処理装置の反応部(特に充填材周辺)の一例の拡大図である。It is an enlarged view of an example of the reaction part (especially filler surrounding) of the water treatment apparatus. 実施例に係わる実験結果を示す図(図面代用グラフ)である。It is a figure (drawing substitute graph) which shows the experimental result concerning an Example.

符号の説明Explanation of symbols

3 水処理装置
33 反応部
34 ガス供給部
35 酸素分離装置
36 ガス精製膜装置
331 石英管
332 (光触媒が担持された)充填材
333 光照射部
G 供給ガス
余剰ガス
a 再利用する回収ガス
b 廃ガス
R 被処理水
W 処理水
3 Water Treatment Device 33 Reaction Unit 34 Gas Supply Unit 35 Oxygen Separation Device 36 Gas Purification Membrane Device 331 Quartz Tube 332 Filler 333 Light Irradiation Unit G Supply Gas G 1 Surplus Gas G 1 a Reuse Recovered gas G 1 b Waste gas R Treated water W Treated water

Claims (5)

有機物の酸化分解を行って被処理水を浄化する装置であって、
被処理水導入部と、導入された被処理水を酸化処理する反応部と、該反応部へ酸化助剤となるガスを供給するガス供給部と、が設けられ、
前記反応部は、光触媒を担持させた光透過性充填材と、該充填材に対して光を照射可能に配置された光照射部と、を少なくとも備える水処理装置。
An apparatus for purifying water to be treated by oxidative decomposition of organic matter,
A treated water introduction part, a reaction part for oxidizing the introduced treated water, and a gas supply part for supplying a gas as an oxidation aid to the reaction part are provided,
The said reaction part is a water treatment apparatus provided with the light transmissive filler which carry | supported the photocatalyst, and the light irradiation part arrange | positioned so that light can be irradiated with respect to this filler.
前記充填材は、ラシヒリングであることを特徴とする請求項1記載の水処理装置。   The water treatment device according to claim 1, wherein the filler is Raschig ring. 装置内に供給されたガスの余剰分を、気体精製膜を介して回収ガスと廃ガスとに分離し、前記回収ガスを酸化助剤として再利用するガス再利用手段を有することを特徴とする請求項1又は2に記載の水処理装置。   A gas recycle means is provided for separating the surplus gas supplied into the apparatus into a recovered gas and a waste gas through a gas purification membrane and reusing the recovered gas as an oxidizing aid. The water treatment apparatus according to claim 1 or 2. 前記ガスは、酸素濃度高める処理が行われたガスであることを特徴とする請求項1から3のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, wherein the gas is a gas that has been subjected to a treatment for increasing oxygen concentration. 酸素濃度を高めるガス処理工程と、
前記ガス処理工程を経たガスの供給を受けながら、被処理水を光触媒作用によって酸化処理して有機物分解を行う工程と、
余剰ガスを回収ガスと廃ガスとに分離し、前記回収ガスを酸化助剤として再利用するガス再利用工程と、を有することを特徴とする水処理方法。
A gas treatment process to increase the oxygen concentration;
A process of decomposing organic matter by oxidizing the water to be treated by photocatalysis while receiving supply of the gas that has undergone the gas treatment step;
And a gas recycling step of separating surplus gas into recovered gas and waste gas and reusing the recovered gas as an oxidizing aid.
JP2005100395A 2005-03-31 2005-03-31 Apparatus and method for treating water using photocatalyst Pending JP2006281005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100395A JP2006281005A (en) 2005-03-31 2005-03-31 Apparatus and method for treating water using photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100395A JP2006281005A (en) 2005-03-31 2005-03-31 Apparatus and method for treating water using photocatalyst

Publications (1)

Publication Number Publication Date
JP2006281005A true JP2006281005A (en) 2006-10-19

Family

ID=37403464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100395A Pending JP2006281005A (en) 2005-03-31 2005-03-31 Apparatus and method for treating water using photocatalyst

Country Status (1)

Country Link
JP (1) JP2006281005A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522021A (en) * 2010-03-15 2013-06-13 シム,ジョン ソプ Gas collection type gas-liquid reaction device, water treatment device using the same, and gas purification device
KR101949836B1 (en) * 2018-01-22 2019-02-19 김학민 Method and system for water treatment using photocatalytic nanocomposition
WO2019172552A1 (en) * 2018-03-06 2019-09-12 김학민 Method and system for treating water by using ultrasonication and/or photocatalytic reaction
KR20230054087A (en) * 2021-10-15 2023-04-24 광운대학교 산학협력단 A method for treating trace organic pollutants using photo-ozonation catalyst and a device thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522021A (en) * 2010-03-15 2013-06-13 シム,ジョン ソプ Gas collection type gas-liquid reaction device, water treatment device using the same, and gas purification device
KR101949836B1 (en) * 2018-01-22 2019-02-19 김학민 Method and system for water treatment using photocatalytic nanocomposition
WO2019172552A1 (en) * 2018-03-06 2019-09-12 김학민 Method and system for treating water by using ultrasonication and/or photocatalytic reaction
CN111836785A (en) * 2018-03-06 2020-10-27 柳荣根 Method and system for water treatment using ultrasonic action and/or photocatalytic reaction
KR20230054087A (en) * 2021-10-15 2023-04-24 광운대학교 산학협력단 A method for treating trace organic pollutants using photo-ozonation catalyst and a device thereof
KR102565694B1 (en) * 2021-10-15 2023-08-09 광운대학교 산학협력단 A method for treating trace organic pollutants using photo-ozonation catalyst and a device thereof

Similar Documents

Publication Publication Date Title
US20070170122A1 (en) Wastewater treatment apparatus
JP2003190976A (en) Apparatus and method for treating wastewater
KR100581746B1 (en) System for treating water
JP2009262122A (en) Apparatus for water treatment
KR20140134990A (en) A water treatment system including porous alumina membranes immobilized photocatalysts, operating method thereof, and purifying method of wastewater using thereby
JP2010036148A (en) Removal system for volatile organic compound by gas absorption tower
JPH1199395A (en) Treatment of organic matter containing water
KR20090127131A (en) Method and apparatus for removing organic matters
JP3858326B2 (en) Accelerated oxidation treatment equipment using ozone and photocatalyst
KR100720035B1 (en) Water treatment apparatus and method using photocatalyst
JP2006281005A (en) Apparatus and method for treating water using photocatalyst
JP2006272034A (en) Contamination gas treatment device and method using photocatalyst
JPH1199394A (en) Method for removing organic matter in water
JP4285468B2 (en) Accelerated oxidation treatment equipment using ozone and photocatalyst
JP2000325971A (en) Polluted water treatment method and apparatus
JP2006281032A (en) Apparatus and method for treating organic substance-containing water
JP4040788B2 (en) Waste water treatment method and apparatus
US7837952B2 (en) System and method for removal of hydrogen peroxide from a contaminated media
JP2004267974A (en) Apparatus for continuously oxidizing organic material
JP4522302B2 (en) Detoxification method of organic arsenic
JP2005152815A (en) Sewage treatment apparatus
JP2001259664A (en) Method and device for cleaning contaminated water and polluted gas
JP5755590B2 (en) Water treatment method
JP2006205098A (en) Apparatus for oxidative decomposition of hardly decomposable organic compound
KR101623554B1 (en) Processing device for sewage purification using organic-inorganic hybrid nano-porous materials and methods therefor