JP2006278614A - Horizontal diffusion furnace and method of manufacturing diffusion wafer - Google Patents

Horizontal diffusion furnace and method of manufacturing diffusion wafer Download PDF

Info

Publication number
JP2006278614A
JP2006278614A JP2005093933A JP2005093933A JP2006278614A JP 2006278614 A JP2006278614 A JP 2006278614A JP 2005093933 A JP2005093933 A JP 2005093933A JP 2005093933 A JP2005093933 A JP 2005093933A JP 2006278614 A JP2006278614 A JP 2006278614A
Authority
JP
Japan
Prior art keywords
furnace
diffusion
wafer
port
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005093933A
Other languages
Japanese (ja)
Other versions
JP4446916B2 (en
Inventor
Tadayoshi Kaneko
忠義 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2005093933A priority Critical patent/JP4446916B2/en
Publication of JP2006278614A publication Critical patent/JP2006278614A/en
Application granted granted Critical
Publication of JP4446916B2 publication Critical patent/JP4446916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a horizontal diffusion furnace and a method of a diffusion wafer using the same which uniformly forms a diffusion layer in a plane and in a batch on the wafer surface. <P>SOLUTION: The furnace has a horizontally disposed furnace body having a process gas inlet at one side and a furnace opening at the other side, a shield for adequately closing the furnace opening, an annular exhaust hole provided in the shield so as to locate near the periphery of the furnace opening, and an annular exhaust way communicating with the exhaust hole, the opening area of which gradually decreases. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は横型拡散炉及び拡散ウェーハの製造方法に係り、特に排気構造を改良した横型拡散炉及びこれを用いた拡散ウェーハの製造方法に関する。   The present invention relates to a horizontal diffusion furnace and a method for manufacturing a diffusion wafer, and more particularly to a horizontal diffusion furnace having an improved exhaust structure and a method for manufacturing a diffusion wafer using the same.

ダイオード、サイリスタ等のディスクリートデバイスに用いられる半導体基板としては、裏面側に、リン(P)、又は、ボロン(B)等の不純物を高濃度に拡散させた不純物拡散層(以下、単に拡散層という)と、不純物が拡散されていない非不純物拡散層(以下、単に非拡散層という)の2層構造からなる拡散ウェーハが一般的に用いられている。拡散ウェーハの製造にあたっては、FZ法、又は、CZ法等で製造されたシリコンインゴットをスライスしてウェーハ状に切断し、ラッピング処理、又は、更にエッチング処理を施したウェーハを、横型拡散炉内に投入し、リン、ボロン等の不純物を含むドープガスと、窒素、酸素等のキャリアガスとの混合ガス雰囲気下で、熱処理を行い、表裏面に拡散層源を形成させる(以下、デポ拡散という)。その後、さらに、アルゴン等の不活性雰囲気下で、デポ拡散で形成した拡散層源を所望の拡散層厚さまで拡散させる(以下、スランプ拡散という)。最後に、形成した拡散層の一方を除去して所望の非拡散層厚さまで研削、研磨する、又は、ウェーハ厚さ方向の中央部(非拡散層)を切断して非拡散層を露出させて、その表面を所望の非拡散層厚さまで研削、研磨することで、拡散ウェーハが製造される。   As a semiconductor substrate used for discrete devices such as diodes and thyristors, an impurity diffusion layer (hereinafter simply referred to as a diffusion layer) in which impurities such as phosphorus (P) or boron (B) are diffused at a high concentration on the back surface side. ) And a non-impurity diffusion layer in which impurities are not diffused (hereinafter, simply referred to as a non-diffusion layer) is generally used. When manufacturing a diffusion wafer, a silicon ingot manufactured by the FZ method or the CZ method is sliced and cut into wafers, and the wafer subjected to lapping or further etching is placed in a horizontal diffusion furnace. Then, heat treatment is performed in a mixed gas atmosphere of a doping gas containing impurities such as phosphorus and boron and a carrier gas such as nitrogen and oxygen to form diffusion layer sources on the front and back surfaces (hereinafter referred to as depot diffusion). Thereafter, a diffusion layer source formed by deposition deposition is further diffused to a desired diffusion layer thickness under an inert atmosphere such as argon (hereinafter referred to as slump diffusion). Finally, remove one of the formed diffusion layers and grind and polish to the desired non-diffusion layer thickness, or cut the center (non-diffusion layer) in the wafer thickness direction to expose the non-diffusion layer. The diffusion wafer is manufactured by grinding and polishing the surface to a desired non-diffusion layer thickness.

なお、この非拡散層に厚さバラツキがあると、デバイス形成時においてリーク電流等の特性に影響を及ぼすため、非拡散層の面内厚さの高精度化が要求されている。なお、非拡散層の面内厚さの高精度化を測るためには、拡散ウェーハでの研削、研磨における加工精度向上が要求されることはもちろんであるが、その非拡散層の下層にある拡散層をウェーハ面内で均一に形成することが必要不可欠であり、拡散層を形成する上での横型拡散炉の構成等、様々な技術が開示されている。   Note that if the non-diffused layer has a variation in thickness, it affects the characteristics such as leakage current during device formation, so that the in-plane thickness of the non-diffused layer is required to be highly accurate. In addition, in order to measure the in-plane thickness of the non-diffusion layer with high accuracy, it is of course necessary to improve the processing accuracy in grinding and polishing on the diffusion wafer, but it is under the non-diffusion layer. It is indispensable to uniformly form the diffusion layer within the wafer surface, and various techniques such as the configuration of a horizontal diffusion furnace for forming the diffusion layer are disclosed.

例えば、特許文献1には、一端にガス導入口を設けた炉心管の他端の開口を閉塞する互いに連結された平行の2枚の扉を有し、内側の扉は炉心管の管壁との間にわずかな間隙を有し、両扉の間にある炉心管の管壁に排気口が設け、外扉から外気が侵入することがあっても炉心管内での反応のための導入ガスの残りと共に排気口から排気され、内扉は外気に対する障壁となりエア・バックディフェージョンを防ぎ、ソフトランディングにより炉心管壁に無接触で被加熱物を挿入することができるような大きな開口部を設けることができる熱処理装置が開示されている。   For example, Patent Document 1 has two parallel doors connected to each other to close the opening of the other end of the core tube having a gas inlet at one end, and the inner door is connected to the tube wall of the core tube. There is a slight gap between the two doors, and an exhaust port is provided in the wall of the core tube between the two doors. Even if outside air enters from the outer door, the gas introduced for reaction in the core tube Along with the rest, the air is exhausted from the exhaust port, and the inner door becomes a barrier against the outside air to prevent air back-deposition, and a large opening is provided to allow the object to be heated to be inserted in the core tube wall without contact by soft landing. A heat treatment apparatus that can be used is disclosed.

特許文献2には、横型拡散炉において、排気口に対向、離間して隔板を設け、半導体ウェーハが外気の悪影響を受けないようにした拡散炉が開示されている。   Patent Document 2 discloses a diffusion furnace in a horizontal diffusion furnace in which a partition plate is provided opposite to and spaced from an exhaust port so that the semiconductor wafer is not adversely affected by outside air.

しかしながら、特許文献1、2に記載の熱処理炉は、外気の影響を受けないことを目的としており、拡散層をウェーハ面内で均一に形成できる旨の記載がされておらず、示唆もされていない。
特開平1−207927号公報 特開平5−102054号公報
However, the heat treatment furnaces described in Patent Documents 1 and 2 are intended not to be affected by outside air, and there is no description or suggestion that a diffusion layer can be uniformly formed in the wafer surface. Absent.
JP-A-1-207927 JP-A-5-102054

本発明は上述した事情を考慮してなされたもので、ウェーハ表面に拡散層を面内、及びバッチ内で均一に形成することができる横型拡散炉を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a horizontal diffusion furnace capable of uniformly forming a diffusion layer on a wafer surface in a plane and in a batch.

また、ウェーハ表面に拡散層を面内、及びバッチ内で均一に形成することができる拡散ウェーハの製造方法を提供することを目的とする。   It is another object of the present invention to provide a method for manufacturing a diffusion wafer that can uniformly form a diffusion layer on the wafer surface in a plane and in a batch.

上述した目的を達成するため、本発明に係る横型拡散炉は、水平状態に配置され、一側にプロセスガス導入口が設けられ他側に炉口が設けられた炉本体と、前記炉口を適宜閉塞する遮蔽体と、前記炉口の外周近傍に位置するように前記遮蔽体に設けられたリング状の排気口と、前記排気口に連通し開口面積が漸減するリング状の排気路を有することを特徴とする。   In order to achieve the above-described object, a horizontal diffusion furnace according to the present invention is arranged in a horizontal state, a furnace main body provided with a process gas introduction port on one side and a furnace port on the other side, and the furnace port. A shield that is appropriately closed, a ring-shaped exhaust port provided in the shield so as to be positioned in the vicinity of the outer periphery of the furnace port, and a ring-shaped exhaust passage that communicates with the exhaust port and gradually decreases in opening area. It is characterized by that.

好適には、前記遮蔽体は、円筒部と底板を有し炉本体の下側にわずかな間隙を設けて着脱自在に嵌合する有底円筒部材と、前記有底円筒部材に内装され、炉本体に遊嵌し、漏斗形状の排気系外側部材と、前記排気系外側部材にリング状の排気口及びリング状の排気路が形成されるように内装された中空三角錐状の排気系内側部材とを有する。   Preferably, the shielding body includes a cylindrical portion and a bottom plate, and a bottomed cylindrical member that is detachably fitted with a small gap below the furnace body, and is mounted on the bottomed cylindrical member, A hollow triangular pyramid-shaped exhaust system inner member that is loosely fitted to the main body and is internally provided so that a ring-shaped exhaust port and a ring-shaped exhaust path are formed in the exhaust system-shaped outer member. And have.

また好適には、前記排気路は、前記炉本体との平行線に対して30°〜60°の角度を有するように、開口面積が漸減する。   Further preferably, the opening area of the exhaust passage gradually decreases so as to have an angle of 30 ° to 60 ° with respect to a parallel line with the furnace body.

また、本発明に係る拡散ウェーハの製造方法は、請求項1から3に記載の横型拡散炉を、拡散ウェーハの製造工程におけるデポ拡散に用いることを特徴とする。   A diffusion wafer manufacturing method according to the present invention is characterized in that the horizontal diffusion furnace according to any one of claims 1 to 3 is used for deposition deposition in a diffusion wafer manufacturing process.

本発明に係る横型拡散炉によれば、ウェーハ表面に拡散層を面内、及びバッチ内で均一に形成することができる横型拡散炉を提供することができる。   According to the horizontal diffusion furnace according to the present invention, it is possible to provide a horizontal diffusion furnace capable of uniformly forming a diffusion layer on a wafer surface in a plane and in a batch.

また、本発明に係る拡散ウェーハの製造方法によれば、ウェーハ表面に拡散層を面内、及びバッチ内で均一に形成することができる拡散ウェーハの製造方法を提供することができる。   Moreover, according to the manufacturing method of the diffusion wafer which concerns on this invention, the manufacturing method of the diffusion wafer which can form a diffusion layer uniformly in a surface and a batch on the wafer surface can be provided.

以下、本発明に係る横型拡散炉の一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of a horizontal diffusion furnace according to the present invention will be described with reference to the accompanying drawings.

図1は本発明に係る横型拡散炉の縦断面を示す概念図、図2は本発明に係る横型拡散炉に用いられる遮蔽体を拡大して示す縦断面図、図3は本発明に係る横型拡散炉に用いられる遮蔽体の平面図、図4は本発明に係る横型拡散炉に用いられる遮蔽体の一部を切欠して示す斜視図である。   FIG. 1 is a conceptual diagram showing a vertical cross section of a horizontal diffusion furnace according to the present invention, FIG. 2 is an enlarged vertical cross sectional view showing a shield used in the horizontal diffusion furnace according to the present invention, and FIG. 3 is a horizontal type according to the present invention. FIG. 4 is a perspective view showing a part of the shield used in the horizontal diffusion furnace according to the present invention.

本願発明者は、拡散層をウェーハ面内で均一に形成するための手段として、デポ拡散処理に着目し、デポ拡散時の横型拡散炉の排気構造を改良することで、本願発明の目的を、達成することができる点を見出した。   The inventor of the present application pays attention to the deposition diffusion process as a means for uniformly forming the diffusion layer in the wafer surface, and improves the exhaust structure of the horizontal diffusion furnace at the time of deposition diffusion. I found out what can be achieved.

図1に示すように、本発明に係る横型拡散炉1は、水平状態に配置された炉本体2を有し、この炉本体2には一側にプロセスガス導入口3が設けられ、他側にウェーハボート出入り用の炉口4が設けられており、また、炉口4にはこの炉口4を適宜閉塞する石英製の遮蔽体5が設けられ、さらに、炉口4の外周近傍に位置するように遮蔽体5に設けられたリング状の排気口6と、この排気口6に連通し開口面積が漸減するリング状の排気路7が設けられている。   As shown in FIG. 1, a horizontal diffusion furnace 1 according to the present invention has a furnace body 2 arranged in a horizontal state. The furnace body 2 is provided with a process gas inlet 3 on one side, and the other side. Is provided with a furnace port 4 for entering and exiting the wafer boat, and the furnace port 4 is provided with a quartz shield 5 for closing the furnace port 4 as appropriate. In this manner, a ring-shaped exhaust port 6 provided in the shield 5 and a ring-shaped exhaust path 7 that communicates with the exhaust port 6 and whose opening area gradually decreases are provided.

詳しくは、図2〜図4に示すように、遮蔽体5は円筒部5aと底板5aを有し、炉本体2の下側にわずかな間隙gを設けて着脱自在に嵌合する有底円筒部材5aと、この有底円筒部材5aに内装され、炉本体2に遊嵌し、漏斗形状の排気系外側部材5bと、この排気系外側部材5bに、リング状の排気口6及びリング状の排気路7が形成されるように内装された中空三角錐状の排気系内側部材5cとで構成されている。中空三角錐状の排気系内側部材5cと排気系外側部材5b、及び、排気系外側部材5bと有底円筒部材5aの底板5aはそれぞれ支柱5d、5d’により、一体に固定されている。 Specifically, as shown in FIGS. 2 to 4, the shield 5 has a cylindrical portion 5 a 1 and a bottom plate 5 a 2 , and is provided with a slight gap g on the lower side of the furnace body 2 to be detachably fitted. The bottom cylindrical member 5a and the bottomed cylindrical member 5a are fitted into the furnace body 2 and are loosely fitted to the funnel-shaped exhaust system outer member 5b. The exhaust system outer member 5b includes a ring-shaped exhaust port 6 and a ring. It is comprised with the hollow triangular pyramid-shaped exhaust system inner member 5c mounted so that the shape exhaust path 7 might be formed. Hollow triangular pyramid shape of the exhaust system inside member 5c and the exhaust system outer member 5b, and each bottom plate 5a 2 of the exhaust system outer member 5b and the bottomed cylindrical member 5a is post 5d, the 5d ', are secured together.

このような構成にすることにより、遮蔽体5には炉口4の外周近傍に位置するように、リング状の排気口6が形成され、さらに、この排気口6に連通して開口面積が漸減するように、すなわち、炉本体2との平行線Lに対して角度θを有するリング状の排気路7が形成される。なお、この排気路7は有底円筒部材5aの底板5aを貫通する直線状排気路8を介してプロセスガスを炉本体2外に排出するようになっている。 With such a configuration, the shield 5 is formed with a ring-shaped exhaust port 6 so as to be positioned in the vicinity of the outer periphery of the furnace port 4, and further, the opening area is gradually reduced by communicating with the exhaust port 6. In other words, the ring-shaped exhaust passage 7 having an angle θ with respect to the parallel line L with the furnace body 2 is formed. Incidentally, the exhaust passage 7 is arranged to discharge the process gas furnace body 2 to the outside via a straight exhaust passage 8 extending through the bottom plate 5a 2 of the bottomed cylindrical member 5a.

上記排気路7の角度θは、炉本体2との平行線に対して30°〜60°の角度を有するように設けるのが好ましい。これにより、排気の流速を制御してスムーズかつバランスのよい排気が行え、半導体ウェーハのデポ拡散後の面内及びバッチ内シート抵抗のバラツキの低減を図ることができる。角度θが30°未満の場合は排気が急激に促進され、また、角度θが60℃を超えると、排気が緩慢になって、均一なシート抵抗にすることが困難である。   The angle θ of the exhaust passage 7 is preferably provided so as to have an angle of 30 ° to 60 ° with respect to a parallel line with the furnace body 2. As a result, the exhaust flow rate can be controlled to perform smooth and well-balanced exhaust, and the variation in sheet resistance within the surface and in the batch after the deposition of the semiconductor wafer can be reduced. When the angle θ is less than 30 °, the exhaust is accelerated rapidly, and when the angle θ exceeds 60 ° C., the exhaust becomes slow and it is difficult to obtain a uniform sheet resistance.

なお、上述した横型拡散炉を、拡散ウェーハの製造工程におけるデポ拡散に用いることが好ましい。前述したように非拡散層の面内厚さの高精度化を測るためにはその非拡散層の下層にある拡散層をウェーハ面内で均一に形成することが必要不可欠であり、拡散層をウェーハ面内で均一に形成するためには、拡散層源を面内均一に形成させることが最も重要な課題であるからである。次に、より詳しく、本発明に関わる拡散ウェーハの製造方法について説明する。   In addition, it is preferable to use the horizontal diffusion furnace mentioned above for the deposition diffusion in the manufacturing process of a diffusion wafer. As described above, in order to measure the in-plane thickness of the non-diffusion layer with high accuracy, it is indispensable to uniformly form the diffusion layer under the non-diffusion layer on the wafer surface. This is because it is the most important issue to form the diffusion layer source uniformly in the surface in order to form it uniformly in the wafer surface. Next, the manufacturing method of the diffusion wafer according to the present invention will be described in more detail.

FZ法、又は、CZ法等で製造されたシリコンインゴットをスライスしてウェーハ状に切断し、ラッピング処理、又は、更にエッチング処理を施した半導体ウェーハWにデポ拡散処理を施す。より詳しくは、図1に示すように、半導体ウェーハWをウェーハボートBに搭載した後、炉口4からウェーハボートBを所望の温度(例えば、600℃)に保持された炉本体2に挿入する。さらに、遮蔽体5を炉本体2に着脱自在に嵌合させて、下側にわずかな間隙gを設けて取付ける。これにより、炉口4が遮蔽体5により閉塞されるとともに、炉口4側にリング状の排気口6が位置する。   A silicon ingot manufactured by the FZ method, the CZ method, or the like is sliced and cut into wafers, and a lapping process or a further etching process is performed on the semiconductor wafer W that has been subjected to a deposition process. More specifically, as shown in FIG. 1, after the semiconductor wafer W is mounted on the wafer boat B, the wafer boat B is inserted from the furnace port 4 into the furnace body 2 held at a desired temperature (for example, 600 ° C.). . Further, the shield 5 is detachably fitted to the furnace body 2 and attached with a slight gap g on the lower side. As a result, the furnace port 4 is closed by the shield 5 and the ring-shaped exhaust port 6 is positioned on the furnace port 4 side.

しかる後、プロセスガス導入口3からリン、ボロン等の不純物を含むドープガスと窒素、酸素等のキャリアガスとの混合ガスを炉本体2に供給し、炉内温度を例えば1200℃の高温下でデポ拡散を行う。この時に供給された混合ガスは、リング状の排気口6、リング状の排気路7及び直線状排気路8を介して、常に炉本体2から排気される。高温下で所定の時間、デポ拡散を行った後、所望の温度(例えば、600℃)まで炉内温度を低下させてウェーハボートBを炉内から取り出すことで、デポ拡散が終了する。   Thereafter, a mixed gas of a doping gas containing impurities such as phosphorus and boron and a carrier gas such as nitrogen and oxygen is supplied from the process gas inlet 3 to the furnace body 2, and the furnace temperature is set at a high temperature of 1200 ° C., for example. Perform diffusion. The mixed gas supplied at this time is always exhausted from the furnace body 2 via the ring-shaped exhaust port 6, the ring-shaped exhaust path 7 and the linear exhaust path 8. After depot diffusion is performed at a high temperature for a predetermined time, the temperature in the furnace is lowered to a desired temperature (for example, 600 ° C.) and the wafer boat B is taken out of the furnace to complete the depot diffusion.

このように排気口6をリング状に炉口4の外周部近傍に位置させるようにしたので、前記混合ガスが、炉本体2内に大量に滞留することなく、適度な量に保たれるため、半導体ウェーハのデポ拡散後の面内及びバッチ内シート抵抗のバラツキをなくして均一化を図ることができる。なお、ここでいうバッチ内とは、半導体ウェーハWをウェーハボートBに複数枚保持してデポ拡散を1回行う場合を1バッチといい、この1バッチ内で熱処理される複数の半導体ウェーハWの全数におけるシート抵抗のバラツキを、バッチ内シート抵抗のバラツキという。   Since the exhaust port 6 is positioned in the vicinity of the outer peripheral portion of the furnace port 4 in a ring shape in this way, the mixed gas is maintained in an appropriate amount without staying in the furnace body 2 in a large amount. It is possible to achieve uniformity by eliminating variations in the sheet resistance within the surface and in the batch after the semiconductor wafer deposition. The term “inside batch” as used herein refers to a case where a plurality of semiconductor wafers W are held in the wafer boat B and deposition is performed once, and one batch is used. Variation in sheet resistance in all numbers is referred to as variation in sheet resistance within a batch.

次に、デポ拡散を行った半導体ウェーハWを、アルゴン等の不活性雰囲気下で、デポ拡散で形成した拡散層源を所望の拡散層厚さまで拡散させるスランプ拡散を行う。最後に、形成した拡散層の一方を除去して所望の非拡散層厚さまで研削、研磨、又は、ウェーハ厚さ方向の中央部(非拡散層)を切断して非拡散層を露出させて、その表面を所望の非拡散層厚さまで研削、研磨することで、バッチ内で、かつ、ウェーハ面内で、拡散層を均一に形成された拡散ウェーハを製造することができる。   Next, slump diffusion is performed on the semiconductor wafer W that has been subjected to deposition diffusion, in an inert atmosphere such as argon, to diffuse a diffusion layer source formed by deposition deposition to a desired diffusion layer thickness. Finally, remove one of the formed diffusion layers and grind, polish to the desired non-diffusion layer thickness, or cut the center (non-diffusion layer) in the wafer thickness direction to expose the non-diffusion layer, By grinding and polishing the surface to a desired non-diffusion layer thickness, a diffusion wafer in which a diffusion layer is uniformly formed in a batch and in the wafer surface can be manufactured.

以上のように、デポ拡散時に用いられる横型拡散炉の排気構造を改良することで、デポ拡散時の面内及びバッチ内シート抵抗のバラツキの均一化を図ることができるとともに、しいては、バッチ内で、かつ、ウェーハ面内で、拡散層を均一に形成された拡散ウェーハを製造することができる。   As described above, by improving the exhaust structure of the horizontal diffusion furnace used at the time of depot diffusion, it is possible to achieve uniformity of in-plane and batch sheet resistance variations at the time of depot diffusion, The diffusion wafer in which the diffusion layer is uniformly formed can be manufactured in the wafer surface.

図1に示すような横型拡散炉の排気構造を、図5に示すような遮蔽体を表1に示すような製品仕様及び炉条件で、厚さ1200μmの半導体ウェーハ50枚を1ロットとして、2ロット計100枚をウェーハボートに載置して、炉体本体のプロセスガス導入口側に1ロット(以下ロットAという)、炉口側に1ロット(以下ロットBという)載置してデポ拡散を行った。また、その比較例として図6に示すような外周に開口を設けたインナー隔板構造、従来例として図7に示すような有底円筒状の遮蔽体についても、同様の試験を行った。   The horizontal diffusion furnace exhaust structure as shown in FIG. 1 has a shield as shown in FIG. 5 with the product specifications and furnace conditions shown in Table 1, 50 semiconductor wafers with a thickness of 1200 μm as one lot, 2 Place a total of 100 lots on a wafer boat, place one lot (hereinafter referred to as lot A) on the process gas inlet side of the furnace body, and place one lot (hereinafter referred to as lot B) on the furnace port side for depot diffusion. Went. In addition, a similar test was performed for an inner partition structure having openings on the outer periphery as shown in FIG. 6 as a comparative example and a cylindrical shield with a bottom as shown in FIG. 7 as a conventional example.

得られた実施例、比較例、従来例それぞれのデポ拡散後のウェーハを1ロット4枚ずつ抜き取り、四短針測定器により各ウェーハの面内5点の抵抗率を測定した。それぞれの測定データに対して各ウェーハにおける面内における抵抗バラツキ率(%)を、{(面内5点における最大値−面内5点における最小値)/面内5点における最小値}×100で算出した。また、実施例、比較例、従来例それぞれのロット内の、又は、バッチ内(ロットA+ロットB)の抵抗バラツキ率(%)を、所定枚ウェーハ/Lot×{(面内5点における最大値−面内5点における最小値)/面内5点における最小値}×100で算出して、それぞれ比較した。

Figure 2006278614
The obtained wafers after depot diffusion in each of the examples, comparative examples, and conventional examples were extracted four by lot, and the resistivity at five points in the surface of each wafer was measured by a four-short needle measuring device. For each measurement data, the in-plane resistance variation rate (%) of each wafer is {(maximum value at 5 points in the plane−minimum value at 5 points in the plane) / minimum value at 5 points in the plane} × 100. Calculated with In addition, the resistance variation rate (%) in each lot of Examples, Comparative Examples, and Conventional Examples, or in a batch (Lot A + Lot B) is set to a predetermined number of wafers / Lot × {(maximum value at 5 points in the plane). -Minimum value at 5 points in plane) / Minimum value at 5 points in plane} × 100 and compared.
Figure 2006278614

結果 表2に示す。

Figure 2006278614
Results are shown in Table 2.
Figure 2006278614

表2の結果からもわかるように、実施例の面内における抵抗バラツキは、1ロット4枚、計8枚の平均値で、2.70(%)とバラツキが小さく均一化されている。これに対して、比較例は2.89%と実施例に比べて若干悪化しており、従来例は4.93%とバラツキが大きく不均一である。   As can be seen from the results in Table 2, the resistance variation in the plane of the example is uniform with a small variation of 2.70 (%), which is an average value of 4 pieces in one lot and a total of 8 pieces. On the other hand, the comparative example is 2.89%, which is a little worse than the example, and the conventional example is 4.93%, which has a large variation and unevenness.

ロット内、及び、バッチ内の抵抗バラツキ率は、実施例がウェーハロットAで5.49%、ロットBで5.99%であり、プロセスガス導入口側と炉口側とで、バラツキ率に大差はなく、ロットA、及び、ロットBを含む全体のバッチ内においても、5.99%と抵抗バラツキが良好であるのがわかる。これに対し、比較例はロットAで7.30%、ロットBで6.88%であり、プロセスガス導入口側と炉口側とで、バラツキ率に差があり、ロットA、及び、ロットBを含む全体のバッチ内においても、9.57%であり、ロット内、バッチ内でもバラツキがある。また、従来例はロットAで9.86%、ロットBで8.53%であり、プロセスガス導入口側と炉口側とで、バラツキ率により大きな差があり、ロットA、及び、ロットBを含む全体のバッチ内においても、10.1%であり、ロット全体でもバラツキがある。   The resistance variation rate in the lot and in the batch is 5.49% in the wafer lot A and 5.99% in the lot B in the example, and the variation rate is different between the process gas introduction port side and the furnace port side. There is no large difference, and it can be seen that even within the entire batch including lot A and lot B, the resistance variation is good at 5.99%. On the other hand, the comparative example is 7.30% for lot A and 6.88% for lot B, and there is a difference in the variation rate between the process gas inlet side and the furnace port side. Even in the entire batch including B, it is 9.57%, and there is variation even in the lot and in the batch. The conventional example is 9.86% for lot A and 8.53% for lot B. There is a large difference in the variation rate between the process gas introduction port side and the furnace port side. Even in the entire batch including the amount, it is 10.1%, and there is variation in the entire lot.

本発明に係る横型拡散炉の断面を示す概念図。The conceptual diagram which shows the cross section of the horizontal type | mold diffusion furnace which concerns on this invention. 本発明に係る横型拡散炉に用いられる遮蔽体を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the shield used for the horizontal type | mold diffusion furnace which concerns on this invention. 本発明に係る横型拡散炉に用いられる遮蔽体の平面図。The top view of the shielding body used for the horizontal diffusion furnace which concerns on this invention. 本発明に係る横型拡散炉に用いられる遮蔽体の一部を切欠して示す斜視図。The perspective view which notches and shows a part of shielding body used for the horizontal diffusion furnace which concerns on this invention. 本発明の実施例に係る遮蔽体の縦断面図。The longitudinal cross-sectional view of the shield which concerns on the Example of this invention. (a)は本発明の比較例に係る遮蔽体(比較例)の縦断面図、(b)はその平面図。(A) is a longitudinal cross-sectional view of the shielding body (comparative example) which concerns on the comparative example of this invention, (b) is the top view. (a)は本発明の従来例に係る遮蔽体の縦断面図、(b)はその平面図。(A) is a longitudinal cross-sectional view of a shield according to a conventional example of the present invention, and (b) is a plan view thereof.

符号の説明Explanation of symbols

1…横型拡散炉、2…炉本体、3…プロセスガス導入口、4…炉口、5…遮蔽体、6…排気口、7…排気路、8…直線状排気路。   DESCRIPTION OF SYMBOLS 1 ... Horizontal diffusion furnace, 2 ... Furnace main body, 3 ... Process gas introduction port, 4 ... Furnace port, 5 ... Shielding body, 6 ... Exhaust port, 7 ... Exhaust passage, 8 ... Linear exhaust passage.

Claims (4)

水平状態に配置され、一側にプロセスガス導入口が設けられ他側に炉口が設けられた炉本体と、前記炉口を適宜閉塞する遮蔽体と、前記炉口の外周近傍に位置するように前記遮蔽体に設けられたリング状の排気口と、前記排気口に連通し開口面積が漸減するリング状の排気路を有することを特徴とする横型拡散炉。 It is arranged in a horizontal state, a furnace main body provided with a process gas introduction port on one side and a furnace port on the other side, a shield that appropriately closes the furnace port, and a vicinity of the outer periphery of the furnace port A horizontal diffusion furnace comprising: a ring-shaped exhaust port provided in the shield; and a ring-shaped exhaust passage communicating with the exhaust port and having an opening area gradually decreasing. 前記遮蔽体は、円筒部と底板を有し炉本体の下側にわずかな間隙を設けて着脱自在に嵌合する有底円筒部材と、前記有底円筒部材に内装され、炉本体に遊嵌し、漏斗形状の排気系外側部材と、前記排気系外側部材にリング状の排気口及びリング状の排気路が形成されるように内装された中空三角錐状の排気系内側部材とを有することを特徴とする請求項1に記載の横型拡散炉。 The shield includes a cylindrical portion and a bottom plate, and a bottomed cylindrical member that is detachably fitted with a slight gap below the furnace body, and is fitted in the bottomed cylindrical member, and is loosely fitted to the furnace body. And a funnel-shaped exhaust system outer member, and a hollow triangular pyramid-shaped exhaust system inner member that is mounted so that a ring-shaped exhaust port and a ring-shaped exhaust path are formed in the exhaust system outer member. The horizontal diffusion furnace according to claim 1. 前記排気路は、前記炉本体との平行線に対して30°〜60°の角度を有するように、開口面積が漸減することを特徴とする請求項1、又は、2に記載の横型拡散炉。 3. The horizontal diffusion furnace according to claim 1, wherein an opening area of the exhaust passage gradually decreases so as to have an angle of 30 ° to 60 ° with respect to a parallel line to the furnace body. 4. . 請求項1から3に記載の横型拡散炉を、拡散ウェーハの製造工程におけるデポ拡散に用いることを特徴とする拡散ウェーハの製造方法。 A method for producing a diffusion wafer, wherein the horizontal diffusion furnace according to claim 1 is used for deposit diffusion in a production process of a diffusion wafer.
JP2005093933A 2005-03-29 2005-03-29 Horizontal diffusion furnace, diffusion wafer manufacturing method Active JP4446916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093933A JP4446916B2 (en) 2005-03-29 2005-03-29 Horizontal diffusion furnace, diffusion wafer manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093933A JP4446916B2 (en) 2005-03-29 2005-03-29 Horizontal diffusion furnace, diffusion wafer manufacturing method

Publications (2)

Publication Number Publication Date
JP2006278614A true JP2006278614A (en) 2006-10-12
JP4446916B2 JP4446916B2 (en) 2010-04-07

Family

ID=37213074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093933A Active JP4446916B2 (en) 2005-03-29 2005-03-29 Horizontal diffusion furnace, diffusion wafer manufacturing method

Country Status (1)

Country Link
JP (1) JP4446916B2 (en)

Also Published As

Publication number Publication date
JP4446916B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US8404049B2 (en) Epitaxial barrel susceptor having improved thickness uniformity
TW201443275A (en) Inject and exhaust design for Epi chamber flow manipulation
TWI471970B (en) A wafer-supporting jig and a method for manufacturing a crystal tube for a vertical type heat treatment and a wafer support
TWI628734B (en) Susceptor for improved epitaxial wafer flatness and methods for fabricating a semiconductor wafer processing device
JP2000269147A (en) Vapor growth device, vapor growth method and silicon epitaxial wafer
US6971835B2 (en) Vapor-phase epitaxial growth method
JP4446916B2 (en) Horizontal diffusion furnace, diffusion wafer manufacturing method
KR20200068007A (en) Chemical vapor deposition system
CN100394536C (en) Silicon crystal round piece and its making method
JP2002033284A (en) Wafer holder for vertical cvd
JP2008227056A (en) Vertical heat treating boat and heat treating method for semiconductor wafer
JP2010040574A (en) Production process of epitaxial wafer, and epitaxial wafer
JP5396737B2 (en) Epitaxial silicon wafer and manufacturing method thereof
JP2009194001A (en) Horizontal diffusion furnace, and diffusion layer forming method
JP2007059606A (en) Vertical wafer boat and vertical heat treatment furnace
JP3503710B2 (en) Mounting jig for heat treatment of semiconductor wafer and heat treatment apparatus
CN111279461B (en) Semiconductor wafer composed of monocrystalline silicon
JP4779519B2 (en) Epitaxial wafer manufacturing method
JP2002289537A (en) CVD-SiC HOLLOW VERTICAL WAFER BOAT
JP4304720B2 (en) Susceptor, vapor phase growth apparatus, epitaxial wafer manufacturing method, and epitaxial wafer
JP2012094807A (en) Horizontal diffusion furnace and method for heat-treating semiconductor wafer using the same
CN216054583U (en) Equipment suitable for pretreatment of silicon epitaxial wafer resistivity measurement
CN215288964U (en) Wafer tray and chemical vapor deposition equipment
JP5200492B2 (en) Calibration method for thermometer of vapor phase growth apparatus
JPH08288232A (en) Gas control jig of semiconductor heat treatment furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250