JP2006278537A - Solar battery array - Google Patents

Solar battery array Download PDF

Info

Publication number
JP2006278537A
JP2006278537A JP2005092809A JP2005092809A JP2006278537A JP 2006278537 A JP2006278537 A JP 2006278537A JP 2005092809 A JP2005092809 A JP 2005092809A JP 2005092809 A JP2005092809 A JP 2005092809A JP 2006278537 A JP2006278537 A JP 2006278537A
Authority
JP
Japan
Prior art keywords
solar cell
frame
power generation
cross
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005092809A
Other languages
Japanese (ja)
Inventor
Teruyuki Takahashi
輝之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005092809A priority Critical patent/JP2006278537A/en
Publication of JP2006278537A publication Critical patent/JP2006278537A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/20Peripheral frames for modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/13Profile arrangements, e.g. trusses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery module having rigidity against an external force by providing a frame of a structure having strength conforming to the state of a load to be applied to a solar battery array. <P>SOLUTION: The solar battery array is provided with a plurality of elongated mounts arranged in a predetermined direction with intervals; and a plurality of solar battery modules each having a power generation part and a frame body attached on the external periphery of the power generation part, and also having a supporting region supported by the mounts from the lower part. In this array, the cross sectional area of the frame is larger in the center region of the arrangement direction of the mounts than in the supporting region. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、太陽エネルギーを利用して発電を行う太陽電池モジュールを複数用いて太陽電池アレイとした場合の構造に関するものである。   The present invention relates to a structure when a solar cell array is formed by using a plurality of solar cell modules that generate power using solar energy.

近年、地球環境問題に対する関心の高まりに伴い、自然エネルギーを利用した新エネルギーシステムの技術開発が進んでいる。そのなかで、太陽光を利用した太陽光利用機器は最も関心が高く、現在急速に世の中に普及しつつある。   In recent years, with the growing interest in global environmental problems, technological development of new energy systems using natural energy is progressing. Among them, solar-powered devices that use sunlight are the most interested and are now rapidly spreading in the world.

太陽光利用機器の一例としては、太陽光を電気エネルギーに変換する太陽電池素子を複数接続した太陽電池モジュールがあり、前記太陽電池モジュールを複数枚設置して太陽電池アレイとした太陽光発電装置が住宅等の屋根上に設置されている。   As an example of a solar-powered device, there is a solar cell module in which a plurality of solar cell elements that convert sunlight into electric energy are connected, and a solar power generation device that has a plurality of the solar cell modules installed to form a solar cell array It is installed on the roof of a house.

また、その屋根への取り付け方法は様々であり、屋根部材と一体的に製造された屋根一体型太陽電池モジュールや、図19に示すような地上やビルの屋上など、水平な設置面に鋼材やアルミニウム材などで構成された架台とよばれる台座を介して太陽電池モジュールを固定する陸屋根型の設置方法、さらには図18に示すように屋根上の瓦材の上に縦桟や横桟を用いて架台を組んで、そこに太陽電池モジュールを設置する、いわゆる屋根置き型と呼ばれる設置方法がある。具体的には、図19の陸屋根型の設置方法は屋根上にコンクリートなどの基礎9を設け、その上にラック7(7a〜7c)を用いて傾斜を有する架台を構成し、その上に太陽電池モジュール2を配置するものである。また、図18の屋根置き型は屋根上に縦桟12を配し、この縦桟上にその方向に対して直交するように横桟10を配置して架台として組付け、横桟上に太陽電池モジュール2を配置していくもので、陸屋根型に較べ屋根との一体感が得やすい。   Also, there are various methods for attaching to the roof, such as a roof-integrated solar cell module manufactured integrally with a roof member, a steel material on a horizontal installation surface such as the ground or the roof of a building as shown in FIG. A land roof type installation method for fixing a solar cell module through a pedestal called a pedestal made of aluminum material or the like, and further, using a vertical beam or a horizontal beam on the roof tile as shown in FIG. There is an installation method called a so-called roof-standing type in which a stand is assembled and a solar cell module is installed there. Specifically, in the land roof type installation method of FIG. 19, a foundation 9 such as concrete is provided on the roof, and a rack having an inclination is formed thereon using racks 7 (7a to 7c). The battery module 2 is arranged. 18 has a vertical beam 12 on the roof, and a horizontal beam 10 is arranged on the vertical beam so as to be orthogonal to the direction of the vertical beam. The battery module 2 is arranged, and it is easier to obtain a sense of unity with the roof than the flat roof type.

図7に示すように、太陽光発電装置に用いられる太陽電池モジュール2は、シリコン等から成る太陽電池素子18の光電変換効果を利用して電力が得られるように構成したものであって、このような太陽電池素子18を複数個直列および並列に電気的に接続し、そして、耐候性のある素材で覆うように成し、所要の出力電圧や出力電流を得るようにしている。この太陽電池素子は単結晶や多結晶シリコンなどの結晶系太陽電池や、薄膜系太陽電池などにより構成する。   As shown in FIG. 7, the solar cell module 2 used in the photovoltaic power generation apparatus is configured so that electric power can be obtained using the photoelectric conversion effect of the solar cell element 18 made of silicon or the like. A plurality of such solar cell elements 18 are electrically connected in series and in parallel and covered with a weather-resistant material so as to obtain a required output voltage and output current. This solar cell element is constituted by a crystalline solar cell such as single crystal or polycrystalline silicon, or a thin film solar cell.

かかる太陽電池モジュール2においては、太陽電池素子18の受光面にはガラス板や合成樹脂板などの光透過板13を配置し、その裏面である非受光面にはテフロン(登録商標)フィルムやPVF(ポリフッ化ビニル)、PET(ポレエチレンテレフタレート)などの耐候性フィルム14を被着し、光透過板13と耐候性フィルム14との間には、たとえばEVA(エチレン−酢酸ビニル共重合樹脂)などから成る透明な合成樹脂を介在し、充填材15と成し、前記耐候性フィルム面上に設けられたジャンクションボックス17を介して太陽電池モジュールの発電電力を取り出すことができるようにしたものを発電部20としている。   In such a solar cell module 2, a light transmitting plate 13 such as a glass plate or a synthetic resin plate is disposed on the light receiving surface of the solar cell element 18, and a Teflon (registered trademark) film or PVF is disposed on the non-light receiving surface as the back surface. (Polyvinyl fluoride), PET (Polyethylene terephthalate) or other weather resistant film 14 is attached, and between the light transmission plate 13 and the weather resistant film 14, for example, EVA (ethylene-vinyl acetate copolymer resin) A transparent synthetic resin made of the material is used as a filler 15, and the power generated by the solar cell module can be taken out via a junction box 17 provided on the surface of the weather resistant film. Part 20 is used.

そして、前記発電部20である矩形状の本体に対してその各辺周囲をアルミニウム金属やSUS等から成る枠体16を挟み込むように装着し、これにより、太陽電池部全体の強度を高めるとともに、枠体16に取付用の穴を開けて支持金具にボルトやねじで固定できるようにしている。この太陽電池モジュール2を前述した陸屋根型や屋根置き型の架台に枠体16を介して取り付ける固定方法は、剛性を比較的高くすることができ、暴風や積雪などの大きな外力に対する耐力があり、住宅用屋根上などの中規模な太陽光発電装置を構築するのに適している。 And it attaches so that the frame 16 which consists of aluminum metal, SUS, etc. may be inserted into the rectangular main body which is the power generation part 20, and this raises the intensity of the whole solar cell part, A mounting hole is formed in the frame 16 so that the frame 16 can be fixed to the support fitting with bolts or screws. The fixing method of attaching the solar cell module 2 to the above-described flat roof type or roof-standing type frame via the frame body 16 can have relatively high rigidity, and has a resistance against a large external force such as a storm or snow, It is suitable for constructing medium-scale solar power generation devices such as on residential roofs.

ところで、このような太陽光発電装置では耐荷重を高めるために太陽電池モジュールを屋根上に組まれた縦桟や横桟に固定させて設置する場合、暴風や積雪などの外力をほぼ全て縦桟や横桟で耐える構造となることから、桟や基礎を十分な強度を有するものとする必要があり、材質を強固なものにしたり、桟の厚みを増して強度を強めたりするため、太陽光発電システム全体の重量が非常に大きくなってしまう傾向にある。   By the way, in such a solar power generation device, when installing a solar cell module fixed to a vertical or horizontal beam built on the roof in order to increase the load resistance, almost all external forces such as storms and snowfall are almost vertical. Since the structure will be able to withstand with a horizontal beam, it is necessary to make the beam and foundation sufficiently strong. To make the material stronger and increase the thickness of the beam, The total weight of the power generation system tends to become very large.

そこで、太陽電池モジュールの枠体を折り曲げ強度を補強するリブを設けた形状として強度を増し、それによって太陽電池モジュールの枠体を桟の一部として代用するようにして部材削減とシステムの軽量化を図ることができる太陽光発電システムが考案されている。
あるいは太陽電池モジュールのたわみ量を抑える目的で、支持基体である向かい合う2辺の枠体間に、太陽電池モジュール主面に対して上下方向に弾性を有する弾性支持部材を設けている構造も提案されている(例えば、特許文献1を参照)。
特開2004−146765号公報
Therefore, the frame body of the solar cell module is bent to increase the strength by providing ribs that reinforce the strength, so that the solar cell module frame body can be used as a part of the crosspiece to reduce the number of members and reduce the system weight A solar power generation system that can achieve the above has been devised.
Alternatively, a structure in which an elastic support member having elasticity in the vertical direction with respect to the main surface of the solar cell module is provided between two opposing frame bodies serving as support substrates for the purpose of suppressing the amount of deflection of the solar cell module. (For example, refer to Patent Document 1).
JP 2004-146765 A

しかしながら、耐荷重を高めるために太陽電池モジュールの枠体を折り曲げ強度を補強するリブを設けた形状として強度を増し、それによって太陽電池モジュールの枠体を桟の一部として代用する方法は先に述べたように枠体の重量増によってシステム全体が重くなり、太陽光発電システムを設置する住宅の屋根に負担をかけることになる。   However, in order to increase the load resistance, the method of replacing the solar cell module frame as a part of the crosspiece by increasing the strength by bending the frame of the solar cell module and providing a rib to reinforce the strength is the first method. As stated, the increase in the weight of the frame makes the entire system heavier and places a burden on the roof of the house where the solar power generation system is installed.

また、支持基体である向かい合う2辺の枠体間に、太陽電池モジュール主面に対して上下方向に弾性を有する弾性支持部材を設けて太陽電池モジュールのたわみ量を抑える前述の構造は、太陽電池モジュール主面に対して上下方向のたわみ量を軽減させるために弾性支持部材を用いているが、弾性支持部材によって太陽電池モジュールの枠体を含めた全体の強度を高めたわけではない。また、弾性支持部材によってモジュールのたわみ量を抑える場合、太陽電池モジュールのガラス材よりも剛性が高い材料を使用しなければ効果が少なく、たわみ量の軽減を有効にするために用いる弾性材の物量をかなり増やさなければならなくなり、太陽電池モジュール全体の重量軽減にはなりにくいといった欠点がある。また、太陽電池モジュール全体の強度は、枠体のみによるため強度向上にはならない。   In addition, the above-described structure that suppresses the amount of deflection of the solar cell module by providing an elastic support member having elasticity in the vertical direction with respect to the main surface of the solar cell module between the frames of the two opposing sides that are the support base is a solar cell. The elastic support member is used to reduce the amount of vertical deflection with respect to the module main surface, but the overall strength including the frame of the solar cell module is not increased by the elastic support member. In addition, when the amount of deflection of the module is suppressed by the elastic support member, the effect is small unless a material having higher rigidity than the glass material of the solar cell module is used, and the amount of the elastic material used to effectively reduce the amount of deflection. However, it is difficult to reduce the weight of the entire solar cell module. Moreover, since the intensity | strength of the whole solar cell module is based only on a frame, it does not improve an intensity | strength.

上記の問題を解決するために、本発明の太陽電池アレイは、互いに間隔を空けて所定の方向に配列される複数の長尺状の架台と、発電部及び該発電部の外周に取着される枠体を有し、前記架台によって下方より支持される支持領域を有する複数の太陽電池モジュールと、を備え、前記枠体の断面積は、前記支持領域よりも前記架台の配列方向中央領域で大きいことを特徴とする。   In order to solve the above problem, the solar cell array of the present invention is attached to a plurality of elongated bases arranged in a predetermined direction at intervals, a power generation unit, and an outer periphery of the power generation unit. A plurality of solar cell modules having a support region supported from below by the gantry, and the cross-sectional area of the frame body is more central in the arrangement direction of the gantry than the support region It is large.

また本発明の太陽電池アレイは、互いに間隔を空けて所定の方向に配列される複数の長尺状の架台と、発電部及び該発電部の外周に取着される枠体を有し、前記架台によって下方より支持される支持領域を有する複数の太陽電池モジュールと、を備え、前記枠体の断面積は、前記支持領域と前記架台の配列方向の中央領域との間の領域よりも前記支持領域及び前記中央部で大きいことを特徴とする。   Further, the solar cell array of the present invention has a plurality of elongated bases arranged in a predetermined direction at intervals, a power generation unit and a frame attached to the outer periphery of the power generation unit, A plurality of solar cell modules having a support region supported from below by a gantry, wherein the cross-sectional area of the frame body is more than the region between the support region and a central region in the arrangement direction of the gantry The region and the central portion are large.

本発明の太陽電池アレイによれば、互いに間隔を空けて所定の方向に配列される複数の長尺状の架台と、発電部及び該発電部の外周に取着される枠体を有し、前記架台によって下方より支持される支持領域を有する複数の太陽電池モジュールと、を備え、前記枠体の断面積を、前記支持領域よりも前記架台の配列方向中央領域で大きくしたことから、曲げモーメントが大きくなる前記枠体の前記中央領域の強度を高くすることができ、枠体にかかる応力分布を好適化し、積雪や暴風による外乱に対しての耐力を向上させていると共に、モジュール主面の上下方向のたわみ量を小さく抑えることができる。   According to the solar cell array of the present invention, it has a plurality of elongated bases arranged in a predetermined direction at intervals, a power generation unit and a frame attached to the outer periphery of the power generation unit, A plurality of solar cell modules having a support region supported from below by the gantry, and a bending moment because the cross-sectional area of the frame is larger in the central region in the arrangement direction of the gantry than the support region Can increase the strength of the central region of the frame body, optimize the stress distribution applied to the frame body, improve the resistance to disturbance due to snow and storms, and The amount of vertical deflection can be kept small.

また本発明によれば、前記支持領域及び前記中央領域に位置する枠体の断面積を大きくしたことから、大きな静荷重が印加されやすい前記支持領域においても枠体の強度を高くすることができ、これによっても積雪や暴風による外乱に対しての耐力を向上させることができる。   Further, according to the present invention, since the cross-sectional area of the frame body located in the support region and the central region is increased, the strength of the frame body can be increased even in the support region where a large static load is easily applied. This also makes it possible to improve the resistance to disturbance caused by snow and storms.

以下、本発明の太陽光発電装置の一実施形態について、模式的に示した図面に基づいて詳細に説明する。   Hereinafter, an embodiment of a solar power generation device of the present invention will be described in detail based on the drawings schematically shown.

図1に示す様に、本発明に係る太陽電池アレイに用いられる太陽電池モジュール2は、前述した図7のような太陽電池素子の積層構造であって、矩形状発電部20の外周の4辺を枠体である枠体1(1a、1b)で囲ったものである。枠体1(1a、1b)はアルミニウム合金やステンレス等の押し出し成型で生成されたレール状の構造物であり、その断面形状は例えば図中の枠体1bのように両端部の断面積あるいは断面デプスが小さく、中央寄りほど大きくなるようにしたものである。このようにすることにより、例えば屋根面上に太陽電池モジュールを、隣り合う太陽電池モジュールどうしを連結せずに1枚ずつ固定する場合を考えると、両端部を単純支持した梁要素として扱うことができる。また、前述の枠体1bの形状を枠体1aの部分にも採用し、図2のように4辺全てが中央部のデプスが大きい枠構造としても同様である。そして、この太陽電池モジュール2を複数連結して太陽電池アレイとすると、風などの等分布荷重がかかった場合、図9のBMD図のような曲げモーメント線図となり、固定架台5により支持される太陽電池モジュール2の曲げモーメントは枠体1cの両端ではゼロ、枠体1cの中央部で最大値となる。従って、枠体1cの断面積或いは断面デプスを両端から中央部に向かって連続的に大きくしていけば枠体1cにかかる応力状態にムラが生じ難く、枠体1cの長手方向において曲げ応力値の差が小さくなることから、最小限の材料で枠体1cを製作することができる。なお、本例では枠体1cを基に説明したが、同様の枠構造を有する枠体1bにおいても同様である。   As shown in FIG. 1, the solar cell module 2 used in the solar cell array according to the present invention has a laminated structure of solar cell elements as shown in FIG. 7, and has four sides on the outer periphery of the rectangular power generation unit 20. Is surrounded by a frame 1 (1a, 1b) which is a frame. The frame 1 (1a, 1b) is a rail-like structure produced by extrusion molding such as aluminum alloy or stainless steel, and the cross-sectional shape thereof is, for example, the cross-sectional area or cross-section of both ends as in the frame 1b in the figure. The depth is small, and the depth is larger toward the center. In this way, for example, when considering a case where solar cell modules are fixed one by one without connecting adjacent solar cell modules on the roof surface, both ends can be handled as beam elements that are simply supported. it can. Further, the above-described shape of the frame body 1b is also adopted in the frame body 1a, and the same structure can be obtained for a frame structure in which all four sides have a large depth at the center as shown in FIG. When a plurality of solar cell modules 2 are connected to form a solar cell array, when an evenly distributed load such as wind is applied, a bending moment diagram as shown in the BMD diagram of FIG. 9 is obtained and supported by the fixed base 5. The bending moment of the solar cell module 2 is zero at both ends of the frame body 1c, and is maximum at the center of the frame body 1c. Therefore, if the cross-sectional area or the cross-sectional depth of the frame 1c is continuously increased from both ends toward the central portion, the stress state applied to the frame 1c is less likely to be uneven, and the bending stress value in the longitudinal direction of the frame 1c. Therefore, the frame body 1c can be manufactured with a minimum material. In addition, although this example demonstrated based on the frame 1c, it is the same also in the frame 1b which has the same frame structure.

なお、図10に示すように、前述の太陽電池モジュール2を複数連結するとき、特に太陽電池モジュール同士を物理的に連結しない太陽電池アレイとし、固定架台5で支持した場合も同様の効果が得られる。   As shown in FIG. 10, when a plurality of the solar cell modules 2 described above are connected, the same effect can be obtained when the solar cell modules are not physically connected to each other and supported by the fixed base 5. It is done.

一方、図3にあるように、枠体1eの断面積あるいは断面デプスを端部から中央部に向かって小さくなるようにし、図8に示すように複数の太陽電池モジュール2の端部どうしを剛連結して両端部を屋根などに剛固定し、固定架台5間に複数の太陽電池モジュール2が配置されるようにした太陽電池アレイとした場合には、各太陽電池モジュールに等分布荷重を加えると、曲げモーメント線図は図8のBMD図のように断面積あるいは断面デプスが曲げモーメント値の変化と同調するようになる。それによって枠体にかかる応力状態が最適になり、前述のような効果を同様に得ることができる。また、図4に示すように枠体1fも枠体1eと同様の枠構造とすることにより、同様の効果が太陽電池アレイの横連結方向だけでなく縦連結方向でも得られるようにできる。   On the other hand, as shown in FIG. 3, the cross-sectional area or cross-sectional depth of the frame 1e is reduced from the end toward the center, and the ends of the plurality of solar cell modules 2 are rigidly connected as shown in FIG. In the case of a solar cell array in which both ends are rigidly fixed to a roof or the like and a plurality of solar cell modules 2 are arranged between the fixed bases 5, an equally distributed load is applied to each solar cell module. In the bending moment diagram, as shown in the BMD diagram of FIG. 8, the sectional area or the sectional depth is synchronized with the change of the bending moment value. Thereby, the stress state applied to the frame body is optimized, and the above-described effects can be obtained in the same manner. Also, as shown in FIG. 4, the frame 1 f also has the same frame structure as the frame 1 e, so that the same effect can be obtained not only in the horizontal connection direction of the solar cell array but also in the vertical connection direction.

また、前述した方法を太陽電池モジュールの枠体でのみで実施してもよい。この場合、図5および図6に示すように、枠体1hの断面積或いは断面デプスを図両端と中央部で大きくした構造のものを用いる。このようにすることで、例えば、先に紹介した図19の太陽光発電装置のように隣り合う太陽電池モジュールを複数固定した太陽電池アレイに荷重が加わると、図11のBMD図のような曲げモーメント線図となり、連結部材6で連結された各太陽電池モジュール2の枠体1dの中央部で最大、両端部で中央部の半分、また端部と中央部の間にモーメントがゼロとなるので、最適な応力状態をとることが可能になり、前述と同様に太陽電池モジュールおよび太陽電池アレイのたわみ量を軽減しつつ、使用材料を最小限に抑えることができる。   Moreover, you may implement the method mentioned above only with the frame of a solar cell module. In this case, as shown in FIGS. 5 and 6, the frame 1h has a structure in which the cross-sectional area or the cross-sectional depth is increased at both ends and the center. By doing so, for example, when a load is applied to a solar cell array in which a plurality of adjacent solar cell modules are fixed like the solar power generation device of FIG. 19 introduced earlier, bending as shown in the BMD diagram of FIG. It becomes a moment diagram, and the moment is zero at the center of the frame 1d of each solar cell module 2 connected by the connecting member 6, half at the center at both ends, and zero between the ends. It becomes possible to take an optimal stress state, and it is possible to minimize the amount of material used while reducing the amount of deflection of the solar cell module and the solar cell array as described above.

次に、本発明に係る太陽電池アレイに用いる太陽電池モジュールの枠体の形状の構成方法について説明する。特に図示しないが、本発明の枠体の断面形状は、例えば図11に示す太陽電池モジュール2の側面図のように、枠体1の両端、もしくは中央もしくは複数箇所に断面デプスの大きい部分と小さい部分を配したものである。図中では端部の断面デプスが大きく、枠体1hのG点での断面形状は図14のように枠体は広い断面積を有しており、断面デプスの小さいH点では図17のように枠体の断面積は小さくなる。   Next, a configuration method of the shape of the frame of the solar cell module used in the solar cell array according to the present invention will be described. Although not particularly illustrated, the cross-sectional shape of the frame of the present invention is small and large in cross-section depth at both ends, in the center, or at a plurality of locations, as shown in the side view of the solar cell module 2 shown in FIG. The part is arranged. In the drawing, the cross-sectional depth of the end portion is large, the cross-sectional shape at point G of the frame 1h is as shown in FIG. 14, and the frame has a wide cross-sectional area, and at point H where the cross-sectional depth is small, as shown in FIG. In addition, the cross-sectional area of the frame is reduced.

枠体1(図中では1h、1g)は、鉄やステンレスやアルミ材などの押出し成型によって形成するのが好適であるが、先に紹介した図1〜図6に示す太陽電池モジュール2の枠体1のように、長手方向に対して断面が変化する構造は、前記押出し成型では製造することができない。そこで、このような断面に形状変化のある枠体を作る場合には、断面デプスの大きいところを溶接で接続して1本のフレームとする方法や、例えば鋳型にて鋳物として枠体を形成したり、あるいは板材を曲げ加工にて形成するなどの加工方法を用いると良い。   The frame 1 (1h, 1g in the figure) is preferably formed by extrusion molding of iron, stainless steel, aluminum, or the like, but the frame of the solar cell module 2 shown in FIGS. Like the body 1, a structure whose cross section changes with respect to the longitudinal direction cannot be manufactured by the extrusion molding. Therefore, when making a frame having a shape change in such a cross section, a method of connecting a portion having a large cross sectional depth by welding to form a single frame, for example, forming a frame as a casting with a mold. Or a processing method such as forming a plate material by bending.

また、他の方法としては、枠体の断面形状は上述した例のような図14の枠体4aや図17の枠体4bのように枠体断面が閉断面のものを使用することが、枠体自体の曲げ強度や、せん断強度以外に、ねじり強度も向上することから好ましいが、図15の枠体1b、図16の枠体3bに示すような開断面として、鋳型による形成やプレス加工、曲げ加工などで製作可能とできるようにしてもよい。このような開断面は、枠体自体のねじり強度は先に述べた閉断面のものに劣るので、曲げ強度およびせん断強度は物量を10%程度増やして同等の強度とする。図12の枠体1a、図13の枠体3aはそのような枠体を用いて太陽電池モジュールとした場合の図11における断面形状の例を示したものである。   As another method, the cross-sectional shape of the frame body may be a closed cross-section frame body such as the frame body 4a of FIG. 14 and the frame body 4b of FIG. In addition to the bending strength and shear strength of the frame itself, it is preferable because the torsional strength is improved. However, as shown in the frame 1b of FIG. 15 and the frame 3b of FIG. Alternatively, it may be possible to produce the product by bending or the like. In such an open cross section, the torsional strength of the frame itself is inferior to that of the closed cross section described above. Therefore, the bending strength and the shear strength are increased by about 10% to obtain the same strength. A frame 1a in FIG. 12 and a frame 3a in FIG. 13 show examples of the cross-sectional shape in FIG. 11 when such a frame is used as a solar cell module.

なお、縦および横桟にて強度を保つ場合は、変化をつけた断面形状の枠体は桟が無い2辺のみでよく、残りの2辺は図1、図3、図5のように太陽電池モジュール4辺のうち、向かい合う2辺のみ断面形状の変化をつけ、残りの2辺は従来通り長手方向に断面形状が変化しない枠体としてもよい。   In addition, when maintaining strength at the vertical and horizontal crosspieces, the frame body with the changed cross-sectional shape may be only two sides without the crosspieces, and the remaining two sides are the sun as shown in FIG. 1, FIG. 3, and FIG. Of the four sides of the battery module, only two sides facing each other may be changed in cross-sectional shape, and the remaining two sides may be a frame that does not change the cross-sectional shape in the longitudinal direction as usual.

そして、上述したような枠体を有する太陽電池モジュールを複数組み合わせることにより、本発明に係る太陽電池アレイが完成する。 And the solar cell array which concerns on this invention is completed by combining multiple solar cell modules which have a frame as mentioned above.

本発明に係る太陽電池アレイに用いる太陽電池モジュールを模式的に示す斜視図である。It is a perspective view which shows typically the solar cell module used for the solar cell array which concerns on this invention. 本発明に係る太陽電池アレイに用いる太陽電池モジュールの他の第1の実施形態を模式的に示す斜視図である。It is a perspective view which shows typically other 1st Embodiment of the solar cell module used for the solar cell array which concerns on this invention. 本発明に係る太陽電池アレイに用いる太陽電池モジュールの他の第2の実施形態を模式的に示す斜視図である。It is a perspective view which shows typically other 2nd Embodiment of the solar cell module used for the solar cell array which concerns on this invention. 本発明に係る太陽電池アレイに用いる太陽電池モジュールの他の第3の実施形態を模式的に示す斜視図である。It is a perspective view which shows typically other 3rd Embodiment of the solar cell module used for the solar cell array which concerns on this invention. 本発明に係る太陽電池アレイに用いる太陽電池モジュールの他の第4の実施形態を模式的に示す斜視図である。It is a perspective view which shows typically other 4th Embodiment of the solar cell module used for the solar cell array which concerns on this invention. 本発明に係る太陽電池アレイに用いる太陽電池モジュールの他の第5の実施形態を模式的に示す斜視図である。It is a perspective view which shows typically other 5th Embodiment of the solar cell module used for the solar cell array which concerns on this invention. 一般的な太陽電池モジュールの構造を模式的に示す断面図である。It is sectional drawing which shows the structure of a common solar cell module typically. 本発明に係る太陽電池アレイを固定架台に載置した場合の曲げモーメントを示したBMD図である。It is the BMD figure which showed the bending moment at the time of mounting the solar cell array which concerns on this invention on a fixed mount. 本発明に係る太陽電池アレイの配置図とフレームに加わる曲げモーメントを示したBMD図である。It is the BMD figure which showed the arrangement | positioning drawing of the solar cell array which concerns on this invention, and the bending moment added to a flame | frame. 本発明に係る太陽電池アレイにおいて各太陽電池モジュールを個別に固定架台上に設置した様子と、フレームに加わる曲げモーメントを示したBMD図である。It is the BMD figure which showed the mode that each solar cell module was individually installed on the fixed mount in the solar cell array which concerns on this invention, and the bending moment added to a flame | frame. 本発明に係る太陽電池アレイを固定架台に載置した場合のフレームに加わる曲げモーメントを示したBMD図である。It is the BMD figure which showed the bending moment added to the flame | frame at the time of mounting the solar cell array which concerns on this invention on a fixed mount. 図11における本発明に係る太陽電池アレイに用いるフレームの他の第1の実施形態の枠体のG点での断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape in G point of the frame of other 1st Embodiment of the flame | frame used for the solar cell array which concerns on this invention in FIG. 図11における本発明に係る太陽電池アレイの他の第2の実施形態の枠体のG点での断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape in G point of the frame of other 2nd Embodiment of the solar cell array which concerns on this invention in FIG. 図11における本発明に係る太陽電池アレイの枠体のG点での断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape in G point of the frame of the solar cell array which concerns on this invention in FIG. 図11における本発明に係る太陽電池アレイの他の第2の実施形態の枠体のH点での断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape in the H point of the frame of other 2nd Embodiment of the solar cell array which concerns on this invention in FIG. 図11における本発明に係る太陽電池アレイの他の第2の実施形態の枠体のH点での断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape in the H point of the frame of other 2nd Embodiment of the solar cell array which concerns on this invention in FIG. 図11における本発明に係る太陽電池アレイの枠体のH点での断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape in the H point of the frame of the solar cell array which concerns on this invention in FIG. 従来の太陽光発電装置を陸屋根に設置した様子を示す斜視図である。It is a perspective view which shows a mode that the conventional solar power generation device was installed in the flat roof. 従来の太陽光発電装置を傾斜屋根に設置した様子を示す斜視図である。It is a perspective view which shows a mode that the conventional solar power generation device was installed in the inclined roof.

符号の説明Explanation of symbols

1a、1b:枠体
2:太陽電池モジュール
3a、3b:枠体
4a、3b:枠体
5:固定架台
6:連結部材
7、7a〜7d:ラック
9:基礎
10:横桟
12:縦桟
13:ガラス板
14:耐候性フィルム
15:充填材
16:枠体枠
17:ジャンクションボックス
18:太陽電池素子
20:発電部
DESCRIPTION OF SYMBOLS 1a, 1b: Frame 2: Solar cell module 3a, 3b: Frame 4a, 3b: Frame 5: Fixed mount 6: Connecting member 7, 7a-7d: Rack 9: Foundation 10: Horizontal beam 12: Vertical beam 13 : Glass plate 14: Weather resistant film 15: Filler 16: Frame body frame 17: Junction box 18: Solar cell element 20: Power generation part

Claims (2)

互いに間隔を空けて所定の方向に配列される複数の長尺状の架台と、発電部及び該発電部の外周に取着される枠体を有し、前記架台によって下方より支持される支持領域を有する複数の太陽電池モジュールと、を備え、
前記枠体の断面積は、前記支持領域よりも前記架台の配列方向中央領域で大きいことを特徴とする太陽電池アレイ。
A support region having a plurality of elongated bases arranged in a predetermined direction with a space between each other, a power generation unit and a frame attached to the outer periphery of the power generation unit, and supported from below by the base A plurality of solar cell modules having
The cross-sectional area of the said frame is larger in the arrangement | sequence center area | region of the said mount frame than the said support area | region, The solar cell array characterized by the above-mentioned.
互いに間隔を空けて所定の方向に配列される複数の長尺状の架台と、
発電部及び該発電部の外周に取着される枠体を有し、前記架台によって下方より支持される支持領域を有する複数の太陽電池モジュールと、を備え、
前記枠体の断面積は、前記支持領域と前記架台の配列方向の中央領域との間の領域よりも前記支持領域及び前記中央部で大きいことを特徴とする太陽電池アレイ。
A plurality of elongated bases arranged in a predetermined direction at intervals from each other;
A plurality of solar cell modules having a power generation unit and a frame attached to the outer periphery of the power generation unit, and having a support region supported from below by the mount;
The cross-sectional area of the said frame is larger in the said support area | region and the said center part than the area | region between the said support area | region and the center area | region of the arrangement direction of the said mount frame, The solar cell array characterized by the above-mentioned.
JP2005092809A 2005-03-28 2005-03-28 Solar battery array Pending JP2006278537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005092809A JP2006278537A (en) 2005-03-28 2005-03-28 Solar battery array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005092809A JP2006278537A (en) 2005-03-28 2005-03-28 Solar battery array

Publications (1)

Publication Number Publication Date
JP2006278537A true JP2006278537A (en) 2006-10-12

Family

ID=37213010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005092809A Pending JP2006278537A (en) 2005-03-28 2005-03-28 Solar battery array

Country Status (1)

Country Link
JP (1) JP2006278537A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107776A1 (en) * 2008-02-28 2009-09-03 京セラ株式会社 Solar power generation system
WO2009119774A1 (en) * 2008-03-26 2009-10-01 京セラ株式会社 Solar cell module
EP2157620A1 (en) * 2007-05-14 2010-02-24 Mitsubishi Electric Corporation Solar battery module device
JP2012528969A (en) * 2009-06-05 2012-11-15 ファースト ソーラー インコーポレイテッド Photovoltaic module ground mounting equipment
WO2013108541A1 (en) * 2012-01-18 2013-07-25 シャープ株式会社 Solar cell module, structure for supporting solar cell module, method for installing solar cell module, and solar power generation system
JPWO2013061995A1 (en) * 2011-10-24 2015-04-02 京セラ株式会社 Solar cell module and solar cell array
JP2016167483A (en) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 Solar battery panel
JP2017025569A (en) * 2015-07-22 2017-02-02 パナソニックIpマネジメント株式会社 Photovoltaic power generation device
JP2021158897A (en) * 2020-03-30 2021-10-07 京セラ株式会社 Solar cell device, solar cell module and frame member

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157620A1 (en) * 2007-05-14 2010-02-24 Mitsubishi Electric Corporation Solar battery module device
EP2157620A4 (en) * 2007-05-14 2010-10-20 Mitsubishi Electric Corp Solar battery module device
US8109049B2 (en) 2007-05-14 2012-02-07 Mitsubishi Electric Corporation Solar battery module device
US8404968B2 (en) 2008-02-28 2013-03-26 Kyocera Corporation Photovoltaic power generating system
JP5197733B2 (en) * 2008-02-28 2013-05-15 京セラ株式会社 Solar power system
JPWO2009107776A1 (en) * 2008-02-28 2011-07-07 京セラ株式会社 Solar power system
WO2009107776A1 (en) * 2008-02-28 2009-09-03 京セラ株式会社 Solar power generation system
US8418416B2 (en) 2008-03-26 2013-04-16 Kyocera Corporation Solar cell module
WO2009119774A1 (en) * 2008-03-26 2009-10-01 京セラ株式会社 Solar cell module
JP2012528969A (en) * 2009-06-05 2012-11-15 ファースト ソーラー インコーポレイテッド Photovoltaic module ground mounting equipment
KR101409681B1 (en) * 2009-06-05 2014-06-19 퍼스트 솔라, 인코포레이티드 Photovoltaic module ground mount
US9349893B2 (en) 2009-06-05 2016-05-24 First Solar, Inc. Photovoltaic module ground mount
JPWO2013061995A1 (en) * 2011-10-24 2015-04-02 京セラ株式会社 Solar cell module and solar cell array
WO2013108541A1 (en) * 2012-01-18 2013-07-25 シャープ株式会社 Solar cell module, structure for supporting solar cell module, method for installing solar cell module, and solar power generation system
JP2016167483A (en) * 2015-03-09 2016-09-15 トヨタ自動車株式会社 Solar battery panel
JP2017025569A (en) * 2015-07-22 2017-02-02 パナソニックIpマネジメント株式会社 Photovoltaic power generation device
JP2021158897A (en) * 2020-03-30 2021-10-07 京セラ株式会社 Solar cell device, solar cell module and frame member
JP7440322B2 (en) 2020-03-30 2024-02-28 京セラ株式会社 Solar cell devices, solar cell modules and frame members

Similar Documents

Publication Publication Date Title
JP2006278537A (en) Solar battery array
US8418984B2 (en) Slider clip and photovoltaic structure mounting system
US8671631B2 (en) Panel mounting system
JP2022133457A (en) Solar power generation device and use of the same
US20080029144A1 (en) Supporting a solar energy collection device
JP5294184B2 (en) Solar power system
WO2012048329A2 (en) Support structure and systems including the same
US20110290297A1 (en) Photovoltaic System, Photovoltaic Module and Method for Assembling a Photovoltaic System
KR101126430B1 (en) A functional panel using foamed aluminium
JP2005317588A (en) Photovoltaic power generating apparatus
US20130081673A1 (en) Arched photovoltaic module
US20130061912A1 (en) Diagonal mounting bracket for a photovoltaic module
US20160254775A1 (en) Methods and apparatus for structurally supporting geometrically complex solar modules using a rigid substrate and point support connections
KR20140141763A (en) Construction panel for using photovoltaic power generation and wall structure for using the same
JP5966855B2 (en) Installation structure of solar cell module
CN209823678U (en) Photovoltaic bracket component suitable for low latitude area and combined frame thereof
JP2021145496A (en) Photovoltaic power generation system based on horizontal wiring method and photovoltaic power generation method based on horizontal wiring method
JP2010192777A (en) Photovoltaic power generation facility and installation method of solar cell array
JP2018117405A (en) Photovoltaic power generation system and photovoltaic power generation system frame
JP2014084587A (en) Structure for mounting photovoltaic power generation panel
CN210516738U (en) Photovoltaic module and building integrated assembly
JP2006274551A (en) Photovoltaic generation system
KR101232760B1 (en) An assembly for supporting solar cell module
KR20190041977A (en) A photovoltaic devices for buildings
JP2012188927A (en) Photovoltaic generation system