JP2006278265A - Positive electrode plate for lithium secondary battery and manufacturing method thereof - Google Patents

Positive electrode plate for lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2006278265A
JP2006278265A JP2005099346A JP2005099346A JP2006278265A JP 2006278265 A JP2006278265 A JP 2006278265A JP 2005099346 A JP2005099346 A JP 2005099346A JP 2005099346 A JP2005099346 A JP 2005099346A JP 2006278265 A JP2006278265 A JP 2006278265A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode plate
layer
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005099346A
Other languages
Japanese (ja)
Other versions
JP4868759B2 (en
Inventor
Kazuhito Kato
和仁 加藤
Toshiro Yanagawa
俊郎 柳川
Yoshinobu Okumura
芳信 奥村
Yasushi Uraoka
靖 浦岡
Hitoshi Tanaka
田中  均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005099346A priority Critical patent/JP4868759B2/en
Publication of JP2006278265A publication Critical patent/JP2006278265A/en
Application granted granted Critical
Publication of JP4868759B2 publication Critical patent/JP4868759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode plate for a lithium secondary battery, where power generation capacity per unit volume is large, and a 2C discharge capacity maintenance rate and a cycle capacity maintenance rate are excellent, by uniformizing the filling density at an area near a collector and an electrode plate surface layer. <P>SOLUTION: In a process for manufacturing the positive electrode plate, a composite oxide of which an average grain size is 10-20 μm and a BET specific surface area is 0.25-0.70 m<SP>2</SP>/g, is used as a positive electrode active material 2. In its press process, a pressure roller is used in which the roll diameter is 150 mm or larger and 360 mm or smaller, and the applied pressure of the pressure roller is set to 45 kg/mm<SP>2</SP>or higher and 190 kg/mm<SP>2</SP>or smaller, thus setting active material filling density to 3.63 g/cm<SP>3</SP>or higher and 3.95 kg/cm<SP>3</SP>or smaller, and controlling an active material filling density ratio of d1/d8 within the range of 0.90-1.05. In this case, d1 indicates the active material density of the outermost surface layer at an electrode surface side when a positive electrode mix layer after compression is equally divided into eight in a thickness direction, and d8 indicates the active material density of a layer near the collector in contact with the collector 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池用正極の改良に関し、特に正極活物質の充填状態を改良したリチウム二次電池用正極板に関する。   The present invention relates to an improvement in a positive electrode for a lithium secondary battery, and more particularly to a positive electrode plate for a lithium secondary battery in which a filling state of a positive electrode active material is improved.

携帯電話やノートパソコン等の移動情報端末の小型・軽量化の急速な進展に伴って、軽量かつ高容量のリチウム二次電池の利用が拡大している。リチウム二次電池は、正負極間でのリチウムの移動により充放電を行う電池であり、その正極板には活物質としてコバルト酸リチウムやニッケル酸リチウム等のリチウム複合酸化物が使用されている。   With the rapid progress of miniaturization and weight reduction of mobile information terminals such as mobile phones and laptop computers, the use of lightweight and high-capacity lithium secondary batteries is expanding. A lithium secondary battery is a battery that charges and discharges by movement of lithium between positive and negative electrodes, and a lithium composite oxide such as lithium cobaltate or lithium nickelate is used as an active material for the positive electrode plate.

このようなリチウム二次電池用正極板は、導電剤や結着剤等を配合した正極合剤スラリーを集電体表面に塗着し、乾燥した後、圧縮する方法により作製されており、圧縮時における加圧力を調整することにより所望の充填密度の正極板が作製される。この圧縮法においては、一般に、剛性が高い材質の大径ロールを使用し、より高い圧力で圧縮することにより、電極中の活物質充填密度を高めることができる。しかし、或る段階を超えると加圧力を増しても、電極板最表層の充填密度のみが高まり、その内部の充填密度が高まらないという現象が起きる。このような現象が起きた正極板は、合剤層内部の力学的構造が均一でなく、活物質充填密度が不均一になっているので、機械的強度や電気化学的特性に問題を有する。   Such a positive electrode plate for a lithium secondary battery is produced by a method in which a positive electrode mixture slurry containing a conductive agent, a binder, or the like is applied to the surface of a current collector, dried, and then compressed. A positive electrode plate having a desired packing density is produced by adjusting the pressure applied at the time. In this compression method, in general, the active material filling density in the electrode can be increased by using a large-diameter roll made of a material having high rigidity and compressing at a higher pressure. However, if the pressure is increased beyond a certain level, only the filling density of the outermost layer of the electrode plate increases, and the inside packing density does not increase. The positive electrode plate in which such a phenomenon occurs has a problem in mechanical strength and electrochemical characteristics because the mechanical structure inside the mixture layer is not uniform and the active material filling density is not uniform.

特に、正極活物質であるリチウム複合酸化物は、無機物で硬度が大きく、かつ流動性が良くないために、加圧力を高めても高充填密度の電極が得られ難いとともに、加圧力を高め過ぎると、リチウム複合酸化物の結晶構造が破壊され、リチウムイオンの挿入離脱性能が低下するという問題がある。   In particular, the lithium composite oxide, which is a positive electrode active material, is an inorganic material with high hardness and poor fluidity. Therefore, it is difficult to obtain an electrode with a high packing density even if the applied pressure is increased, and the applied pressure is increased too much. Then, there is a problem that the crystal structure of the lithium composite oxide is destroyed and the lithium ion insertion / extraction performance deteriorates.

他方、圧縮を複数回行うことにより徐徐に充填密度を高める方法もあるが、この方法によると圧縮に時間がかかるため生産性が低下するとともに、集電体が過剰に延伸して破断したり、湾曲が生じたりするなどの問題がある。   On the other hand, there is also a method of gradually increasing the packing density by performing compression several times, but this method takes time to compress and decreases productivity, and the current collector is excessively stretched and broken, There are problems such as bending.

ところで、電極充填密度に関する先行技術文献情報としては下記があり、このうち特許文献1には、集電体近傍の合剤密度を極板表面近傍の合剤密度に比べ大きくすることにより、電極上にリチウムが析出することを防止する技術が記載されている。しかし、特許文献1の技術は、上記した従来技術にかかる圧縮法の問題点を解決するものではない。よって、この技術により、極板表面近傍の合剤密度を十分に高め、かつ集電体近傍の合剤密度を前記極板表面近傍以上に高めることはできない。   By the way, as prior art document information regarding the electrode packing density, there is the following, among them, Patent Document 1 discloses that on the electrode by increasing the mixture density near the current collector compared to the mixture density near the electrode plate surface. Describes a technique for preventing lithium from precipitating. However, the technique of Patent Document 1 does not solve the problem of the compression method according to the conventional technique. Therefore, by this technique, the mixture density in the vicinity of the electrode plate surface cannot be sufficiently increased, and the mixture density in the vicinity of the current collector cannot be increased more than the vicinity of the electrode plate surface.

特開2002−260635公報(段落0005,0009,0038)JP 2002-260635 A (paragraphs 0005, 0009, 0038) 特開平7−94171公報(要約)JP-A-7-94171 (summary) 特開2003−68284公報(要約、段落0011)JP 2003-68284 A (summary, paragraph 0011)

本発明は、従来技術にかかる圧縮法における問題点を解消することを目的とするものであり、集電体近傍と電極板表層との充填密度の均一化が図れ、かつ正極板全体の単位当たりの充填密度を大幅に高めることのできるリチウム二次電池用正極板板の製造方法を提供するとともに、そのような製造方法により、発電性能や機械的強度に優れたリチウム二次電池用正極板を実現することを目的とする。   The present invention aims to eliminate the problems in the compression method according to the prior art, can achieve a uniform packing density in the vicinity of the current collector and the surface layer of the electrode plate, and per unit of the entire positive electrode plate. In addition to providing a method for producing a positive electrode plate for a lithium secondary battery capable of significantly increasing the packing density of the lithium secondary battery, a positive electrode plate for a lithium secondary battery having excellent power generation performance and mechanical strength can be obtained by such a production method. It aims to be realized.

上記課題は次の構成により達成できる。
〈第1の発明〉
リチウムイオンを吸蔵・放出するリチウム複合酸化物を主体とする正極活物質と、導電剤と、結着剤と、を含有する正極合剤スラリーを金属箔からなる集電体の両面に塗布し乾燥することにより、正極合剤の塗着された正極板前駆体を作製する正極板前駆体作製工程と、前記正極板前駆体を加圧ローラーにより加圧して、正極板前駆体の合剤層を所定の厚みにまで圧縮し正極板となす加圧工程と、を備え、
前記正極板前駆体作製工程においては、平均粒子径が10μm〜20μmであり、BET比表面積が0.25m2/g〜0.70m2/gである正極活物質粒子を用い、前記加圧工程においては、ロール径が150mm以上360mm以下の加圧ローラーを用い、かつ前記加圧ローラーの加圧力を45/mm2以上190kg/mm2以下に制御することにより、活物質充填密度が3.63g/cm3以上3.95/cm3以下であり、活物質密度比d1/d8が数1の範囲内である正極板を作製することを特徴とするリチウム二次電池用正極板の製造方法。
The above problem can be achieved by the following configuration.
<First invention>
A cathode mixture slurry containing a cathode active material mainly composed of a lithium composite oxide that absorbs and releases lithium ions, a conductive agent, and a binder is applied to both sides of a current collector made of metal foil and dried. A positive electrode plate precursor preparation step for preparing a positive electrode plate precursor coated with a positive electrode mixture, and pressurizing the positive electrode plate precursor with a pressure roller to form a positive electrode plate precursor mixture layer. A pressing step of compressing to a predetermined thickness and forming a positive electrode plate,
Wherein the positive electrode plate precursor preparation step, an average particle diameter of 10 m to 20 m, BET specific surface area using the positive electrode active material particles is 0.25m 2 /g~0.70m 2 / g, the pressurizing step , The pressure density of the active material is 3.63 g by using a pressure roller having a roll diameter of 150 mm or more and 360 mm or less and controlling the pressure of the pressure roller to 45 / mm 2 or more and 190 kg / mm 2 or less. / cm 3 or more 3.95 / cm 3 or less, the manufacturing method of the positive electrode plate for a lithium secondary battery, characterized in that the active material density ratio d1 / d8 to prepare a positive electrode plate in the range of 1.

(数1)
0.90≦d1/d8≦1.05

但し、圧縮後の正極合剤層を厚み方向に均等に8分割した場合における電極表面側の最表層の活物質密度をd1とし、集電体に接する集電体近傍層の活物質密度をd8とする。
(Equation 1)
0.90 ≦ d1 / d8 ≦ 1.05

However, when the positive electrode mixture layer after compression is equally divided into eight in the thickness direction, the active material density of the outermost layer on the electrode surface side is d1, and the active material density of the near-current collector layer in contact with the current collector is d8. And

上記構成では、平均粒子径が10μm〜20μmであり、BET比表面積が0.25m2/g〜0.70m2/gである正極活物質粒子を用い、かつ加圧ロール径が150mm以上360mm以下の加圧ローラーで加圧力を45g/mm2以上190kg/mm2以下として加圧圧縮するが、この条件であると、電極板の最表層のみが加圧され、内部層が殆ど圧縮されないという問題が発生しない。よって、活物質充填密度が3.63g/cm3以上3.95/cm3以下、活物質密度比d1/d8が数1の範囲内である正極板を作製することができる。この製造方法で作製された正極板は、合剤層全体に圧縮力が均一に及び、活物質密度の均一性がよいので、電気化学的特性や機械的強度に優れる。 In the above configuration, the average is a particle diameter of 10 m to 20 m, BET specific surface area using the positive electrode active material particles is 0.25m 2 /g~0.70m 2 / g, and the pressure roll diameter 150mm or 360mm or less of it under pressure compresses the pressure with a pressure roller as a 45 g / mm 2 or more 190 kg / mm 2 or less, with this condition, only the outermost layer of the electrode plate is pressurized, a problem that the inner layer is hardly compressed Does not occur. Therefore, a positive electrode plate having an active material packing density of 3.63 g / cm 3 or more and 3.95 / cm 3 or less and an active material density ratio d1 / d8 within the range of Formula 1 can be manufactured. The positive electrode plate produced by this production method is excellent in electrochemical characteristics and mechanical strength because the entire mixture layer has a uniform compressive force and good uniformity of the active material density.

上記第1の発明においては、前記正極板中の正極活物質の平均粒子径を、前記正極板前駆体作製工程で使用した正極活物質の平均粒子径の75%以上に加圧圧縮するのがよい。上記構成の正極板の製造方法を用いると、無用に加圧力を高めなくとも、合剤層の活物質密度を十分に高めることができるので、上記条件の範囲内で加圧力やローラーの回転速度等を調整して、正極活物質粒子の平均粒子径を加圧前の75%以上に止まるようにするのがよい。加圧前後における正極活物質の平均粒子径の減少(粒子の潰れ)が25%以内であれば、正極活物質の結晶構造の破壊に起因する電気化学的特性の減少よりも、本発明方法による充填密度の向上に伴う効果(2C放電容量維持率等の向上)の方が優位になるからである。   In the first invention, the average particle diameter of the positive electrode active material in the positive electrode plate is pressure-compressed to 75% or more of the average particle diameter of the positive electrode active material used in the positive electrode plate precursor preparation step. Good. If the positive electrode plate manufacturing method of the above configuration is used, the active material density of the mixture layer can be sufficiently increased without unnecessarily increasing the pressing force, so that the pressing force and the rotation speed of the roller are within the range of the above conditions. It is preferable to adjust the average particle diameter of the positive electrode active material particles to 75% or more before pressurization. If the decrease in the average particle size of the positive electrode active material before and after pressurization (particle collapse) is within 25%, the method according to the present invention is more effective than the decrease in electrochemical properties due to the destruction of the crystal structure of the positive electrode active material. This is because the effect (improvement of the 2C discharge capacity retention rate, etc.) associated with the improvement of the packing density is more dominant.

更に上記第1の発明においては、前記加圧工程における加圧ローラーによる加圧を1回のみとすることができる。
加圧圧縮回数を1回とすることにより、電極板の無用な延伸を抑制でき、集電体の破断や電極板の湾曲を抑制できる。よって、この構成によると、高充填密度で高品質のリチウム二次電池用正極板を製造することができる。
Furthermore, in the said 1st invention, the pressurization by the pressurization roller in the said pressurization process can be made only once.
By setting the number of pressurization and compression times to one, unnecessary stretching of the electrode plate can be suppressed, and breakage of the current collector and bending of the electrode plate can be suppressed. Therefore, according to this configuration, a high-quality positive electrode plate for a lithium secondary battery with a high packing density can be manufactured.

〈第2の発明〉
リチウムイオンを吸蔵・放出するリチウム複合酸化物を主体とする正極活物質と、導電剤と、結着剤と、を含有する正極合剤が集電体表面に圧縮形成されてなる正極合剤層を備えたリチウム二次電池用正極板において、前記正極合剤層中の正極活物質は、平均粒子径が7.5μm〜20μmで、BET比表面積が0.25m2/g〜0.70m2/gであり、前記活物質層の活物質充填密度が、3.63g/cm3 〜 3.95g/cm3であり、
前記活物質層を厚み方向に均等に8分割した場合における電極表面側の最表層の活物質密度をd1とし、集電体に接する集電体近傍層の活物質密度をd8とするとき、活物質密度比d1/d8が0.90〜1.05であることを特徴とするリチウム二次電池用正極板。
<Second invention>
Positive electrode mixture layer formed by compressing and forming a positive electrode mixture containing a positive electrode active material mainly composed of a lithium composite oxide that absorbs and releases lithium ions, a conductive agent, and a binder on the surface of the current collector in the positive electrode plate for a lithium secondary battery including a positive electrode active material of the positive electrode mixture layer has an average particle diameter of 7.5Myuemu~20myuemu, BET specific surface area of 0.25m 2 /g~0.70m 2 / G, and the active material packing density of the active material layer is 3.63 g / cm 3 to 3.95 g / cm 3,
When the active material density of the outermost layer on the electrode surface side when the active material layer is equally divided into eight in the thickness direction is d1, and the active material density of the current collector adjacent layer in contact with the current collector is d8, A positive electrode plate for a lithium secondary battery, wherein the material density ratio d1 / d8 is 0.90 to 1.05.

この構成のリチウム二次電池用正極板は、単位体積当たりの発電容量が大きく、しかも2C放電容量維持率やサイクル容量維持率に優れる。   The positive electrode plate for a lithium secondary battery having this configuration has a large power generation capacity per unit volume and is excellent in a 2C discharge capacity maintenance ratio and a cycle capacity maintenance ratio.

本発明によると、集電体近傍と電極板表層との充填密度の均一化が図れ、かつ正極板全体の単位当たりの活物質充填密度を大幅に高めたリチウム二次電池用正極板を実現することができ、この正極板は単位体積当たりの発電容量が大きく、しかも2C放電容量維持率やサイクル容量維持率に優れる。   According to the present invention, a positive electrode plate for a lithium secondary battery can be realized in which the packing density in the vicinity of the current collector and the electrode plate surface layer can be made uniform, and the active material packing density per unit of the entire positive electrode plate can be greatly increased. This positive electrode plate has a large power generation capacity per unit volume and is excellent in 2C discharge capacity maintenance rate and cycle capacity maintenance rate.

本発明を実施するための最良の形態を、実施例に基づいて説明する。   The best mode for carrying out the present invention will be described based on examples.

(実施例1)
[正極板の作製]
平均粒径16μm、BET比表面積0.26m2/gのコバルト酸リチウム94重量部とアセチレンブラック3重量部とポリフッ化ビニリデン(PVdF)3重量部とをN-メチルピロリドン液で攪拌して正極合剤スラリー作製し、これを厚さ15μmのアルミニウムからなる集電体(芯体)の両面に塗布し乾燥した。乾燥後の正極合剤層の厚み0.260mmであり、幅は120mmであった。このものを、直径260mmの金属ロールを用い、圧縮圧力45kg/mm2で1回ロールプレスして正極合剤層厚みが0.160mmの正極板を作製した。
Example 1
[Preparation of positive electrode plate]
94 parts by weight of lithium cobaltate having an average particle diameter of 16 μm and a BET specific surface area of 0.26 m 2 / g, 3 parts by weight of acetylene black, and 3 parts by weight of polyvinylidene fluoride (PVdF) are stirred with an N-methylpyrrolidone solution. An agent slurry was prepared and applied to both sides of a current collector (core body) made of aluminum having a thickness of 15 μm and dried. The thickness of the positive electrode mixture layer after drying was 0.260 mm and the width was 120 mm. This was roll-pressed once using a metal roll having a diameter of 260 mm at a compression pressure of 45 kg / mm 2 to prepare a positive electrode plate having a positive electrode mixture layer thickness of 0.160 mm.

ここで上記コバルト酸リチウムの平均粒径は、レーザー回折式粒度分布測定装置で測定した値であり、BET比表面積とは、N2ガスを用いBET吸着等温式に基づいて算出した値である。 Here, the average particle diameter of the lithium cobalt oxide is a value measured with a laser diffraction particle size distribution analyzer, and the BET specific surface area is a value calculated based on the BET adsorption isotherm using N 2 gas.

[負極及び電解液の作製]
リチウムイオンを吸蔵離脱させることのできるグラファイトを結着剤を使用して銅箔からなる集電体両面に塗着させた。これを負極板とした。電解液は、エチレンカーボネートとジエチルカーボネートとを等体積(25℃)で混合した混合溶媒にLiPF6を1mol/L溶解して作製した。
[Preparation of negative electrode and electrolyte]
Graphite capable of occluding and releasing lithium ions was applied to both sides of a current collector made of copper foil using a binder. This was used as a negative electrode plate. The electrolyte was prepared by dissolving 1 mol / L of LiPF6 in a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at an equal volume (25 ° C.).

[電池組み立て]
上記正極板及び負極板を所定寸法に切断した一対の電極にポリプロピレン製の微多孔膜からなるセパレータを介し巻回して巻回型電極体となし、これを円筒型外装缶内に挿入し、電解液を注液した後、外装缶の開口部をカシメ封口することにより、円筒型リチウム二次電池(電池設計容量1500mA)を作製した。
[Battery assembly]
A pair of electrodes obtained by cutting the positive electrode plate and the negative electrode plate to a predetermined size is wound through a separator made of a polypropylene microporous film to form a wound electrode body, which is inserted into a cylindrical outer can and electrolyzed. After injecting the liquid, a cylindrical lithium secondary battery (battery design capacity 1500 mA) was produced by caulking and sealing the opening of the outer can.

(実施例2)
正極板の圧縮に際し、直径360mmの金属ロールを使用し、圧縮圧力を50kg/mm2として正極板を作製したこと以外は上記実施例1と同様にして実施例2にかかるリチウム二次電池を作製した。
(Example 2)
A lithium secondary battery according to Example 2 was produced in the same manner as in Example 1 except that a metal roll having a diameter of 360 mm was used for compression of the positive electrode plate and the positive electrode plate was produced at a compression pressure of 50 kg / mm 2. did.

(実施例3)
正極板の圧縮に際し、直径150mmの金属ロールを使用し、圧縮圧力を46kg/mm2として正極板を作製したこと以外は上記実施例1と同様にして実施例3にかかるリチウム二次電池を作製した。
(Example 3)
A lithium secondary battery according to Example 3 was prepared in the same manner as in Example 1 except that a metal roll having a diameter of 150 mm was used to compress the positive electrode plate, and the positive electrode plate was prepared at a compression pressure of 46 kg / mm 2. did.

(実施例4)
正極板の圧縮に際し、直径190mmの金属ロールを使用し圧縮圧力は実施例1と同じとして正極板を作製したこと以外は上記実施例1と同様にして実施例4にかかるリチウム二次電池を作製した。
Example 4
When the positive electrode plate was compressed, a lithium secondary battery according to Example 4 was prepared in the same manner as in Example 1 except that a metal roll having a diameter of 190 mm was used and the compression pressure was the same as in Example 1, and the positive electrode plate was prepared. did.

(比較例1)
正極板の圧縮に際し、直径130mmの金属ロールを使用し、圧縮圧力を46kg/mm2として正極板を作製したこと以外は上記実施例1と同様にして比較例1にかかるリチウム二次電池を作製した。
(Comparative Example 1)
A lithium secondary battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that a positive electrode plate was produced using a metal roll having a diameter of 130 mm and a compression pressure of 46 kg / mm 2 when the positive electrode plate was compressed. did.

(比較例2)
正極板の圧縮に際し、直径450mmの金属ロールを使用し、圧縮圧力を57kg/mm2として正極板を作製したこと以外は上記実施例1と同様にして比較例2にかかるリチウム二次電池を作製した。
(Comparative Example 2)
A lithium secondary battery according to Comparative Example 2 was produced in the same manner as in Example 1 above, except that a metal roll having a diameter of 450 mm was used for compression of the positive electrode plate and the positive electrode plate was produced at a compression pressure of 57 kg / mm 2. did.

(比較例3)
正極板の圧縮に際し、実施例1と同様の直径の金属ロールを用い、圧縮圧力を40kg/mm2として正極板を作製したこと以外は上記実施例1と同様にして比較例3にかかるリチウム二次電池を作製した。
(Comparative Example 3)
When the positive electrode plate was compressed, a metal roll having the same diameter as in Example 1 was used, and the positive electrode plate was produced at a compression pressure of 40 kg / mm 2. A secondary battery was produced.

(比較例4)
正極板の圧縮に際し、実施例1と同様の直径の金属ロールを用い、圧縮圧力を250kg/mm2として正極板を作製したこと以外は上記実施例1と同様にして比較例4にかかるリチウム二次電池を作製した。
(Comparative Example 4)
When the positive electrode plate was compressed, a metal roll having the same diameter as in Example 1 was used, and the positive electrode plate was produced at a compression pressure of 250 kg / mm 2. A secondary battery was produced.

以下の実施例5、比較例5,6は、圧縮回数の影響を調べるためのものである。
(実施例5)
コバルト酸リチウム94重量部とアセチレンブラック3重量部とポリフッ化ビニリデン3重量部とN-メチルピロリドン液とを攪拌して正極合剤スラリーを作製し、これを厚さ15μmのアルミニウム集電体の両面に塗布し、乾燥した後、正極活物質密度が概ね3.70g/cm3になるように、直径250mmの金属ロールを使用し、圧縮圧力60kg/mm2、圧縮回数1回でロールプレスを行い、正極板を作製した。
Example 5 and Comparative Examples 5 and 6 below are for examining the influence of the number of compressions.
(Example 5)
94 parts by weight of lithium cobaltate, 3 parts by weight of acetylene black, 3 parts by weight of polyvinylidene fluoride, and N-methylpyrrolidone solution were stirred to prepare a positive electrode mixture slurry, which was formed on both sides of a 15 μm thick aluminum current collector. After being applied to the substrate and dried, a metal roll having a diameter of 250 mm is used so that the positive electrode active material density is approximately 3.70 g / cm 3 , and a roll press is performed at a compression pressure of 60 kg / mm 2 and a single compression. A positive electrode plate was prepared.

(比較例5)
圧縮圧力40kg/mm2、圧縮回数を2回としたこと以外は、上記実施例5と同様にして比較例5にかかる正極板を作製した。
(Comparative Example 5)
A positive electrode plate according to Comparative Example 5 was produced in the same manner as in Example 5 except that the compression pressure was 40 kg / mm 2 and the number of compressions was two.

(比較例6)
圧縮圧力30kg/mm2、圧縮回数を3回としたこと以外は、上記実施例5と同様にして比較例6にかかる正極板を作製した。
(Comparative Example 6)
A positive electrode plate according to Comparative Example 6 was produced in the same manner as in Example 5 except that the compression pressure was 30 kg / mm 2 and the number of compressions was three.

以上で作製した各種正極板の特性を調べた。詳しくは、正極合剤層の断面形状を走査型電子顕微鏡(SEM)で観察すると共に、正極合剤層のSEM拡大画像を用いて活物質密度比の評価を行った。また、上記各電池について、2C放電容量維持率の測定を行った。また、圧縮回数と電極板の延びの関係を調べた。これらの条件とその結果を順次説明する。   The characteristics of the various positive electrode plates produced above were examined. Specifically, the cross-sectional shape of the positive electrode mixture layer was observed with a scanning electron microscope (SEM), and the active material density ratio was evaluated using the SEM enlarged image of the positive electrode mixture layer. Moreover, about the said each battery, the 2C discharge capacity maintenance factor was measured. Further, the relationship between the number of compressions and the extension of the electrode plate was examined. These conditions and the results will be described sequentially.

〈SEM拡大画像作成条件〉。
正極板を1cm×1cmに切り、シリコンウエハ面に接着し固定し、その表面を熱硬化性樹脂で覆った後、クロスセクションポリシャ法を用いて断面加工を行った。次いで、SEMを介して電極表面側の正極合剤層および集電体近傍の正極合剤層の断面状態を観察すると共に、これらについて写真撮影した。活物質密度比の評価用の写真撮影は拡大倍率900倍、2500倍で行った。
<SEM enlarged image creation conditions>.
The positive electrode plate was cut into 1 cm × 1 cm, adhered and fixed to the silicon wafer surface, the surface was covered with a thermosetting resin, and then the cross section was processed using a cross section polisher method. Next, the cross-sectional state of the positive electrode mixture layer on the electrode surface side and the positive electrode mixture layer in the vicinity of the current collector was observed through SEM, and photographs of these were taken. Photography for evaluation of the active material density ratio was performed at a magnification of 900 times and 2500 times.

〈活物質密度比の測定条件〉
画像処理ソフトを使用し上記で撮影した画像における正極合剤層の厚み方向の全厚を8個の層に均等分割し、電極最表層を第1層とし、集電体面に接する集電体近傍を第8層とし、その中間をdn(n=2〜7)とした。また、正極合剤層中の活物質粒子を白色、活物質以外を黒色にする2値化処理を行った。そして、正極合剤層の全厚の1/8を縦長とし、横長(集電体に平行な方向)を0.03mmとする区画を一区画とし、この区画内における白色面積を測定する方法により第1層から第8層までの活物質密度を測定した。
<Measurement conditions of active material density ratio>
In the image taken above using image processing software, the total thickness of the positive electrode mixture layer in the thickness direction is equally divided into 8 layers, the outermost electrode layer is the first layer, and the vicinity of the current collector in contact with the current collector surface Was the eighth layer, and its middle was dn (n = 2 to 7). Moreover, the binarization process which makes active material particle | grains in a positive mix layer white and black except active material was performed. Then, a method in which 1/8 of the total thickness of the positive electrode mixture layer is vertically long and a horizontally long (direction parallel to the current collector) is 0.03 mm is defined as one section, and the white area in this section is measured. The active material density from the first layer to the eighth layer was measured.

電極表面の第1層の活物質密度をd1、集電体面に接する集電体近傍層の活物質密度をd8として、d1/d8を求め、これを活物質密度比とした。表1には、d1/d8の結果を示し、d1/d8活物質密度比が0.90<d1/d8<1.05の範囲内にある場合を良(○)とした。活物質密度比がこの範囲内にあれば、正極合剤層全体が十分に均一であると言えるからである。   The active material density of the first layer on the electrode surface was d1, and the active material density of the near-current collector layer in contact with the current collector surface was d8, so that d1 / d8 was obtained and used as the active material density ratio. Table 1 shows the result of d1 / d8, and the case where the d1 / d8 active material density ratio is in the range of 0.90 <d1 / d8 <1.05 was evaluated as good (◯). This is because if the active material density ratio is within this range, it can be said that the entire positive electrode mixture layer is sufficiently uniform.

〈粒子の潰れの評価〉
圧縮前の正極活物質の粒度分布を測定しこの平均粒子径をr1とし、圧縮後の正極板から回収した活物質を約400℃で1時間加熱し、バインダーを分解させてとり除いた後、粒度分布を測定し、この平均粒子径をr2とした。各々の正極板におけるr2/r1を求め、この百分率を形状維持率%とし、〔r2/r1〕×100 > 75である場合を良(○)とした。なお、活物質粒子の潰れがない場合は、形状維持率が100となる。
<Evaluation of particle collapse>
After measuring the particle size distribution of the positive electrode active material before compression and setting this average particle size to r1, the active material recovered from the positive electrode plate after compression was heated at about 400 ° C. for 1 hour to decompose and remove the binder, The particle size distribution was measured, and this average particle size was defined as r2. The ratio r2 / r1 of each positive electrode plate was determined, and the percentage was defined as the shape retention ratio%, and the case of [r2 / r1] × 100> 75 was evaluated as good (◯). When the active material particles are not crushed, the shape maintenance ratio is 100.

〈2C放電容量維持率の測定〉
各電池について、25℃において電流1500mA、終止電圧4.2Vの定電流充電を行い、続いて電圧4.2V、終止電流30mAの定電圧充電を行った後、電流値1500mAで2.75Vまで放電しこの時の放電容量を測定した。これを基準放電容量とした。他方、同様に充電した後、今度は電流値3000mAで2.75Vまで放電してこの時の放電容量を測定し、これを2C放電容量とした。上記基準放電容量に対する2C放電容量の百分率を2C容量維持率(%)とした。
<Measurement of 2C discharge capacity retention rate>
Each battery was charged at a constant current of 1500 mA and a final voltage of 4.2 V at 25 ° C., followed by a constant voltage of 4.2 V and a final current of 30 mA, and then discharged to 2.75 V at a current value of 1500 mA. The discharge capacity at this time was measured. This was defined as a reference discharge capacity. On the other hand, after charging in the same manner, the battery was discharged to 2.75 V at a current value of 3000 mA, the discharge capacity at this time was measured, and this was defined as 2C discharge capacity. The percentage of 2C discharge capacity with respect to the reference discharge capacity was defined as 2C capacity maintenance rate (%).

〈25℃サイクル容量維持率の測定〉
上記と同様、25℃において、定電流充電(電流1500mA、終止電圧4.2V) − 定電圧充電(電圧4.2V、終止電流30mA)を行い、電流値1500mAで2.75Vまで放電する充放電を1サイクルとし、これを500サイクル繰り返した。各電池について、1サイクル目と500サイクル目における放電容量を測定し、1サイクル目の放電容量に対する500サイクル目の放電容量の百分率を25℃サイクル容量維持率(%)とした。
<Measurement of cycle capacity maintenance rate at 25 ° C.>
Similarly to the above, constant current charging (current 1500 mA, final voltage 4.2 V) -constant voltage charging (voltage 4.2 V, final current 30 mA) at 25 ° C., charging / discharging to 2.75 V at a current value of 1500 mA Was one cycle and this was repeated 500 cycles. About each battery, the discharge capacity in the 1st cycle and the 500th cycle was measured, and the percentage of the discharge capacity of the 500th cycle to the discharge capacity of the 1st cycle was made into 25 ° C cycle capacity maintenance rate (%).

(結果)
実施例1〜4および比較例1〜3における各種条件と評価結果を表1に一覧表示する。また、実施例1、比較例3にかかる正極板の正極合剤層のSEM写真に基づく概念図をそれぞれ図1図2に示し、図3に圧縮回数と電極板の延びとの関係を示す。図1における符号1は電極表面側の正極合剤最表層であり、符号2は活物質粒子、符号3は集電体である。
(result)
Various conditions and evaluation results in Examples 1 to 4 and Comparative Examples 1 to 3 are listed in Table 1. Moreover, the conceptual diagram based on the SEM photograph of the positive mix layer of the positive electrode plate concerning Example 1 and the comparative example 3 is shown in FIG. 1, FIG. 2, respectively, The relationship between the frequency | count of compression and the extension of an electrode plate is shown in FIG. In FIG. 1, reference numeral 1 is the outermost layer of the positive electrode mixture on the electrode surface side, reference numeral 2 is active material particles, and reference numeral 3 is a current collector.

Figure 2006278265
Figure 2006278265

表1において、ロール径が150mmから360mmであり、加圧力が45kg/mm2から190kg/mm2であり、活物質充填密度が3.63g/cm3 〜3.95g/cm3である実施例1〜4の正極板は、活物質密度比d1/d8が0.90〜1.05と顕著に小さかった。そして、この正極板を用いてなる実施例1〜4にかかるリチウム二次電池は、2C放電容量維持率が82〜87%であり、25℃500サイクルにおける容量維持率が85〜90%と優れた電池性能を示した。 In Table 1, Examples in which the roll diameter is 150 mm to 360 mm, the applied pressure is 45 kg / mm 2 to 190 kg / mm 2 , and the active material packing density is 3.63 g / cm 3 to 3.95 g / cm 3. In the positive electrode plates 1 to 4, the active material density ratio d1 / d8 was remarkably small, 0.90 to 1.05. And the lithium secondary battery concerning Examples 1-4 which uses this positive electrode plate is 2C discharge capacity maintenance rate 82-87%, and the capacity maintenance rate in 25 degreeC 500 cycles is excellent with 85-90%. Battery performance was shown.

これに対して、ロール径または加圧力の何れかが上記範囲内にない比較例1〜4は、上記実施例1〜4に比較して活物質密度比d1/d8値が1より大きく離れており、2C放電容量維持率、25℃500サイクル容量維持率が共に大きく低下していた。   In contrast, Comparative Examples 1 to 4 in which either the roll diameter or the applied pressure is not within the above range has an active material density ratio d1 / d8 value that is larger than 1 compared to Examples 1 to 4 above. Both the 2C discharge capacity retention rate and the 25 ° C. 500 cycle capacity retention rate were significantly reduced.

また、表1において、活物質粒子の形状維持率(%)について見ると、例えば実施例1の形状維持率は90%であり、比較例2のそれは98%であったが、2C放電容量維持率、25℃500サイクル容量維持率とも実施例1の方が顕著に優れていた。この理由としては、図1、2に示すように、実施例1の正極板では極板全体が均一に圧縮され活物質密度が均一であるのに対し(図1)、比較例2は極板表面近傍のみが高密度に圧縮され、中間層や集電体近傍の圧縮密度が小さくなった不均一構造が形成(図2)されているためと考えられる。   Further, in Table 1, when looking at the shape retention rate (%) of the active material particles, for example, the shape retention rate of Example 1 was 90% and that of Comparative Example 2 was 98%, but the 2C discharge capacity was maintained. In Example 1, both the rate and the cycle capacity maintenance rate at 25 ° C. were significantly superior. The reason for this is that, as shown in FIGS. 1 and 2, in the positive electrode plate of Example 1, the entire electrode plate is uniformly compressed and the active material density is uniform (FIG. 1), whereas in Comparative Example 2, the electrode plate is This is probably because only the vicinity of the surface is compressed to a high density, and a non-uniform structure is formed (FIG. 2) in which the compression density in the vicinity of the intermediate layer and current collector is reduced.

また、実施例3とその他の実施例や比較例との比較から、活物質粒子の潰れの程度は電池性能の差に直結するのではなく、活物質密度比との関連において電池性能に影響を与えることが判る。つまり、活物質密度比d1/d8が0.90〜1.05の範囲内にある場合には、活物質粒子の形状維持率が75%(実施例3)以上であれば十分な電池性能が担保できることが判る。これは、正極活物質の結晶構造の破壊に起因する電気化学的特性の減少よりも、正極板全体の活物質密度の均一化によるよる効果(2C放電容量維持率等の向上)の方が優位になるからであると考えられる。   Moreover, from the comparison between Example 3 and other examples and comparative examples, the degree of crushing of the active material particles does not directly affect the difference in battery performance, but affects the battery performance in relation to the active material density ratio. I can give it. That is, when the active material density ratio d1 / d8 is in the range of 0.90 to 1.05, sufficient battery performance is obtained if the shape retention rate of the active material particles is 75% (Example 3) or more. It can be seen that it can be secured. This is superior to the effect (improvement of 2C discharge capacity maintenance ratio, etc.) due to the uniformity of the active material density of the entire positive electrode plate, rather than the decrease in electrochemical characteristics due to the destruction of the crystal structure of the positive electrode active material. This is considered to be.

図3に圧縮回数(加圧圧縮回数)と正極板の延びとの関係を示すが、図3から明らかなように、圧縮回数が増えると直線的に電極板が延びる傾向が認められる。このことは、圧縮回数を増やすことにより合剤の充填密度を高める方法によると、集電体の破損等が生じ易くなることを意味する。よって、好ましくは1回の圧縮で所望の活物質密度の正極板を得ることのできる製造方法がよい。   FIG. 3 shows the relationship between the number of compressions (the number of pressure compressions) and the extension of the positive electrode plate. As is clear from FIG. 3, as the number of compressions increases, there is a tendency for the electrode plate to extend linearly. This means that, according to the method of increasing the packing density of the mixture by increasing the number of compressions, the current collector is easily damaged. Therefore, it is preferable to use a manufacturing method that can obtain a positive electrode plate having a desired active material density by one compression.

(その他の事項)
上記実施例では、正極活物質として平均粒径16μm、BET比表面積0.26m2/gのコバルト酸リチウムを用いたが、正極活物質は、平均粒子径が10μm〜20μmであり、BET比表面積が0.25m2/g〜0.70m2/gのものであればよい。この範囲内であれば、活物質の硬度が硬くなり、本発明で圧縮した場合においても結晶構造の破壊が少なく粒子形状がほとんど変化しないためである。
(Other matters)
In the above examples, lithium cobaltate having an average particle diameter of 16 μm and a BET specific surface area of 0.26 m 2 / g was used as the positive electrode active material. The positive electrode active material has an average particle diameter of 10 μm to 20 μm and a BET specific surface area. There may be those of 0.25m 2 /g~0.70m 2 / g. Within this range, the hardness of the active material becomes hard, and even when compressed according to the present invention, the crystal structure is hardly broken and the particle shape hardly changes.

また、上記実施例では、正極活物質としてコバルト酸リチウムを用いたが、本発明は、結晶が硬く、粒子流動性が悪く、かつ過大な圧力が加わると、結晶構造が破壊されるという特性を有するリチウム複合酸化物全般に適用できる。コバルト酸リチウム以外のリチウム複合酸化物としては、例えばマンガン酸リチウム、ニッケル酸リチウム、リチウムチタン酸化物、オリビン型燐酸鉄リチウムなどが挙げられる。   Further, in the above examples, lithium cobaltate was used as the positive electrode active material, but the present invention has the characteristics that the crystal is hard, the particle fluidity is poor, and the crystal structure is destroyed when an excessive pressure is applied. Applicable to all lithium composite oxides. Examples of lithium composite oxides other than lithium cobaltate include lithium manganate, lithium nickelate, lithium titanium oxide, and olivine type lithium iron phosphate.

本発明は、圧縮方法を工夫して集電体近傍と電極板表層との充填密度の均一化を図ることにより、単位体積当たりの発電容量が大きく、2C放電容量維持率やサイクル容量維持率に優れたリチウム二次電池用正極板を提供する。この正極板はリチウム二次電池の電池性能を顕著に高めることができるので、その産業上の利用可能性は大きい。   In the present invention, the power generation capacity per unit volume is large by devising the compression method and making the packing density in the vicinity of the current collector and the electrode plate surface layer uniform, and the 2C discharge capacity maintenance rate and cycle capacity maintenance rate are increased. An excellent positive electrode plate for a lithium secondary battery is provided. Since this positive electrode plate can remarkably improve the battery performance of the lithium secondary battery, its industrial applicability is great.

ロールプレス後の正極合剤層が厚み方向均一に圧縮され、活物質密度が均一となっている状態を示す模式図である。It is a schematic diagram which shows the state by which the positive mix layer after a roll press is compressed uniformly in the thickness direction, and the active material density is uniform. ロールプレス後に正極合剤最表層の活物質のみが密になった状態を示す模式図である。It is a schematic diagram which shows the state where only the active material of the positive electrode mixture outermost layer became dense after roll pressing. 実施例5、比較例5,6における圧縮回数と正極板の伸びとの関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of compression in Example 5, and Comparative Examples 5 and 6 and the elongation of a positive electrode plate.

符号の説明Explanation of symbols

1 正極合剤最表層
2 正極活物質
3 集電体


DESCRIPTION OF SYMBOLS 1 Positive electrode mixture outermost layer 2 Positive electrode active material 3 Current collector


Claims (4)

リチウムイオンを吸蔵・放出するリチウム複合酸化物を主体とする正極活物質と、導電剤と、結着剤と、を含有する正極合剤スラリーを金属箔からなる集電体の両面に塗布し乾燥することにより、正極合剤の塗着された正極板前駆体を作製する正極板前駆体作製工程と、
前記正極板前駆体を加圧ローラーにより加圧して、正極板前駆体の合剤層を所定の厚みにまで圧縮し正極板となす加圧工程と、
を備え、
前記正極板前駆体作製工程においては、平均粒子径が10μm〜20μmであり、BET比表面積が0.25m2/g〜0.70m2/gである正極活物質粒子を用い、
前記加圧工程においては、ロール径が150mm以上360mm以下の加圧ローラーを用い、かつ前記加圧ローラーの加圧力を45/mm2以上190kg/mm2以下に制御することにより、活物質充填密度が3.63g/cm3以上3.95/cm3以下であり、活物質密度比d1/d8が数1の範囲内である正極板を作製する
ことを特徴とするリチウム二次電池用正極板の製造方法。

(数1)

0.90≦d1/d8≦1.05

但し、圧縮後の正極合剤層を厚み方向に均等に8分割した場合における電極表面側の最表層の活物質密度をd1とし、集電体に接する集電体近傍層の活物質密度をd8とする。

A cathode mixture slurry containing a cathode active material mainly composed of a lithium composite oxide that absorbs and releases lithium ions, a conductive agent, and a binder is applied to both sides of a current collector made of metal foil and dried. A positive electrode plate precursor preparation step of preparing a positive electrode plate precursor coated with a positive electrode mixture,
Pressurizing the positive electrode plate precursor with a pressure roller, compressing the mixture layer of the positive electrode plate precursor to a predetermined thickness and forming a positive electrode plate;
With
Wherein the positive electrode plate precursor preparation step, an average particle diameter of 10 m to 20 m, BET specific surface area using the positive electrode active material particles is 0.25m 2 /g~0.70m 2 / g,
In the pressurizing step, an active material filling density is achieved by using a pressure roller having a roll diameter of 150 mm or more and 360 mm or less and controlling the pressing force of the pressure roller to 45 / mm 2 or more and 190 kg / mm 2 or less. A positive electrode plate for a lithium secondary battery, characterized in that a positive electrode plate having an active material density ratio d 1 / d 8 within the range of Formula 1 is produced by the process of 3.63 g / cm 3 to 3.95 / cm 3 Manufacturing method.

(Equation 1)

0.90 ≦ d1 / d8 ≦ 1.05

However, when the positive electrode mixture layer after compression is equally divided into eight in the thickness direction, the active material density of the outermost layer on the electrode surface side is d1, and the active material density of the near-current collector layer in contact with the current collector is d8. And

請求項1に記載のリチウム二次電池用正極板の製造方法において、
前記正極板中の正極活物質の平均粒子径が、前記正極板前駆体作製工程で使用した正極活物質の平均粒子径の75%以上である
ことを特徴とするリチウム二次電池用正極板の製造方法。
In the manufacturing method of the positive electrode plate for lithium secondary batteries of Claim 1,
An average particle size of the positive electrode active material in the positive electrode plate is 75% or more of an average particle size of the positive electrode active material used in the positive electrode plate precursor preparation step. Production method.
請求項1または2に記載のリチウム二次電池用正極板の製造方法において、
前記加圧工程における加圧ローラーによる加圧が1回のみである
ことを特徴とするリチウム二次電池用正極板の製造方法。
In the manufacturing method of the positive electrode plate for lithium secondary batteries of Claim 1 or 2,
The method for producing a positive electrode plate for a lithium secondary battery, characterized in that the pressing by the pressing roller in the pressing step is only once.
リチウムイオンを吸蔵・放出するリチウム複合酸化物を主体とする正極活物質と、導電剤と、結着剤と、を含有する正極合剤が集電体表面に圧縮形成されてなる正極合剤層を備えたリチウム二次電池用正極板において、
前記正極活物質は、平均粒子径が7.5μm〜20μmで、BET比表面積が0.25m2/g〜0.70m2/gであり、
前記正極合剤層の正極活物質充填密度が、3.63g/cm3 〜 3.95g/cm3であり、
前記活物質層を厚み方向に均等に8分割した場合における電極表面側の最表層の活物質密度をd1とし、集電体に接する集電体近傍層の活物質密度をd8とするとき、活物質密度比d1/d8が0.90〜1.05である、
ことを特徴とするリチウム二次電池用正極板。


Positive electrode mixture layer formed by compressing and forming a positive electrode mixture containing a positive electrode active material mainly composed of a lithium composite oxide that absorbs and releases lithium ions, a conductive agent, and a binder on the surface of the current collector In a positive electrode plate for a lithium secondary battery comprising:
The positive active material has an average particle diameter of 7.5Myuemu~20myuemu, BET specific surface area of 0.25m 2 /g~0.70m 2 / g,
The positive electrode active material filling density of the positive electrode mixture layer is a 3.63g / cm 3 ~ 3.95g / cm 3,
When the active material density of the outermost layer on the electrode surface side when the active material layer is equally divided into eight in the thickness direction is d1, and the active material density of the current collector adjacent layer in contact with the current collector is d8, The material density ratio d1 / d8 is 0.90 to 1.05.
The positive electrode plate for lithium secondary batteries characterized by the above-mentioned.


JP2005099346A 2005-03-30 2005-03-30 Positive electrode plate for lithium secondary battery and method for producing the same Expired - Fee Related JP4868759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099346A JP4868759B2 (en) 2005-03-30 2005-03-30 Positive electrode plate for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099346A JP4868759B2 (en) 2005-03-30 2005-03-30 Positive electrode plate for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006278265A true JP2006278265A (en) 2006-10-12
JP4868759B2 JP4868759B2 (en) 2012-02-01

Family

ID=37212794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099346A Expired - Fee Related JP4868759B2 (en) 2005-03-30 2005-03-30 Positive electrode plate for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4868759B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147153A (en) * 2006-12-12 2008-06-26 Samsung Sdi Co Ltd Lithium secondary battery
JP2008159410A (en) * 2006-12-25 2008-07-10 Matsushita Electric Ind Co Ltd Cathode plate for nonaqueous secondary battery, and nonaqueous secondary battery using this
JP2014102896A (en) * 2012-11-16 2014-06-05 Toyota Industries Corp Power storage device, secondary battery, and electrode manufacturing method
CN104241680A (en) * 2013-06-14 2014-12-24 索尼公司 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system
JP2017130476A (en) * 2017-05-08 2017-07-27 ソニー株式会社 Electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
JP2019102260A (en) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 Lithium ion secondary battery
JP2019140054A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Positive electrode and non-aqueous electrolyte secondary battery
CN113439352A (en) * 2019-02-19 2021-09-24 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode plate used for same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794171A (en) * 1993-09-27 1995-04-07 Fuji Photo Film Co Ltd Manufacture of sheet type plate and nonaqueous electrolyte battery
JP2001076727A (en) * 1999-09-08 2001-03-23 Sony Corp Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2002260635A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method for electrode thereof
JP2004355824A (en) * 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd Cathode active substance for nonaqueous secondary battery and cathode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794171A (en) * 1993-09-27 1995-04-07 Fuji Photo Film Co Ltd Manufacture of sheet type plate and nonaqueous electrolyte battery
JP2001076727A (en) * 1999-09-08 2001-03-23 Sony Corp Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2002260635A (en) * 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method for electrode thereof
JP2004355824A (en) * 2003-05-27 2004-12-16 Sumitomo Metal Mining Co Ltd Cathode active substance for nonaqueous secondary battery and cathode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9088036B2 (en) 2006-12-12 2015-07-21 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP2008147153A (en) * 2006-12-12 2008-06-26 Samsung Sdi Co Ltd Lithium secondary battery
JP2008159410A (en) * 2006-12-25 2008-07-10 Matsushita Electric Ind Co Ltd Cathode plate for nonaqueous secondary battery, and nonaqueous secondary battery using this
JP2014102896A (en) * 2012-11-16 2014-06-05 Toyota Industries Corp Power storage device, secondary battery, and electrode manufacturing method
CN104241680A (en) * 2013-06-14 2014-12-24 索尼公司 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system
JP2015002065A (en) * 2013-06-14 2015-01-05 ソニー株式会社 Electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool and electronic apparatus
KR20140145982A (en) * 2013-06-14 2014-12-24 소니 주식회사 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN104241680B (en) * 2013-06-14 2018-06-29 株式会社村田制作所 Electrode, secondary cell, battery pack, electric vehicle and power storage system
KR102141253B1 (en) * 2013-06-14 2020-08-04 가부시키가이샤 무라타 세이사쿠쇼 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2017130476A (en) * 2017-05-08 2017-07-27 ソニー株式会社 Electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
JP2019102260A (en) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 Lithium ion secondary battery
JP7069668B2 (en) 2017-12-01 2022-05-18 トヨタ自動車株式会社 Lithium ion secondary battery
JP2019140054A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Positive electrode and non-aqueous electrolyte secondary battery
CN113439352A (en) * 2019-02-19 2021-09-24 三洋电机株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode plate used for same
EP3930038A4 (en) * 2019-02-19 2022-04-27 SANYO Electric Co., Ltd. Non-aqueous electrolyte secondary battery, and method for manufacturing positive electrode plate used therein

Also Published As

Publication number Publication date
JP4868759B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4868759B2 (en) Positive electrode plate for lithium secondary battery and method for producing the same
CN111788724B (en) Positive electrode material for rechargeable lithium ion batteries
JP2004355824A (en) Cathode active substance for nonaqueous secondary battery and cathode
JP2006278182A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
JPWO2018193994A1 (en) All-solid-state lithium-ion secondary battery
KR102384975B1 (en) Fabricating method of lithium electrode and lithium ion battery
KR102256479B1 (en) Negative electrode active material for lithium secondary battery, and preparing method therof
WO2015045719A1 (en) Positive electrode for stacked lithium ion secondary batteries
WO2010134156A1 (en) Cathode active substance powder material for a lithium ion secondary cell
CN106257713B (en) Negative electrode for secondary battery and lithium secondary battery manufactured therefrom
CN114709367B (en) Negative plate, lithium ion battery and preparation method of negative plate
US11081700B2 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2011216295A (en) Cylindrical nonaqueous electrolyte secondary battery
KR102376217B1 (en) Multi-shell Anode Active Material, Manufacturing Method thereof and Lithium Secondary Battery Comprising the Same
CN116097463A (en) Negative electrode and secondary battery comprising same
JP2003217582A (en) Positive electrode active material of lithium ion secondary battery and its manufacturing method
US9166223B2 (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery
KR101932463B1 (en) Lithium metal electrode and manufacturing method thereof
EP4297120A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20190142051A (en) Silicon-Graphene Composite powder and manufacturing method thereof
JP2011216276A (en) Cylindrical nonaqueous electrolyte secondary battery
WO2020066848A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN114586199A (en) Negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
CN117855444A (en) Active material powder for negative electrode of battery and battery comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees