JP2006274441A5 - Energy absorbing material, method for producing the same, and energy absorbing device - Google Patents

Energy absorbing material, method for producing the same, and energy absorbing device Download PDF

Info

Publication number
JP2006274441A5
JP2006274441A5 JP2005180500A JP2005180500A JP2006274441A5 JP 2006274441 A5 JP2006274441 A5 JP 2006274441A5 JP 2005180500 A JP2005180500 A JP 2005180500A JP 2005180500 A JP2005180500 A JP 2005180500A JP 2006274441 A5 JP2006274441 A5 JP 2006274441A5
Authority
JP
Japan
Prior art keywords
energy
energy absorbing
absorbing material
tin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180500A
Other languages
Japanese (ja)
Other versions
JP4435034B2 (en
JP2006274441A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005180500A priority Critical patent/JP4435034B2/en
Priority claimed from JP2005180500A external-priority patent/JP4435034B2/en
Publication of JP2006274441A publication Critical patent/JP2006274441A/en
Publication of JP2006274441A5 publication Critical patent/JP2006274441A5/en
Application granted granted Critical
Publication of JP4435034B2 publication Critical patent/JP4435034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば地震発生時に建築物や土木構造物等に伝達される振動エネルギーを減少させるためのエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置に関する。 The present invention relates to manufacturing method and the energy absorbing device of the energy-absorbing material and its for reducing vibration energy transmitted to seismic buildings and civil engineering structures upon occurrence.

本発明は上記の問題点に鑑みて提案したもので、錫へ添加する金属の添加量を調整することで、低温でも機械的性質が変化せず、また径が小さくとも減衰力が大きく、地震などの振動を吸収するエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を容易・安価に提供することを目的とする。また添加量を制限することで、常温で再結晶し疲労の蓄積のないエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することを目的とする。さらに添加量を制限することで、鉛と同等以上の伸び(延性)を有し、エネルギー吸収性能が安定しており繰返し耐久性も高いエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することを目的とする。 The present invention has been proposed in view of the above problems. By adjusting the amount of metal added to tin, the mechanical properties do not change even at low temperatures, and even if the diameter is small, the damping force is large. and to provide easy-low cost of energy absorbing material and its manufacturing method and an energy absorbing device for absorbing vibrations and the like. Also by limiting the amount, and to provide an energy absorbing material and its manufacturing method and an energy absorbing device with no accumulation of recrystallized fatigue at normal temperature. By further limiting the amount has lead least equivalent elongation (ductility), the energy absorbing performance to provide a manufacturing method and the energy absorbing device of stable even repetitive durability and high energy-absorbing material and its For the purpose.

上記の目的を達成するために本発明によるエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置は、以下の構成としたものである。すなわち、本発明によるエネルギー吸収材料は、地震等の振動エネルギーを吸収するためのエネルギー吸収材料であって、純度99重量%以上の錫を主体とし、これにビスマスを添加金属として添加して合金化した弾塑性材料よりなり、その弾塑性材料に対する上記添加金属の割合が重量%以下であることを特徴とする。 In order to achieve the above object, an energy absorbing material, a manufacturing method thereof, and an energy absorbing device according to the present invention have the following configurations. That is, the energy absorbing material according to the present invention is an energy absorbing material for absorbing vibration energy such as an earthquake, a main component 99% by weight or more of tin, to which was added bismuth scan as an additive metal alloy It consists phased elastoplastic material, and the proportion of the additive metal for the elastic-plastic material is 5 wt% or less.

また本発明によるエネルギー吸収材料の製造方法は、地震等の振動エネルギーを吸収するためのエネルギー吸収材料の製造方法であって、純度99重量%以上の錫を主体とし、これに添加金属としてビスマスを5重量%以下の割合で添加して合金化することによって弾塑性材料よりなるエネルギー吸収材料を製造することを特徴とする The method for producing an energy absorbing material according to the present invention is a method for producing an energy absorbing material for absorbing vibration energy such as an earthquake, and mainly comprises tin having a purity of 99% by weight or more, and bismuth as an additive metal. An energy absorbing material made of an elastic-plastic material is produced by adding and alloying at a ratio of 5% by weight or less .

本発明によるエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置は、上記のような構成としたことにより、低温でも機械的性質が変化せず、径が小さくとも減衰力が大きく、また常温で再結晶し疲労の蓄積がなく、さらには鉛と同等以上の伸びを有するエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することができる。そのため、エネルギー吸収性能が安定しており、繰返し耐久性も高いエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を提供することができる。 Energy absorbing material and its manufacturing method and an energy-absorbing device according to the invention, again with the construction as described above, does not change the mechanical properties even at low temperatures, large damping force with a small diameter, also at room temperature It is possible to provide an energy absorbing material which is crystallized and does not accumulate fatigue, and has an elongation equal to or greater than that of lead, a method for producing the same, and an energy absorbing device . Therefore, the energy absorbing performance can provide a stable and, repeating durability high energy-absorbing material and its manufacturing method and an energy absorber.

以下、本発明によるエネルギー吸収材料およびその製造方法ならびにエネルギー吸収装置を具体的に説明する。 It will be specifically described below energy-absorbing material and its manufacturing method and an energy-absorbing device according to the present invention.

Claims (7)

地震等の振動エネルギーを吸収するためのエネルギー吸収材料であって、純度99重量%以上の錫を主体とし、これにビスマスを添加金属として添加して合金化した弾塑性材料よりなり、その弾塑性材料に対する上記添加金属の割合が重量%以下であることを特徴とするエネルギー吸収材料。 An energy-absorbing material for absorbing vibration energy such as an earthquake, a main component 99% by weight or more of tin, to which was added bismuth scan as additive metal made of alloyed elastoplastic material, the bullet energy absorbing material characterized in that the ratio of the additive metal to plastic material is 5 wt% or less. 上記錫の純度を99.9重量%以上とした請求項1に記載のエネルギー吸収材料。 The energy absorbing material according to claim 1, wherein the tin has a purity of 99.9 wt% or more. 上記錫の純度を99.99重量%以上とした請求項1に記載のエネルギー吸収材料。 The energy absorbing material according to claim 1, wherein the tin has a purity of 99.99% by weight or more. 純度99.9重量%以上の錫に、ビスマスを0.01〜4.0重量%添加したことを特徴とする請求項1に記載のエネルギー吸収材料。 Purity 99.9% by weight or more of tin, the energy absorbing material according to claim 1, characterized in that the addition of bismuth scan 0.01 to 4.0 wt%. 地震等の振動エネルギーを吸収するためのエネルギー吸収材料の製造方法であって、純度99重量%以上の錫を主体とし、これに添加金属としてビスマスを5重量%以下の割合で添加して合金化することによって弾塑性材料よりなるエネルギー吸収材料を製造することを特徴とするエネルギー吸収材料の製造方法。A method of manufacturing an energy absorbing material for absorbing vibration energy such as earthquakes, mainly composed of tin with a purity of 99% by weight or more, and added with bismuth as an additive metal at a ratio of 5% by weight or less to form an alloy. To produce an energy absorbing material made of an elastic-plastic material. 鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、上記エネルギー吸収体を上記請求項1〜のいずれかに記載のエネルギー吸収材料により形成したことを特徴とするエネルギー吸収装置。 Energy that absorbs vibration energy such as earthquakes in a hollow part that penetrates in the vertical direction in a laminated body in which multiple hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction An energy absorbing device in which the absorber is accommodated, wherein the energy absorber is formed of the energy absorbing material according to any one of claims 1 to 4 . 筒状のシリンダ内に進退ロッドを同心状に且つ軸線方向に相対移動可能に設け、そのシリンダ内の進退ロッドの周囲にエネルギー吸収体を収容し、上記シリンダまたは進退ロッドに設けた凸部等の抵抗部が、地震等による振動発生時に上記エネルギー吸収体内を相対移動することによって振動エネルギーを吸収するエネルギー吸収装置において、上記エネルギー吸収体を上記請求項1〜のいずれかに記載のエネルギー吸収材料により形成したことを特徴とするエネルギー吸収装置。 An advancing / retreating rod is concentrically arranged in a cylindrical cylinder so as to be relatively movable in the axial direction, an energy absorber is accommodated around the advancing / retreating rod in the cylinder, and a convex portion provided on the cylinder or the advancing / retreating rod The energy absorbing material according to any one of claims 1 to 4 , wherein the resistance portion absorbs vibration energy by relatively moving in the energy absorbing body when vibration is caused by an earthquake or the like. An energy absorbing device formed by the method described above.
JP2005180500A 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device Active JP4435034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180500A JP4435034B2 (en) 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004233044 2004-08-10
JP2005056944 2005-03-02
JP2005180500A JP4435034B2 (en) 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device

Publications (3)

Publication Number Publication Date
JP2006274441A JP2006274441A (en) 2006-10-12
JP2006274441A5 true JP2006274441A5 (en) 2008-11-20
JP4435034B2 JP4435034B2 (en) 2010-03-17

Family

ID=37209470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180500A Active JP4435034B2 (en) 2004-08-10 2005-06-21 Energy absorbing material, method for producing the same, and energy absorbing device

Country Status (1)

Country Link
JP (1) JP4435034B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121133B1 (en) * 2008-12-23 2012-03-20 전규식 Hybrid bearing using lead-tin alloy
CN104594656B (en) * 2014-12-31 2016-10-05 上海市机械施工集团有限公司 A kind of elastic support and the method utilizing its temporary support load

Similar Documents

Publication Publication Date Title
JP5296350B2 (en) Damping member
DesRoches et al. Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations
Robinson et al. An extrusion energy absorber suitable for the protection of structures during an earthquake
US5862638A (en) Seismic isolation bearing having a tension damping device
JP6594062B2 (en) Slide mechanism of bridge seismic device
CN103867625B (en) Rope type self-reset shape memory alloy seismic isolation and seismic reduction support
CN102011439B (en) Staged Yield Type Mild Steel Damper
JP2006194287A (en) Vibration-damping material using ferrous shape memory alloy and vibration-damping/vibration isolating device using the material
JP2006274441A5 (en) Energy absorbing material, method for producing the same, and energy absorbing device
CN103790253A (en) Steel lead lamination node damper
JP2006275212A (en) Energy absorbing device
CN201865214U (en) Staged Yield Type Mild Steel Damper
Tsai Seismic isolation devices: history and recent developments
JP2006275215A (en) Vibrational energy absorbing device and its manufacturing method
JP4435034B2 (en) Energy absorbing material, method for producing the same, and energy absorbing device
KR100540372B1 (en) Shape memory alloy rubber bearing
JP2013217483A (en) Laminated rubber bearing body
CN105507443B (en) A kind of civil engineering damping device and shock-dampening method
JP2007016918A (en) Impact absorbing plate
CN103790252A (en) Steel lead lamination shearing damper
JP2017160652A (en) Buckling restraint type damper for bridge
JP3568586B2 (en) Lead encapsulated laminated rubber bearing
US20240117851A1 (en) Isolation energy absorber
WO2010074229A1 (en) Hysteretic damper
JP2000104787A (en) Base isolation device