JP2006274165A - Cycloolefin-based polymer - Google Patents

Cycloolefin-based polymer Download PDF

Info

Publication number
JP2006274165A
JP2006274165A JP2005098201A JP2005098201A JP2006274165A JP 2006274165 A JP2006274165 A JP 2006274165A JP 2005098201 A JP2005098201 A JP 2005098201A JP 2005098201 A JP2005098201 A JP 2005098201A JP 2006274165 A JP2006274165 A JP 2006274165A
Authority
JP
Japan
Prior art keywords
cyclic olefin
group
polymer
elongation
olefin polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098201A
Other languages
Japanese (ja)
Inventor
Toshihiko Suzuki
俊彦 鈴木
Michiko Hino
享子 日野
Hiroaki Takahata
弘明 高畑
Ryuma Kuroda
竜磨 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005098201A priority Critical patent/JP2006274165A/en
Publication of JP2006274165A publication Critical patent/JP2006274165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cycloolefin-based polymer capable of being melt-kneaded at a low torque when melt-kneaded in an extruder, and having excellent moldability. <P>SOLUTION: The cycloolefin-based polymer is free from a gel component, and has the maximum value (λn) of a strain-hardening parameter represented by the ratio of a uniaxial elongation viscosity ηB at an elongation strain B to a uniaxial elongation viscosity ηA at an elongation strain A between arbitrary two points measured at the elongation strain rate of 0.1 s<SP>-1</SP>at a temperature 50°C higher than the glass transition temperature of the cycloolefin-based polymer: λn=ηB/ηA=5.0-80.0 at B/A=10 (wherein, A is the elongation strain of a sample at measurement regulated within the range of 0.1-0.3). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、成形性に優れる環状オレフィン系重合体に関する。
環状オレフィン系重合体は、耐熱性や透明性、低吸湿性、低吸水性、耐吸湿性、耐吸水性、耐薬品性、低複屈折性等に優れることから、光学材料、医療材料、電気絶縁材料、自動車部品材料等の幅広い分野での使用が検討されている。とりわけその透明性や低複屈折性に着目して光学製品用樹脂として開発が盛んに行われている。具体的には、ピックアップレンズなどの光学レンズやCDやDVDなどの光ディスク、偏光板保護フィルムや位相差フィルムなどの光学フィルムなどが挙げられる(特許文献1参照)。
The present invention relates to a cyclic olefin polymer excellent in moldability.
Cyclic olefin polymers are excellent in heat resistance, transparency, low moisture absorption, low water absorption, moisture absorption resistance, water absorption resistance, chemical resistance, low birefringence, etc., so optical materials, medical materials, electrical Use in a wide range of fields such as insulating materials and automotive parts materials is under consideration. In particular, it has been actively developed as a resin for optical products, paying attention to its transparency and low birefringence. Specific examples include an optical lens such as a pickup lens, an optical disk such as a CD and a DVD, an optical film such as a polarizing plate protective film and a retardation film (see Patent Document 1).

特開平05−2108号公報Japanese Patent Laid-Open No. 05-2108

一般的に光学レンズや光ディスクは射出成形法、射出圧縮成形法などの方法により製造され、光学フィルムは押出成形法や溶剤キャスト法などの方法により製造されている。しかしながら、環状オレフィン系重合体を用いて射出成形法や押出成形法により成形する場合、押出機のトルクが高くなり、成形品を安定的に製造することが困難であった。   In general, optical lenses and optical disks are manufactured by methods such as injection molding and injection compression molding, and optical films are manufactured by methods such as extrusion molding and solvent casting. However, when molding is performed by injection molding or extrusion molding using a cyclic olefin polymer, the torque of the extruder becomes high and it is difficult to stably produce a molded product.

本発明は、押出機中で溶融混練した場合に低いトルクで溶融混練することができ、成形性に優れる環状オレフィン系重合体を提供するものである。 The present invention provides a cyclic olefin polymer that can be melt-kneaded with low torque when melt-kneaded in an extruder and is excellent in moldability.

すなわち本発明は、ゲル成分を含まない環状オレフィン系重合体であって、該環状オレフィン系重合体のガラス転移温度より50℃高い温度において、伸長ひずみ速度0.1S-1で測定される任意の2点の伸長ひずみ量A、Bにおけるそれぞれの一軸伸長粘度ηA、ηBの比で表されるひずみ硬化パラメータの最大値(λn)が、次式で表される関係を有する環状オレフィン系重合体である。
B/A=10におけるλn=ηB/ηA=5.0〜80.0
(A、Bは測定時における試料の伸長ひずみ量を示し、Aの伸長ひずみ量は0.1〜0.3の範囲内である。)
That is, the present invention is a cyclic olefin polymer that does not contain a gel component, and is measured at an elongation strain rate of 0.1 S −1 at a temperature 50 ° C. higher than the glass transition temperature of the cyclic olefin polymer. Cyclic olefin-based weight in which the maximum value (λn) of the strain hardening parameter represented by the ratio of the uniaxial elongation viscosities η A and η B at two points of elongation strains A and B has the relationship represented by the following formula: It is a coalescence.
Λn = η B / η A = 5.0 to 80.0 at B / A = 10
(A and B show the amount of elongation strain of the sample at the time of measurement, and the amount of elongation strain of A is in the range of 0.1 to 0.3.)

本発明の環状オレフィン系重合体は、成形性に優れ、押出機中で溶融混練した場合に低いトルクで溶融混練することができるため、射出成形や押出成形等に好適な重合体である。   Since the cyclic olefin polymer of the present invention is excellent in moldability and can be melt-kneaded with a low torque when melt-kneaded in an extruder, it is a polymer suitable for injection molding or extrusion molding.

本発明の環状オレフィン系重合体は、該環状オレフィン系重合体のガラス転移温度より50℃高い温度において、伸長ひずみ速度0.1S-1で測定される任意の2点の伸長ひずみ量A、Bにおけるそれぞれの伸長粘度ηA、ηBの比で表されるひずみ硬化パラメータの最大値(以下、λnと称する)が、次式で表される関係を有する。
B/A=10におけるλn=ηB/ηA=5.0〜80.0
(A、Bは測定時における試料の伸長ひずみ量を示し、Aの伸長ひずみ量は0.1〜0.3の範囲内である。)
環状オレフィン系重合体の一軸伸長粘度は、伸長レオメータによって測定することができる。環状オレフィン系重合体のλnが5.0より小さい場合には、該重合体を押出機内で溶融混練した際に押出圧力が不安定になり、安定した溶融混練が困難となる。
The cyclic olefin polymer of the present invention has two arbitrary strain strains A and B measured at an elongation strain rate of 0.1 S −1 at a temperature 50 ° C. higher than the glass transition temperature of the cyclic olefin polymer. The maximum value of the strain hardening parameters (hereinafter referred to as λn) represented by the ratio of the respective extensional viscosities η A and η B in FIG.
Λn = η B / η A = 5.0 to 80.0 at B / A = 10
(A and B show the amount of elongation strain of the sample at the time of measurement, and the amount of elongation strain of A is in the range of 0.1 to 0.3.)
The uniaxial elongation viscosity of the cyclic olefin polymer can be measured by an elongation rheometer. When λn of the cyclic olefin polymer is smaller than 5.0, the extrusion pressure becomes unstable when the polymer is melt-kneaded in the extruder, and stable melt-kneading becomes difficult.

本発明の環状オレフィン系重合体とは、環状オレフィン系モノマー由来の構成単位を10モル%以上含んでなる重合体である。ひずみ硬化パラメータの最大値λnが5.0以上である本発明の環状オレフィン系重合体としては、具体的には、エチレン及び炭素原子数3〜12のα−オレフィンからなる群より選択されるモノマーと後述する環状オレフィン系モノマーとの付加重合体(重合体[A])、環状オレフィン系モノマーの開環単独重合体または2種以上の共重合体(重合体[B])、あるいは重合体[B]の水素添加物(重合体[C])に、過酸化物など熱で作用する架橋剤や、シラン化合物などの水で作用する架橋剤を添加し、添加する架橋剤が反応するように熱や水を加えて得られる重合体や、重合体[A]、[B]または[C]に放射線照射を行うことにより得られる環状オレフィン系重合体が挙げられる。また、エチレン及び炭素原子数3〜12のα−オレフィンからなる群より選択されるモノマーと、環状オレフィン系モノマーと、1,4−ブタジエン、1,7−オクタジエンなど炭素原子数4〜16のジエン類やジビニルベンゼンなどのジビニル芳香族化合物との付加重合体であってもよい。ジビニル芳香族化合物を共重合する場合には、重合に用いる全モノマー中のジビニル芳香族化合物の割合を0.1〜3mol%程度とする。重合体のひずみ硬化パラメータの制御が容易であることから、重合体[A]、[B]、または[C]に放射線照射を行う方法が好ましい。 The cyclic olefin polymer of the present invention is a polymer comprising 10 mol% or more of a structural unit derived from a cyclic olefin monomer. The cyclic olefin polymer of the present invention having a maximum strain hardening parameter λn of 5.0 or more is specifically a monomer selected from the group consisting of ethylene and α-olefins having 3 to 12 carbon atoms. And an addition polymer (polymer [A]) of a cyclic olefin monomer, which will be described later, a ring-opening homopolymer or two or more copolymers (polymer [B]) of a cyclic olefin monomer, or a polymer [ B] is added to a hydrogenated product (polymer [C]) such as a peroxide or a crosslinking agent acting on water such as a silane compound so that the added crosslinking agent reacts. Examples thereof include polymers obtained by adding heat and water, and cyclic olefin polymers obtained by irradiating the polymer [A], [B] or [C] with radiation. Further, a monomer selected from the group consisting of ethylene and an α-olefin having 3 to 12 carbon atoms, a cyclic olefin monomer, and a diene having 4 to 16 carbon atoms such as 1,4-butadiene and 1,7-octadiene. And addition polymers with divinyl aromatic compounds such as divinylbenzene. When copolymerizing a divinyl aromatic compound, the ratio of the divinyl aromatic compound in all monomers used for the polymerization is set to about 0.1 to 3 mol%. A method of irradiating the polymer [A], [B], or [C] with radiation is preferable because it is easy to control the strain hardening parameter of the polymer.

放射線照射とは、高エネルギーを有する放射線(β線、γ線など)を環状オレフィン系重合体に照射する方法である。照射される放射線のエネルギーが環状オレフィン系重合体を構成する種々の結合エネルギーよりも大きい場合、重合体が吸収する放射線エネルギーにしたがって化学反応を生じる。放射線としては、照射装置の簡便さと汎用的であることから、β線(電子線)を用いることが好ましい。   Radiation irradiation is a method of irradiating a cyclic olefin polymer with radiation having high energy (β rays, γ rays, etc.). When the energy of the irradiated radiation is larger than the various bond energies constituting the cyclic olefin polymer, a chemical reaction occurs according to the radiation energy absorbed by the polymer. As radiation, β rays (electron beams) are preferably used because of the simplicity and versatility of the irradiation apparatus.

本発明の環状オレフィン系重合体を得るための放射線照射線量は、照射する環状オレフィン系重合体の組成により異なるが例えばエチレンとノルボルネンを付加重合して得られ、その共重合比率がエチレン/ノルボルネン=40/60〜70/30(wt%)の重合体[A]の場合には、加速電圧150kVで50〜180kGyであり、エチレン/テトラシクロナフタレン共重合体で共重合比率が、60/40〜50/50(wt%)の重合体[A]の場合には、加速電圧150kVで60〜250kGyであり、主としてテトラシクロドデセンを開環重合しその後水素添加した重合体[C]の場合には、加速電圧150kVで80〜250kGyである。   The radiation dose for obtaining the cyclic olefin polymer of the present invention varies depending on the composition of the cyclic olefin polymer to be irradiated, but is obtained, for example, by addition polymerization of ethylene and norbornene, and the copolymerization ratio thereof is ethylene / norbornene = In the case of the polymer [A] of 40/60 to 70/30 (wt%), it is 50 to 180 kGy at an acceleration voltage of 150 kV, and the copolymerization ratio is 60/40 to ethylene / tetracyclonaphthalene copolymer. In the case of a polymer [A] of 50/50 (wt%), it is 60 to 250 kGy at an accelerating voltage of 150 kV. Is 80 to 250 kGy at an acceleration voltage of 150 kV.

本発明の環状オレフィン系重合体は、ゲル成分を含まない重合体である。環状オレフィン系重合体中のゲル成分の含有量は、以下の方法により測定される。すなわち還流状態のキシレン200mlに、環状オレフィン系重合体20mgを加え、4時間還流した後、400メッシュの金網によりろ過し、不溶分を集めて乾燥した。乾燥物の重量を秤量して初期重量(20mg)に対する割合を求め、ゲル分率とする。環状オレフィン系重合体がゲル成分を含む場合には、押出機中で溶融混練した場合にトルクが増大してしまい、射出成形や押出成形に用いることが困難となり、特に長時間に渡り安定して成形品を製造することが困難となる。   The cyclic olefin polymer of the present invention is a polymer containing no gel component. The content of the gel component in the cyclic olefin polymer is measured by the following method. That is, 20 mg of a cyclic olefin polymer was added to 200 ml of refluxed xylene, refluxed for 4 hours, filtered through a 400 mesh wire mesh, insolubles were collected and dried. The weight of the dried product is weighed, and the ratio with respect to the initial weight (20 mg) is obtained to obtain the gel fraction. When the cyclic olefin-based polymer contains a gel component, the torque increases when melt-kneaded in an extruder, making it difficult to use for injection molding and extrusion, and particularly stable for a long time. It becomes difficult to manufacture a molded product.

前記した環状オレフィン系モノマーとは、下記式[I]で表される化合物である。

Figure 2006274165
(式中、R7〜R18はそれぞれ独立に、水素原子、水酸基、アミノ基、ホスフィノ基、または炭素原子数1〜20の有機基であり、R16とR17は環を形成してもよい。mは0以上の整数を示す。) The above-mentioned cyclic olefin monomer is a compound represented by the following formula [I].
Figure 2006274165
Wherein R 7 to R 18 are each independently a hydrogen atom, a hydroxyl group, an amino group, a phosphino group, or an organic group having 1 to 20 carbon atoms, and R 16 and R 17 may form a ring. M is an integer of 0 or more.

炭素原子数1〜20の有機基の具体例としてはメチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ドデシル基等のアルキル基;フェニル基、トリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;アセチル基等のアシル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基、アリールオキシカルボニル基もしくはアラルキルオキシカルボニル基;アセチルオキシ基等のアシルオキシ基;メトキシスルホニル基、エトキシスルホニル基等のアルコキシスルホニル基、アリールオキシスルホニル基もしくはアラルキルオキシスルホニル基;トリメチルシリル基等の置換シリル基;ジメチルアミノ基、ジエチルアミノ基等のジアルキルアミノ基;カルボキシル基;シアノ基;並びに上記アルキル基、アリール基およびアラルキル基の水素原子の一部が水酸基、アミノ基、アシル基、カルボキシル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、置換シリル基、アルキルアミノ基もしくはシアノ基で置換された基を挙げることができる。 Specific examples of the organic group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, octyl group and dodecyl group; aryl such as phenyl group, tolyl group and naphthyl group An aralkyl group such as a benzyl group or a phenethyl group; an alkoxy group such as a methoxy group or an ethoxy group; an aryloxy group such as a phenoxy group; an acyl group such as an acetyl group; an alkoxycarbonyl group such as a methoxycarbonyl group or an ethoxycarbonyl group; Aryloxycarbonyl group or aralkyloxycarbonyl group; acyloxy group such as acetyloxy group; alkoxysulfonyl group such as methoxysulfonyl group and ethoxysulfonyl group; aryloxysulfonyl group or aralkyloxysulfonyl group; substituted silyl group such as trimethylsilyl group; A dialkylamino group such as a ruamino group and a diethylamino group; a carboxyl group; a cyano group; and a part of the hydrogen atoms of the alkyl group, aryl group and aralkyl group are a hydroxyl group, amino group, acyl group, carboxyl group, alkoxy group, alkoxycarbonyl group And a group substituted with a group, an acyloxy group, a substituted silyl group, an alkylamino group or a cyano group.

7〜R18として好ましくは、それぞれ独立に水素原子、炭素原子数1〜20のアルキル基、炭素原子数6〜20のアリール基、炭素原子数7〜20のアラルキル基、炭素原子数1〜20のアシル基、炭素原子数2〜20のアルコキシカルボニル基、炭素原子数1〜20のアシルオキシ基または炭素原子数1〜20の2置換シリル基である。[I]中のmは0以上の整数であり、好ましくは0≦m≦3の範囲にある整数である。 R 7 to R 18 are preferably each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or 1 to 1 carbon atom. They are 20 acyl groups, C2-C20 alkoxycarbonyl groups, C1-C20 acyloxy groups, or C1-C20 disubstituted silyl groups. M in [I] is an integer of 0 or more, preferably an integer in the range of 0 ≦ m ≦ 3.

一般式[I]で表される環状オレフィン系モノマーの好ましい例としては、ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−ブチルノルボルネン、5−フェニルノルボルネン、5−ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、5−アセチルノルボルネン、5−アセチルオキシノルボルネン、5−メトキシカルボニルノルボルネン、5−エトキシカルボニルノルボルネン、5−メチル−5−メトキシカルボニルノルボルネン、5−シアノノルボルネン、8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−テトラシクロドデセン、および8−シアノテトラシクロドデセンを列挙することができる。 Preferred examples of the cyclic olefin monomer represented by the general formula [I] include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, and tetracyclododecene. , Tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene, 5-methoxycarbonyl Norbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-cyanonorbornene, 8-methoxycarbonyltetracyclododecene, 8-methyl-8-tetracyclododecene And it is possible to enumerate 8-cyano-tetracyclododecene.

上記の重合体[A]を重合する場合には、式[I]で表される環状オレフィン系モノマーのうち1種類のみを用いてもよく、2種類以上を用いてもよい。 When polymerizing said polymer [A], only 1 type may be used among the cyclic olefin type monomers represented by a formula [I], and 2 or more types may be used.

上記の重合体[A]は、前述の環状オレフィン系モノマーとエチレン、及び炭素原子数3〜12のα−オレフィンとの付加重合体である。ここで炭素原子数3〜12のα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン等が挙げられる。得られる成形体の耐熱性の観点から、環状オレフィン系モノマーと共重合されるモノマーは、エチレン、プロピレンまたは1−ブテンであることが好ましい。 Said polymer [A] is an addition polymer of the above-mentioned cyclic olefin monomer, ethylene, and an α-olefin having 3 to 12 carbon atoms. Examples of the α-olefin having 3 to 12 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene and 1-decene. From the viewpoint of the heat resistance of the obtained molded article, the monomer copolymerized with the cyclic olefin monomer is preferably ethylene, propylene or 1-butene.

重合体[A]のガラス転移温度は、エチレンまたは炭素原子数3〜12のα−オレフィンと環状オレフィン系モノマーとの共重合比率を変えることにより制御することができる。重合体中の各モノマー由来の構成単位の含有量は、1H−NMRスペクトルや13C−NMRスペクトルによって測定することができる。 The glass transition temperature of the polymer [A] can be controlled by changing the copolymerization ratio of ethylene or an α-olefin having 3 to 12 carbon atoms and a cyclic olefin monomer. The content of the structural unit derived from each monomer in the polymer can be measured by a 1 H-NMR spectrum or a 13 C-NMR spectrum.

重合体[A]には、エチレンまたは炭素原子数3〜12のα−オレフィンと、環状オレフィン系モノマー以外のビニルモノマーを共重合により導入することもできる。該ビニルモノマーとしては、シクロペンタン、シクロヘキサンなどを置換基に有する脂環式ビニルモノマーや、ベンゼン環、ナフタレン環などを置換基に有する芳香族ビニルモノマーなどが挙げられる。これらのうち、ビニルシクロヘキサン、スチレン、ビニルナフタレン、及びそれらの誘導体を共重合した環状オレフィン系重合体は、光弾性係数が小さく好ましい樹脂である。光弾性係数の観点から重合体[A]におけるビニルモノマーの共重合比率は、2mol%以上であることが好ましい。 In the polymer [A], ethylene or an α-olefin having 3 to 12 carbon atoms and a vinyl monomer other than the cyclic olefin monomer may be introduced by copolymerization. Examples of the vinyl monomer include an alicyclic vinyl monomer having cyclopentane, cyclohexane or the like as a substituent, and an aromatic vinyl monomer having a benzene ring or a naphthalene ring as a substituent. Of these, cyclic olefin polymers obtained by copolymerizing vinylcyclohexane, styrene, vinylnaphthalene, and derivatives thereof are preferable resins having a small photoelastic coefficient. From the viewpoint of the photoelastic coefficient, the copolymerization ratio of the vinyl monomer in the polymer [A] is preferably 2 mol% or more.

本発明の環状オレフィン系重合体の環状オレフィン系重合体のうち重合体[B]とは、式[I]で表される環状オレフィン系モノマーを1種または2種以上用いて開環重合して得られる重合体である。 Among the cyclic olefin polymers of the cyclic olefin polymer of the present invention, the polymer [B] is a ring-opening polymerization using one or more cyclic olefin monomers represented by the formula [I]. The resulting polymer.

本発明の環状オレフィン系重合体の環状オレフィン系重合体のうち重合体[C]とは、重合体[B]に水素添加して得られる重合体である。 Among the cyclic olefin polymers of the cyclic olefin polymer of the present invention, the polymer [C] is a polymer obtained by hydrogenating the polymer [B].

不飽和結合を有する環状オレフィン系重合体は劣化しやすいため、本発明においては重合体[A]、または重合体[C]を用いることが好ましい。   Since the cyclic olefin polymer having an unsaturated bond is likely to deteriorate, it is preferable to use the polymer [A] or the polymer [C] in the present invention.

本発明の環状オレフィン系重合体は、ガラス転移温度(Tg)が100℃以上であることが好ましく、Tgが120℃以上であることがより好ましい。ガラス転移温度が低すぎると、カーナビゲーションシステムのモニターの液晶ディスプレイや、ピックアップレンズなど耐熱性が必要な用途には使用できないことがある。環状オレフィン系重合体のガラス転移温度の上限は、成形性の観点から200℃以下であることが好ましい。重合体のガラス転移温度(Tg)は、JIS−K7121に従ってDSC法により測定することができる。   The cyclic olefin polymer of the present invention preferably has a glass transition temperature (Tg) of 100 ° C. or higher, and more preferably has a Tg of 120 ° C. or higher. If the glass transition temperature is too low, it may not be used for applications requiring heat resistance such as a liquid crystal display for a car navigation system monitor or a pickup lens. The upper limit of the glass transition temperature of the cyclic olefin polymer is preferably 200 ° C. or less from the viewpoint of moldability. The glass transition temperature (Tg) of the polymer can be measured by the DSC method according to JIS-K7121.

本発明の環状オレフィン系重合体を用いて成形を行う場合には、必要に応じて各種添加剤を配合することができる。例えば、フェノール系やリン系、HALS等の酸化防止剤、ベンゾフェノン系、ベンゾトリアゾール系などの紫外線安定剤、アミン系などの帯電防止剤、高級脂肪酸エステル系の滑剤、あるいは放射線架橋助剤などの各種添加剤を一種、あるいは二種以上配合してもよい。添加剤を配合する場合の配合量は、通常、環状オレフィン系重合体100重量部に対し0.1〜10重量部である。 When shaping | molding using the cyclic olefin type polymer of this invention, various additives can be mix | blended as needed. For example, various antioxidants such as phenolic, phosphorous, and HALS, UV stabilizers such as benzophenone and benzotriazole, antistatic agents such as amines, higher fatty acid ester lubricants, and radiation crosslinking aids One or two or more additives may be blended. When the additive is blended, the blending amount is usually 0.1 to 10 parts by weight with respect to 100 parts by weight of the cyclic olefin polymer.

本発明の環状オレフィン系重合体は、成形性に優れ、押出機中で溶融混練した場合に低いトルクで溶融混練することができるため、射出成形や押出成形等に好適に用いることができる。本発明の環状オレフィン系重合体を用いて得られる成形品は特に限定されるものではなく、フィルム、シート、レンズ、光ディスク等種々の成形品を安定的に製造することができる。   Since the cyclic olefin polymer of the present invention is excellent in moldability and can be melt-kneaded with low torque when melt-kneaded in an extruder, it can be suitably used for injection molding, extrusion molding and the like. The molded product obtained by using the cyclic olefin polymer of the present invention is not particularly limited, and various molded products such as a film, a sheet, a lens and an optical disk can be stably produced.

以下、本発明を実施例に基づき説明するが、本発明はこれら実施例に何ら限定されるものではない。
(1)環状オレフィン系重合体のガラス転移温度の測定
ガラス転移温度(Tg)は、JIS−K7121に従ってDSC法により測定した。
(2)ひずみ硬化パラメータの測定
測定にはRheometrics社製の一軸伸長レオメータ(RME)を使用し、環状オレフィン系重合体のTgより50℃高い温度(186℃)にて、ひずみ速度0.1S-1で行った。縦軸に伸長粘度、横軸にひずみ量をプロットし、得られた結果から任意の2点のひずみ量AとB(ただしB/A=10、Aは0.1〜0.3の範囲内)における伸長粘度ηA、ηBの比の最大値をλnとして求めた。
(3)押出トルク安定性
HAAKE社製MINI−LOBOにて各重合体6.6gを260℃で溶融混練し、混練開始190秒後から200秒までの10秒間のトルク変化を測定した。トルク変化(偏差/トルク)を求め、その値が0.05以下の時は押出トルク安定性良好とし、0.06以上の時は安定性不可とした。
(4)ゲル分率の測定
還流状態のキシレン200mlに、環状オレフィン系重合体20mgを加え、4時間還流した後、400メッシュの金網によりろ過し、不溶分を集めて乾燥した。乾燥物の重量を秤量して初期重量(20mg)に対する割合を求め、ゲル分率とした。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these Examples at all.
(1) Measurement of glass transition temperature of cyclic olefin polymer The glass transition temperature (Tg) was measured by DSC method according to JIS-K7121.
(2) The strain hardening parameter is measured and measured using a uniaxial elongational rheometer (RME) manufactured by Rheometrics, at a temperature (186 ° C.) 50 ° C. higher than the Tg of the cyclic olefin polymer, and a strain rate of 0.1 S − I went with 1 . The longitudinal viscosity is plotted on the vertical axis and the strain amount is plotted on the horizontal axis. From the obtained results, the strain amounts A and B at any two points (B / A = 10, where A is in the range of 0.1 to 0.3) The maximum value of the ratio of the extensional viscosity η A and η B in) was determined as λn.
(3) Extrusion torque stability 6.6 g of each polymer was melt-kneaded at 260 ° C. with MINI-LOBO manufactured by HAAKE, and the torque change for 10 seconds from 190 seconds to 200 seconds after the start of kneading was measured. Torque change (deviation / torque) was determined. When the value was 0.05 or less, extrusion torque stability was good, and when it was 0.06 or more, stability was not possible.
(4) Measurement of gel fraction To 200 ml of refluxed xylene, 20 mg of a cyclic olefin polymer was added and refluxed for 4 hours, followed by filtration through a 400 mesh wire net, collecting insoluble matter and drying. The weight of the dried product was weighed to determine the ratio with respect to the initial weight (20 mg), and was used as the gel fraction.

[実施例1]
環状オレフィン系重合体「APEL5014DP(Tg=136℃)」(三井化学社製、商品名)を、卓上プレスにて280℃で5分間加熱した後、100kgf/cm2の圧力で1分間加圧した。その後30℃に調整した卓上プレスに移動して5分間放置し、厚さ150μm、150mm角の環状オレフィン系重合体フィルムを作製した。該フィルムに放射線(β線)照射を行った。放射線照射には、岩崎電気(株)製放射線照射装置を用いた。PET基材に前記フィルムを貼り付けた試験片を、ライン速度3.1m/minで移動させながら、酸素濃度0.03容積%の窒素雰囲気下、加速電圧150kV、照射線量250kGyの放射線(β線)を、放射線照射中の試験片の放射線照射部表面温度が150℃(Tg+14℃)となる条件下で試験片に照射した。
放射線照射した試験片から環状オレフィン系重合体フィルムを剥離して裁断し、卓上プレスにて240℃で5分間加熱した後、100kgf/cm2の圧力で1分間加圧した。その後、30℃に調整した卓上プレスに移動させ5分間放置し、気泡のない72mm×40mm×1.5mmの平板を作製した。該平板から72mm×7mm×1.5mmの試験片を作製し、ひずみ硬化パラメータの測定に用いた。測定は前記環状オレフィン系重合体のTgより50℃高い温度(186℃)で行った。伸長ひずみ量Aが0.27のときの一軸伸長粘度ηA=1511171Pa・sであり、伸長ひずみ量Bが2.7のときの一軸伸長粘度ηB=18003586Pa・sであり、λn=ηB/ηA=11.9であった。
また、放射線照射した試験片から環状オレフィン系重合体フィルムを剥離して裁断し、ゲル成分の含有量の測定および押出トルクの安定性を評価した。ゲル成分は0重量%であった。押出トルクの安定性の評価結果を表1に示した。
[Example 1]
A cyclic olefin polymer “APEL5014DP (Tg = 136 ° C.)” (trade name, manufactured by Mitsui Chemicals, Inc.) was heated at 280 ° C. for 5 minutes with a table press and then pressurized at a pressure of 100 kgf / cm 2 for 1 minute. . Then, it moved to the desktop press adjusted to 30 degreeC, and left to stand for 5 minutes, and produced the cyclic olefin polymer film of thickness 150 micrometers and a 150 mm square. The film was irradiated with radiation (β rays). A radiation irradiation apparatus manufactured by Iwasaki Electric Co., Ltd. was used for radiation irradiation. While moving the test piece with the film pasted on a PET substrate at a line speed of 3.1 m / min, radiation (β-ray) with an acceleration voltage of 150 kV and an irradiation dose of 250 kGy in a nitrogen atmosphere with an oxygen concentration of 0.03% by volume ) Was irradiated to the test piece under conditions where the surface temperature of the irradiated part of the test piece during irradiation was 150 ° C. (Tg + 14 ° C.).
The cyclic olefin polymer film was peeled off from the test piece irradiated with radiation and cut, heated at 240 ° C. for 5 minutes by a table press, and then pressurized at 100 kgf / cm 2 for 1 minute. Then, it moved to the desktop press adjusted to 30 degreeC, and was left to stand for 5 minutes, and produced the 72 mm x 40 mm x 1.5 mm flat plate without an air bubble. A 72 mm × 7 mm × 1.5 mm test piece was prepared from the flat plate and used for measurement of strain hardening parameters. The measurement was performed at a temperature (186 ° C.) 50 ° C. higher than the Tg of the cyclic olefin polymer. The uniaxial elongation viscosity η A = 151171 Pa · s when the elongation strain amount A is 0.27, the uniaxial elongation viscosity η B = 180003586 Pa · s when the elongation strain amount B is 2.7, and λn = η B / Η A = 11.9.
In addition, the cyclic olefin polymer film was peeled off from the irradiated specimen and cut, and the gel component content measurement and the extrusion torque stability were evaluated. The gel component was 0% by weight. The evaluation results of the stability of the extrusion torque are shown in Table 1.

[比較例1]
環状オレフィン系重合体「APEL5014DP(Tg=136℃)」(三井化学社製、商品名)を、卓上プレスにて280℃で5分間加熱した後、100kgf/cm2の圧力で1分間加圧した。その後30℃に調整した卓上プレスに移動して5分間放置し、気泡のない72mm×40mm×1.5mmの平板を作製した。該平板から72mm×7mm×1.5mmの試験片を作製し、ひずみ硬化パラメータの測定に用いた。測定は前記環状オレフィン系重合体のTgより50℃高い温度(186℃)で行った。伸長ひずみ量Aが0.27のときの一軸伸長粘度ηA=1374028Pa・sであり、伸長ひずみ量Bが2.7のときの一軸伸長粘度ηB=4651192Pa・sであり、λn=ηB/ηA=3.4であった。
また、前記平板を裁断してゲル成分の含有量の測定および押出トルクの安定性を評価した。ゲル成分は0重量%であった。押出トルクの安定性の評価結果を表1に示した。
[Comparative Example 1]
A cyclic olefin polymer “APEL5014DP (Tg = 136 ° C.)” (trade name, manufactured by Mitsui Chemicals, Inc.) was heated at 280 ° C. for 5 minutes with a table press and then pressurized at a pressure of 100 kgf / cm 2 for 1 minute. . Thereafter, the plate was moved to a desktop press adjusted to 30 ° C. and left for 5 minutes to produce a 72 mm × 40 mm × 1.5 mm flat plate without bubbles. A 72 mm × 7 mm × 1.5 mm test piece was prepared from the flat plate and used for measurement of strain hardening parameters. The measurement was performed at a temperature (186 ° C.) 50 ° C. higher than the Tg of the cyclic olefin polymer. Uniaxial elongation viscosity η A = 13774028 Pa · s when the elongation strain amount A is 0.27, uniaxial elongation viscosity η B = 46551192 Pa · s when the elongation strain amount B is 2.7, and λn = η B / Η A = 3.4.
Moreover, the said flat plate was cut | judged, the measurement of content of a gel component, and the stability of extrusion torque were evaluated. The gel component was 0% by weight. The evaluation results of the stability of the extrusion torque are shown in Table 1.

Figure 2006274165
Figure 2006274165


Claims (1)

ゲル成分を含まない環状オレフィン系重合体であって、該環状オレフィン系重合体のガラス転移温度より50℃高い温度において、伸長ひずみ速度0.1S-1で測定される任意の2点の伸長ひずみ量A、Bにおけるそれぞれの一軸伸長粘度ηA、ηBの比で表されるひずみ硬化パラメータの最大値(λn)が、次式で表される関係を有する環状オレフィン系重合体。
B/A=10におけるλn=ηB/ηA=5.0〜80.0
(A、Bは測定時における試料の伸長ひずみ量を示し、Aの伸長ひずみ量は0.1〜0.3の範囲内である。)
A cyclic olefin polymer that does not contain a gel component, and two arbitrary elongation strains measured at an elongation strain rate of 0.1 S −1 at a temperature 50 ° C. higher than the glass transition temperature of the cyclic olefin polymer. the amount a, the maximum value of each of the uniaxial elongation viscosity eta a, strain hardening parameter is represented by the ratio of eta B in B (lambda] n) is a cyclic olefin polymer having a relationship represented by the following formula.
Λn = η B / η A = 5.0 to 80.0 at B / A = 10
(A and B show the amount of elongation strain of the sample at the time of measurement, and the amount of elongation strain of A is in the range of 0.1 to 0.3.)
JP2005098201A 2005-03-30 2005-03-30 Cycloolefin-based polymer Pending JP2006274165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098201A JP2006274165A (en) 2005-03-30 2005-03-30 Cycloolefin-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098201A JP2006274165A (en) 2005-03-30 2005-03-30 Cycloolefin-based polymer

Publications (1)

Publication Number Publication Date
JP2006274165A true JP2006274165A (en) 2006-10-12

Family

ID=37209217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098201A Pending JP2006274165A (en) 2005-03-30 2005-03-30 Cycloolefin-based polymer

Country Status (1)

Country Link
JP (1) JP2006274165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144644A1 (en) * 2011-04-21 2012-10-26 株式会社ダイセル Crosslinked product of cyclic olefin resin, and process for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234924A (en) * 1985-08-08 1987-02-14 Mitsui Petrochem Ind Ltd Crosslinking of cyclic olefin copolymer
JPH06345885A (en) * 1993-06-07 1994-12-20 Idemitsu Kosan Co Ltd Method for treating cyclic olefinic resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234924A (en) * 1985-08-08 1987-02-14 Mitsui Petrochem Ind Ltd Crosslinking of cyclic olefin copolymer
JPH06345885A (en) * 1993-06-07 1994-12-20 Idemitsu Kosan Co Ltd Method for treating cyclic olefinic resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144644A1 (en) * 2011-04-21 2012-10-26 株式会社ダイセル Crosslinked product of cyclic olefin resin, and process for producing same
JP5155500B2 (en) * 2011-04-21 2013-03-06 株式会社ダイセル Cross-linked product of cyclic olefin resin and method for producing the same

Similar Documents

Publication Publication Date Title
Na et al. Modulating polyolefin properties through the incorporation of nitrogen-containing polar monomers
Sato et al. Cohesive force change induced by polyperoxide degradation for application to dismantlable adhesion
Sirisinha et al. Melt characteristics, mechanical, and thermal properties of blown film from modified blends of poly (butylene adipate‐co‐terephthalate) and poly (lactide)
KR20170097126A (en) Polymer compositions and processes for their production
JP4529696B2 (en) Fumaric acid diester copolymer
CA1211593A (en) COMPOSITIONS CONTAINING ETHYLENIC COPOLYMERS, .alpha.- OLEFINS AND A FREE RADICAL POLYETHYLENE; THEIR USE FOR THE PRODUCTION OF FILMS
Ahn et al. Effects of methylation and neutralization of carboxylated poly (n-butyl acrylate) on the interfacial and bulk contributions to adhesion
Zurina et al. The effect of HVA-2 on properties of irradiated epoxidized natural rubber (ENR-50), ethylene vinyl acetate (EVA), and ENR-50/EVA blend
JP2006274165A (en) Cycloolefin-based polymer
EP3094662A1 (en) A process to produce polyolefin ionomers and ionomers produced thereby
Patri et al. Sequential interpenetrating polymer network based on styrene butadiene rubber and polyalkyl methacrylates
TW201507173A (en) Sealing agent for solar cells and crosslinking assistant
Poomalai et al. Thermal and mechanical properties of poly (methyl methacrylate) and ethylene vinyl acetate copolymer blends
EP3310587B1 (en) Diene rubber/polypropylene thermoplastic elastomer copolymer, compositions containing same, and preparation method
US6822052B2 (en) Toughened cyanoacrylate adhesives containing alkene-acrylate copolymers and method for production
Raja et al. Evaluation of olefinic block copolymer blends with amorphous polyolefins—effect of different unsaturated and saturated hydrocarbon tackifier resins on blend miscibility
JP2006274166A (en) Cycloolefin-based polymer
WO2007088941A1 (en) Polymer composition
JP2006274164A (en) Method for irradiating moldings of cycloolefine type polymer with radioactive ray
JP2006276672A (en) Retardation film
Gascon et al. Hydroxytelechelic hydrocarbon copolymers with high aging resistance for elastomeric materials
JP2008524346A (en) UV stabilizer for PMMA
JP6332907B2 (en) Resin composition for sealing, display device, and optical semiconductor device
Zheng et al. Covalently Crosslinked Networks from Telechelic Polycyclooctene with Reinforced Properties
JPH10231327A (en) Styrenic copolymer, its production and molded product

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Effective date: 20100830

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104