JP2006274136A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2006274136A
JP2006274136A JP2005097667A JP2005097667A JP2006274136A JP 2006274136 A JP2006274136 A JP 2006274136A JP 2005097667 A JP2005097667 A JP 2005097667A JP 2005097667 A JP2005097667 A JP 2005097667A JP 2006274136 A JP2006274136 A JP 2006274136A
Authority
JP
Japan
Prior art keywords
containing organic
pneumatic tire
mass
range
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005097667A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ota
俊行 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005097667A priority Critical patent/JP2006274136A/en
Publication of JP2006274136A publication Critical patent/JP2006274136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire secured in microparticles retention while improving microparticles content, thus having high abrasion resistance without declining in on-ice performance and good in factory workability. <P>SOLUTION: The pneumatic tire is such that a foamed rubber layer is provided on its surface coming in substantial contact with road surface. In this tire, the foamed rubber layer is 3-50% in expansion percentage, wherein its rubber component essentially comprises natural rubber and polybutadiene rubber, 100 pts.mass of the rubber component comprising 20-70 pts.mass of the natural rubber and 30-80 pts.mass of the polybutadiene rubber and also containing microparticles-free organic fibers (a) and microparticles-containing organic particles (b) in predetermined proportions respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気入りタイヤに関するものであり、より詳しくは、氷路面上での制動、駆動性能等の氷上性能に優れ、また工場での作業性に優れている空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire. More specifically, the present invention relates to a pneumatic tire having excellent performance on ice such as braking and driving performance on an icy road surface and excellent workability in a factory.

スパイクタイヤが規制されて以来、氷雪路面上でのタイヤの制動・駆動性能(以下、氷上性能という。)を向上させるため、特にタイヤのトレッドについての研究が盛んに行われている。氷雪路面においては氷雪路面とタイヤとの摩擦熱等により水膜が発生し易く、その水膜はタイヤと氷雪路面との間の摩擦係数を低下させる。このため、タイヤにおける氷上性能を向上させるためには、タイヤのトレッドの水膜除去能やエッヂ効果及びスパイク効果を改良することが必要である。   Since spike tires have been regulated, research on tire treads has been actively carried out in order to improve tire braking and driving performance (hereinafter referred to as ice performance) on icy and snowy road surfaces. On an icy and snowy road surface, a water film is likely to be generated due to frictional heat between the icy and snowy road surface and the tire, and the water film reduces the coefficient of friction between the tire and the icy and snowy road surface. For this reason, in order to improve the performance on ice in the tire, it is necessary to improve the water film removing ability, the edge effect and the spike effect of the tire tread.

タイヤのトレッドに水膜除去能を持たせるには、タイヤの路面にミクロな排水溝(深さ、幅共に100μm程度)を多数設け、このミクロな排水溝により水膜を排除し、タイヤの氷雪路面上での摩擦係数を大きくする。しかし、この場合、タイヤの使用初期における氷上性能を向上させることはできるものの、タイヤの摩耗に伴い、徐々に氷上性能が低下してしまうという問題がある。そこで、タイヤが摩耗しても氷上性能が低下しないようにするため、ミクロな水膜除去効果を狙ってトレッド内に気泡を形成しておくことが考えられ、この気泡には球状のものに加えて有機繊維樹脂による筒状のものが考えられている。
また、上記の有機繊維についても微粒子を含有させ、より引っ掻き効果を加味させることにより氷雪路面上での摩擦係数を更に大きくすることが提案されている(例えば、特許文献1、及び特許文献2を参照)。
特開2003−201371号公報 特開2001−233993号公報
In order to give the tire tread the ability to remove water film, a lot of micro drain grooves (depth and width of about 100μm) are provided on the road surface of the tire. Increase the coefficient of friction on the road surface. However, in this case, although the performance on ice in the initial use of the tire can be improved, there is a problem that the performance on ice gradually deteriorates as the tire wears. Therefore, in order to prevent the performance on ice from deteriorating even if the tires wear, it is conceivable to form bubbles in the tread with the aim of removing the microscopic water film. In addition, a cylindrical one made of an organic fiber resin is considered.
In addition, it has been proposed to further increase the coefficient of friction on the icy and snowy road surface by adding fine particles to the above-mentioned organic fiber and adding a scratch effect (for example, Patent Document 1 and Patent Document 2). reference).
JP 2003-201371 A JP 2001-233993 A

氷上性能の向上には従来から微粒子含有有機繊維への微粒子増量が効果的である。しかし、微粒子の増量はその含有有機繊維自体も増量することになる。結果として、トレッド面の押出肌の悪化、加硫後、スピュー詰まり等の工場作業性の問題、及び耐摩耗性悪化があるために量産化が困難であった。また、室内評価レベルでも微粒子含有有機繊維は微粒子のトレッドからの脱離が起こってしまう。期待されるレベルの氷上性能が得られない。   In order to improve the performance on ice, increasing the amount of fine particles to the organic fibers containing fine particles has been effective. However, the increase in the amount of fine particles also increases the organic fiber contained therein. As a result, mass production was difficult due to deterioration of the extruded skin of the tread surface, problems of factory workability such as clogging after vulcanization, and deterioration of wear resistance. Further, even at the indoor evaluation level, the fine particle-containing organic fiber is detached from the tread. The expected performance on ice cannot be obtained.

従って、本発明は、このような実情に鑑み、微粒子の保持能を確保して、氷上性能を低下させることなく、耐摩耗性及び工場の作業性に優れた空気入りタイヤを提供しようとするものである。   Therefore, in view of such a situation, the present invention intends to provide a pneumatic tire excellent in wear resistance and factory workability without securing the ability to retain fine particles and reducing the performance on ice. It is.

本発明者等は、有機繊維への含有率を調整し、微粒子含有体を有機繊維から有機粒子に変更すると、トレッド面の押出肌が改良し、加硫後のスピュー切れが起こらないこと、また、有機粒子を変性樹脂とすることにより、従来から問題となっている微粒子の樹脂からの離脱をできる限り抑制できることを見出し、本発明に至ったものである。
即ち、本発明は、以下の(1)〜(10)の特徴のある構成を採用することにより、上記目的を達成したものである。
The inventors of the present invention adjust the content ratio in organic fibers and change the fine particle-containing body from organic fibers to organic particles, so that the extruded skin of the tread surface is improved and spew cut after vulcanization does not occur. Thus, the present inventors have found that the use of organic resin as a modified resin can suppress the separation of fine particles from the resin, which has been a problem in the past, as much as possible.
That is, this invention achieves the said objective by employ | adopting the structure with the characteristic of the following (1)-(10).

(1)路面と実質接する面に発泡ゴム層が設けられる空気入りタイヤであって、上記の発泡ゴム層は、その発泡率が3〜50%の範囲にあり、ゴム成分には少なくとも天然ゴムとポリブタジエンゴムとを含み、且つゴム成分100質量部中に天然ゴムを20〜70質量部の範囲で含み、ポリブタジエンゴムを30〜80質量部の範囲で含み、更に、微粒子の非含有有機繊維(a)及び微粒子の含有有機粒子(b)を所定割合で含まれてなる空気入りタイヤ。   (1) A pneumatic tire in which a foamed rubber layer is provided on a surface substantially in contact with a road surface, and the foamed rubber layer has a foaming ratio in the range of 3 to 50%, and the rubber component includes at least natural rubber. Polybutadiene rubber, and 100 parts by weight of rubber component contains natural rubber in the range of 20 to 70 parts by weight, polybutadiene rubber in the range of 30 to 80 parts by weight, and further contains fine particulate-free organic fibers (a ) And organic particles (b) containing fine particles in a predetermined ratio.

(2)上記の非含有有機繊維(a)及び微粒子含有有機粒子(b)の合計量が上記のゴム成分100質量に対して1〜5質量部の範囲で含まれる上記(1)記載の空気入りタイヤ。
(3)上記の微粒子含有有機粒子(b)が非含有有機繊維(a)及び微粒子含有有機粒子(b)の合計百分率に対して7質量%以上の範囲にある上記(1)又は(2)記載の空気入りタイヤ。
(4)上記の微粒子含有有機粒子(b)は、該有機粒子の樹脂100質量部に対して該微粒子が5〜80質量部の範囲で含有される上記(1)〜(3)の何れかに記載の空気入りタイヤ。
(2) The air according to (1), wherein the total amount of the non-containing organic fiber (a) and the fine particle-containing organic particle (b) is included in the range of 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component. Tires.
(3) The above (1) or (2), wherein the fine particle-containing organic particles (b) are in the range of 7% by mass or more with respect to the total percentage of the non-containing organic fibers (a) and the fine particle-containing organic particles (b). The described pneumatic tire.
(4) The fine particle-containing organic particles (b) are any one of the above (1) to (3), wherein the fine particles are contained in a range of 5 to 80 parts by mass with respect to 100 parts by mass of the resin of the organic particles. Pneumatic tire described in 2.

(5)上記の微粒子含有有機粒子(b)の微粒子は、そのモース硬度が2以上であり、また粒径分布の頻度数の80%以上が10〜50μmの範囲にあり、平均粒子径が10〜30μmの範囲にある上記(1)〜(3)の何れかに記載の空気入りタイヤ。
(6)上記の微粒子含有有機粒子(b)の微粒子が無機又は有機の微粒子から選択される上記(1)〜(3)の何れかに記載の空気入りタイヤ。
(7)上記の微粒子含有有機粒子(b)の有機粒子の径が0.05〜0.5mmの範囲にある上記(1)〜(3)の何れかに記載の空気入りタイヤ。
(8)上記の微粒子含有有機粒子(b)の有機粒子がスズ、シラン、及びマレイン酸から選択される少なくとも1つで変性されている上記(1)〜(3)の何れかに記載の空気入りタイヤ。
(9)上記の非含有有機繊維(a)の径が0.01〜0.1mmの範囲で、その長さが0.5〜20mmの範囲にある上記(1)〜(3)の何れかに記載の空気入りタイヤ。
(10)上記の非含有有機繊維(a)及び微粒子含有有機粒子(b)に使用する樹脂はポリエチレン及びポリプロピレンから選ばれた少なくとも1種以上の結晶性高分子であって、その融点が190℃以下の範囲にある上記(1)〜(3)の何れかに記載の空気入りタイヤ。
(5) The fine particles of the fine particle-containing organic particles (b) have a Mohs hardness of 2 or more, 80% or more of the frequency of particle size distribution is in the range of 10 to 50 μm, and an average particle size of 10 The pneumatic tire according to any one of (1) to (3), which is in a range of ˜30 μm.
(6) The pneumatic tire according to any one of (1) to (3), wherein the fine particles of the fine particle-containing organic particles (b) are selected from inorganic or organic fine particles.
(7) The pneumatic tire according to any one of (1) to (3), wherein the diameter of the organic particles of the fine particle-containing organic particles (b) is in the range of 0.05 to 0.5 mm.
(8) The air according to any one of (1) to (3), wherein the organic particles of the fine particle-containing organic particles (b) are modified with at least one selected from tin, silane, and maleic acid. Tires.
(9) Any of (1) to (3) above, wherein the non-containing organic fiber (a) has a diameter in the range of 0.01 to 0.1 mm and a length in the range of 0.5 to 20 mm. Pneumatic tire described in 2.
(10) The resin used for the non-containing organic fiber (a) and the fine particle-containing organic particle (b) is at least one crystalline polymer selected from polyethylene and polypropylene, and has a melting point of 190 ° C. The pneumatic tire according to any one of (1) to (3), which is in the following range.

本発明の空気入りタイヤにあっては、微粒子含有有機粒子の含有率を高める一方、従来の有機繊維量を抑制することにより、即ち筒状から球状に形状変更してトレッド面の押出外観を良好にしてスピュー切れなどを起きないようにしている。また、非変性樹脂であった有機繊維に代わり、変性樹脂の有機粒子に変更することを同時に行うことにより、トレッドからの微粒子の離脱を抑制することができる。これにより、耐摩耗性の低下を防止して、工場作業性及び氷上性能を高めることができる。   In the pneumatic tire of the present invention, while increasing the content of the fine particle-containing organic particles, by suppressing the amount of conventional organic fibers, that is, by changing the shape from a cylindrical shape to a spherical shape, the extruded appearance of the tread surface is good. In order to prevent spewing out. Further, by simultaneously changing to the organic particles of the modified resin instead of the organic fiber that was the non-modified resin, the separation of the fine particles from the tread can be suppressed. Thereby, a fall of abrasion resistance can be prevented and factory workability | operativity and on-ice performance can be improved.

以下、本発明の空気入りタイヤの実施の形態を説明する。図1は本発明の空気入りタイヤの一般的な一例であって、空気入りタイヤの断面概略説明図である。尚、本発明の空気入りタイヤは以下の態様に限るものではない。   Hereinafter, embodiments of the pneumatic tire of the present invention will be described. FIG. 1 is a general example of a pneumatic tire according to the present invention, and is a schematic sectional view of a pneumatic tire. In addition, the pneumatic tire of this invention is not restricted to the following aspects.

本発明に係る空気入りタイヤは、例えば、図1に示すように、一対のビード部1と、該一対のビード部1にトロイド状をなして連なるカーカス2と、該カーカス2のクラウン部をタガ締めするベルト3と、キャップ部6とベース部7の二層から成るトレッド5とを順次配置したラジアル構造を有する。尚、トレッド5以外の内部構造は、一般のタイヤの構造と変わりないので説明は省略する。
タイヤ4は、その製造方法については特に制限はないが、例えば、所定のモールドで所定温度、所定圧力の下で加硫成形する。その結果、未加硫のトレッドが加硫されて発泡ゴム層で形成されたキャップトレッド6を有するタイヤ4が得られる。
As shown in FIG. 1, for example, the pneumatic tire according to the present invention includes a pair of bead portions 1, a carcass 2 connected to the pair of bead portions 1 in a toroidal shape, and a crown portion of the carcass 2. It has a radial structure in which a belt 3 to be fastened and a tread 5 composed of two layers of a cap portion 6 and a base portion 7 are sequentially arranged. Since the internal structure other than the tread 5 is the same as that of a general tire, the description thereof is omitted.
Although there is no restriction | limiting in particular about the manufacturing method of the tire 4, For example, it vulcanizes-molds with a predetermined mold under a predetermined temperature and a predetermined pressure. As a result, the tire 4 having the cap tread 6 formed of the foamed rubber layer by vulcanizing the unvulcanized tread is obtained.

本発明の空気入りタイヤは、路面と実質接する面、即ちトレッド5の接面部に発泡ゴム層が設けられる。発泡ゴム層は、その発泡率が3〜50%の範囲にある。ゴム成分には少なくとも天然ゴムとポリブタジエンゴムとを含み、且つゴム成分100質量部中に天然ゴムを20〜70質量部の範囲で含み、ポリブタジエンゴムを30〜80質量部の範囲で含む。更に、接面部の発泡ゴム層には微粒子の非含有有機繊維(a)及び微粒子の含有有機粒子(b)を所定割合で含む。   In the pneumatic tire of the present invention, a foamed rubber layer is provided on the surface substantially in contact with the road surface, that is, the contact surface portion of the tread 5. The foamed rubber layer has a foaming ratio in the range of 3 to 50%. The rubber component contains at least natural rubber and polybutadiene rubber, and 100 parts by mass of the rubber component contains natural rubber in the range of 20 to 70 parts by mass, and polybutadiene rubber in the range of 30 to 80 parts by mass. Further, the foamed rubber layer at the contact surface part contains fine non-containing organic fibers (a) and fine organic particles (b) in a predetermined ratio.

発泡ゴム層にあっては、気泡を形成させるために発泡剤を配合する。発泡率は3〜50%の範囲であり、特に14〜40%の範囲が好ましい。発泡剤はゴムマトリックス中に配合する。また必要により後述する有機繊維及び有機粒子中に配合しても良い。発泡剤の含有量は、目的に応じて適宜決定すればよいが、ゴム成分100質量部に対して1〜10質量部程度が好ましい。   In the foam rubber layer, a foaming agent is blended in order to form bubbles. The foaming ratio is in the range of 3 to 50%, and particularly preferably in the range of 14 to 40%. The foaming agent is blended in the rubber matrix. Moreover, you may mix | blend in the organic fiber and organic particle which are mentioned later as needed. Although content of a foaming agent should just be determined suitably according to the objective, about 1-10 mass parts is preferable with respect to 100 mass parts of rubber components.

発泡率Vは、V=(ρ0/ρ1−1)×100(%)で表され、ρ1は、発泡ゴムの密度(g/cm)を表し、ρ0は、発泡ゴムにおける固相部(非発泡部分)の密度(g/cm)を表す。固相部の密度は、エタノール中の質量と空気中の質量を測定し、これから算出する。発泡率Vが3%未満であると、発生する水膜に対し、気泡による凹部の体積の不足により十分な水排除機能が得られない。接面部での氷上性能を十分に向上させることができない。一方、発泡率Vが50%を超えると、気泡の量が多くなり過ぎる。接面部でのゴム破壊限界が大巾に低下し、耐久性が劣る。 The foaming rate V is expressed by V = (ρ0 / ρ1-1) × 100 (%), ρ1 represents the density (g / cm 3 ) of the foamed rubber, and ρ0 represents the solid phase part (non- The density (g / cm 3 ) of the foamed part). The density of the solid phase portion is calculated from the mass in ethanol and the mass in air. When the foaming rate V is less than 3%, a sufficient water removal function cannot be obtained due to insufficient volume of the concave portion due to bubbles with respect to the generated water film. The on-ice performance at the contact surface cannot be sufficiently improved. On the other hand, when the foaming rate V exceeds 50%, the amount of bubbles becomes too large. The rubber breakage limit at the contact surface is greatly reduced and the durability is poor.

発泡剤としては、例えば、ジニトロソペンタメチレンテトラミン(DPT)、アゾジカルボンアミド(ADCA)、ジニトロソペンタスチレンテトラミンやベンゼンスルホニルヒドラジド誘導体、オキシビスベンゼンスルホニルヒドラジド(OBSH)、二酸化炭素を発生する重炭酸アンモニウム、重炭酸ナトリウム、炭酸アンモニウム、窒素を発生するニトロソスルホニルアゾ化合物、N,N’−ジメチル−N,N’−ジニトロソフタルアミド、トルエンスルホニルヒドラジド、P−トルエンスルホニルセミカルバジド、P,P’−オキシービス(ベンゼンスルホニルセミカルバジド)等が挙げられる。   Examples of the foaming agent include dinitrosopentamethylenetetramine (DPT), azodicarbonamide (ADCA), dinitrosopentastyrenetetramine, benzenesulfonylhydrazide derivatives, oxybisbenzenesulfonylhydrazide (OBSH), and bicarbonate that generates carbon dioxide. Ammonium, sodium bicarbonate, ammonium carbonate, nitrososulfonylazo compound generating nitrogen, N, N′-dimethyl-N, N′-dinitrosophthalamide, toluenesulfonyl hydrazide, P-toluenesulfonyl semicarbazide, P, P′- And oxy-bis (benzenesulfonyl semicarbazide).

これらの発泡剤の中でも、製造加工性を考慮すると、ジニトロソペンタメチレンテトラミン(DPT)、アゾジカルボンアミド(ADCA)が好ましく、特にアゾジカルボンアミド(ADCA)が好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。上記発泡剤の作用により、得られた上記加硫ゴムは発泡率に富む発泡ゴムとなる。   Among these foaming agents, in consideration of production processability, dinitrosopentamethylenetetramine (DPT) and azodicarbonamide (ADCA) are preferable, and azodicarbonamide (ADCA) is particularly preferable. These may be used individually by 1 type and may use 2 or more types together. By the action of the foaming agent, the obtained vulcanized rubber becomes a foamed rubber having a high foaming rate.

効率的な発泡を行う観点から、その他の成分として発泡助剤を用いることが好ましい。発泡助剤としては、例えば、尿素、ステアリン酸亜鉛、ベンゼンスルフィン酸亜鉛や亜鉛華等、通常、発泡製品の製造に使用する助剤等が挙げられる。これらの中でも、尿素、ステアリン酸亜鉛、ベンゼンスルフィン酸亜鉛等が好ましい。これらは、単独又は2種以上で使用する。   From the viewpoint of efficient foaming, it is preferable to use a foaming aid as the other component. Examples of the foaming aid include urea, zinc stearate, zinc benzenesulfinate, zinc white, and the like, which are usually used for producing foamed products. Among these, urea, zinc stearate, zinc benzenesulfinate and the like are preferable. These are used alone or in combination of two or more.

発泡ゴム層のゴム成分は、少なくとも天然ゴムとポリブタジエンゴムとを含む。天然ゴムはゴム成分100質量部中に20〜70質量部の範囲で含まれる。ポリブタジエンゴムはゴム成分100質量部中に30〜80質量の範囲で含まれる。また、ゴム成分中には天然ゴム及びポリブタジエンゴム以外のゴム成分を含んでよい。ポリブタジエンゴムは、シス−1,4−ポリブタジエンが好ましく、シス含有率が90%以上のものが特に好ましい。シス−1,4−ポリブタジエンは、ガラス転移温度が低く、氷上性能の効果が大きい点で好ましい。   The rubber component of the foam rubber layer includes at least natural rubber and polybutadiene rubber. Natural rubber is contained in a range of 20 to 70 parts by mass in 100 parts by mass of the rubber component. The polybutadiene rubber is contained in the range of 30 to 80 parts by mass in 100 parts by mass of the rubber component. Further, the rubber component may contain a rubber component other than natural rubber and polybutadiene rubber. The polybutadiene rubber is preferably cis-1,4-polybutadiene, particularly preferably having a cis content of 90% or more. Cis-1,4-polybutadiene is preferable in that it has a low glass transition temperature and a large effect on ice performance.

発泡ゴム層は、微粒子の非含有有機繊維(a)及び微粒子含有有機粒子(b)を所定の割合で含む。具体的には非含有有機繊維(a)及び微粒子含有有機粒子(b)の合計量が上記のゴム成分100質量に対して1〜5質量部の範囲が好ましい。合計量が1質量未満では、トレッド接面部でエッヂ効果及びスパイク効果を十分に発揮しない。合計量が5質量部を超えると、押出工程でのトレッド耳部及び接面部の外観を悪くする。スピュー切れが起こりやすくなる。このため、作業性が悪くなる。
また、上記の微粒子含有有機粒子(b)は、非含有有機繊維(a)及び微粒子含有有機粒子(b)の合計百分率に対して7質量%以上が好ましい。合計百分率が7質量%未満では、トレッド接面部でエッヂ効果及びスパイク効果を十分に発揮しない。
The foamed rubber layer contains fine non-containing organic fibers (a) and fine particle-containing organic particles (b) in a predetermined ratio. Specifically, the total amount of the non-containing organic fiber (a) and the fine particle-containing organic particles (b) is preferably in the range of 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component. When the total amount is less than 1 mass, the edge effect and the spike effect are not sufficiently exhibited at the tread contact surface. When the total amount exceeds 5 parts by mass, the appearance of the tread ear part and the contact part in the extrusion process is deteriorated. Spew breaks easily occur. For this reason, workability | operativity worsens.
The fine particle-containing organic particles (b) are preferably 7% by mass or more based on the total percentage of the non-containing organic fibers (a) and the fine particle-containing organic particles (b). When the total percentage is less than 7% by mass, the edge effect and the spike effect are not sufficiently exhibited at the tread contact surface portion.

有機繊維及び有機粒子の樹脂は、融点が190℃以下の範囲の結晶性高分子が好ましい。
一般に、発泡ゴム層でのゴムマトリックスと有機樹脂との関係において、樹脂は加硫時の加硫最高温度(約190℃)に達するまでの間に、樹脂粘度がゴム粘度より高くなる範囲、またゴム粘度より低くなる範囲があることが好ましい。このような樹脂粘度特性であれば、樹脂が加硫時に発泡剤のガスを抱持して気泡を形成しやすくする。樹脂で被覆されたカプセル状の気泡が効率良く形成される。このため、有機繊維及び有機粒子の樹脂は、融点が190℃以下の結晶性高分子が好ましい。このため、トレッド接面部の氷上性能が低下する。
The resin of organic fiber and organic particles is preferably a crystalline polymer having a melting point of 190 ° C. or lower.
In general, in the relationship between the rubber matrix and the organic resin in the foam rubber layer, the resin has a range in which the resin viscosity is higher than the rubber viscosity before reaching the maximum vulcanization temperature (about 190 ° C) during vulcanization, It is preferable that there is a range lower than the rubber viscosity. Such resin viscosity characteristics facilitate the formation of bubbles by embracing the foaming agent gas during vulcanization of the resin. Capsule-shaped bubbles coated with resin are efficiently formed. Therefore, the organic fiber and the organic particle resin are preferably crystalline polymers having a melting point of 190 ° C. or lower. For this reason, the performance on ice of a tread contact surface part falls.

具体的な結晶性高分子は、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン、ポリブチレンサクシネート、ポリエチレンサクシネート、シンジオタクティック−1,2−ポリブタジエン(SPB)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)等が挙げられる。このような結晶性高分子としては、単一組成重合物や、共重合、ブレンド等でも良い。これらの結晶性高分子の中でも、ポリオレフィン、ポリオレフィン共重合体が好ましい。汎用で入手し易い点でポリエチレン(PE)、ポリプロピレン(PP)がより好ましい。また、融点が比較的低く、取り扱いが容易な点でポリエチレン(PE)が特に好ましい。尚、結晶性高分子以外に、有機繊維及び有機粒子は、ポリメチルメタクリレート(PMMA)、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリスチレン(PS)、ポリアクリロニトリル等、又はこれらの共重合体、ブレンド物等の非結晶性の高分子が配合されて良い。   Specific crystalline polymers include, for example, polyethylene (PE), polypropylene (PP), polybutylene, polybutylene succinate, polyethylene succinate, syndiotactic-1,2-polybutadiene (SPB), and polyvinyl alcohol (PVA). And polyvinyl chloride (PVC). Such a crystalline polymer may be a single composition polymer, copolymer, blend or the like. Of these crystalline polymers, polyolefins and polyolefin copolymers are preferred. Polyethylene (PE) and polypropylene (PP) are more preferable because they are general-purpose and easily available. In addition, polyethylene (PE) is particularly preferable because it has a relatively low melting point and is easy to handle. In addition to the crystalline polymer, the organic fibers and organic particles may be polymethyl methacrylate (PMMA), acrylonitrile butadiene styrene copolymer (ABS), polystyrene (PS), polyacrylonitrile, etc., or a copolymer or blend thereof. An amorphous polymer such as a product may be blended.

非含有有機繊維(a)は、その繊維長は、0.1〜10mmの範囲が好ましい。特に、0.5〜6mmの範囲にあることが好ましい。路面に接する接面部に、非含有有機繊維(a)が存在すれば、エッヂ効果及びスパイク効果が有効に作用する。非含有有機繊維(a)は、加硫発泡に際して発泡ゴム層中に、ミクロな排水溝として効率良く機能し得る長尺状気泡を形成する。非含有有機繊維長が0.1mm未満では、エッヂ効果及びスパイク効果を十分に発揮しない。非含有有機繊維長が10mmを超えると、有機繊維同士が絡まり、その分散性が低下する。
非含有有機繊維(a)の径は、0.01〜0.1mmの範囲が好ましい。有機繊維の径が0.01mm未満では切断が生じ易い。非含有有機繊維(a)はエッヂ効果或いはスパイク効果を十分に発揮しない。有機繊維の径が500mmを超える場合には、裁断が困難になり、製造上、作業性に欠ける。
The fiber length of the non-containing organic fiber (a) is preferably in the range of 0.1 to 10 mm. In particular, it is preferably in the range of 0.5 to 6 mm. If the non-containing organic fiber (a) is present on the contact surface portion in contact with the road surface, the edge effect and the spike effect are effective. The non-containing organic fiber (a) forms long bubbles that can efficiently function as micro drainage grooves in the foamed rubber layer during vulcanization foaming. When the non-containing organic fiber length is less than 0.1 mm, the edge effect and the spike effect are not sufficiently exhibited. When the non-containing organic fiber length exceeds 10 mm, the organic fibers are entangled with each other and the dispersibility thereof decreases.
The diameter of the non-containing organic fiber (a) is preferably in the range of 0.01 to 0.1 mm. If the diameter of the organic fiber is less than 0.01 mm, cutting is likely to occur. The non-containing organic fiber (a) does not sufficiently exhibit the edge effect or the spike effect. When the diameter of the organic fiber exceeds 500 mm, it becomes difficult to cut, and the workability is insufficient in manufacturing.

微粒子含有有機粒子(b)における有機粒子の径は、0.05〜0.5mmの範囲が好ましい。有機粒子の径が0.05mm未満では、含有微粒子を十分に保持又は固着させておくことができない。トレッド接面部はエッヂ効果及びスパイク効果を十分に発揮しない。有機粒子の径が0.5mmを超えると、有機粒子が接面部から抜け落ちた後の空洞が大きくなり過ぎるため、返って、トレッド面の耐摩耗性及びブロック剛性を低下させる。また押出工程でのトレッド耳部及び接面部の外観を悪くする。更に、スピュー切れを起こす。
有機粒子の樹脂は、スズ、シラン等の金属又はマレイン酸等で変性されていることが好ましい。変性有機粒子は、保持した後述の微粒子の離脱を防止する。
The diameter of the organic particles in the fine particle-containing organic particles (b) is preferably in the range of 0.05 to 0.5 mm. If the diameter of the organic particles is less than 0.05 mm, the contained fine particles cannot be sufficiently held or fixed. The tread contact surface does not fully exhibit the edge effect and spike effect. When the diameter of the organic particles exceeds 0.5 mm, the cavity after the organic particles fall off from the contact surface portion becomes too large, and thus the wear resistance and block rigidity of the tread surface are lowered. Moreover, the external appearance of the tread ear | edge part and contact surface part in an extrusion process is made worse. In addition, spew runs out.
The resin of the organic particles is preferably modified with a metal such as tin or silane or maleic acid. The modified organic particles prevent the later-described retained fine particles from leaving.

微粒子含有有機粒子(b)において、微粒子は、無機粒子又は有機粒子でも良いが、そのモース硬度が2以上であることが好ましい。特に硬度5より高いものが好ましい。その微粒子のモース硬度が氷の硬度、即ち、2以上であると、一層の引っ掻き効果をタイヤのトレッド面で発揮する。得られるタイヤは氷雪路面との間の摩擦係数が大きく、氷上性能に優れる。硬度の高い微粒子としては、例えば、石膏、方解石、蛍石、正長石、石英、金剛石等が挙げられるが、好ましくは、モース硬度5以上のシリカガラス(硬度6.5)、石英(硬度7.0)、溶融アルミナ(硬度9.0)等を挙げることができる。中でもシリカガラス、アルミナ(酸化アルミニウム)等が安価で容易に使用することができる。   In the fine particle-containing organic particles (b), the fine particles may be inorganic particles or organic particles, but preferably have a Mohs hardness of 2 or more. A hardness higher than 5 is particularly preferable. If the Mohs hardness of the fine particles is ice hardness, that is, 2 or more, a further scratching effect is exhibited on the tread surface of the tire. The obtained tire has a large coefficient of friction with the icy and snowy road surface and is excellent in performance on ice. Examples of the fine particles having high hardness include gypsum, calcite, fluorite, orthofeldspar, quartz, and feldspar. Preferably, silica glass having a Mohs hardness of 5 or more (hardness 6.5), quartz (hardness 7. 0), fused alumina (hardness 9.0), and the like. Among them, silica glass, alumina (aluminum oxide), etc. can be used easily at low cost.

微粒子はその粒径分布の頻度数の80%以上が10〜50μmの範囲にあることが好ましく、微粒子はその平均粒径が10〜30μmの範囲にあることが好ましい。微粒子の粒径分布の頻度数が80%未満では、有機粒子の微粒子保持能がバラ付く。微粒子の平均粒径が10μm未満では、微粒子を含有させた効果が見られず、タイヤのトレッド面で引っ掻き効果を発揮しない。微粒子の平均粒径が50μmを超えると、有機粒子が微粒子を十分に含有保持できなくなる。   The fine particles preferably have a frequency number of 80% or more in the range of 10 to 50 μm, and the fine particles preferably have an average particle size in the range of 10 to 30 μm. When the frequency of the particle size distribution of the fine particles is less than 80%, the fine particle retention ability of the organic particles varies. When the average particle size of the fine particles is less than 10 μm, the effect of containing the fine particles is not observed, and the scratching effect is not exhibited on the tread surface of the tire. If the average particle size of the fine particles exceeds 50 μm, the organic particles cannot sufficiently contain and hold the fine particles.

微粒子は、有機粒子の樹脂100質量部に対して5〜80質量部の範囲で含有されることが好ましい。微粒子量が5質量部未満では、トレッド面のエッヂ効果及びスパイク効果が十分でなく、氷上性能が向上しない。微粒子量が80質量部を超えると、押出外観の低下、及びスピュー切れを起こす。   The fine particles are preferably contained in the range of 5 to 80 parts by mass with respect to 100 parts by mass of the resin of the organic particles. If the amount of fine particles is less than 5 parts by mass, the edge effect and spike effect on the tread surface are not sufficient, and the performance on ice is not improved. When the amount of fine particles exceeds 80 parts by mass, the extrusion appearance deteriorates and spew breaks.

発泡ゴム層をタイヤのトレッドに使用する場合、カーボンブラックがゴム成分の100質量部に対して5〜55質量部の範囲で含まれ、シリカがゴム成分の100質量部に対して5〜55質量部の範囲で含まれていることが好ましい。カーボンブラックの含まれる量が55質量部を超えると、タイヤ性能を低下させ、氷上性能に影響を与える。また、カーボンブラックを全く含まないか、または5質量未満である場合も氷上性能に悪影響を与える。カーボンブラックは、そのゴム層の力学的性能を高め、加工性等を改善させるものである限り、I吸着量、CTAB比路面積、N吸着量、DBP吸着量等の範囲を適宜選択した公知のカーボンブラックを使用することができる。カーボンブラックの種類としては、例えば、SAF、ISAF−LS、HAF、HAF−HS等の公知のものを適宜選択して使用することができる。 When the foamed rubber layer is used for a tire tread, carbon black is included in an amount of 5 to 55 parts by mass with respect to 100 parts by mass of the rubber component, and silica is 5 to 55 parts by mass with respect to 100 parts by mass of the rubber component. It is preferably included in the range of parts. When the amount of carbon black contained exceeds 55 parts by mass, the tire performance is lowered and the performance on ice is affected. Further, when the carbon black is not contained at all or is less than 5 mass, the performance on ice is adversely affected. As long as carbon black enhances the mechanical performance of the rubber layer and improves processability and the like, a range of I 2 adsorption amount, CTAB specific path area, N 2 adsorption amount, DBP adsorption amount, etc. was appropriately selected. Known carbon black can be used. As the type of carbon black, for example, known ones such as SAF, ISAF-LS, HAF, HAF-HS can be appropriately selected and used.

シリカは、狭義の二酸化珪素のみを示すものではなく、ケイ酸系充填剤を意味し、具体的には、無水ケイ酸の他に、含水ケイ酸、ケイ酸カルシウム、ケイ酸アルミニウム等のケイ酸塩を含む。シリカはゴム成分の100質量部に対して5〜55質量部の範囲、好ましくは30〜50質量部の範囲で含まれる。シリカの含まれる量が55質量部を超えると、タイヤ性能を低下させ、氷上性能にも悪影響を与える。また、シリカを全く含まないか、または5質量未満である場合も氷上性能に悪影響を与える。   Silica does not represent only silicon dioxide in a narrow sense, but means a silicate-based filler. Specifically, in addition to anhydrous silicic acid, silicic acid such as hydrous silicic acid, calcium silicate, aluminum silicate, etc. Contains salt. Silica is contained in the range of 5 to 55 parts by mass, preferably in the range of 30 to 50 parts by mass with respect to 100 parts by mass of the rubber component. When the amount of silica contained exceeds 55 parts by mass, the tire performance is lowered and the performance on ice is also adversely affected. Also, when silica is not contained at all or less than 5 mass, the performance on ice is adversely affected.

本発明に使用するその他の成分としては、本発明の効果を害しない範囲で用いることができ、例えば、硫黄等の加硫剤、ジベンゾチアジルジスルフィド等の加硫促進剤、加硫促進助剤、N−シクロヘキシル−2−ベンゾチアジル−スルフェンアミド、N−オキシジエチレン−ベンゾチアジル−スルフェンアミド等の硫化防止剤、オゾン劣化防止剤、着色剤、帯電防止剤、分散剤、滑剤、酸化防止剤、軟化剤、カーボンブラックやシリカ等の無機充填材等の他に、通常ゴム業界で用いる各種配合剤などを目的に応じて適宜選択して使用することができる。これらは1種単独で使用してもよく、2種以上を併用してもよく、市販品を使用してもよい。   The other components used in the present invention can be used as long as they do not impair the effects of the present invention. For example, vulcanizing agents such as sulfur, vulcanization accelerators such as dibenzothiazyl disulfide, and vulcanization promoting aids. , N-cyclohexyl-2-benzothiazyl-sulfenamide, N-oxydiethylene-benzothiazyl-sulfenamide and other antisulfurizing agents, antiozonants, colorants, antistatic agents, dispersants, lubricants, antioxidants, In addition to softeners, inorganic fillers such as carbon black and silica, etc., various compounding agents usually used in the rubber industry can be appropriately selected and used according to the purpose. These may be used individually by 1 type, may use 2 or more types together, and may use a commercial item.

本発明に係る空気入りタイヤは、上記で詳述した発泡ゴム層を形成するゴム組成物を、以下の条件、手法にて混練り、熱入れ、押出等により製造する。
混練は、混練装置への投入体積、ローター回転速度、混練温度、混練時間等の混練装置等の諸条件について特に制限はなく、目的に応じて適宜選択することができる。混練装置としては、市販品を好適に使用する。
熱入れ又は押出は、熱入れ又は押出時間、熱入れ又は押出装置等の諸条件について特に制限はなく、目的に応じて適宜選択することができる。熱入れ又は押出装置としては、市販品を好適に使用する。尚、熱入れ又は押出温度は、発泡剤が存在する場合はその発泡を起こさないような範囲で適宜選択される。押出温度は、90〜110℃程度が望ましい。押出装置でゴム組成物の流動性を制御する。具体的にはゴム組成物中に、アロマ系オイル、ナフテン系オイル、パラフィン系オイル、エステル系オイル等の可塑剤、液状ポリイソプレンゴム、液状ポリブタジエンゴム等の液状ポリマーなどの加工性改良剤を適宜添加してゴム組成物の粘度を変化させ、その流動性を高める。
The pneumatic tire according to the present invention is produced by kneading the rubber composition forming the foamed rubber layer described in detail above under the following conditions and technique, by heating, extruding, and the like.
The kneading is not particularly limited with respect to various conditions of the kneading apparatus such as the input volume to the kneading apparatus, the rotor rotation speed, the kneading temperature, and the kneading time, and can be appropriately selected according to the purpose. As the kneading apparatus, a commercially available product is preferably used.
There is no restriction | limiting in particular about various conditions, such as hot-heating or extrusion time, hot-heating or an extrusion apparatus, and heating or extrusion can be suitably selected according to the objective. A commercially available product is preferably used as the heating or extrusion device. The heating or extrusion temperature is appropriately selected within a range that does not cause foaming when a foaming agent is present. As for extrusion temperature, about 90-110 degreeC is desirable. The fluidity of the rubber composition is controlled with an extruder. Specifically, a processability improver such as a plasticizer such as aroma oil, naphthene oil, paraffin oil, ester oil, or a liquid polymer such as liquid polyisoprene rubber or liquid polybutadiene rubber is appropriately added to the rubber composition. It is added to change the viscosity of the rubber composition and increase its fluidity.

加硫の条件、方法等については特に制限はなく、ゴム成分の種類等に応じて適宜選択することができるが、トレッドとしての発泡ゴム層を製造する場合にはモールド加硫が良い。加硫の温度としては、上述したように加硫時にゴム粘度より樹脂が低い粘度特性を有する関係にある場合、加硫最高温度が上記樹脂体を構成する樹脂の融点以上になるように選択されることが好ましい。加硫最高温度が樹脂の融点未満であると、樹脂が溶融せず、発泡により生じたガスを樹脂中に取り込むことができない。発泡ゴム層にカプセル状の気泡を効率良く形成できない。加硫装置は、特に制限はなく、市販品を好適に使用することができる。   Vulcanization conditions, methods, etc. are not particularly limited and may be appropriately selected according to the type of rubber component, etc., but mold vulcanization is preferable when producing a foamed rubber layer as a tread. The vulcanization temperature is selected so that the maximum vulcanization temperature is equal to or higher than the melting point of the resin constituting the resin body when the resin has a viscosity characteristic lower than the rubber viscosity at the time of vulcanization as described above. It is preferable. When the maximum vulcanization temperature is lower than the melting point of the resin, the resin does not melt and the gas generated by foaming cannot be taken into the resin. Capsule-like bubbles cannot be efficiently formed in the foamed rubber layer. There is no restriction | limiting in particular in a vulcanizer, A commercial item can be used conveniently.

本発明の空気入りタイヤにおいては、トレッドの接面部に生じた気泡の凹部は効率的な排水を行う排水路として機能する。凹部は微粒子を存在させた有機粒子層を有し、有機粒子層は微粒子の保持性能が優れている。また、押出工程でのトレッドの外観が良好であり、スピュー切れが起こらない。そして、トレッド接面部の凹部は、耐剥離性、水路形状保持性、水路エッヂ部摩耗性、荷重入力時の水路保持性等に優れる。
本発明に係る空気入りタイヤは、いわゆる乗用車用のみならず、トラック・バス用等の各種の乗物に好適に適用できる。氷雪路面上でのスリップを抑えることが必要な構造物に好適に使用でき、タイヤのトレッドは、上記氷上でのスリップを抑えることが必要な限り、例えば、更生タイヤの貼り替え用のトレッド、中実タイヤ、等に使用できる。また、タイヤが空気入りタイヤである場合、内部に充填する気体としては空気のほかに窒素等の不活性ガスを用いることができる。
In the pneumatic tire of the present invention, the bubble recesses formed on the contact surface portion of the tread function as a drainage channel for efficient drainage. The concave portion has an organic particle layer in which fine particles are present, and the organic particle layer has excellent fine particle retention performance. In addition, the appearance of the tread in the extrusion process is good, and spew breakage does not occur. And the recessed part of a tread contact surface part is excellent in peeling resistance, a water channel shape retainability, a water channel edge part abrasion property, a water channel retainability at the time of load input, etc.
The pneumatic tire according to the present invention can be suitably applied not only to so-called passenger cars but also to various vehicles such as trucks and buses. The tire tread can be suitably used for a structure that needs to suppress slip on an icy and snowy road surface, and the tire tread is, for example, a tread for replacement of a retread tire as long as it is necessary to suppress slip on the ice. Can be used for real tires, etc. When the tire is a pneumatic tire, an inert gas such as nitrogen can be used in addition to air as the gas filled inside.

以下に、本発明の実施例を説明するが、本発明は、これの実施例に何ら限定されるものではない。
(実施例1〜4、比較例1〜4)
<非含有有機繊維(A)の製造>
非含有有機繊維は、デカリン400質量部に対して、ポリエチレン(HDPE、質量平均分子量=2.1×10、Dupont社製DSCにより、昇温速度10℃/分、サンプル質量約5mgの条件にて測定した融点ピーク温度(融点)=132℃)100質量部を添加し、デカリンを120℃に加熱しながら攪拌し、均一な溶液とした。
この紡糸原液を、120℃に設定したスクリュー型押出機に装着した直径0.3mmの紡糸ノズルから押し出して糸状体としたものを、水浴中(湿式)で急冷固化した後、メタノール浴中で脱溶媒を行い、巻き取り機にて巻き取り、裁断し、非含有有機繊維を製造した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Examples 1-4, Comparative Examples 1-4)
<Manufacture of non-containing organic fiber (A)>
Non-containing organic fiber is a polyethylene (HDPE, mass average molecular weight = 2.1 × 10 5 , DSC manufactured by Dupont, with a heating rate of 10 ° C./min and a sample mass of about 5 mg based on 400 parts by mass of decalin. 100 parts by mass of the melting point peak temperature (melting point) = 132 ° C. measured in the above was added, and the decalin was stirred while heating to 120 ° C. to obtain a uniform solution.
This spinning dope is extruded from a spinning nozzle with a diameter of 0.3 mm attached to a screw type extruder set at 120 ° C. to form a filament, which is rapidly cooled and solidified in a water bath (wet), and then removed in a methanol bath. Solvent was used, wound with a winder and cut to produce non-containing organic fibers.

<微粒子含有有機繊維(B)の製造>
非含有有機繊維は、デカリン400質量部に対して、ポリエチレン(HDPE、質量平均分子量=2.1×10、Dupont社製DSCにより、昇温速度10℃/分、サンプル質量約5mgの条件にて測定した融点ピーク温度(融点)=132℃)100質量部を添加し、デカリンを120℃に加熱しながら攪拌し、(水酸化アルミニウム、平均粒径:20μm、比重2.42)を所定量添加して、更に20分間攪拌を続けた。こうして、均一に分散した紡糸原液を、120℃に設定したスクリュー型押出機に装着した直径0.3mmの紡糸ノズルから押し出して糸状体としたものを、水浴中(湿式)で急冷固化した後、メタノール浴中で脱溶媒を行い、巻き取り機にて巻き取り、裁断し、微粒子含有有機繊維を製造した。
<Production of fine particle-containing organic fiber (B)>
Non-containing organic fiber is a polyethylene (HDPE, mass average molecular weight = 2.1 × 10 5 , DSC manufactured by Dupont, with a heating rate of 10 ° C./min and a sample mass of about 5 mg based on 400 parts by mass of decalin. 100 parts by mass of melting point peak temperature (melting point) measured at 132 ° C.) was added and stirred while heating decalin to 120 ° C., and a predetermined amount of (aluminum hydroxide, average particle size: 20 μm, specific gravity 2.42) was added. The addition was continued and stirring continued for an additional 20 minutes. In this way, after the uniformly dispersed spinning solution was extruded from a spinning nozzle having a diameter of 0.3 mm attached to a screw type extruder set at 120 ° C. to form a filamentous material, it was rapidly cooled and solidified in a water bath (wet), Solvent removal was performed in a methanol bath, and the resultant was wound and cut with a winder to produce fine particle-containing organic fibers.

<微粒子含有有機粒子(G)及び(H)の製造>
微粒子含有有機粒子は、ポリエチレン(HDPE、質量平均分子量=2.1×10、Dupont社製DSCにより、昇温速度10℃/分、サンプル質量約5mgの条件にて測定した融点ピーク温度(融点)=132℃)を混練型押出機、バンバリーミキサー、ニーダーミキサーを用いて微粒子(材質、平均粒径、粒径分布、添加量を表1で示す。)とを適宜混合し、得られた樹脂体を冷凍粉砕した後、篩い分けして、表1に示す範囲の平均粒径、及び粒径分布の頻度数80%以上での所定粒径値の微粒子含有有機粒子を製造した。
<Production of fine particle-containing organic particles (G) and (H)>
The fine particle-containing organic particles are polyethylene (HDPE, mass average molecular weight = 2.1 × 10 5 , melting point peak temperature (melting point measured by DSC manufactured by Dupont) at a heating rate of 10 ° C./min and a sample mass of about 5 mg. ) = 132 ° C.) using a kneading type extruder, Banbury mixer, kneader mixer, and fine particles (material, average particle size, particle size distribution, and addition amount are shown in Table 1) as appropriate, and obtained resin The body was freeze-ground and then sieved to produce fine particle-containing organic particles having an average particle size in the range shown in Table 1 and a predetermined particle size value with a frequency distribution of 80% or more.

Figure 2006274136
Figure 2006274136

各実施例及び比較例のゴム組成物から発泡ゴム層を形成するために、天然ゴム、シス−1,4−ポリブタジエンゴム(商品名;UBEPOL 150L:宇部興産社製)、カーボンブラック(N134(NSA:142m/g):旭カーボン社製)、シリカ(Nipsil AQ:日本シリカ株式会社製)、シランカップリング剤(Si69:デグサ社製)、アロマ油、ステアリン酸、老化防止剤(N−イソプロピル−N’−フェニル−p−フェニレンジアミン)、酸化亜鉛、加硫促進剤(MBTS:ジベンゾチアジルジスルフィド)、加硫促進剤(CBS:N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド)、硫黄、発泡剤(DPT:ジニトロベンタメチレンテトラミン)、尿素、及び表1の各樹脂体を適宜選択して、適宜量配合して、実施例1−4、比較例1−4及び参照試験例1−2を製造した。尚、加硫時における加硫温度は、ゴム中に熱電対を埋め込んで測定しながら行った。 In order to form a foamed rubber layer from the rubber compositions of the examples and comparative examples, natural rubber, cis-1,4-polybutadiene rubber (trade name; UBEPOL 150L: manufactured by Ube Industries), carbon black (N134 (N 2 SA: 142 m 2 / g): manufactured by Asahi Carbon Co., Ltd.), silica (Nipsil AQ: manufactured by Nippon Silica Co., Ltd.), silane coupling agent (Si69: manufactured by Degussa), aroma oil, stearic acid, anti-aging agent (N -Isopropyl-N'-phenyl-p-phenylenediamine), zinc oxide, vulcanization accelerator (MBTS: dibenzothiazyl disulfide), vulcanization accelerator (CBS: N-cyclohexyl-2-benzothiazolesulfenamide), Sulfur, foaming agent (DPT: dinitrobentamethylenetetramine), urea, and each resin body in Table 1 are appropriately selected and appropriately Example 1-4, Comparative Example 1-4, and Reference Test Example 1-2 were produced by blending in amounts. The vulcanization temperature at the time of vulcanization was measured while embedding a thermocouple in the rubber.

タイヤのトレッド(発泡ゴム層)を形成し、通常のタイヤ製造条件に従って各評価用のタイヤを製造した。以下の評価を表2に示した。
<押出トレッド外観>
押出工程において押し出されたトレッドの耳部、及び接面部の外観について、比較例1を評価点5として評価した。尚、この数値が小さいほど外観が悪く、加硫後にエア入りやベアー等の不具合を起こしやすい。
A tire tread (foamed rubber layer) was formed, and tires for each evaluation were manufactured in accordance with normal tire manufacturing conditions. The following evaluations are shown in Table 2.
<Extruded tread appearance>
Comparative Example 1 was evaluated with an evaluation score of 5 for the appearance of the ear portion and the contact portion of the tread extruded in the extrusion process. The smaller the value, the worse the appearance and the more likely to cause problems such as air entry and bear after vulcanization.

<スピュー切れ>
タイヤ加硫後のスピュー切れが何本切れていたかを百分率にて評価した。尚、この値が低いほど、スピュー切れが起こりやすく、加工後にベアー等の不具合を起こし易いだけでなく、モールドクリーニングの頻度が増加して生産性に悪影響を及ぼす。
<氷上性能>
排気量1600ccクラスの乗用車に185/70R13のタイヤサイズのタイヤ4本を装着し、その乗用車を一般アスファルト路上で200km走行させた後、氷温−1℃の上で時速40km/hrからタイヤをロックさせ、停止するまでの制動距離を測定した。比較例1のタイヤをそれぞれ100として指数表示した。尚、この数値が大きいほど氷上性能が良い。
<Spew out>
The percentage of spew cuts after tire vulcanization was evaluated as a percentage. Note that the lower this value, the easier the spout breaks and the more likely to cause defects such as bears after processing, and the frequency of mold cleaning increases, which adversely affects productivity.
<Performance on ice>
After mounting 4 tires of 185 / 70R13 tire size on a 1600cc class passenger car, running the passenger car for 200km on a general asphalt road, lock the tire from 40km / hr on ice temperature of -1 ° C. The braking distance until stopping was measured. The tires of Comparative Example 1 were indexed with 100 as each. In addition, the performance on ice is so good that this figure is large.

<耐摩耗性>
ランボーン型摩耗試験機を用いて、室温におけるスリップ率60%の摩耗量を測定し、比較例1の耐摩耗性を100として指数表示した。尚、この数値は大きい程耐摩耗性に優れていることを表している。
<Abrasion resistance>
Using a Lambourn type wear tester, the amount of wear at a slip rate of 60% at room temperature was measured, and the wear resistance of Comparative Example 1 was indicated as 100, and indicated as an index. In addition, it shows that it is excellent in abrasion resistance, so that this figure is large.

Figure 2006274136
Figure 2006274136

比較例1〜4の非含有有機繊維(A)及び微粒子含有有機繊維(B)からなるタイヤは氷上性能が優れる。しかし、押出トレッドの外観が低下し、スピュー切れが起こり始めるため、量産に堪える作業性レベルにない。耐摩耗性も十分でない。
一方、実施例1〜4にあっては、微粒子含有有機繊維(B)に代えて微粒子含有有機粒子(G)及び(H)を使用したものであり、作業性、氷上性能、耐摩耗性が良好でバランスが取れている。これは量産が十分可能なレベルである。
尚、試験例1のように、微粒子含有有機粒子(H)の合計含有率が4質量%以下と極めて少ない場合は氷上性能が十分でなかった。
また、試験例2のように、微粒子と有機粒子とを分割して最初から樹脂から離脱させたものでは、トレッド接面部における微粒子の離脱が顕著である。十分な氷上性能を発揮することができなかった。
The tire made of the non-containing organic fiber (A) and the fine particle-containing organic fiber (B) of Comparative Examples 1 to 4 has excellent performance on ice. However, since the appearance of the extruded tread deteriorates and spew cutting starts to occur, it is not at a workability level that can withstand mass production. Wear resistance is not sufficient.
On the other hand, in Examples 1-4, instead of the fine particle-containing organic fiber (B), fine particle-containing organic particles (G) and (H) are used, and workability, performance on ice, and wear resistance are improved. Good and balanced. This is a level where mass production is sufficiently possible.
As in Test Example 1, when the total content of the fine particle-containing organic particles (H) was as small as 4% by mass or less, the performance on ice was not sufficient.
Further, as in Test Example 2, in the case where the fine particles and the organic particles are divided and separated from the resin from the beginning, the separation of the fine particles at the tread contact surface is remarkable. Sufficient performance on ice could not be demonstrated.

本発明に係る空気入りタイヤは、氷上性能に優れ、押出トレッド外観が十分に維持され、スピュー切れも起こらず、量産可能なレベルの産業上の利用可能性が高いものである。   The pneumatic tire according to the present invention has excellent on-ice performance, sufficiently maintains the appearance of the extruded tread, does not cause spew cutting, and has high industrial applicability at a level that allows mass production.

図1は本発明に係るタイヤの断面概略説明図である。FIG. 1 is a schematic sectional view of a tire according to the present invention.

符号の説明Explanation of symbols

1 一対のビード部
2 カーカス
3 ベルト
4 タイヤ
5 トレッド
6 キャップ部
1 Pair of beads 2 Carcass 3 Belt 4 Tire 5 Tread 6 Cap

Claims (10)

路面と実質接する面に発泡ゴム層が設けられる空気入りタイヤであって、上記の発泡ゴム層は、その発泡率が3〜50%の範囲にあり、ゴム成分には少なくとも天然ゴムとポリブタジエンゴムとを含み、且つゴム成分100質量部中に天然ゴムを20〜70質量部の範囲で含み、ポリブタジエンゴムを30〜80質量部の範囲で含み、更に、微粒子の非含有有機繊維(a)及び微粒子の含有有機粒子(b)を所定割合で含む空気入りタイヤ。 A pneumatic tire provided with a foam rubber layer on a surface substantially in contact with a road surface, wherein the foam rubber layer has a foam ratio in a range of 3 to 50%, and the rubber component includes at least natural rubber and polybutadiene rubber. And 100 parts by weight of a rubber component contains natural rubber in the range of 20 to 70 parts by weight, polybutadiene rubber in the range of 30 to 80 parts by weight, and further contains non-particulate organic fibers (a) and fine particles A pneumatic tire containing organic particles (b) in a predetermined ratio. 上記の非含有有機繊維(a)及び微粒子含有有機粒子(b)の合計量が上記のゴム成分100質量に対して1〜5質量部の範囲で含まれる請求項1記載の空気入りタイヤ。 The pneumatic tire according to claim 1, wherein the total amount of the non-containing organic fibers (a) and the fine particle-containing organic particles (b) is contained in a range of 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component. 上記の微粒子含有有機粒子(b)が非含有有機繊維(a)及び微粒子含有有機粒子(b)の合計百分率に対して7質量%以上の範囲にある請求項1又は2記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein the fine particle-containing organic particles (b) are in a range of 7% by mass or more with respect to the total percentage of the non-containing organic fibers (a) and the fine particle-containing organic particles (b). 上記の微粒子含有有機粒子(b)は、該有機粒子の樹脂100質量部に対して該微粒子が5〜80質量部の範囲で含有される請求項1〜3の何れかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the fine particle-containing organic particles (b) are contained in an amount of 5 to 80 parts by mass with respect to 100 parts by mass of the resin of the organic particles. . 上記の微粒子含有有機粒子(b)の微粒子は、そのモース硬度が2以上であり、また粒径分布の頻度数の80%以上が10〜50μmの範囲にあり、平均粒子径が10〜30μmの範囲にある請求項1〜3の何れかに記載の空気入りタイヤ。 The fine particles of the fine particle-containing organic particles (b) have a Mohs hardness of 2 or more, 80% or more of the frequency number of the particle size distribution is in the range of 10 to 50 μm, and the average particle size is 10 to 30 μm. The pneumatic tire according to claim 1, which is in a range. 上記の微粒子含有有機粒子(b)の微粒子が無機又は有機の微粒子から選択される請求項1〜3の何れかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the fine particles of the fine particle-containing organic particles (b) are selected from inorganic or organic fine particles. 上記の微粒子含有有機粒子(b)の有機粒子の径が0.05〜0.5mmの範囲にある請求項1〜3の何れかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein a diameter of the organic particles of the fine particle-containing organic particles (b) is in a range of 0.05 to 0.5 mm. 上記の微粒子含有有機粒子(b)の有機粒子がスズ、シラン、及びマレイン酸から選択される少なくとも1つで変性されている請求項1〜3の何れかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the organic particles of the fine particle-containing organic particles (b) are modified with at least one selected from tin, silane, and maleic acid. 上記の非含有有機繊維(a)の径が0.01〜0.1mmの範囲で、その長さが0.5〜20mmの範囲にある請求項1〜3の何れかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 1 to 3, wherein the non-containing organic fiber (a) has a diameter in the range of 0.01 to 0.1 mm and a length in the range of 0.5 to 20 mm. . 上記の非含有有機繊維(a)及び微粒子含有有機粒子(b)に使用する樹脂はポリエチレン及びポリプロピレンから選ばれた少なくとも1種以上の結晶性高分子であって、その融点が190℃以下の範囲にある請求項1〜3の何れかに記載の空気入りタイヤ。 The resin used for the non-containing organic fibers (a) and the fine particle-containing organic particles (b) is at least one crystalline polymer selected from polyethylene and polypropylene, and has a melting point of 190 ° C. or lower. The pneumatic tire according to any one of claims 1 to 3.
JP2005097667A 2005-03-30 2005-03-30 Pneumatic tire Pending JP2006274136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097667A JP2006274136A (en) 2005-03-30 2005-03-30 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097667A JP2006274136A (en) 2005-03-30 2005-03-30 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2006274136A true JP2006274136A (en) 2006-10-12

Family

ID=37209190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097667A Pending JP2006274136A (en) 2005-03-30 2005-03-30 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2006274136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087987A1 (en) 2007-01-17 2008-07-24 Bridgestone Corporation Rubber composition and pneumatic tire using the same
DE102016116441A1 (en) 2015-10-15 2017-04-20 Toyo Tire & Rubber Co., Ltd. Tread rubber composition and tires

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008087987A1 (en) 2007-01-17 2008-07-24 Bridgestone Corporation Rubber composition and pneumatic tire using the same
EP2105461A1 (en) * 2007-01-17 2009-09-30 Bridgestone Corporation Rubber composition and pneumatic tire using the same
EP2105461A4 (en) * 2007-01-17 2010-01-20 Bridgestone Corp Rubber composition and pneumatic tire using the same
DE102016116441A1 (en) 2015-10-15 2017-04-20 Toyo Tire & Rubber Co., Ltd. Tread rubber composition and tires
CN106589497A (en) * 2015-10-15 2017-04-26 东洋橡胶工业株式会社 Tread rubber composition and tire
US10221303B2 (en) 2015-10-15 2019-03-05 Toyo Tire Corporation Tread rubber composition and tire
US10703885B2 (en) 2015-10-15 2020-07-07 Toyo Tire Corporation Tread rubber composition

Similar Documents

Publication Publication Date Title
JP4827496B2 (en) tire
US8807181B2 (en) Tire with foamed rubber layer having organic fibers and inorganic compound powder
JP5507033B2 (en) Pneumatic tire
JP4608032B2 (en) Vulcanized rubber moldings for tires
JP6097750B2 (en) tire
JP5030367B2 (en) tire
JP4521084B2 (en) Rubber composition, vulcanized rubber and tire
JP2008150519A (en) Rubber composition and pneumatic tire using same
JP4679173B2 (en) Rubber composition, vulcanized rubber and tire
JP3766183B2 (en) Rubber composition, vulcanized rubber and tire
JP4605976B2 (en) Rubber composition, vulcanized rubber, and tire
JP5442278B2 (en) studless tire
JP2006274136A (en) Pneumatic tire
JP4750235B2 (en) Vulcanized rubber and tires
JP4008537B2 (en) Method for producing vulcanized rubber and method for producing tread
JP5363739B2 (en) tire
JP2005060478A (en) Rubber composition, its vulcanizate, and tire using the same
JP2008169264A (en) Rubber composition and pneumatic tire using the same
JP4694659B2 (en) Rubber composition for tire, vulcanized rubber for tire and tire
JP2009167339A (en) Rubber composition, vulcanized rubber and tire
JP3904680B2 (en) Rubber composition, vulcanized rubber and tire
JPH1120408A (en) Pneumatic tire
JP2006206822A (en) Rubber composition, its vulcanized rubber, and tire using the same
JP5745355B2 (en) tire
JP2009167340A (en) Rubber composition, vulcanized rubber and tire