JP2006269671A - Catalyst cvd apparatus and film formation method - Google Patents

Catalyst cvd apparatus and film formation method Download PDF

Info

Publication number
JP2006269671A
JP2006269671A JP2005084542A JP2005084542A JP2006269671A JP 2006269671 A JP2006269671 A JP 2006269671A JP 2005084542 A JP2005084542 A JP 2005084542A JP 2005084542 A JP2005084542 A JP 2005084542A JP 2006269671 A JP2006269671 A JP 2006269671A
Authority
JP
Japan
Prior art keywords
catalyst body
plasma
catalyst
gas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005084542A
Other languages
Japanese (ja)
Other versions
JP4004510B2 (en
Inventor
Hiroshi Nakayama
弘 中山
Toshiharu Yoshida
壽治 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATERIAL DESIGN FACTORY KK
Original Assignee
MATERIAL DESIGN FACTORY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATERIAL DESIGN FACTORY KK filed Critical MATERIAL DESIGN FACTORY KK
Priority to JP2005084542A priority Critical patent/JP4004510B2/en
Publication of JP2006269671A publication Critical patent/JP2006269671A/en
Application granted granted Critical
Publication of JP4004510B2 publication Critical patent/JP4004510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst CVD apparatus that forms a variety of films on various objects to be processed. <P>SOLUTION: A plasma generation unit 30 provided with a plasma generation means 31 is evacuated in a vacuum housing chamber 12 as shown in (a) of the diagram when a substrate 5 on a substrate holder 18 is subjected to be processed by the catalyst CVD apparatus using a heated catalyst 10. The plasma generation means 31 is provided with: a high-frequency electrode 33 connected to a high-frequency power supply 25; and an earth electrode 34. A grounded shield plate 32 is fitted to the upper side of the high-frequency electrode 33. When the substrate 5 is processed by the plasma CVD processing using only the plasma generation means 31 or by plasma enhanced catalyst CVD processing using the combination of the heated catalyst 10 and the plasma generation means 31, the plasma generation means 31 is located between the catalyst 10 and the substrate 5 as shown in (b) of the diagram. The three CVD processing methods are used depending on the quality of the substrate 5 or the kind of a film to be formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加熱した触媒体によって原料ガスを分解・活性化させることにより基板上に膜を成膜する触媒CVD装置および成膜方法に関する。   The present invention relates to a catalytic CVD apparatus and a film forming method for forming a film on a substrate by decomposing and activating a source gas with a heated catalyst body.

従来、基板を1000℃程度に加熱し、基板表面での化学反応によって成膜を行なう熱CVD装置が多く利用されていた。近年、半導体製造プロセスの低温化を実現するために、あるいは軟化温度の低いプラスチック基板などに膜を成膜するために、低温処理の可能な触媒CVD装置やプラズマCVD装置が広く用いられている。触媒CVD装置は成膜レートが高いという特長を有し、プラズマCVD装置は成膜された膜の膜質が良いという特長を有することから、基板の材質や成膜する膜種などに応じて両者は使い分けられている。   Conventionally, a thermal CVD apparatus that heats a substrate to about 1000 ° C. and performs film formation by a chemical reaction on the surface of the substrate has been widely used. In recent years, catalytic CVD devices and plasma CVD devices capable of low-temperature processing have been widely used in order to realize low-temperature semiconductor manufacturing processes or to form a film on a plastic substrate having a low softening temperature. Catalytic CVD equipment has the feature of high film formation rate, and plasma CVD equipment has the feature of good film quality of the film formed, both of which depend on the material of the substrate and the type of film to be formed. It is used properly.

触媒CVD装置は、処理室内に800〜2000℃程度に加熱した触媒体を配し、触媒体による触媒作用あるいは熱作用によって処理室内に導入された原料ガスを分解・活性化させることにより、基板上に膜を成膜する(特許文献1)。この装置は、加熱したタングステンなどのワイヤを触媒体として用いることから、ホットワイヤCVD装置とも呼ばれる。また、触媒体が発熱することから発熱体CVD装置とも呼ばれる。ワイヤは、コイル状に形成されたり(特許文献1)、あるいは窓枠状の絶縁部材の内部にジグザグ状にまたは平行に張られたりする(特許文献4)。また、ワイヤ以外のものとして、網目状の触媒体や筒状平板の触媒体が用いられることもある(特許文献4)。   The catalytic CVD apparatus arranges a catalyst body heated to about 800 to 2000 ° C. in the processing chamber, decomposes and activates the raw material gas introduced into the processing chamber by the catalytic action or thermal action of the catalytic body, and thereby on the substrate. A film is formed on (Patent Document 1). This apparatus is also called a hot wire CVD apparatus because a heated wire such as tungsten is used as a catalyst body. Further, since the catalyst body generates heat, it is also called a heating element CVD apparatus. The wire is formed in a coil shape (Patent Document 1), or is stretched in a zigzag shape or in parallel inside a window frame-shaped insulating member (Patent Document 4). Moreover, as a thing other than a wire, a mesh-like catalyst body or a cylindrical flat plate catalyst body may be used (Patent Document 4).

プラズマCVD装置は、高周波電極と接地電極としての基板ホルダーとの間に印加した高周波電界によって原料ガスをプラズマ励起させることにより基板上に膜を成膜する(特許文献2,3)。このとき、反応生成物が高周波電極などに付着する。特許文献2の装置は、加熱した触媒体を高周波電極・基板ホルダー間に配置し、触媒体によって生成された水素ガスの活性種でクリーニングを行う(付着した反応生成物を除去する)。上記触媒体は、成膜処理時には高周波電極・基板ホルダー間から退避しており、クリーニング時に高周波電極・基板ホルダー間に移動する。一方、特許文献3の装置は、プラズマによる処理に加えて触媒による処理も同時に行うことができ、高周波電極としてのシャワー電極内に設けた触媒体を加熱するとともに、シャワー電極・基板ホルダー間にプラズマを発生させる。また、シャワー電極内のガス流路をガスごとに分離し、所定のガス(水素ガス)の流路にだけ触媒体を設けることも提案されている。   A plasma CVD apparatus forms a film on a substrate by plasma-exciting a source gas with a high-frequency electric field applied between a high-frequency electrode and a substrate holder as a ground electrode (Patent Documents 2 and 3). At this time, the reaction product adheres to the high-frequency electrode or the like. The apparatus of Patent Document 2 arranges a heated catalyst body between a high-frequency electrode and a substrate holder, and performs cleaning with active species of hydrogen gas generated by the catalyst body (removes attached reaction products). The catalyst body is retracted from between the high-frequency electrode and the substrate holder during the film forming process, and moves between the high-frequency electrode and the substrate holder during cleaning. On the other hand, the apparatus of Patent Document 3 can simultaneously perform a treatment with a catalyst in addition to a treatment with plasma, heats a catalyst body provided in a shower electrode as a high-frequency electrode, and plasma between a shower electrode and a substrate holder. Is generated. It has also been proposed to separate the gas flow path in the shower electrode for each gas, and to provide a catalyst body only in a predetermined gas (hydrogen gas) flow path.

特開昭63−040314号公報(請求項1、請求項20、第1図)Japanese Patent Laid-Open No. 63-040314 (Claim 1, Claim 20, FIG. 1) 特開2004−043847号公報(要約、段落0038〜0041)JP 2004-043847 A (Abstract, paragraphs 0038-0041) 特開2001−313272号公報(段落0001〜0031)JP 2001-313272 A (paragraphs 0001 to 0031) 特開2004−091821号公報(段落0058〜0064、図3、図4)Japanese Patent Laying-Open No. 2004-091821 (paragraphs 0058 to 0064, FIGS. 3 and 4)

最近では、樹脂フィルム上に半導体デバイスや表示デバイスが形成されるなど、基板の材質および成膜する膜種が多様化している。かかる状況下では、触媒CVD処理だけ、あるいはプラズマCVD処理だけでは多様化した成膜処理を実現するのが難しくなっており、このような状況に応えることのできる装置が望まれている。また、触媒CVD装置では高い成膜レートが得られることから、この特長を生かした装置が望ましい。特許文献2のプラズマCVD装置は、加熱した触媒体を用いたクリーニング処理は行えるが、触媒体が高周波電極・基板ホルダー間に配置されるので、触媒体およびプラズマの双方を利用したCVD処理は行えない。また、かかるCVD処理は想定すらされていない。   Recently, the material of the substrate and the type of film to be formed have been diversified, such as the formation of semiconductor devices and display devices on resin films. Under such circumstances, it is difficult to realize a diversified film forming process only by the catalytic CVD process or the plasma CVD process alone, and an apparatus capable of meeting such a situation is desired. In addition, since a high film formation rate can be obtained with a catalytic CVD apparatus, an apparatus that takes advantage of this feature is desirable. The plasma CVD apparatus of Patent Document 2 can perform a cleaning process using a heated catalyst body, but since the catalyst body is disposed between the high-frequency electrode and the substrate holder, a CVD process using both the catalyst body and the plasma cannot be performed. Absent. Further, such a CVD process is not even assumed.

特許文献3のプラズマCVD装置では、シャワー電極内の加熱した触媒体によって原料ガスが予め活性化されるので、比較的低パワーの高周波電力によるプラズマCVD処理が可能であり、基板に対するプラズマダメージが小さくなる。しかしながら、ガス流が均一であるとはいえないシャワー電極内に触媒体が設けられるので、上記の活性化が効率的に行なわれるとはいえない。また、シャワー電極から吹き出るガスの活性化率も吹き出し位置ごとに異なると思われる。したがって、基板面内で膜質や膜厚が均一とならないおそれがある。また、プラズマがシャワー電極・基板ホルダー間に発生するので、すなわち基板とプラズマが接するので、僅かなプラズマダメージが問題となるような場合には使用できないと考えられる。尚、この装置では、触媒体だけを用いた触媒CVD処理は想定すらされていない。   In the plasma CVD apparatus of Patent Document 3, since the source gas is activated in advance by the heated catalyst body in the shower electrode, plasma CVD processing with a relatively low power high frequency power is possible, and plasma damage to the substrate is small. Become. However, since the catalyst body is provided in the shower electrode where the gas flow cannot be said to be uniform, it cannot be said that the activation is performed efficiently. In addition, the activation rate of the gas blown from the shower electrode seems to be different for each blowing position. Therefore, the film quality and film thickness may not be uniform within the substrate surface. In addition, since plasma is generated between the shower electrode and the substrate holder, that is, the substrate and the plasma are in contact with each other, it is considered that the plasma cannot be used when slight plasma damage becomes a problem. In this apparatus, the catalytic CVD process using only the catalyst body is not assumed.

ところで、加熱した触媒体は熱膨張によって変形する。真空処理室の圧力が高く、ガス分子の平均自由行程が短い場合は、触媒体の近傍にガス分子が滞在する時間が長く、ガス分子が繰返し触媒体に接触するので、上記の変形は成膜特性に大きな影響を与えない。それに対し、圧力が低く、ガス分子の平均自由行程が長い場合は、触媒体に接触したガス分子は直ちに下流側(基板の方)に移動してしまう。このため、触媒体が変形すると、シャワー電極のガスの吹き出し口と触媒体との位置関係がずれてしまい、基板面内で膜厚が均一にならないという問題が生じる。しかしながら、従来のものでは熱膨張による触媒体の変形については何ら考慮されていない。   By the way, the heated catalyst body is deformed by thermal expansion. When the pressure in the vacuum processing chamber is high and the mean free path of gas molecules is short, the gas molecules stay in the vicinity of the catalyst body and the gas molecules repeatedly contact the catalyst body. Does not significantly affect the characteristics. On the other hand, when the pressure is low and the mean free path of gas molecules is long, the gas molecules in contact with the catalyst body immediately move downstream (toward the substrate). For this reason, when the catalyst body is deformed, the positional relationship between the gas outlet of the shower electrode and the catalyst body is shifted, and there is a problem that the film thickness is not uniform within the substrate surface. However, in the conventional one, no consideration is given to the deformation of the catalyst body due to thermal expansion.

本発明は、上記問題点を解決するものであって、その課題とするところは、多様な被処理体に対して多様な膜を形成することのできる触媒CVD装置、触媒体の熱膨張の影響を受けない触媒CVD装置、および当該装置を用いた成膜方法を提供することにある。   The present invention solves the above-mentioned problems, and the problem is that a catalytic CVD apparatus capable of forming various films on various objects to be processed and the influence of thermal expansion of the catalytic body. It is an object of the present invention to provide a catalytic CVD apparatus that does not receive the film and a film forming method using the apparatus.

第1の発明では、真空処理室内に導入された原料ガスを加熱した触媒体によって分解・活性化することにより被処理体に成膜を行なう触媒CVD装置において、触媒体と被処理体との距離を変える距離変更手段と、触媒体と被処理体との間に挿脱可能であって、気体が通過可能なプラズマ生成手段と、を備える。   According to a first aspect of the present invention, in a catalytic CVD apparatus that forms a film on a target object by decomposing and activating the source gas introduced into the vacuum processing chamber with a heated catalyst element, the distance between the catalyst and the target object And a plasma generating means that can be inserted / removed between the catalyst body and the object to be processed and allows gas to pass therethrough.

このようにすることで、プラズマ生成手段に入った原料ガスがプラズマ化や分解・活性化され、あるいは加熱した触媒体によって生成されたラジカルが活性化され、プラズマ生成手段で生成されたあるいは活性化されたラジカルなどが被処理体に供給されるので、加熱した触媒体だけが用いられる触媒CVD処理に加えて、プラズマ生成手段だけが用いられるプラズマCVD処理(もしくはプラズマエッチング処理)、または加熱した触媒体とプラズマ生成手段とが併用されるプラズマエンハンスト触媒CVD処理(もしくはプラズマエンハンスト触媒エッチング処理)を行うことができる。これにより、被処理体の材質(軟化温度の高低など)や成膜する膜種に応じて、最適なCVD処理を選択して被処理体に成膜を行うことが可能となる。また、特許文献3に示される如くシャワー電極・基板ホルダー間にプラズマが発生するのではなく、プラズマ生成手段自体で規定される領域にプラズマが発生し、しかも距離変更手段(実施形態に示す昇降可能な基板ホルダーに相当するもの)によってプラズマ領域と被処理体との距離を自由に設定できるので、基板の材質や成膜する膜種に応じて、プラズマダメージが極めて小さい処理や成膜レートの高い処理などを実現することができる。さらに、特許文献3に示される如くシャワー電極内に触媒体が配置されるのではなく、真空処理室内に原料ガスが導入された後に、例えば実施形態に示すようにシャワーヘッドのガス吹き出し口から原料ガスが出た後に、原料ガスが加熱した触媒体に満遍なく均一に接触するので、被処理体面内で膜厚や膜質が均一になる。さらに、被処理体に成膜を行なう前に、上記のプラズマエッチング処理あるいはプラズマエンハンスト触媒エッチング処理によって被処理体の表面の自然酸化膜などを除去することもできる。   By doing so, the raw material gas that has entered the plasma generating means is converted into plasma, decomposed and activated, or radicals generated by the heated catalyst body are activated, and are generated or activated by the plasma generating means. In addition to the catalytic CVD process in which only the heated catalyst body is used, the plasma CVD process (or plasma etching process) in which only the plasma generating means is used, or the heated touch is provided. Plasma enhanced catalyst CVD processing (or plasma enhanced catalyst etching processing) in which the medium and the plasma generating means are used in combination can be performed. Accordingly, it is possible to select the optimum CVD process according to the material of the object to be processed (such as the softening temperature level) and the type of film to be formed, and to form the film on the object to be processed. Further, as shown in Patent Document 3, plasma is not generated between the shower electrode and the substrate holder, but plasma is generated in a region defined by the plasma generating means itself, and the distance changing means (which can be moved up and down as shown in the embodiment) The distance between the plasma region and the object to be processed can be set freely by a device that is equivalent to a simple substrate holder), so that plasma damage is extremely small and the film formation rate is high, depending on the substrate material and film type Processing can be realized. Further, the catalyst body is not arranged in the shower electrode as shown in Patent Document 3, but after the raw material gas is introduced into the vacuum processing chamber, the raw material is supplied from the gas outlet of the shower head as shown in the embodiment, for example. After the gas is released, the source gas uniformly contacts the heated catalyst body, so that the film thickness and film quality become uniform within the surface of the object to be processed. Furthermore, before forming a film on the object to be processed, a natural oxide film or the like on the surface of the object to be processed can be removed by the plasma etching process or the plasma enhanced catalyst etching process.

第1の発明の実施形態においては、プラズマ生成手段は、加熱した触媒体だけが用いられる触媒CVD処理が行われるときは、触媒体と被処理体との間から退避し、プラズマ生成手段だけが用いられるプラズマCVD処理もしくはプラズマエッチング処理、あるいは加熱した触媒体とプラズマ生成手段とが併用されるプラズマエンハンスト触媒CVD処理もしくはプラズマエンハンスト触媒エッチング処理が行われるときは、触媒体と被処理体との間に位置する。このようにすることで、触媒CVD処理においてプラズマ生成手段が悪影響を与えるのを防止することができる。   In an embodiment of the first invention, the plasma generating means is evacuated from between the catalyst body and the object to be processed when the catalytic CVD process in which only the heated catalyst body is used, and only the plasma generating means is used. When the plasma CVD process or plasma etching process used, or the plasma enhanced catalyst CVD process or plasma enhanced catalyst etching process in which a heated catalyst body and plasma generating means are used together, is performed between the catalyst body and the target object. Located in. By doing so, it is possible to prevent the plasma generation means from adversely affecting the catalytic CVD process.

また、第1の発明の実施形態においては、プラズマ生成手段は、複数の貫通口を有する板状の第1電極と、第1電極の一方の側に対向配置された複数の貫通口を有する板状の第2電極とを備え、両電極間に高周波電圧が印加される。このようにすることで、第1電極(または第2電極)の貫通孔から入った原料ガスが高周波電圧によってプラズマ化され、あるいは分離・活性化され、活性化されたラジカルなどが第2電極(または第1電極)の貫通孔から出て被処理体に向かい、被処理体表面で成膜が行なわれる。   In the embodiment of the first invention, the plasma generating means includes a plate-like first electrode having a plurality of through-holes and a plate having a plurality of through-holes arranged opposite to one side of the first electrode. And a high frequency voltage is applied between both electrodes. By doing in this way, the raw material gas which entered from the through-hole of the first electrode (or the second electrode) is turned into plasma by the high frequency voltage, or separated and activated, and activated radicals or the like are transferred to the second electrode ( Alternatively, the film is formed on the surface of the object to be processed through the through hole of the first electrode) and toward the object to be processed.

さらに、第1の発明の実施形態においては、第1電極の他方の側に対向配置された複数の貫通口を有するシールド板を備え、第1電極には高周波電圧が印加され、第2電極とシールド板とは接地される。このようにすることで、導電性のシャワーヘッド等が接地されていても、プラズマ生成手段とシャワーヘッド等の間に高周波放電が発生せず、接地されたシールド板と第2電極との間にプラズマを閉じ込めることができるので、低電力で効率よく原料ガスをプラズマ化、あるいは分解・活性化することができる。   Furthermore, in an embodiment of the first invention, a shield plate having a plurality of through holes arranged opposite to the other side of the first electrode is provided, a high frequency voltage is applied to the first electrode, The shield plate is grounded. By doing so, even if a conductive shower head or the like is grounded, high-frequency discharge is not generated between the plasma generating means and the shower head or the like, and the grounded shield plate and the second electrode are not grounded. Since the plasma can be confined, the source gas can be converted into plasma or decomposed / activated efficiently with low power.

さらに、第1の発明の実施形態においては、真空処理室の開口を介して連設された、プラズマ生成手段を収納する真空収納室と、プラズマ生成手段が通過可能な上記開口を塞ぐ閉塞手段と、を備える。このようにすることで、触媒CVD処理が真空処理室で行われているときは、プラズマ生成手段を真空収納室に収納でき、しかも閉塞手段(実施形態に示すプラズマ生成手段の先端に取り付けられたカバーに相当するもの)が開口を塞ぐので、プラズマ生成手段に反応生成物が付着するのを防止できる。また、上記のカバーに代えて開口の位置に閉塞手段としてのゲートバルブを設けるようにすれば、多数の被処理体に対して触媒CVD処理だけが繰返し行われるような場合には、真空処理室の真空引き時間が短縮され、スループットが向上する。   Furthermore, in an embodiment of the first invention, a vacuum storage chamber for storing the plasma generation means, which is connected through the opening of the vacuum processing chamber, and a closing means for closing the opening through which the plasma generation means can pass. . In this way, when the catalytic CVD process is performed in the vacuum processing chamber, the plasma generating means can be stored in the vacuum storage chamber, and the blocking means (attached to the tip of the plasma generating means shown in the embodiment). Since the opening) closes the opening, it is possible to prevent the reaction product from adhering to the plasma generating means. If a gate valve as a closing means is provided at the position of the opening instead of the cover, a vacuum processing chamber can be used in the case where only the catalytic CVD process is repeatedly performed on a large number of objects to be processed. The evacuation time is reduced and the throughput is improved.

第2の発明では、真空処理室内に配置した被処理体に成膜を行なう成膜方法において、真空処理室内に成膜ガスとプラズマ増強ガスとを導入し、加熱した触媒体によって成膜ガスからラジカルを生成し、触媒体と被処理体との間に配置したプラズマ生成手段によってプラズマ増強ガスをプラズマ化し、このプラズマ中でラジカルの密度を高める。上記のプラズマ増強ガスとは低電力でプラズマが発生するガスのことであり、Ar、Heなどの不活性ガスやNガスなどがプラズマ増強ガスとして好適に使用される。 According to a second aspect of the present invention, in a film forming method for forming a film on an object to be processed disposed in a vacuum processing chamber, a film forming gas and a plasma enhancing gas are introduced into the vacuum processing chamber and are heated from the film forming gas by a heated catalyst body. Radicals are generated, and plasma enhancing gas is converted into plasma by plasma generating means disposed between the catalyst body and the object to be processed, and the density of the radicals is increased in the plasma. The plasma enhanced gas is a gas that generates plasma with low power, and an inert gas such as Ar or He, N 2 gas, or the like is suitably used as the plasma enhanced gas.

このようにすることで、加熱した触媒体によって生成されたラジカルが被処理体に到達するまでに再結合しても、これらがプラズマ中で分解されてラジカルの密度が高まるので、被処理体の表面でのラジカル密度が所望の密度に維持される。これにより、低温で成膜処理を行うために被処理体を加熱した触媒体から遠ざけても、所望の成膜レートで成膜を行なうことができる。   By doing so, even if the radicals generated by the heated catalyst body recombine before reaching the object to be processed, they are decomposed in the plasma and the density of the radicals is increased. The radical density at the surface is maintained at the desired density. As a result, film formation can be performed at a desired film formation rate even when the object to be processed is moved away from the heated catalyst body in order to perform film formation at a low temperature.

第3の発明では、真空処理室内に導入された原料ガスを加熱した複数の直線状の触媒体によって分解・活性化することにより被処理体に成膜を行なう触媒CVD装置において、触媒体は、両端が反対方向に引っ張られるように支持される。   In the third invention, in the catalytic CVD apparatus that forms a film on the object to be processed by decomposing and activating the raw material gas introduced into the vacuum processing chamber with a plurality of heated linear catalyst bodies, Both ends are supported so as to be pulled in opposite directions.

このようにすることで、触媒体の取り付けに不手際があっても、あるいは触媒体が加熱されて熱膨張して延びても、触媒体の両端が反対方向に引っ張られるので、触媒体は常に直線状に保たれる。これにより触媒体と触媒体に接触する原料ガスの流れとが常に一定の関係になるので、触媒体の取り付けの不手際や触媒体の熱膨張に関係なく、同じ条件で触媒CVD処理を行うことができる。つまり、取り付けの不手際や熱膨張に起因する触媒体の撓み(弛み)によって発生する、成膜レートの面内均一性の悪化を防止できる。   In this way, even if the catalyst body is not installed properly or even if the catalyst body is heated and thermally expanded, both ends of the catalyst body are pulled in opposite directions. Kept in shape. As a result, the catalyst body and the flow of the raw material gas in contact with the catalyst body are always in a fixed relationship, so that the catalytic CVD process can be performed under the same conditions regardless of the mounting failure of the catalyst body and the thermal expansion of the catalyst body it can. That is, it is possible to prevent the in-plane uniformity of the film formation rate from being deteriorated due to the slack of the catalyst body due to the mounting failure or thermal expansion.

第3の発明の実施形態においては、触媒体の一端は第1の固定部材に固定され、他端は第2の固定部材に対して触媒体の直線状の線に沿って移動自在な移動体に固定され、移動体は第2の固定部材に取り付けられた弾性体の収縮力または伸張力によって第1の固定部材とは反対の方向に引っ張られ、触媒体への給電は第1の固定部材および移動体を介して行われる。ここで第1の固定部材は、実施形態に示す電源バー72(図5)または導電板91(図7)に相当するものである。第2の固定部材は、電源バー73およびバネ支持棒76(図6(a))または枠部材90(図7)に相当するものである。上記のように簡単な構造によって触媒体が直線状に保たれるので、装置のコストアップを抑えることができる。また、弾性体としてバネなどを使用すれば、特別な熱対策を講じる必要もない。   In an embodiment of the third invention, one end of the catalyst body is fixed to the first fixing member, and the other end is movable relative to the second fixing member along a linear line of the catalyst body. The movable body is pulled in the direction opposite to the first fixing member by the contraction force or the extension force of the elastic body attached to the second fixing member, and the power supply to the catalyst body is supplied to the first fixing member. And via the moving body. Here, the first fixing member corresponds to the power bar 72 (FIG. 5) or the conductive plate 91 (FIG. 7) shown in the embodiment. The second fixing member corresponds to the power bar 73 and the spring support rod 76 (FIG. 6A) or the frame member 90 (FIG. 7). Since the catalyst body is kept in a straight line by a simple structure as described above, an increase in the cost of the apparatus can be suppressed. Further, if a spring or the like is used as the elastic body, it is not necessary to take special heat countermeasures.

また、第3の発明の実施形態においては、複数の直線状の触媒体と平行な面に複数のガス吹き出し口を有するシャワーヘッドを備え、原料ガスは複数のガス吹き出し口から複数の触媒体に向けて真空処理室内に導入される。上記シャワーヘッドは、複数の貫通孔を有するシャワー板と、シャワー板の下流側に配置され、複数のガス吹き出し口を有する熱遮蔽板とを備え、シャワー板は、その前後で圧力差が生じるように構成される。このようにすることで、ガス吹き出し口からの原料ガスは上記の圧力差によって触媒体に吹き付けられるので、原料ガスが高い割合で分解・活性化され、真空処理室の圧力を低くしても、生成されるラジカルの密度を所定値以上にすることができる。また、シャワー板の下流側、すなわち触媒体側に設けられた熱遮蔽板によって加熱した触媒体からの輻射熱が遮られ、シャワー板の貫通孔が輻射熱によって変形しないので、常に一定の圧力差が得られる。上記の圧力差は、シャワー板の板厚を厚くし、しかも貫通孔を小さくすることなどによって生じる。   In an embodiment of the third invention, a shower head having a plurality of gas outlets on a surface parallel to the plurality of linear catalyst bodies is provided, and the source gas is supplied from the plurality of gas outlets to the plurality of catalyst bodies. Introduced into the vacuum processing chamber. The shower head includes a shower plate having a plurality of through holes and a heat shield plate disposed downstream of the shower plate and having a plurality of gas outlets, and the shower plate has a pressure difference before and after the shower plate. Configured. By doing in this way, since the source gas from the gas outlet is blown to the catalyst body by the above pressure difference, the source gas is decomposed and activated at a high rate, and even if the pressure in the vacuum processing chamber is lowered, The density of the generated radicals can be made a predetermined value or more. Further, since the radiant heat from the catalyst body heated by the heat shielding plate provided on the downstream side of the shower plate, that is, on the catalyst body side is blocked, and the through hole of the shower plate is not deformed by the radiant heat, a constant pressure difference is always obtained. . The pressure difference is caused by increasing the thickness of the shower plate and reducing the through hole.

第4の発明では、上記のシャワー板の前後で圧力差が生じるように構成された触媒CVD装置を用いて行なう成膜方法において、触媒体と被処理体との距離を100mm以上にし、真空処理室の圧力を0.2Pa以下にして被処理体に成膜を行なう。   According to a fourth aspect of the present invention, in the film forming method performed using the catalytic CVD apparatus configured to generate a pressure difference before and after the shower plate, the distance between the catalyst body and the object to be processed is set to 100 mm or more, and vacuum processing is performed. The chamber pressure is set to 0.2 Pa or less to form a film on the object to be processed.

このようにすることで、加熱した触媒体の温度が1800℃程度であっても、プラスチックなどの軟化温度の低い被処理体に対しても好適に成膜を行なうことができる。その理由を以下に説明する。第1に、触媒体と被処理体との距離を上記のようにしているので、加熱した触媒体からの輻射熱によって被処理体が変形しない。第2に、上記の圧力差によって原料ガスが触媒体に吹き付けられるので、原料ガスが高い割合で分解・活性化され、圧力を低くしても生成されるラジカルの量(密度)が低下しない。第3に、真空処理室の圧力を上記のように通常の圧力(例えば、10Pa程度)よりも低くして、ラジカルの平均自由行程が触媒体と被処理体との距離の1/3程度以上になるようにしているので、気相中でのラジカルの再結合が抑制(防止)される。この結果、被処理体と触媒体との距離を長くしても、被処理体近くでのラジカル密度が低下することがなく、実用的な成膜レートで膜が形成される。第4に、触媒体の両端が反対方向に引っ張られ、触媒体が熱膨張の影響を受けずに直線状に保たれるので、膜厚が被処理体の面内で均一になる。   In this way, even when the temperature of the heated catalyst body is about 1800 ° C., film formation can be suitably performed even on an object to be processed having a low softening temperature such as plastic. The reason will be described below. First, since the distance between the catalyst body and the object to be treated is set as described above, the object to be treated is not deformed by the radiant heat from the heated catalyst body. Second, since the source gas is sprayed onto the catalyst body due to the pressure difference, the source gas is decomposed and activated at a high rate, and the amount (density) of the generated radicals does not decrease even when the pressure is lowered. Third, the pressure in the vacuum processing chamber is made lower than the normal pressure (for example, about 10 Pa) as described above, and the free radical mean free path is about 1/3 or more of the distance between the catalyst body and the object to be processed. Therefore, radical recombination in the gas phase is suppressed (prevented). As a result, even if the distance between the object to be processed and the catalyst body is increased, the radical density near the object to be processed does not decrease, and a film is formed at a practical film formation rate. Fourth, since both ends of the catalyst body are pulled in opposite directions and the catalyst body is kept in a straight line without being affected by thermal expansion, the film thickness becomes uniform within the surface of the object to be processed.

本発明によれば、シリコンウエハやプラスチック板、PETフィルムなどの多様な被処理体に対して各種の膜を形成することができる。また、触媒体の熱膨張に関係なく、一定の成膜特性が得られる。   According to the present invention, various films can be formed on various objects to be processed such as silicon wafers, plastic plates, and PET films. In addition, constant film formation characteristics can be obtained regardless of the thermal expansion of the catalyst body.

以下、図1を参照して本発明の第1の実施形態を説明する。触媒CVD装置1(以下、装置1という)は、基板ホルダー18上の基板5の表面に膜を成膜する真空処理室11と、真空処理室11に連設され、プラズマ生成手段31を収納する真空収納室12とから構成される。真空処理室11で加熱した触媒体10だけを用いる触媒CVD処理が行われるときは、図1(a)に示すように、プラズマ生成手段31は真空収納室12に退避している。プラズマ生成手段31だけを用いるプラズマCVD処理、あるいは加熱した触媒体10およびプラズマ生成手段31の双方を併用するCVD処理(以下、プラズマエンハンスト触媒CVD処理という)が行われるときは、図1(b)に示すように、プラズマ生成手段31は触媒体10と基板5との間に位置する。上記のようにプラズマ生成手段31が移動可能であるので、3種類のCVD処理を行えることに加えて、プラズマ生成手段31による悪影響を受けずに触媒CVD処理を行うことができる。また、真空処理室11と真空収納室12とは、真空処理室11の下部の排気口22に取り付けられた真空ポンプ23で真空引きされる。   The first embodiment of the present invention will be described below with reference to FIG. The catalytic CVD apparatus 1 (hereinafter referred to as “apparatus 1”) is connected to the vacuum processing chamber 11 for forming a film on the surface of the substrate 5 on the substrate holder 18 and the vacuum processing chamber 11, and accommodates the plasma generating means 31. And a vacuum storage chamber 12. When the catalytic CVD process using only the catalyst body 10 heated in the vacuum processing chamber 11 is performed, the plasma generating means 31 is retracted in the vacuum storage chamber 12 as shown in FIG. When a plasma CVD process using only the plasma generation means 31 or a CVD process using both the heated catalyst body 10 and the plasma generation means 31 (hereinafter referred to as a plasma enhanced catalyst CVD process) is performed, FIG. As shown, the plasma generating means 31 is located between the catalyst body 10 and the substrate 5. Since the plasma generating means 31 is movable as described above, in addition to performing three types of CVD processes, the catalytic CVD process can be performed without being adversely affected by the plasma generating means 31. The vacuum processing chamber 11 and the vacuum storage chamber 12 are evacuated by a vacuum pump 23 attached to the exhaust port 22 at the lower part of the vacuum processing chamber 11.

基板5は、ゲートバルブ17を介して真空処理室11に搬入され、昇降可能な基板ホルダー18に載置される。この基板ホルダー18を昇降させることで、基板5と触媒体10との距離が所定の距離に設定される。基板ホルダー18の内部にはヒータ21と図示しないチラーから供給される冷媒が流れる冷媒流路20が設けられており、基板ホルダー18の上面には熱電対19が設けられている。熱電対19の発生電圧から得られた温度に基づいてヒータ21の通電量や冷媒の温度や流量を変えることにより、基板5の温度が所定温度になるように制御される。   The substrate 5 is carried into the vacuum processing chamber 11 through the gate valve 17 and placed on a substrate holder 18 that can be raised and lowered. By moving the substrate holder 18 up and down, the distance between the substrate 5 and the catalyst body 10 is set to a predetermined distance. Inside the substrate holder 18, there is provided a refrigerant flow path 20 through which a refrigerant supplied from a heater 21 and a chiller (not shown) flows. A thermocouple 19 is provided on the upper surface of the substrate holder 18. The temperature of the substrate 5 is controlled to be a predetermined temperature by changing the energization amount of the heater 21 and the temperature and flow rate of the refrigerant based on the temperature obtained from the voltage generated by the thermocouple 19.

シャワーヘッド14には、ガスボンベや流量調整器、開閉バルブなどからなる図示しない複数のガス供給系から原料ガスが供給され、この原料ガスがシャワーヘッド14の下面の多数のガス吹き出し口から真空処理室11に導入される。ここでは、成膜ガスや置換ガスなどを合わせて原料ガスとよんでいる。基板5が真空処理室11に搬入されると、圧力が1×10−3Pa程度になるまで真空引きされ、その後、原料ガスを所定の流量で真空処理室11に導入しつつ圧力が0.1〜10Pa程度に維持されて以下に述べる成膜処理が行われる。 A raw material gas is supplied to the shower head 14 from a plurality of gas supply systems (not shown) including a gas cylinder, a flow rate regulator, an open / close valve, and the like, and the raw material gas is supplied from a plurality of gas outlets on the lower surface of the shower head 14 to a vacuum processing chamber. 11 is introduced. Here, the film forming gas and the replacement gas are collectively referred to as a source gas. When the substrate 5 is carried into the vacuum processing chamber 11, it is evacuated until the pressure reaches about 1 × 10 −3 Pa, and then the raw material gas is introduced into the vacuum processing chamber 11 at a predetermined flow rate and the pressure is reduced to 0. The film forming process described below is performed while maintaining the pressure at about 1 to 10 Pa.

触媒体10は、タングステンやタンタルなどの高融点金属のワイヤなどからなり、AC電源13からの通電で発熱高温化する。AC電源13の代わりにDC電源を用いてもよい。触媒体10の温度は、基板5の材質や成膜する膜種に応じて最適な温度に設定されるが、石英窓15を通して放射温度計16で測定され、所定の温度、例えば1800℃になるようにAC電源13の出力レベルが調整される。図1(a)に示すように、シャワーヘッド14から流出した原料ガスは、触媒体10に接触し、あるいは近傍を通過する。特許文献3に示される如く触媒体10がシャワーヘッド14の内部に配置されているのではなく、シャワーヘッド14の下方に配置されているので、シャワーヘッド14から流出した原料ガスが触媒体10全体に満遍なく均一に接触する。この原料ガスと高温の触媒体10との相互作用(触媒作用あるいは熱的作用)による分解反応によって、化学的に活性なラジカルが生成され、このラジカル同士が基板5の表面で化学反応する。そして、反応生成物が基板5表面に堆積して膜が形成される。   The catalyst body 10 is made of a wire of a high melting point metal such as tungsten or tantalum, and is heated and heated by energization from the AC power source 13. A DC power supply may be used instead of the AC power supply 13. The temperature of the catalyst body 10 is set to an optimum temperature according to the material of the substrate 5 and the type of film to be deposited, but is measured by the radiation thermometer 16 through the quartz window 15 and becomes a predetermined temperature, for example, 1800 ° C. Thus, the output level of the AC power supply 13 is adjusted. As shown in FIG. 1A, the raw material gas flowing out from the shower head 14 contacts the catalyst body 10 or passes through the vicinity thereof. Since the catalyst body 10 is not disposed inside the shower head 14 as shown in Patent Document 3, but is disposed below the shower head 14, the raw material gas flowing out from the shower head 14 is the entire catalyst body 10. Evenly and evenly. Chemically active radicals are generated by the decomposition reaction by the interaction (catalytic action or thermal action) between the source gas and the high-temperature catalyst body 10, and these radicals chemically react with each other on the surface of the substrate 5. Then, the reaction product is deposited on the surface of the substrate 5 to form a film.

ところで、基板5がプラスチック板やPET(ポリエチレンテレフタレート)フィルムなどである場合は、基板5の軟化温度(ガラス転移温度)が低いため、触媒体10からの輻射熱で基板5が変形することがある。基板ホルダー18を下降させて基板5を触媒体10から遠ざければ基板5は変形しなくなるが、基板5表面でのラジカル密度が低下するため、成膜レートが低くなるという問題が生じる。本発明では、基板5の軟化温度が低い場合は、図1(b)に示すように、予めプラズマ生成手段31を触媒体10と基板5との間にセットしておき、このプラズマ生成手段31が上記のラジカル密度を高めたり、活性度の低下したラジカルを活性化したり、原料ガスから新たに活性なラジカルを生成したりする。この結果、軟化温度の低い基板5と触媒体10との距離を長くしても、所望の膜が所望の成膜レートで基板5上に形成される。この場合、触媒体10と基板5との間にプラズマ生成手段31が介在する分だけ、基板5から触媒体10までの距離が長くなり、輻射熱の影響が低減する。   By the way, when the substrate 5 is a plastic plate or a PET (polyethylene terephthalate) film, the substrate 5 may be deformed by the radiant heat from the catalyst body 10 because the softening temperature (glass transition temperature) of the substrate 5 is low. If the substrate holder 18 is lowered and the substrate 5 is moved away from the catalyst body 10, the substrate 5 is not deformed. However, since the radical density on the surface of the substrate 5 is lowered, there arises a problem that the film forming rate is lowered. In the present invention, when the softening temperature of the substrate 5 is low, as shown in FIG. 1B, the plasma generating means 31 is set in advance between the catalyst body 10 and the substrate 5, and this plasma generating means 31 is set. Increases the above-mentioned radical density, activates radicals with reduced activity, or generates new active radicals from the source gas. As a result, even if the distance between the substrate 5 having a low softening temperature and the catalyst body 10 is increased, a desired film is formed on the substrate 5 at a desired film formation rate. In this case, the distance from the substrate 5 to the catalyst body 10 is increased by the amount of the plasma generating means 31 interposed between the catalyst body 10 and the substrate 5, and the influence of radiant heat is reduced.

次に、プラズマ生成手段31を備えたプラズマ生成ユニット30の構造について説明する。プラズマ生成ユニット30は、レール28上を移動する基台39や、基台39に取り付けられたプラズマ生成手段31、プラズマ生成手段31の先端部に取り付けられたカバー38などから構成される。プラズマ生成手段31は、高周波電源25が接続された高周波電極33と接地された接地電極34とから構成され、両電極33,34間に印加される高周波電力によってプラズマを生成する。尚、成膜ガス分子をプラズマ化あるいは分解・活性化するのが目的ではなく、触媒体10によって生成されたラジカルなどの密度を高めることを目的とすることもある。後者では、例えば、触媒体10によって生成されたラジカルが基板5に到達するまでに再結合し、基板5の表面でのラジカル密度が低下するような場合に、Ar、Nなどの低電力でプラズマが発生するプラズマ増強ガスをプラズマ化し、このプラズマ中で上記の再結合物を分解してラジカルの密度を高めるようにする。図1(a)に示すように、触媒CVD処理が行われるときは、プラズマ生成ユニット30は真空収納室12に収納されている。このとき、真空処理室11の壁部の開口24がカバー38で塞がれるので、真空収納室12の内壁や待機中のプラズマ生成手段31に反応生成物などが付着するのが防止される。 Next, the structure of the plasma generation unit 30 provided with the plasma generation means 31 will be described. The plasma generation unit 30 includes a base 39 that moves on the rail 28, a plasma generation means 31 that is attached to the base 39, a cover 38 that is attached to the tip of the plasma generation means 31, and the like. The plasma generating means 31 includes a high frequency electrode 33 to which a high frequency power supply 25 is connected and a grounded ground electrode 34, and generates plasma by high frequency power applied between the electrodes 33 and 34. The purpose is not to plasmatize or decompose / activate the film forming gas molecules but to increase the density of radicals generated by the catalyst body 10. In the latter case, for example, when the radicals generated by the catalyst body 10 recombine before reaching the substrate 5 and the radical density on the surface of the substrate 5 decreases, the power of Ar, N 2 or the like is reduced. The plasma-enhanced gas generated by the plasma is turned into plasma, and the recombination product is decomposed in the plasma to increase the density of radicals. As shown in FIG. 1A, when the catalytic CVD process is performed, the plasma generation unit 30 is stored in the vacuum storage chamber 12. At this time, since the opening 24 in the wall portion of the vacuum processing chamber 11 is closed by the cover 38, it is possible to prevent reaction products and the like from adhering to the inner wall of the vacuum storage chamber 12 or the plasma generation means 31 in standby.

プラズマ生成手段31が真空処理室11で使用されるとき、すなわちプラズマCVD処理またはプラズマエンハンスト触媒CVD処理が行われるときは、基台39がレール28上を真空処理室11の方向に移動して所定位置で停止する。この状態で、プラズマ生成手段31がシャワーヘッド14および触媒体10の真下に位置し、しかも基板5の真上に位置する。また、隙間はあるものの、基台39で真空処理室11の開口24が塞がれる。ここでは真空処理室11・真空収納室12間は真空封止されていないが、開口24の位置にゲートバルブを介装するとともに、真空収納室12も真空引き可能な構成としてもよい。このようにすれば、多数の基板5に対して触媒CVD処理だけが繰り返し行われる場合に、真空処理室11の真空引き時間が短縮され、スループットが向上する。   When the plasma generating means 31 is used in the vacuum processing chamber 11, that is, when a plasma CVD process or a plasma enhanced catalytic CVD process is performed, the base 39 moves on the rail 28 in the direction of the vacuum processing chamber 11, and is predetermined. Stop at position. In this state, the plasma generating means 31 is positioned directly below the shower head 14 and the catalyst body 10 and is positioned directly above the substrate 5. Moreover, although there is a gap, the opening 24 of the vacuum processing chamber 11 is closed by the base 39. Here, the vacuum processing chamber 11 and the vacuum storage chamber 12 are not vacuum-sealed, but a gate valve may be interposed at the position of the opening 24 and the vacuum storage chamber 12 may be configured to be evacuated. In this way, when only the catalytic CVD process is repeatedly performed on a large number of substrates 5, the evacuation time of the vacuum processing chamber 11 is shortened, and the throughput is improved.

基台39の前面にはステンレス製の電極取り付け板37が固定されている。この電極取り付け板37に、シールド板32および接地電極34の基端部が固定され、高周波電極33の基端部が絶縁部材36を介して固定されている。シールド板32、高周波電極33および接地電極34は、上記のラジカルや原料ガスが通過する多数の貫通孔を全面に有する、450mm×450mm程度の矩形のステンレス板である。シールド板32および接地電極34の先端部にはステンレス製のカバー38が固定され、カバー38に対して高周波電極33の先端部が絶縁部材35を介して固定されている。シールド板32、接地電極34、電極取り付け板37およびカバー38は可撓性の接地線27で接地されている。また、高周波電極33は可撓性のシールド線26で高周波電源25に接続されている。この高周波電源25の周波数は13.56MHzであるが、他の周波数であってもよい。   A stainless steel electrode mounting plate 37 is fixed to the front surface of the base 39. The base end portions of the shield plate 32 and the ground electrode 34 are fixed to the electrode mounting plate 37, and the base end portion of the high-frequency electrode 33 is fixed via an insulating member 36. The shield plate 32, the high-frequency electrode 33, and the ground electrode 34 are rectangular stainless steel plates of about 450 mm × 450 mm that have a large number of through-holes through which the radicals and source gases pass. A stainless steel cover 38 is fixed to the tip portions of the shield plate 32 and the ground electrode 34, and the tip portion of the high frequency electrode 33 is fixed to the cover 38 via an insulating member 35. The shield plate 32, the ground electrode 34, the electrode mounting plate 37 and the cover 38 are grounded by a flexible ground wire 27. The high-frequency electrode 33 is connected to the high-frequency power source 25 by a flexible shield wire 26. The frequency of the high frequency power supply 25 is 13.56 MHz, but may be other frequencies.

上記のシールド板32の貫通孔は2mmφで、中心間距離が5mmである。高周波電極33および接地電極34の貫通孔は20mmφで、中心間距離が30mmである。図1では、高周波電極33および接地電極34の貫通孔は同じ位置に示されているが、異なる位置に配置するようにしてもよい。また、シールド板32、高周波電極33および接地電極34は、それぞれ5mm、20mmの間隔で互いに平行に配置されており、高周波電極33と接地電極34とで平行平板型のプラズマ生成手段31が構成される。ここではプラズマ生成手段31を高周波方式の平行平板型としているが、高周波電圧に代えて直流電圧を印加するようにしてもよい。また、誘導結合型のものを用いることもできる。   The through hole of the shield plate 32 is 2 mmφ, and the center-to-center distance is 5 mm. The through-holes of the high-frequency electrode 33 and the ground electrode 34 are 20 mmφ, and the center-to-center distance is 30 mm. In FIG. 1, the through holes of the high-frequency electrode 33 and the ground electrode 34 are shown at the same position, but may be arranged at different positions. The shield plate 32, the high-frequency electrode 33, and the ground electrode 34 are arranged in parallel with each other at intervals of 5 mm and 20 mm, and the high-frequency electrode 33 and the ground electrode 34 constitute a parallel plate type plasma generating means 31. The Here, the plasma generation unit 31 is a high-frequency parallel plate type, but a DC voltage may be applied instead of the high-frequency voltage. An inductive coupling type can also be used.

上述のように、高周波電極33が接地された導電性のシールド板32、接地電極34、カバー38および電極取り付け板37で囲まれているので、高周波電極33とステンレス製のシャワーヘッド14などとの間で高周波放電が起きない。つまり、シールド板32や接地電極34などで囲まれた領域にプラズマが閉じ込められるので、低電力密度で効率よくプラズマを生成することができる。但し、接地したシールド板32を設けることは本発明の必須事項ではない。また、特許文献3に示される如くプラズマがシャワーヘッド14・基板ホルダー18間で発生するのではなく、高周波電極33などのプラズマ生成手段31自体で規定される領域で発生し、しかも基板ホルダー18が昇降可能であるので、基板5とプラズマとの距離を自由に設定することができる。したがって、基板5とプラズマとの距離を大きくまたは小さくすることにより、基板5の材質や成膜する膜種に応じて、基板5に与えるプラズマダメージが極めて小さい処理や、成膜レートの高い処理などを行うことができる。   As described above, since the high-frequency electrode 33 is surrounded by the grounded conductive shield plate 32, the ground electrode 34, the cover 38, and the electrode mounting plate 37, the high-frequency electrode 33 and the stainless steel shower head 14 or the like. There is no high frequency discharge between them. That is, since the plasma is confined in a region surrounded by the shield plate 32, the ground electrode 34, and the like, the plasma can be efficiently generated at a low power density. However, the provision of the grounded shield plate 32 is not an essential matter of the present invention. Further, as shown in Patent Document 3, plasma is not generated between the shower head 14 and the substrate holder 18 but is generated in a region defined by the plasma generating means 31 itself such as the high frequency electrode 33, and the substrate holder 18 is Since it can be moved up and down, the distance between the substrate 5 and the plasma can be freely set. Therefore, by increasing or decreasing the distance between the substrate 5 and the plasma, processing that causes very little plasma damage to the substrate 5 or processing that has a high deposition rate, depending on the material of the substrate 5 and the type of film to be deposited. It can be performed.

以上で装置1の構成、触媒CVD処理およびプラズマエンハンスト触媒CVD処理について説明したが、AC電源13を切ってプラズマ生成手段31を作動させることにより、従来から行なわれているプラズマCVD処理も行うことができる。上記の3つのCVD処理は、基板5の材質や成膜する膜種に応じて使い分けられる。また、1つの基板5に対して2層の膜を連続して形成する場合に、例えば1層目の膜を触媒CVD処理で形成し、2層目の膜をプラズマエンハンスト触媒CVD処理で形成することもできる。さらに、CVD処理を行う前に、真空処理室11に導入するガスをエッチング用ガスに変え、加熱した触媒体10およびプラズマ生成手段31の一方または双方を用いて、基板5表面の自然酸化膜などを除去するクリーニング処理(エッチング処理)を行うこともできる。これらをそれぞれ触媒エッチング処理、プラズマエッチング処理およびプラズマエンハンスト触媒エッチング処理とよぶ。以下に装置1を用いて行なった成膜処理の実施例を示す。   The configuration of the apparatus 1, the catalytic CVD process, and the plasma enhanced catalytic CVD process have been described above. However, the plasma CVD process that has been conventionally performed can be performed by turning off the AC power supply 13 and operating the plasma generating unit 31. it can. The above three CVD processes are properly used according to the material of the substrate 5 and the type of film to be formed. Further, when two layers of films are continuously formed on one substrate 5, for example, the first layer is formed by catalytic CVD processing, and the second layer is formed by plasma enhanced catalytic CVD processing. You can also. Further, before performing the CVD process, the gas introduced into the vacuum processing chamber 11 is changed to an etching gas, and one or both of the heated catalyst body 10 and the plasma generating means 31 are used to form a natural oxide film on the surface of the substrate 5 or the like. A cleaning process (etching process) for removing the film can also be performed. These are called catalyst etching treatment, plasma etching treatment and plasma enhanced catalyst etching treatment, respectively. Examples of film forming processes performed using the apparatus 1 are shown below.

(実施例1)
プラズマ生成手段31を触媒体10と基板5との間に配置し、以下のようにしてプラズマエンハンスト触媒CVD処理によってSi基板5に成膜を行なった。この処理では、成膜ガスとしての分圧6.65Paのテトラエトキシシランガスとプラズマ増強ガスとしての10sccm(分圧6.65Pa)のNガスとの混合ガスを真空処理室11に導入し、真空処理室11の全圧力を13.3Pa、触媒体10の温度を1800℃、高周波電力を200W、触媒体10とプラズマ生成手段31の上面との距離を30mm、プラズマ生成手段31の下面とSi基板5との距離を45mm、Si基板5の温度を100℃、処理時間を10分とした。上述のように、プラズマ生成手段31の厚さが25mmであるので、触媒体10とSi基板5との距離は100mmとなる。上記の処理によってSi基板5上に膜厚が400nmのアモルファスSi−O−C膜が形成されたことが確認された。ここでは、低温処理を行うために触媒体10と基板5との距離を長くしているが、触媒体10によって生成されたラジカルが基板5に到達するまでに再結合しても、これらがNガスのプラズマ中でラジカル化されるので、Si基板5表面でのラジカル密度が所望の密度に維持され、所望の成膜レートが得られる。
Example 1
The plasma generating means 31 was disposed between the catalyst body 10 and the substrate 5, and a film was formed on the Si substrate 5 by plasma enhanced catalytic CVD processing as follows. In this process, a mixed gas of tetraethoxysilane gas having a partial pressure of 6.65 Pa as a film forming gas and N 2 gas having a pressure of 10 sccm (partial pressure 6.65 Pa) as a plasma enhancement gas is introduced into the vacuum processing chamber 11, The total pressure in the processing chamber 11 is 13.3 Pa, the temperature of the catalyst body 10 is 1800 ° C., the high-frequency power is 200 W, the distance between the catalyst body 10 and the upper surface of the plasma generating means 31 is 30 mm, the lower surface of the plasma generating means 31 and the Si substrate 5 was 45 mm, the temperature of the Si substrate 5 was 100 ° C., and the treatment time was 10 minutes. As described above, since the thickness of the plasma generating means 31 is 25 mm, the distance between the catalyst body 10 and the Si substrate 5 is 100 mm. It was confirmed that an amorphous Si—O—C film having a thickness of 400 nm was formed on the Si substrate 5 by the above treatment. Here, the distance between the catalyst body 10 and the substrate 5 is increased in order to perform the low-temperature treatment. However, even if the radicals generated by the catalyst body 10 recombine before reaching the substrate 5, they are N. Since radicalization is performed in the plasma of two gases, the radical density on the surface of the Si substrate 5 is maintained at a desired density, and a desired film formation rate is obtained.

(実施例2)
まず、プラズマ生成手段31を触媒体10と基板5との間に配置してプラズマエッチング処理を行った。この処理では、真空処理室内11にNガスを導入し、真空処理室11の圧力を16.6Pa、高周波電力を1kW、処理時間を5分とした。この処理によってSi基板5表面の酸化膜が除去された。次に、プラズマ生成手段31を真空収納室12に収納して、触媒CVD処理を行った。この処理では、それぞれ30sccmのモノメチルシラン、HガスおよびNガスの混合ガスを真空処理室11に導入し、圧力を0.15Pa、触媒体10の温度を2000℃、触媒体10とSi基板5との距離を170mm、Si基板5の温度を100℃、処理時間を10分とした。この処理によってSi基板5上に膜厚が500nmのアモルファスSi−C膜が形成されたことが確認された。
(Example 2)
First, the plasma generating means 31 was disposed between the catalyst body 10 and the substrate 5 to perform plasma etching. In this processing, N 2 gas was introduced into the vacuum processing chamber 11, the pressure in the vacuum processing chamber 11 was 16.6 Pa, the high frequency power was 1 kW, and the processing time was 5 minutes. By this treatment, the oxide film on the surface of the Si substrate 5 was removed. Next, the plasma generating means 31 was stored in the vacuum storage chamber 12 and a catalytic CVD process was performed. In this treatment, a mixed gas of 30 sccm of monomethylsilane, H 2 gas and N 2 gas is introduced into the vacuum processing chamber 11, the pressure is 0.15 Pa, the temperature of the catalyst body 10 is 2000 ° C., the catalyst body 10 and the Si substrate The distance to 5 was 170 mm, the temperature of the Si substrate 5 was 100 ° C., and the treatment time was 10 minutes. It was confirmed that an amorphous Si—C film having a thickness of 500 nm was formed on the Si substrate 5 by this treatment.

次に、本発明の第2の実施形態について説明する。図2は本実施形態に係る触媒CVD装置(以下、装置という)を示す。この装置1aでは、1800〜2000℃程度に加熱した触媒体71(図4)と基板5との距離は一般的には50mm程度に設定される。ところで、基板5が軟化温度の低いプラスチック板などであるときは、加熱した触媒体71からの輻射熱によって基板5が変形するのを防止するために、上記の距離を大きく(100〜200mmに)する必要がある。しかし、距離を大きくすると、加熱した触媒体71との相互作用で生成されたラジカルが基板5に到達する途中で再結合するため、ラジカル密度が基板5の近くで低下し、成膜レートが低くなるといった問題が生じる。この問題を解決するため、本実施形態では、真空処理室11の圧力を通常の触媒CVD処理での圧力(10Pa程度)よりも低くして(0.1Pa程度)ラジカルの平均自由行程を長くすることにより、気相中でのラジカルの再結合を減らして基板5近くでのラジカル密度の低下を防止する。以下に、上記のことを実現するための具体的構成について説明する。   Next, a second embodiment of the present invention will be described. FIG. 2 shows a catalytic CVD apparatus (hereinafter referred to as an apparatus) according to this embodiment. In this apparatus 1a, the distance between the catalyst body 71 (FIG. 4) heated to about 1800 to 2000 ° C. and the substrate 5 is generally set to about 50 mm. By the way, when the substrate 5 is a plastic plate having a low softening temperature, the distance is increased (100 to 200 mm) in order to prevent the substrate 5 from being deformed by the radiant heat from the heated catalyst body 71. There is a need. However, when the distance is increased, the radicals generated by the interaction with the heated catalyst 71 are recombined in the middle of reaching the substrate 5, so that the radical density decreases near the substrate 5 and the film formation rate is lowered. Problem arises. In order to solve this problem, in this embodiment, the pressure in the vacuum processing chamber 11 is made lower than the pressure (about 10 Pa) in the normal catalytic CVD process (about 0.1 Pa), and the mean free path of radicals is lengthened. As a result, the recombination of radicals in the gas phase is reduced to prevent a decrease in radical density near the substrate 5. A specific configuration for realizing the above will be described below.

図2において、5は基板、13は触媒体71に給電するAC電源、15は石英窓、16は放射温度計、17はゲートバルブ、18は基板ホルダー、19は熱電対、20は冷媒流路、21はヒータ、22は排気口、23は真空ポンプである。上記のものは図1に示すものと同一であり、符号も同じである。70は複数の触媒体71が取り付けられた触媒体ユニット(図4)である。真空処理室11は、シャワーヘッド14などが取り付けられた天板11aと容器本体11bとから構成される。この天板11aを開けて触媒体ユニット70を取り外した後、触媒体71の交換・取り付けが行なわれる。   In FIG. 2, 5 is a substrate, 13 is an AC power supply for supplying power to the catalyst body 71, 15 is a quartz window, 16 is a radiation thermometer, 17 is a gate valve, 18 is a substrate holder, 19 is a thermocouple, and 20 is a refrigerant flow path. , 21 is a heater, 22 is an exhaust port, and 23 is a vacuum pump. The above is the same as that shown in FIG. Reference numeral 70 denotes a catalyst body unit (FIG. 4) to which a plurality of catalyst bodies 71 are attached. The vacuum processing chamber 11 includes a top plate 11a to which a shower head 14 and the like are attached and a container body 11b. After the top plate 11a is opened and the catalyst body unit 70 is removed, the catalyst body 71 is replaced and attached.

まず、シャワーヘッド14について説明する。シャワーヘッド14は、本体51と、本体51に収容・固定されたガスパイプ52、シャワー板53および熱遮蔽板54とから構成され、それぞれステンレス製である。図において、61は本体51とシャワー板53とで囲まれた領域、62はシャワー板53と熱遮蔽板54との間の領域、63は触媒体ユニット70の下方の領域を示す。ガスパイプ52は、中心から45度間隔で八方に延びており、ガス導入部52bから導入された原料ガスがガスパイプ52内を流れて穴52aから吹き出る。この原料ガスは、シャワー板53の貫通孔53aと熱遮蔽板54の貫通孔54aとを通って触媒体ユニット70の触媒体71に吹き付けられる。図4に示すように、触媒体71は直線のワイヤであり、1800℃程度に加熱されている。熱遮蔽板54は、触媒体71からの輻射熱を遮蔽し、シャワー板53の貫通孔53aが熱膨張で変形する(径が小さくなる)のを防止する。また、シャワー板53および熱遮蔽板54は450mm×450mm程度の矩形のステンレス板である。   First, the shower head 14 will be described. The shower head 14 includes a main body 51, a gas pipe 52 accommodated and fixed in the main body 51, a shower plate 53, and a heat shield plate 54, and each is made of stainless steel. In the figure, reference numeral 61 denotes a region surrounded by the main body 51 and the shower plate 53, 62 denotes a region between the shower plate 53 and the heat shielding plate 54, and 63 denotes a region below the catalyst body unit 70. The gas pipe 52 extends in eight directions from the center at intervals of 45 degrees, and the source gas introduced from the gas introduction part 52b flows through the gas pipe 52 and blows out from the hole 52a. This source gas is blown to the catalyst body 71 of the catalyst body unit 70 through the through hole 53a of the shower plate 53 and the through hole 54a of the heat shielding plate 54. As shown in FIG. 4, the catalyst body 71 is a straight wire and is heated to about 1800 ° C. The heat shielding plate 54 shields the radiant heat from the catalyst body 71 and prevents the through hole 53a of the shower plate 53 from being deformed by thermal expansion (diameter is reduced). The shower plate 53 and the heat shielding plate 54 are rectangular stainless steel plates of about 450 mm × 450 mm.

図3はシャワーヘッド14と触媒体71との位置関係を示す。(a)は鉛直方向での位置関係を示し、(b)は平面的な位置関係を示す。ここで、シャワー板53、熱遮蔽板54および触媒体71は平行であり、本体51とシャワー板53との間隔は15mm、シャワー板53と熱遮蔽板54との間隔は10mm、熱遮蔽板54から触媒体71までの距離は15mm、シャワー板53の板厚は2mm、熱遮蔽板54の板厚は1mmである。シャワー板53の貫通孔53aは0.5mmφ、熱遮蔽板54の貫通孔54aは2.0mmφである。格子状に配置された貫通孔53a,54aの間隔は共に10mmである。また、貫通孔53a,54aは互いに位置がずれている。すなわち、貫通孔53aの直下から外れた位置に貫通孔54aが配置されており、直線上に並んだ貫通孔53aの中間点に貫通孔54aが位置する。触媒体71は、シャワーヘッド14のガス吹き出し口に相当する貫通孔54aの直下に位置する。ここでは全ての貫通孔54aの直下に触媒体71が配置されていないが、これは実験した範囲では触媒体71の本数を2倍にしても特にこれといった効果が見られなかったことによる。   FIG. 3 shows the positional relationship between the shower head 14 and the catalyst body 71. (A) shows the positional relationship in the vertical direction, and (b) shows the planar positional relationship. Here, the shower plate 53, the heat shield plate 54, and the catalyst body 71 are parallel, the interval between the main body 51 and the shower plate 53 is 15 mm, the interval between the shower plate 53 and the heat shield plate 54 is 10 mm, and the heat shield plate 54. The distance from the catalyst body 71 is 15 mm, the thickness of the shower plate 53 is 2 mm, and the thickness of the heat shielding plate 54 is 1 mm. The through hole 53a of the shower plate 53 is 0.5 mmφ, and the through hole 54a of the heat shield plate 54 is 2.0 mmφ. The interval between the through holes 53a and 54a arranged in a lattice pattern is 10 mm. Further, the positions of the through holes 53a and 54a are shifted from each other. That is, the through-hole 54a is arranged at a position off from directly below the through-hole 53a, and the through-hole 54a is located at an intermediate point between the through-holes 53a arranged in a straight line. The catalyst body 71 is located immediately below the through hole 54 a corresponding to the gas outlet of the shower head 14. Here, the catalyst bodies 71 are not arranged immediately below all the through holes 54a. This is because, in the experimental range, even if the number of the catalyst bodies 71 is doubled, such an effect is not particularly observed.

上記のように構成されたシャワーヘッド14において、ガスパイプ52の穴52aから吹き出た原料ガスは、矢印で示すように、領域61、貫通孔53a、領域62を通って貫通孔54aから吹き出し、触媒体71全体に接触する、あるいは触媒体71の近傍を通過する。ここではシャワー板53の板厚を厚く、貫通孔53aの径を小さくして貫通孔53aのコンダクタンスを小さくしているので、領域61と63との間に圧力差が生じる。しかも上述のように真空処理室11の圧力を低くしている。この結果、原料ガスは貫通孔54aから触媒体71に向かって強く吹き出して高い割合で触媒体71に接触し、その後は触媒体71の近傍に滞在することなく基板5に向かって流れる。   In the shower head 14 configured as described above, the raw material gas blown out from the hole 52a of the gas pipe 52 is blown out from the through hole 54a through the region 61, the through hole 53a, and the region 62, as indicated by arrows, and the catalyst body. 71 contacts the entire body 71 or passes near the catalyst body 71. Here, since the plate thickness of the shower plate 53 is increased and the diameter of the through hole 53a is decreased to reduce the conductance of the through hole 53a, a pressure difference is generated between the regions 61 and 63. Moreover, the pressure in the vacuum processing chamber 11 is lowered as described above. As a result, the raw material gas is strongly blown out from the through hole 54a toward the catalyst body 71 and comes into contact with the catalyst body 71 at a high rate, and thereafter flows toward the substrate 5 without staying in the vicinity of the catalyst body 71.

また、貫通孔53a,54aは互いに位置がずれているので、原料ガスが熱遮蔽板54の貫通孔54aから均等に吹き出して触媒体71に満遍なく接触する。さらに、熱遮蔽板54の貫通孔54a、すなわちシャワーヘッド14のガス吹き出し口の直下にガス吹き出し口に沿って触媒体71が配置されているので、原料ガスが高い割合で触媒体71に接触する。尚、ガス導入部52での圧力の測定値が3000Paであったので、上記の圧力差は1000Pa以上、少なくとも100Pa以上と推測される。   Further, since the positions of the through holes 53a and 54a are shifted from each other, the raw material gas blows out uniformly from the through holes 54a of the heat shielding plate 54 and uniformly contacts the catalyst body 71. Furthermore, since the catalyst body 71 is disposed along the gas outlet immediately below the through hole 54a of the heat shielding plate 54, that is, the gas outlet of the shower head 14, the source gas contacts the catalyst body 71 at a high rate. . In addition, since the measured value of the pressure in the gas introduction part 52 was 3000 Pa, said pressure difference is estimated to be 1000 Pa or more and at least 100 Pa or more.

本実施形態では、シャワー板53で圧力差を生じさせ、しかも真空処理室11の圧力を通常よりも低くして、加熱した触媒体71よって生成されたラジカルが基板5に到達する途中で再結合するのを抑制(防止)しているので、真空処理室11の内壁への膜の付着を抑えて基板5表面に効率よく成膜を行なうことができる。つまり、基板5を触媒体71から遠ざけても、基板5表面でのラジカル密度は低下せず、所望の成膜レートで基板5表面に成膜が行なわれる。また、ラジカルの平均自由行程が長いため、ラジカルは略直線的に基板に向かって進む。このため、触媒体71の熱膨張によって触媒体71と貫通孔54aとの位置関係が変わると、基板5表面に膜が均一に形成されなくなる。この位置関係は、後述する触媒体ユニット70によって一定に保たれるようになっている。さらに、熱遮蔽板54がシャワー板53の下方(触媒体71側)に設けられており、シャワー板53の貫通孔53aが輻射熱によって変形しないので、原料ガスは熱遮蔽板54の貫通孔54aから常に同じ態様で吹き出す。尚、輻射熱によって貫通孔54aが変形するおそれがあるが、径が大きいのでガス流に対する影響は小さい。   In the present embodiment, a pressure difference is generated in the shower plate 53, and the pressure in the vacuum processing chamber 11 is made lower than usual, so that the radicals generated by the heated catalyst body 71 are recombined in the middle of reaching the substrate 5. Since this is suppressed (prevented), film deposition on the inner wall of the vacuum processing chamber 11 can be suppressed and film formation can be efficiently performed on the surface of the substrate 5. That is, even if the substrate 5 is moved away from the catalyst body 71, the radical density on the surface of the substrate 5 does not decrease, and film formation is performed on the surface of the substrate 5 at a desired film formation rate. Further, since the mean free path of the radical is long, the radical proceeds substantially linearly toward the substrate. For this reason, if the positional relationship between the catalyst body 71 and the through hole 54a changes due to thermal expansion of the catalyst body 71, a film is not uniformly formed on the surface of the substrate 5. This positional relationship is kept constant by a catalyst body unit 70 described later. Furthermore, since the heat shielding plate 54 is provided below the shower plate 53 (on the catalyst body 71 side) and the through hole 53a of the shower plate 53 is not deformed by radiant heat, the source gas passes through the through hole 54a of the heat shielding plate 54. Always blow out in the same manner. Although the through hole 54a may be deformed by radiant heat, since the diameter is large, the influence on the gas flow is small.

ところで、輻射熱による基板5の変形を防止するためには、基板5の軟化温度や触媒体71の温度にもよるが、一般的には、基板5と触媒体71との距離を100mm以上にする必要がある。一方、気体分子の平均自由行程λは下記の式で表される。
λ(mm)=C/P(Pa)
ここで、Pは圧力であり、Cは係数であり、気体が空気のときはC=7である。原料ガスの分子やラジカルの種類によってはCの値が異なるが、目安として考えてC=7と見積もる。また、実用的には、平均自由行程を触媒体71と基板5との距離の1/3程度以上とすれば、上記のラジカルの再結合を防止して成膜を行なうことが可能と考えられる。上記距離が100mmのときに平均自由行程を33mm以上にするためには、圧力を0.2Pa(P=C/λ=7/33=0.2)以下にする必要がある。
By the way, in order to prevent the deformation of the substrate 5 due to radiant heat, although it depends on the softening temperature of the substrate 5 and the temperature of the catalyst body 71, the distance between the substrate 5 and the catalyst body 71 is generally set to 100 mm or more. There is a need. On the other hand, the mean free path λ of gas molecules is expressed by the following equation.
λ (mm) = C / P (Pa)
Here, P is a pressure, C is a coefficient, and C = 7 when the gas is air. Although the value of C differs depending on the type of the source gas molecules and radicals, C = 7 is estimated as a guide. Further, practically, if the mean free path is set to about 1/3 or more of the distance between the catalyst body 71 and the substrate 5, it is considered that film formation can be performed while preventing recombination of the above radicals. . In order to make the mean free path 33 mm or more when the distance is 100 mm, the pressure needs to be 0.2 Pa (P = C / λ = 7/33 = 0.2) or less.

次に、触媒体ユニット70について説明する。図4は触媒体ユニット70の概略構造を示す。触媒体ユニット70は上記のシャワー板53よりも幾分大きい矩形形状である。図において、71はタングステン製の0.5φの直線状ワイヤである触媒体、72,73は銅製の電源バー、74,75はセラミック製の枠形成部材、76は後述するバネの一端を引っ掛けるバネ支持棒、77はバネ支持棒76を電源バー73に取り付けるための支柱である。上記の各部材はネジなどで互いに固定されている。電源バー72,73の凸部72a,73aには、それぞれ銅製の給電棒55,56が取り付けられており、給電棒55,56の他端にAC電源13が接続されている(図2)。このAC電源13から電源バー72,73に電気的に並列接続された複数の触媒体71に給電が行なわれ、触媒体71が発熱高温化する。また、給電棒55,56は絶縁部材57で天板11aから絶縁されている。   Next, the catalyst body unit 70 will be described. FIG. 4 shows a schematic structure of the catalyst body unit 70. The catalyst body unit 70 has a rectangular shape somewhat larger than the shower plate 53 described above. In the figure, 71 is a catalyst body made of tungsten 0.5φ linear wire, 72 and 73 are copper power bars, 74 and 75 are ceramic frame forming members, and 76 is a spring for hooking one end of a spring described later. A support bar 77 is a support for attaching the spring support bar 76 to the power bar 73. The above members are fixed to each other with screws or the like. Copper power supply rods 55 and 56 are attached to the convex portions 72a and 73a of the power supply bars 72 and 73, respectively, and the AC power supply 13 is connected to the other ends of the power supply rods 55 and 56 (FIG. 2). Power is supplied from the AC power supply 13 to the plurality of catalyst bodies 71 electrically connected in parallel to the power supply bars 72 and 73, and the catalyst bodies 71 are heated and heated. Further, the power feeding rods 55 and 56 are insulated from the top plate 11a by an insulating member 57.

図5は図4のA部の構造の詳細を示す。電源バー72には触媒体71ごとに貫通孔72bが設けられており、この貫通孔72bに挿入された触媒体71の端部がネジ72cで貫通孔72bの内壁に押え付けられて固定される。この固定によって触媒体71と電源バー72とが電気的に接続される。   FIG. 5 shows details of the structure of part A in FIG. The power supply bar 72 is provided with a through hole 72b for each catalyst body 71, and the end of the catalyst body 71 inserted into the through hole 72b is pressed and fixed to the inner wall of the through hole 72b with a screw 72c. . By this fixing, the catalyst body 71 and the power source bar 72 are electrically connected.

図6は図4のB部の構造の詳細を示す。(a)は触媒体71の取り付け構造を示す。(b)は触媒体ユニット70の外側から電源バー73を見た図である。電源バー73には触媒体71ごとに貫通孔73bが設けられており、この貫通孔73bには銅製の移動体81が摺動自在(移動自在)に嵌め込まれている。移動体81の一方の側には、触媒体71の端部を挿入する穴81aが設けられており、この穴81aに挿入された触媒体71が穴81aの内壁にネジ81bで押さえ付けられて固定される。この固定によって触媒体71と移動体81とが電気的に接続される。   FIG. 6 shows details of the structure of part B in FIG. (A) shows the attachment structure of the catalyst body 71. FIG. FIG. 6B is a view of the power supply bar 73 as viewed from the outside of the catalyst unit 70. The power supply bar 73 is provided with a through hole 73b for each catalyst body 71, and a copper moving body 81 is slidably (movably) fitted into the through hole 73b. A hole 81a for inserting the end of the catalyst body 71 is provided on one side of the moving body 81. The catalyst body 71 inserted into the hole 81a is pressed against the inner wall of the hole 81a by a screw 81b. Fixed. By this fixing, the catalyst body 71 and the moving body 81 are electrically connected.

移動体81の他方の側には、移動体81が反対側の電源バー72の方へ抜けるのを防止するフランジ81c、ナット82と係合する雄ネジ(図示せず)およびバネ83の一端を引っ掛けるための引っ掛け穴81dが設けられている。雄ネジに嵌め込まれた圧着端子84はナット82でフランジ81cに押え付けて固定されている。この圧着端子84に導線85で接続された圧着端子86は、図6(b)に示すように、電源バー73にネジ87で固定される。上記のようにして、触媒体71が電源バー73に電気的に接続される。また、移動体81は、両端がそれぞれ引っ掛け穴81dおよびバネ支持棒76に引っ掛けられたバネ83の張力(収縮力)によってバネ支持棒76の方に引っ張られる。   On the other side of the moving body 81, a flange 81 c that prevents the moving body 81 from slipping toward the opposite power bar 72, a male screw (not shown) that engages with the nut 82, and one end of the spring 83 are provided. A hook hole 81d for hooking is provided. The crimp terminal 84 fitted in the male screw is pressed against the flange 81c by a nut 82 and fixed. The crimp terminal 86 connected to the crimp terminal 84 with the conducting wire 85 is fixed to the power supply bar 73 with screws 87 as shown in FIG. As described above, the catalyst body 71 is electrically connected to the power supply bar 73. The moving body 81 is pulled toward the spring support bar 76 by the tension (contraction force) of the spring 83 hooked at both ends of the hook 81d and the spring support bar 76, respectively.

バネ83は、触媒体71の両端がそれぞれ電源バー72および移動体81に固定された後に取り付けられるが、触媒体71を固定するときに触媒体71が撓んでいても、あるいは成膜処理中に発熱高温化した触媒体71が熱膨張して延びても、触媒体71の両端が所定以上の力で反対方向に引っ張られているので、触媒体71は直線形状を保つ。すなわち、常に同じ形状である。したがって、図3(a)、(b)に示すように、直媒体は常に熱遮蔽板54の貫通孔54aの直下に貫通孔54aに沿うように位置する。したがって、原料ガスが常に同じ態様で触媒体71と接触し、あるいは触媒体71の近傍を通過するので、原料ガスと触媒体71との相互作用によって生成されるラジカルの基板5表面での分布も常に同じ分布となり、基板5表面に形成される膜の膜厚や膜質の面内均一性が悪化する、あるいは成膜処理の再現性がないといった問題が生じない。   The spring 83 is attached after both ends of the catalyst body 71 are fixed to the power supply bar 72 and the moving body 81, respectively. Even if the catalyst body 71 is bent when the catalyst body 71 is fixed, or during the film forming process. Even if the catalyst body 71 that has been heated and heated is expanded due to thermal expansion, both ends of the catalyst body 71 are pulled in the opposite direction by a force greater than or equal to a predetermined value, so that the catalyst body 71 maintains a linear shape. That is, it always has the same shape. Accordingly, as shown in FIGS. 3A and 3B, the direct medium is always located along the through hole 54 a immediately below the through hole 54 a of the heat shielding plate 54. Accordingly, since the source gas always contacts the catalyst body 71 in the same manner or passes through the vicinity of the catalyst body 71, the distribution of radicals generated by the interaction between the source gas and the catalyst body 71 on the surface of the substrate 5 is also increased. The distribution is always the same, and there is no problem that the in-plane uniformity of the film thickness and film quality of the film formed on the surface of the substrate 5 is deteriorated or the film forming process is not reproducible.

以上で装置1aの実施形態について説明したが、以下に実施例を示す。
(実施例3)
まず、触媒エッチング処理を行った。この処理では、それぞれ30sccmのHガスとNガスとの混合ガスを真空処理室11内に導入し、真空処理室11の圧力を0.12Pa、触媒体71の温度を1800℃、触媒体71とPETフィルム基板5との距離を170mm、処理時間を1.5分とした。この水素ラジカルによるエッチング処理によってPETフィルム基板5表面が清浄化(エッチング)された。次に、触媒CVD処理を行った。この処理では、それぞれ30sccmのモノメチルシラン、HガスおよびNガスの混合ガスを真空処理室11内に導入し、圧力を0.2Pa、触媒体の温度を1500℃、触媒体71とPETフィルム基板5との距離を170mm、PETフィルム基板5の温度を50℃、処理時間を10分とした。この処理によってPETフィルム基板5上に膜厚が50nmのアモルファスSi−C膜が形成されたことが確認された。
Although the embodiment of the apparatus 1a has been described above, examples will be shown below.
(Example 3)
First, catalytic etching treatment was performed. In this process, a mixed gas of 30 sccm of H 2 gas and N 2 gas is introduced into the vacuum processing chamber 11, the pressure in the vacuum processing chamber 11 is 0.12 Pa, the temperature of the catalyst body 71 is 1800 ° C., and the catalyst body The distance between 71 and the PET film substrate 5 was 170 mm, and the treatment time was 1.5 minutes. The surface of the PET film substrate 5 was cleaned (etched) by this etching process using hydrogen radicals. Next, catalytic CVD treatment was performed. In this process, a mixed gas of 30 sccm of monomethylsilane, H 2 gas and N 2 gas is introduced into the vacuum processing chamber 11, the pressure is 0.2 Pa, the temperature of the catalyst body is 1500 ° C., the catalyst body 71 and the PET film The distance from the substrate 5 was 170 mm, the temperature of the PET film substrate 5 was 50 ° C., and the treatment time was 10 minutes. It was confirmed that an amorphous Si—C film having a thickness of 50 nm was formed on the PET film substrate 5 by this treatment.

以上述べた第2の実施形態においては、複数の触媒体71を電気的に並列に接続したが、図7に模式的に示すように触媒体71を直列に接続してもよい。図において、70aは触媒体ユニット、90は絶縁性の枠部材、91は枠部材90に固定された銅製の導電部材、81は枠部材90の貫通孔(図示せず)に摺動自在に嵌め込まれた移動体、83はバネ、85は導線である。移動体81、バネ83および導線85は図6と同様のものである。但し、図6に示すナット82や導線85の両端の圧着端子84,86などの図示は省略されている。触媒体71の一端は部材91に固定され、他端は移動体81に固定され、触媒体71の両端がバネ83によって反対方向に引っ張られる。また、触媒体71同士は、導電部材91または導線85によって直列接続される。この構成ではAC電源13の電圧は高くなるが電流が小さいので、電源バー72,73(図4)を介して触媒体71に電流を流さなくてもよい。尚、第2の実施形態で示した触媒体ユニット70,70aおよびシャワーヘッド14は第1の実施形態でも好適に使用できる。   In the second embodiment described above, the plurality of catalyst bodies 71 are electrically connected in parallel, but the catalyst bodies 71 may be connected in series as schematically shown in FIG. In the figure, 70a is a catalyst unit, 90 is an insulating frame member, 91 is a copper conductive member fixed to the frame member 90, and 81 is slidably fitted into a through hole (not shown) of the frame member 90. The movable body, 83 is a spring, and 85 is a conductor. The moving body 81, the spring 83, and the conducting wire 85 are the same as those in FIG. However, the illustration of the nut 82 and the crimp terminals 84 and 86 at both ends of the conductive wire 85 shown in FIG. 6 is omitted. One end of the catalyst body 71 is fixed to the member 91, the other end is fixed to the moving body 81, and both ends of the catalyst body 71 are pulled in opposite directions by the spring 83. Further, the catalyst bodies 71 are connected in series by a conductive member 91 or a conductive wire 85. In this configuration, the voltage of the AC power supply 13 is increased, but the current is small. Therefore, the current does not have to flow through the catalyst body 71 via the power supply bars 72 and 73 (FIG. 4). In addition, the catalyst body units 70 and 70a and the shower head 14 shown in the second embodiment can be suitably used in the first embodiment.

また、上記第2の実施形態では、バネ83の収縮力によって触媒体71の両端間に張力がかかるようにしたが、バネの接続方法を変更してバネの伸張力によって触媒体71の両端間に張力がかかるようにしてもよい。また、つるまきバネ83に代えて板バネなどの他の構造のバネを用いるようにしてもよい。いずれにしろ、弾性体の収縮力あるいは伸張力によって、直線状の触媒体71の両端に互いの異なる方向に引っ張る力がかかるようにすればよい。さらに、上記第1、第2の実施形態では、圧力や温度、穴の径、距離などの数値を示したが、これらの数値は実施形態を具体的に説明するためのものであり、これらの数値を適宜変更しても本発明を実施することができる。   Further, in the second embodiment, the tension is applied between both ends of the catalyst body 71 by the contraction force of the spring 83. However, the connection method of the spring is changed, and the extension force of the spring is applied between the both ends of the catalyst body 71. You may make it apply tension to. Further, instead of the helical spring 83, a spring having another structure such as a leaf spring may be used. In any case, the pulling force of the elastic body may be applied to both ends of the linear catalyst body 71 in different directions. Furthermore, in the first and second embodiments, numerical values such as pressure, temperature, hole diameter, and distance are shown, but these numerical values are for specifically explaining the embodiment, and these The present invention can be carried out by appropriately changing the numerical values.

さらに、上記第1、第2実施形態では、シャワーヘッド14を装置1,1aの上部に、基板ホルダー18を下部に配置したが、シャワーヘッド14を下部に、基板ホルダー18を上部に配置しても本発明を実施することができる。さらに、上記実施形態では、被処理体を基板5としたが、被処理体は板状のものに限定されるものではなく、被処理体が薄いフィルムや長いシート状のものなどであっても本発明を実施することができる。さらに、上記第1、第2実施形態では、基板ホルダー18を昇降させることにより基板5と触媒体10,71との距離を変えるようにしたが、触媒体10,71とシャワーヘッド14とを昇降させることにより上記距離を変えるようにしても本発明を実施することができる。   Further, in the first and second embodiments, the shower head 14 is arranged at the upper part of the devices 1 and 1a and the substrate holder 18 is arranged at the lower part. However, the shower head 14 is arranged at the lower part and the substrate holder 18 is arranged at the upper part. Can also implement the present invention. Furthermore, in the said embodiment, although the to-be-processed object was the board | substrate 5, the to-be-processed object is not limited to a plate-shaped thing, Even if a to-be-processed object is a thin film, a long sheet-like thing, etc. The present invention can be implemented. Further, in the first and second embodiments, the distance between the substrate 5 and the catalyst bodies 10 and 71 is changed by moving the substrate holder 18 up and down. However, the catalyst bodies 10 and 71 and the shower head 14 are moved up and down. Thus, the present invention can be implemented even when the distance is changed.

触媒CVD装置の第1の実施形態を示す図である。It is a figure which shows 1st Embodiment of a catalytic CVD apparatus. 触媒CVD装置の第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment of a catalytic CVD apparatus. シャワーヘッドと触媒体との位置関係を示す図である。It is a figure which shows the positional relationship of a shower head and a catalyst body. 触媒体ユニットの概略構造を示す図である。It is a figure which shows schematic structure of a catalyst body unit. 図4のA部の構造の詳細を示す図である。It is a figure which shows the detail of the structure of the A section of FIG. 図4のB部の構造の詳細を示す図である。It is a figure which shows the detail of the structure of the B section of FIG. 触媒体ユニットの他の構造例を示す図である。It is a figure which shows the other structural example of a catalyst body unit.

符号の説明Explanation of symbols

1,1a 触媒CVD装置
5 基板(被処理体)
10 触媒体(第1の実施形態)
11 真空処理室
12 真空収納室
14 シャワーヘッド
18 基板ホルダー
23 真空ポンプ
25 高周波電源
30 プラズマ生成ユニット
31 プラズマ生成手段
32 シールド板
33 高周波電極(第1電極)
34 接地電極(第2電極)
38 カバー(閉塞手段)
53 シャワー板
53a シャワー板の貫通孔
54 熱遮蔽板
54a 熱遮蔽板の貫通孔
70,70a 触媒体ユニット
71 触媒体(第2の実施形態)
72 電源バー(第1の固定部材)
73 電源バー(第2の固定部材)
76 バネ支持棒(第2の固定部材)
81 移動体
83 バネ(弾性体)
1,1a Catalytic CVD equipment 5 Substrate (object to be processed)
10. Catalyst body (first embodiment)
DESCRIPTION OF SYMBOLS 11 Vacuum processing chamber 12 Vacuum storage chamber 14 Shower head 18 Substrate holder 23 Vacuum pump 25 High frequency power supply 30 Plasma generation unit 31 Plasma generation means 32 Shield plate 33 High frequency electrode (first electrode)
34 Ground electrode (second electrode)
38 Cover (blocking means)
53 Shower plate 53a Shower plate through hole 54 Heat shield plate 54a Heat shield plate through hole 70, 70a Catalyst body unit 71 Catalyst body (second embodiment)
72 Power bar (first fixing member)
73 Power bar (second fixing member)
76 Spring support rod (second fixing member)
81 Moving body 83 Spring (elastic body)

Claims (10)

真空処理室内に導入された原料ガスを加熱した触媒体によって分解・活性化することにより被処理体に成膜を行なう触媒CVD装置において、
前記触媒体と前記被処理体との距離を変える距離変更手段と、
前記触媒体と前記被処理体との間に挿脱可能であって、気体が通過可能なプラズマ生成手段と、を備えることを特徴とする触媒CVD装置。
In a catalytic CVD apparatus that forms a film on an object to be processed by decomposing and activating the source gas introduced into the vacuum processing chamber with a heated catalyst body,
Distance changing means for changing the distance between the catalyst body and the object to be treated;
A catalytic CVD apparatus comprising: plasma generation means that can be inserted / removed between the catalyst body and the object to be processed and allows gas to pass therethrough.
請求項1に記載の触媒CVD装置において、
前記プラズマ生成手段は、前記加熱した触媒体だけが用いられる触媒CVD処理が行われるときは、前記触媒体と前記被処理体との間から退避し、プラズマ生成手段だけが用いられるプラズマCVD処理もしくはプラズマエッチング処理、あるいは前記加熱した触媒体とプラズマ生成手段とが併用されるプラズマエンハンスト触媒CVD処理もしくはプラズマエンハンスト触媒エッチング処理が行われるときは、前記触媒体と前記被処理体との間に位置することを特徴とする触媒CVD装置。
The catalytic CVD apparatus according to claim 1,
When the catalytic CVD process in which only the heated catalyst body is used is performed, the plasma generating means is evacuated from between the catalyst body and the target object, and the plasma CVD process in which only the plasma generating means is used or When the plasma etching process or the plasma enhanced catalyst CVD process or the plasma enhanced catalyst etching process in which the heated catalyst body and the plasma generating means are used in combination is positioned between the catalyst body and the target object. The catalytic CVD apparatus characterized by the above-mentioned.
請求項1または請求項2に記載の触媒CVD装置において、
前記プラズマ生成手段は、複数の貫通口を有する板状の第1電極と、第1電極の一方の側に対向配置された複数の貫通口を有する板状の第2電極とを備え、両電極間に高周波電圧が印加されることを特徴とする触媒CVD装置。
In the catalytic CVD apparatus according to claim 1 or 2,
The plasma generating means includes a plate-like first electrode having a plurality of through-holes, and a plate-like second electrode having a plurality of through-holes arranged opposite to one side of the first electrode. A catalytic CVD apparatus in which a high-frequency voltage is applied between them.
請求項3に記載の触媒CVD装置において、
第1電極の他方の側に対向配置された複数の貫通口を有するシールド板を備え、第1電極には高周波電圧が印加され、第2電極とシールド板とは接地されることを特徴とする触媒CVD装置。
In the catalytic CVD apparatus according to claim 3,
A shield plate having a plurality of through holes arranged opposite to each other on the first electrode is provided, a high frequency voltage is applied to the first electrode, and the second electrode and the shield plate are grounded. Catalytic CVD equipment.
請求項1ないし請求項4のいずれかに記載の触媒CVD装置において、
前記真空処理室の開口を介して連設された、前記プラズマ生成手段を収納する真空収納室と、プラズマ生成手段が通過可能な前記開口を塞ぐ閉塞手段と、を備えることを特徴とする触媒CVD装置。
In the catalytic CVD apparatus according to any one of claims 1 to 4,
Catalytic CVD, comprising: a vacuum storage chamber for storing the plasma generation means, which is connected through the opening of the vacuum processing chamber; and a closing means for closing the opening through which the plasma generation means can pass. apparatus.
真空処理室内に配置した被処理体に成膜を行なう成膜方法において、
前記真空処理室内に成膜ガスとプラズマ増強ガスとを導入し、
加熱した触媒体によって前記成膜ガスからラジカルを生成し、
前記触媒体と前記被処理体との間に配置したプラズマ生成手段によって前記プラズマ増強ガスをプラズマ化し、このプラズマ中で前記ラジカルの密度を高めることを特徴とする成膜方法。
In a film forming method for forming a film on an object to be processed disposed in a vacuum processing chamber,
Introducing a deposition gas and a plasma enhanced gas into the vacuum processing chamber;
A radical is generated from the film-forming gas by the heated catalyst body,
A film forming method, wherein the plasma enhancing gas is converted into plasma by a plasma generating means disposed between the catalyst body and the object to be processed, and the density of the radicals is increased in the plasma.
真空処理室内に導入された原料ガスを加熱した複数の直線状の触媒体によって分解・活性化することにより被処理体に成膜を行なう触媒CVD装置において、
前記触媒体は、両端が反対方向に引っ張られるように支持されることを特徴とする触媒CVD装置。
In a catalytic CVD apparatus that forms a film on an object to be processed by decomposing and activating the raw material gas introduced into the vacuum processing chamber with a plurality of heated linear catalyst bodies,
The catalytic CVD apparatus, wherein the catalyst body is supported so that both ends are pulled in opposite directions.
請求項7に記載の触媒CVD装置において、
前記触媒体の一端は第1の固定部材に固定され、他端は第2の固定部材に対して前記触媒体の直線状の線に沿って移動自在な移動体に固定され、
前記移動体は第2の固定部材に取り付けられた弾性体の収縮力または伸張力によって第1の固定部材とは反対の方向に引っ張られ、
前記触媒体への給電は第1の固定部材および前記移動体を介して行われることを特徴とする触媒CVD装置。
The catalytic CVD apparatus according to claim 7,
One end of the catalyst body is fixed to a first fixing member, and the other end is fixed to a movable body movable along a straight line of the catalyst body with respect to a second fixing member,
The moving body is pulled in a direction opposite to the first fixing member by a contraction force or an extension force of an elastic body attached to the second fixing member,
The catalytic CVD apparatus, wherein power is supplied to the catalyst body through the first fixed member and the moving body.
請求項7または請求項8に記載の触媒CVD装置において、
前記複数の直線状の触媒体と平行な面に複数のガス吹き出し口を有するシャワーヘッドを備え、
前記原料ガスは前記複数のガス吹き出し口から前記複数の触媒体に向けて真空処理室内に導入され、
前記シャワーヘッドは、複数の貫通孔を有するシャワー板と、シャワー板の下流側に配置され、前記複数のガス吹き出し口を有する熱遮蔽板とを備え、
前記シャワー板は、その前後で圧力差が生じるように構成されることを特徴とする触媒CVD装置。
In the catalytic CVD apparatus according to claim 7 or 8,
A shower head having a plurality of gas outlets on a plane parallel to the plurality of linear catalyst bodies;
The source gas is introduced into the vacuum processing chamber from the plurality of gas outlets toward the plurality of catalyst bodies,
The shower head includes a shower plate having a plurality of through holes, and a heat shield plate disposed on the downstream side of the shower plate and having the plurality of gas outlets,
The shower CVD plate is configured to generate a pressure difference before and after the shower plate.
請求項9に記載の触媒CVD装置を用いて行なう成膜方法において、
前記触媒体と前記被処理体との距離を100mm以上にし、前記真空処理室の圧力を0.2Pa以下にして前記被処理体に成膜を行なうことを特徴とする成膜方法。
In the film-forming method performed using the catalytic CVD apparatus according to claim 9,
A film forming method, wherein a film is formed on the object to be processed by setting a distance between the catalyst body and the object to be processed to 100 mm or more and a pressure in the vacuum processing chamber to 0.2 Pa or less.
JP2005084542A 2005-03-23 2005-03-23 Catalytic CVD equipment Active JP4004510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005084542A JP4004510B2 (en) 2005-03-23 2005-03-23 Catalytic CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005084542A JP4004510B2 (en) 2005-03-23 2005-03-23 Catalytic CVD equipment

Publications (2)

Publication Number Publication Date
JP2006269671A true JP2006269671A (en) 2006-10-05
JP4004510B2 JP4004510B2 (en) 2007-11-07

Family

ID=37205327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005084542A Active JP4004510B2 (en) 2005-03-23 2005-03-23 Catalytic CVD equipment

Country Status (1)

Country Link
JP (1) JP4004510B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108390A (en) * 2007-10-31 2009-05-21 Ulvac Japan Ltd Film deposition system and film deposition method
JP2009191355A (en) * 2008-02-14 2009-08-27 Samsung Electro-Mechanics Co Ltd Gas supply unit and chemical vapor deposition apparatus
JP2010059468A (en) * 2008-09-03 2010-03-18 Ishikawa Seisakusho Ltd Support structure of catalyst body in catalytic chemical vapor-deposition apparatus
JP2010159450A (en) * 2009-01-07 2010-07-22 Ishikawa Seisakusho Ltd Support structure of catalyst body in catalytic chemical vapor-deposition apparatus
JP2010209438A (en) * 2009-03-12 2010-09-24 Dia Shinku Kk Thermal filament cvd system
JP2013018998A (en) * 2011-07-07 2013-01-31 Tokyo Metropolitan Industrial Technology Research Institute Hot filament cvd apparatus and deposition method
JP2013123028A (en) * 2011-11-08 2013-06-20 Hitachi High-Technologies Corp Heat treatment apparatus
JP2016162921A (en) * 2015-03-03 2016-09-05 昭和電工株式会社 Sic chemical vapor deposition device
JP2020041182A (en) * 2018-09-10 2020-03-19 株式会社神戸製鋼所 Thermal filament cvd device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108390A (en) * 2007-10-31 2009-05-21 Ulvac Japan Ltd Film deposition system and film deposition method
JP2009191355A (en) * 2008-02-14 2009-08-27 Samsung Electro-Mechanics Co Ltd Gas supply unit and chemical vapor deposition apparatus
JP2010059468A (en) * 2008-09-03 2010-03-18 Ishikawa Seisakusho Ltd Support structure of catalyst body in catalytic chemical vapor-deposition apparatus
JP2010159450A (en) * 2009-01-07 2010-07-22 Ishikawa Seisakusho Ltd Support structure of catalyst body in catalytic chemical vapor-deposition apparatus
JP2010209438A (en) * 2009-03-12 2010-09-24 Dia Shinku Kk Thermal filament cvd system
JP2013018998A (en) * 2011-07-07 2013-01-31 Tokyo Metropolitan Industrial Technology Research Institute Hot filament cvd apparatus and deposition method
JP2013123028A (en) * 2011-11-08 2013-06-20 Hitachi High-Technologies Corp Heat treatment apparatus
US9490104B2 (en) 2011-11-08 2016-11-08 Hitachi High-Technologies Corporation Heat treatment apparatus
JP2016162921A (en) * 2015-03-03 2016-09-05 昭和電工株式会社 Sic chemical vapor deposition device
JP2020041182A (en) * 2018-09-10 2020-03-19 株式会社神戸製鋼所 Thermal filament cvd device
WO2020054327A1 (en) * 2018-09-10 2020-03-19 株式会社神戸製鋼所 Hot filament cvd device
JP7061049B2 (en) 2018-09-10 2022-04-27 株式会社神戸製鋼所 Thermal filament CVD equipment

Also Published As

Publication number Publication date
JP4004510B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4004510B2 (en) Catalytic CVD equipment
US9252001B2 (en) Plasma processing apparatus, plasma processing method and storage medium
KR100688837B1 (en) CVD Apparatus for Depositing Poly Silicon
KR100458779B1 (en) Method for forming metallic film and apparatus for forming the same
TW578212B (en) Atomic layer deposition reactor
KR20100009625A (en) Silicide forming method and system thereof
US10961626B2 (en) Plasma processing apparatus having injection ports at both sides of the ground electrode for batch processing of substrates
KR102192283B1 (en) Plasma annealing method and device for same
JP3787816B2 (en) Heating element CVD equipment
JPWO2010079756A1 (en) Plasma processing equipment
WO2018200404A1 (en) Plasma reactor with electrode filaments
US20120213929A1 (en) Method of operating filament assisted chemical vapor deposition system
KR100855875B1 (en) Gas injection nozzle, apparatus and method for treating substrates using the same
WO2005074333A1 (en) Apparatus of generating glow plasma on a wide surface under atmospheric pressure
WO2010079753A1 (en) Plasma processing apparatus
KR101205242B1 (en) Plasma processing apparatus
JP4450407B2 (en) Plasma processing apparatus and processing method
JP3887690B2 (en) Connection structure between heating element and power supply mechanism in heating element CVD device
US8419856B2 (en) Substrate processing apparatus
TW202342806A (en) Showerhead assembly with heated showerhead
JP2005330518A (en) Plasma treatment device
KR101848992B1 (en) Plasma processing apparatus and method of controlling the same
JP2005123525A (en) Cvd system with self-cleaning function
JP2003218046A (en) Heating element cvd apparatus and heating element cvd method using the same
JP5078656B2 (en) Atomic layer growth equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4004510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250