JP2006266350A - Hydrogen storage vessel and its manufacturing method - Google Patents

Hydrogen storage vessel and its manufacturing method Download PDF

Info

Publication number
JP2006266350A
JP2006266350A JP2005083330A JP2005083330A JP2006266350A JP 2006266350 A JP2006266350 A JP 2006266350A JP 2005083330 A JP2005083330 A JP 2005083330A JP 2005083330 A JP2005083330 A JP 2005083330A JP 2006266350 A JP2006266350 A JP 2006266350A
Authority
JP
Japan
Prior art keywords
heat medium
hydrogen storage
heat exchanger
hydrogen
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005083330A
Other languages
Japanese (ja)
Other versions
JP4516462B2 (en
Inventor
Yoshinori Kawarasaki
芳徳 河原崎
Takashi Iwamoto
隆志 岩本
Toshiki Kabutomori
俊樹 兜森
Koji Owaki
康志 大脇
Akifumi Takenawa
亮史 竹縄
宏和 ▲桑▼原
Hirokazu Kuwabara
Takahiro Kuriiwa
貴寛 栗岩
Nobuhiro Wakabayashi
信弘 若林
Masatoshi Enomoto
正敏 榎本
Masahiko Okamura
昌彦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Japan Steel Works Ltd
Resonac Holdings Corp
Original Assignee
Honda Motor Co Ltd
Showa Denko KK
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Showa Denko KK, Japan Steel Works Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005083330A priority Critical patent/JP4516462B2/en
Publication of JP2006266350A publication Critical patent/JP2006266350A/en
Application granted granted Critical
Publication of JP4516462B2 publication Critical patent/JP4516462B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compact a hydrogen storage vessel and improve its heat exchange efficiency and hydrogen absorption and desorption performance. <P>SOLUTION: Heat exchanger cores 1 provided with one hydrogen absorption alloy storage layer 10 and one heat medium flow passage layer 9 between each plate by laminating a plurality of plates 2, 2 are arranged in parallel and mutually with a clearance 26 therebetween so as to oppose and expose one end parts of the hydrogen absorption alloy storage layer, external shell plates 20, 21, 22 are fixed to outer faces of the heat exchanger cores 1 so as to block the clearance between the plates and the clearance between the cores, and a hydrogen communication port 22c communicating with the clearance 26 and a heat medium inflow port 15a and a heat medium outflow port 16a communicating with the heat medium flow passage layer are provided in the external shell plates 20, 21, 22. The heat exchanger cores 1 are assembled by primary brazing, a plurality of heat exchanger cores are arranged in parallel and mutually with the clearance therebetween, and the external shell plates are arranged on the outer faces of the heat exchanger cores and are assembled by secondary brazing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、水素吸蔵合金の発熱および吸熱作用を熱媒体で効率よく熱交換をして、水素を一時的に収容するとともに、所望により外部に取り出すことができる水素貯蔵容器およびその製造方法に関するものである。   The present invention relates to a hydrogen storage container capable of efficiently exchanging heat and heat absorption of a hydrogen storage alloy with a heat medium to temporarily store hydrogen and to take it out to the outside as desired, and a method for manufacturing the same. It is.

従来、水素吸蔵合金を収容して熱媒体との熱交換によって水素の吸放出を行う水素貯蔵容器として、アルミプレートフィンタイプのものが知られている(例えば特許文献1参照)。
該水素貯蔵容器を図8に基づいて説明すると、2枚のプレート30、30間に波型のフィン31を配置し、フィン31を配置したプレート間の隙間のうち該フィン31の伸長方向にある両端を開放し、一方、波方向にある両端に外殻プレート32を配置して水素含有ガス通路とする。該フィン31とプレート30、30との間に水素吸蔵合金を収容して水素貯蔵ユニットを構成する。この水素貯蔵ユニットを互いに隙間を有するようにして多段に積層する。水素貯蔵ユニット間の隙間では、上記フィン31の伸長方向にある両端に外殻プレート34を配置して、該隙間を熱交換用流体を流す熱媒流路とする。これらの部材は通常、ろう付によって組み付けられる。上記水素含有ガス通路の両端には、水素ヘッダ35、36を設け、該水素ヘッド35、36を通して前記水素含有ガス通路で水素の移動を行う。また、熱媒流路の両端にも同じく熱媒ヘッダ37、38を設け。該熱媒ヘッド37、38を通して前記熱媒流路で熱体の移動を行う。上記によって水素貯蔵容器が構成されている。
なお、従来の水素貯蔵容器は、体積効率を良くするためにフィン長さを長くした長方形型の容器が多く用いられる。このため水素吸蔵合金内の水素通気を良くするためにフィン内部にフィンの伸張方向に沿って通気材を設けている。この場合、水素通気材を配置する空間を確保するため、フィン間隔を大きくする(例えば3mm以上)ことが必要となり、フィン配置による熱交換性能をそれ以上に高めることが難しい。
実公昭61−26718号公報
2. Description of the Related Art Conventionally, an aluminum plate fin type is known as a hydrogen storage container that contains a hydrogen storage alloy and absorbs and releases hydrogen by heat exchange with a heat medium (see, for example, Patent Document 1).
The hydrogen storage container will be described with reference to FIG. 8. A corrugated fin 31 is disposed between two plates 30, 30, and the fin 31 is in the extending direction of the gap between the plates on which the fins 31 are disposed. Both ends are opened, while outer shell plates 32 are arranged at both ends in the wave direction to form a hydrogen-containing gas passage. A hydrogen storage alloy is configured by accommodating a hydrogen storage alloy between the fin 31 and the plates 30 and 30. The hydrogen storage units are stacked in multiple stages so as to have a gap therebetween. In the gap between the hydrogen storage units, the outer shell plates 34 are arranged at both ends in the extending direction of the fin 31, and the gap is used as a heat medium passage through which the heat exchange fluid flows. These members are usually assembled by brazing. Hydrogen headers 35 and 36 are provided at both ends of the hydrogen-containing gas passage, and hydrogen moves through the hydrogen heads 35 and 36 in the hydrogen-containing gas passage. Similarly, heat medium headers 37 and 38 are provided at both ends of the heat medium flow path. The heat medium is moved in the heat medium flow path through the heat medium heads 37 and 38. Thus, a hydrogen storage container is configured.
In addition, as for the conventional hydrogen storage container, in order to improve volumetric efficiency, the rectangular container which lengthened fin length was used a lot. For this reason, in order to improve the hydrogen ventilation in the hydrogen storage alloy, a ventilation material is provided in the fin along the extending direction of the fin. In this case, it is necessary to increase the fin interval (for example, 3 mm or more) in order to secure a space for disposing the hydrogen ventilation material, and it is difficult to further improve the heat exchange performance by the fin arrangement.
Japanese Utility Model Publication No. 61-26718

ところで、水素吸蔵合金を収容した水素貯蔵容器は、燃料電池自動車等の移動を伴う用途にも使用されるため、できるだけ軽量でコンパクトであることが要求される。また、水素吸蔵合金自体の熱伝導性が悪く水素吸収および放出速度が遅い欠点があるため、熱交換性能を向上することが要求されている。   By the way, since the hydrogen storage container which accommodated the hydrogen storage alloy is also used for applications involving movement of a fuel cell vehicle or the like, it is required to be as light and compact as possible. Moreover, since the thermal conductivity of the hydrogen storage alloy itself is poor and there is a drawback that the hydrogen absorption and release rates are slow, it is required to improve the heat exchange performance.

しかし、従来のアルミプレートフィンタイプの水素貯蔵タンクは前記のように構成されているので、外殻プレートおよび水素ヘッダのプレートは圧力に耐えるため厚肉となってしまう。また、外殻プレートは各水素貯蔵ユニットの各層毎に3面のプレート部品が必要となる。すなわちプレートが厚肉であるため容器重量が重く、容器自体も大きくなってしまう。また、製造工程においても外殻プレートの部品数が多く、さらにフィン内部に水素通気材が必要なことでコスト高となる等の問題がある。   However, since the conventional aluminum plate fin type hydrogen storage tank is configured as described above, the outer shell plate and the hydrogen header plate endure pressure and become thick. In addition, the outer shell plate requires three plate parts for each layer of each hydrogen storage unit. That is, since the plate is thick, the weight of the container is heavy and the container itself becomes large. In addition, there are a number of parts of the outer shell plate in the manufacturing process, and there is a problem that the cost is increased due to the necessity of a hydrogen vent inside the fin.

この発明は上記事情を背景としてなされたものであり、コンパクト化が可能で熱交換性能、水素吸放出性能に優れた水素貯蔵容器および該容器を効率よく製造することができる水素貯蔵容器の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, a hydrogen storage container that can be made compact and excellent in heat exchange performance and hydrogen absorption / release performance, and a method for manufacturing a hydrogen storage container that can efficiently manufacture the container The purpose is to provide.

すなわち、本発明の水素貯蔵容器のうち、請求項1記載の発明は、複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアが、前記水素吸蔵合金収容層一端部を対向露出させるようにして互いに間隙を有して並設され、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板が固定され、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とが設けられていることを特徴とする。   That is, among the hydrogen storage containers of the present invention, the invention according to claim 1 is such that a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as one layer between each plate by laminating a plurality of plates. The heat exchanger cores are juxtaposed with a gap therebetween so that one end of the hydrogen storage alloy containing layer is exposed oppositely, and at least the gap between the plates and between the cores on the outer surface of the heat exchanger core An outer shell plate is fixed so as to close the gap, and a hydrogen circulation port communicating with the gap, a heat medium inlet port and a heat medium outlet port communicating with the heat medium flow path layer are provided in the outer shell plate. It is characterized by being.

請求項2記載の水素貯蔵容器の発明は、請求項1記載の発明において、前記水素吸蔵合金収容層に、前記熱交換器コアの並設方向に沿って伸張する水素側フィンが配設され、前記熱媒流路層に、前記並設方向と交差する方向に沿って伸張する熱媒側フィンが配設されていることを特徴とする。   The invention of the hydrogen storage container according to claim 2 is the invention according to claim 1, wherein hydrogen storage fins extending along the direction in which the heat exchanger cores are juxtaposed are disposed in the hydrogen storage alloy containing layer. The heat medium flow path layer is provided with heat medium side fins extending along a direction intersecting the juxtaposed direction.

請求項3記載の水素貯蔵容器の発明は、請求項1または2に記載の発明において、前記プレートは、プレート同士の一部の対向面にそれぞれ周囲がプレート面で囲まれて互いに対向する凹部と、該凹部に連通する熱媒流入部および熱媒流出部を有し、前記プレート同士の積層によって凹部の周囲が互いに当接したプレート面で封止されて該凹部間空間が熱媒流路層を構成していることを特徴とする。   According to a third aspect of the present invention, there is provided the hydrogen storage container according to the first or second aspect, wherein the plate includes recesses that are opposed to each other with each plate surrounded by a part of the opposing surface. A heat medium inflow portion and a heat medium outflow portion communicating with the concave portion, and the periphery of the concave portion is sealed with a plate surface in contact with each other by lamination of the plates, so that the space between the concave portions is a heat medium flow path layer. It is characterized by comprising.

請求項4記載の水素貯蔵容器の発明は、請求項1〜3のいずれかに記載の発明において、前記プレートは、前記水素吸蔵合金収容層が構成されているプレート間で、前記熱媒流入部および熱媒流出部と前記水素吸蔵合金収容層とを隔てる隔壁を有し、かつ積層されたプレート間で前記熱媒流入部同士および熱媒流出部同士がそれぞれ連通していることを特徴とする。   The invention of a hydrogen storage container according to a fourth aspect of the present invention is the invention according to any one of the first to third aspects, wherein the plate is disposed between the plates in which the hydrogen storage alloy containing layer is formed, and the heat medium inflow portion. And a partition that separates the heat medium outflow part and the hydrogen storage alloy containing layer, and the heat medium inflow part and the heat medium outflow part communicate with each other between the stacked plates. .

請求項5記載の水素貯蔵容器の発明は、請求項1〜4のいずれかに記載の発明において、前記水素吸蔵合金収容層の前記並設方向長さが100mm以下で、該水素吸蔵合金収容層内に通気材が配置されていないことを特徴とする。   The invention of a hydrogen storage container according to claim 5 is the invention according to any one of claims 1 to 4, wherein the hydrogen storage alloy containing layer has a length in the parallel direction of 100 mm or less, and the hydrogen storage alloy containing layer. A ventilation material is not disposed inside.

請求項6記載の水素貯蔵容器の製造方法の発明は、複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアを組み付け、該熱交換器コアを複数用意して、前記水素吸蔵合金収容層の一端部が対向露出するようにして前記熱交換器コアを互いに間隙を有して並設し、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板を配置するとともに、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とを設けておき、上記熱交換器コアと外殻板とをブレージングによって組み付けることを特徴とする。 The invention of the method for producing a hydrogen storage container according to claim 6 is a heat exchanger in which a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as a single layer between each plate by laminating a plurality of plates. Assembling the core, preparing a plurality of the heat exchanger cores, arranging the heat exchanger cores side by side with a gap so that one end of the hydrogen storage alloy containing layer is exposed oppositely, and the heat exchange An outer shell plate is disposed on the outer surface of the vessel core so as to close at least the gap between the plates and the gap between the cores, a hydrogen circulation port communicating with the gap in the outer shell plate, and the heating medium flow path layer. A heat medium inflow port and a heat medium outflow port that communicate with each other are provided, and the heat exchanger core and the outer shell plate are assembled by brazing.

請求項7記載の水素貯蔵容器の製造方法の発明は、複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアを一次ブレージングによって組み付け、該熱交換器コアを複数用意して、前記水素吸蔵合金収容層の一端部が対向露出するようにして前記熱交換器コアを互いに間隙を有して並設し、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板を配置するとともに、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とを設けておき、上記熱交換器コアと外殻板とを二次ブレージングによって組み付けることを特徴とする。   The invention of the method for manufacturing a hydrogen storage container according to claim 7 is a heat exchanger in which a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as a single layer between each plate by laminating a plurality of plates. Assembling the core by primary brazing, preparing a plurality of the heat exchanger cores, and arranging the heat exchanger cores side by side with a gap so that one end of the hydrogen storage alloy containing layer is exposed oppositely, An outer shell plate is disposed on the outer surface of the heat exchanger core so as to close at least the gap between the plates and the gap between the cores, a hydrogen flow port communicating with the gap on the outer shell plate, and the heat medium flow A heat medium inflow port and a heat medium outflow port communicating with the road layer are provided, and the heat exchanger core and the outer shell plate are assembled by secondary brazing.

請求項8記載の水素貯蔵容器の製造方法の発明は、請求項7記載の発明において、一次ブレージングで用いるろう材の溶融温度が、2次ブレージングで用いるろう材溶融温度より5〜15℃高いことを特徴とする。 The invention of the method for producing a hydrogen storage container according to claim 8 is the invention according to claim 7, wherein the melting temperature of the brazing material used in the primary brazing is 5 to 15 ° C. higher than the melting temperature of the brazing material used in the secondary brazing. It is characterized by.

請求項9記載の水素貯蔵容器の製造方法の発明は、請求項6〜8のいずれかに記載の発明において、ブレージング前に前記水素吸蔵合金収容層に、前記熱交換器コアの並設方向に沿って伸長するように水素側フィンを配設し、前記熱媒流路層に、前記並設方向と交差する方向に沿って伸長するように熱媒側フィンを配設して、ブレージングによって熱交換器コア内に組み付けることを特徴とする。 The invention of the method for manufacturing a hydrogen storage container according to claim 9 is the invention according to any one of claims 6 to 8, wherein the hydrogen storage alloy containing layer is placed in parallel with the heat exchanger core before brazing. The hydrogen side fins are arranged so as to extend along the heat medium, and the heat medium side fins are arranged in the heat medium flow path layer so as to extend along the direction intersecting the juxtaposed direction. It is assembled in an exchanger core.

請求項10記載の水素貯蔵容器の製造方法の発明は、請求項6〜9のいずれかに記載の発明において、一次ブレージングに際し、前記熱交換器コアの外面に外殻板の一部を配してろう付することを特徴とする。   A method for producing a hydrogen storage container according to claim 10 is the invention according to any one of claims 6 to 9, wherein a part of the outer shell plate is arranged on the outer surface of the heat exchanger core during primary brazing. It is characterized by brazing.

請求項11記載の水素貯蔵容器の製造方法の発明は、請求項6〜10のいずれかに記載の発明において、ブレージングに際し、前記熱交換器コアの外側面にコ字形状とした外殻板を配してろう付することを特徴とする。 The invention of the method for producing a hydrogen storage container according to claim 11 is the invention according to any one of claims 6 to 10, wherein an outer shell plate having a U-shape is formed on the outer surface of the heat exchanger core during brazing. It is characterized by arranging and brazing.

すなわち、本発明の水素貯蔵容器では、熱交換器コアの水素吸蔵合金層と熱媒流路層とが外殻板で端部を封止されることで水素通路と熱媒流路とが確保される。これにより各プレート毎に外殻板を設ける必要がなく、面積の大きな外殻板を少量用意すればよく、構造が簡略化されるとともに重量減が可能になる。また部品数も少なくなり、製造時の工程が簡略になる。   That is, in the hydrogen storage container of the present invention, the hydrogen passage alloy layer and the heat medium passage layer of the heat exchanger core are sealed with the outer shell plate to secure the hydrogen passage and the heat medium passage. Is done. As a result, it is not necessary to provide a shell plate for each plate, and a small amount of shell plate having a large area may be prepared. This simplifies the structure and reduces the weight. Also, the number of parts is reduced, and the manufacturing process is simplified.

さらに熱交換器コア間の隙間が共通水素通路となることで、水素の移動が円滑になされ水素吸放出効率が向上する。また、厚肉の水素ヘッダ用のプレートが不要となり、軽量化および容器のコンパクト化がより容易になる。
また、通気材を省略することも可能になり、熱交換効率が向上し、ひいては水素吸放出効率が向上する。特に、上記隙間に一端が露出している水素吸蔵合金層の長さを100mm以下とすることにより、通気材なしでも該合金層内で確実に良好な水素通気性が得られる。また、通気材を省略することにより水素側フィンの波間隔を小さくすることができ、例えば3mm以下の間隔にしてより高い熱交換効率を得ることが可能になる。
Further, since the gap between the heat exchanger cores becomes a common hydrogen passage, the movement of hydrogen is facilitated and the efficiency of hydrogen absorption / release is improved. In addition, a thick hydrogen header plate is not required, making it easier to reduce the weight and size of the container.
In addition, the ventilation material can be omitted, and the heat exchange efficiency is improved, and consequently the hydrogen absorption and release efficiency is improved. In particular, by setting the length of the hydrogen storage alloy layer having one end exposed in the gap to 100 mm or less, good hydrogen permeability can be reliably obtained in the alloy layer even without a ventilation material. Further, by omitting the ventilation material, the wave interval between the hydrogen-side fins can be reduced, and for example, a higher heat exchange efficiency can be obtained with an interval of 3 mm or less.

また、前記水素吸蔵合金収容層に、前記熱交換器コアの並設方向に沿って伸張する水素側フィンを配設し、前記熱媒流路層に、前記並設方向と交差する方向に沿って伸張する熱媒側フィンを配設することで、上記各フィンの伸長方向に沿ってそれぞれ水素と熱媒とが円滑に流通する。   The hydrogen storage alloy containing layer is provided with hydrogen-side fins extending along the direction in which the heat exchanger cores are arranged side by side, and the heat medium flow path layer is along a direction intersecting with the direction in which the heat exchanger cores are arranged. By arranging the heat medium side fins extending in this manner, hydrogen and the heat medium smoothly flow along the extending direction of each fin.

また、前記プレートに、周囲がプレート面で囲まれた凹部と、該凹部に連通する熱媒流入部および熱媒流出部を設けて、上記凹部同士が対向するようにプレートを積層することで、特別な隔壁等を必要とすることなく熱媒流路が直ちに得られる。   In addition, by providing the plate with a recess surrounded by a plate surface, a heat medium inflow portion and a heat medium outflow portion communicating with the recess, and laminating the plates so that the recesses face each other, A heat medium flow path can be obtained immediately without the need for a special partition or the like.

また、水素吸蔵合金収容層が構成されているプレート間で、前記熱媒流入部および熱媒流出部と前記水素吸蔵合金収容層とを隔てる隔壁をプレートに設けておき、積層されたプレート間で前記熱媒流入部同士および熱媒流出部同士がそれぞれ連通するように構成することで、水素通路と熱媒流路とを確実に隔離するとともに、各熱媒流路を束ねて熱媒を円滑に流通させることができる。   In addition, a partition that separates the heat medium inflow portion and the heat medium outflow portion from the hydrogen storage alloy containing layer is provided between the plates in which the hydrogen storage alloy containing layer is configured. By configuring the heat medium inflow part and the heat medium outflow part to communicate with each other, the hydrogen passage and the heat medium flow path are surely separated, and the heat medium flow is smoothly bundled to bundle the heat medium. Can be distributed.

また、本発明の水素貯蔵容器の製造方法では、水素吸蔵合金収容層と熱媒流路層とを有する熱交換器コアが効率よく組み付けられ、さらに、これに外殻板を配置してブレージングによって組み付け固定することで効率よく上記水素貯蔵容器が製造される。熱交換器コアと外殻板とは同時にブレージングをしてもよく、また、熱交換器コアを一次ブレージングによって組み付けた後、これに外殻板を配置して二次ブレージングによって組み付け固定することもできる。なお、外殻板の一部は、一次ブレージングに際し熱交換器コアの外周面に配して同時に組み付け固定することも可能である。
上記のように熱交換器コアの外面では、外郭板(特に側壁板)をブレージングにてろう付け接合するので外殻板の接合面積が増え強度が向上することで各プレートや外殻板の肉厚を薄くすることが可能になる。
In the method for producing a hydrogen storage container of the present invention, a heat exchanger core having a hydrogen storage alloy containing layer and a heat medium flow path layer is efficiently assembled, and an outer shell plate is disposed on the heat exchanger core by brazing. The above-mentioned hydrogen storage container is efficiently manufactured by assembling and fixing. The heat exchanger core and the outer shell plate may be brazed at the same time, or after the heat exchanger core is assembled by primary brazing, the outer shell plate is arranged and fixed by secondary brazing. it can. A part of the outer shell plate may be arranged on the outer peripheral surface of the heat exchanger core during the primary brazing and assembled and fixed at the same time.
As described above, the outer plate (especially the side wall plate) is brazed by brazing on the outer surface of the heat exchanger core, so the joint area of the outer shell plate is increased and the strength is improved, so that the meat of each plate and outer shell plate is increased. It becomes possible to reduce the thickness.

なお、上記ブレージングでは、適宜の部材(例えばフィンや外殻板、プレートなど)をブレージングシートとすることにより高い製造効率で確実に組み付け固定される。なお、ブレージング時の雰囲気等は特に限定されず、大気中、真空雰囲気中等適宜の雰囲気を採択することができる。また、加熱温度、ろう材も特定のものに限定されないが、好ましくは、一次ブレージングで用いるろう材の溶融温度が、2次ブレージングで用いるろう材溶融温度より5〜15℃高くなるようにろう材を選定する。
なお、従来に示す容器の製造過程では、冶具により複数の水素貯蔵ユニットを押さえつけてブレージングするが、ろう材が自重で垂れてしまう為一方向のみのろう付接合としている。本発明の製造方法では、熱交換器コアの外面に外殻板を配置してブレージングするため、3方向から押さえつける冶具によりブレージングが可能になり、熱交換器コアと外殻板のろう付部は自重でろう材が垂れず、ろう材が溜まるような熱交換器コアのプレート縁回り構造を有している。
In the brazing, an appropriate member (for example, a fin, an outer shell plate, a plate, or the like) is used as a brazing sheet, so that the brazing sheet can be reliably assembled and fixed with high production efficiency. In addition, the atmosphere at the time of brazing etc. is not specifically limited, Appropriate atmospheres, such as the air | atmosphere and a vacuum atmosphere, can be employ | adopted. Also, the heating temperature and brazing material are not limited to specific ones. Preferably, the brazing material is such that the melting temperature of the brazing material used in the primary brazing is 5 to 15 ° C. higher than the melting temperature of the brazing material used in the secondary brazing. Is selected.
In the conventional manufacturing process of the container, brazing is performed by pressing a plurality of hydrogen storage units with a jig, but brazing is performed only in one direction because the brazing material hangs under its own weight. In the manufacturing method of the present invention, the outer shell plate is placed on the outer surface of the heat exchanger core to perform brazing, so brazing is possible with a jig pressing from three directions, and the brazed portion between the heat exchanger core and the outer shell plate is It has a structure around the plate edge of the heat exchanger core in which the brazing material does not sag due to its own weight and the brazing material accumulates.

以上説明したように、本発明の水素貯蔵容器によれば、複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアが、前記水素吸蔵合金収容層一端部を対向露出させるようにして互いに間隙を有して並設され、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板が固定され、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とが設けられているので、構造が簡略化されるとともに、厚肉の材料によって水素ヘッダを構成することなく円滑な水素移動が得られ、水素吸放出性能が向上する。また、通気材を極力少なくするか省略することができ、フィン壁面の接触面積が増え、圧損が低く抑えられることでフィン内部の良好な水素通気が確保することができる。これによりフィン間隔を小さくすることで伝熱面積が増やすことが可能となり熱交性能が向上できる。また、水素通気材が不要となることで部品数の削減と製造工程の簡略化が図られる。   As described above, according to the hydrogen storage container of the present invention, a heat exchange in which a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as a single layer between each plate by stacking a plurality of plates. The heat exchanger cores are arranged side by side with a gap so that one end portions of the hydrogen storage alloy containing layer are exposed to face each other, and at least the gap between the plates and the gap between the cores are closed on the outer surface of the heat exchanger core. The outer shell plate is fixed as described above, and the outer shell plate is provided with a hydrogen circulation port communicating with the gap, and a heat medium inlet and a heat medium outlet that communicate with the heat medium flow path layer. The structure is simplified, and smooth hydrogen movement can be obtained without forming a hydrogen header by a thick material, thereby improving the hydrogen absorption / release performance. Further, the ventilation material can be reduced or omitted as much as possible, the contact area of the fin wall surface can be increased, and the pressure loss can be kept low, so that good hydrogen ventilation inside the fin can be ensured. Thereby, the heat transfer area can be increased by reducing the fin interval, and the heat exchange performance can be improved. Further, since the hydrogen ventilation material is not required, the number of parts can be reduced and the manufacturing process can be simplified.

また本発明の水素貯蔵容器の製造方法によれば、複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアを一次ブレージングまたはブレージングすることなく組み付け、該熱交換器コアを複数用意して、前記水素吸蔵合金収容層の一端部が対向露出するようにして前記熱交換器コアを互いに間隙を有して並設し、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板を配置するとともに、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とを設けておき、上記熱交換器コアと外殻板とを二次ブレージングする、または同時にブレージングすることによって組み付けるので、以下の効果が得られる。   According to the method for producing a hydrogen storage container of the present invention, a heat exchanger core in which a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as a single layer between the plates by laminating a plurality of plates. The heat exchanger cores are assembled without primary brazing or brazing, and a plurality of the heat exchanger cores are prepared, and the heat exchanger cores are arranged side by side with a gap so that one end portions of the hydrogen storage alloy containing layers are exposed to face each other. An outer shell plate is disposed on the outer surface of the heat exchanger core so as to close at least the gap between the plates and the gap between the cores, and a hydrogen flow port communicating with the gap on the outer shell plate; Because the heat medium inlet and the heat medium outlet that communicate with the heat medium flow path layer are provided, the heat exchanger core and the outer shell plate are assembled by secondary brazing or brazing at the same time. The following effects can be obtained.

1)製造時の部品数が少なくなり製造工程が短縮される効果がある。
2)外殻板のろう付接合面積が増え強度が向上することで、外殻板の肉厚を薄くすることが可能となり、容器軽量化が可能となる。
3)外郭板を接合した熱交換器コアに水素吸蔵合金を充填後、溶接接合することができ、製造が簡略化される。
4)これまでの厚肉水素ヘッダ用のプレートが不要となり、容器の軽量化およびコンパクト化が可能となる。
5)容器が軽量化になることで、容器の顕熱比が小さくなり、水素吸収および放出時の熱ロスが抑えられ熱交換性能が向上できる。
1) There is an effect that the number of parts at the time of manufacture is reduced and the manufacturing process is shortened.
2) Since the brazed joint area of the outer shell plate is increased and the strength is improved, the thickness of the outer shell plate can be reduced and the weight of the container can be reduced.
3) The heat exchanger core to which the outer plates are joined can be welded and joined after the hydrogen storage alloy is filled, thereby simplifying the production.
4) The conventional thick hydrogen header plate is not required, and the weight and size of the container can be reduced.
5) By reducing the weight of the container, the sensible heat ratio of the container is reduced, heat loss during hydrogen absorption and release is suppressed, and heat exchange performance can be improved.

以下に、本発明の一実施形態を図に基づいて説明する。
図3、4に示される熱交換器コア1は、図1、2に示すように、積層した多数のプレート2…2を有しており、2つのプレート1、1は同一面側を対向させて水素貯蔵ユニットを構成し、該水素貯蔵ユニットを多段に積層している。
プレート2は、図1に示すように細長形状を有し、伸長方向両端にそれぞれ5つの筒部3…3、4…4を有している。各筒部3、4の孔は裏面側に貫通して、筒部3の孔が熱媒流入部5となり、筒部4の孔が熱媒流出部6となっている。プレート2の裏面側では、上記熱媒流入部5および熱媒流出部6に達する長さで、かつ全幅に近い幅で凹部7が形成されており、該凹部7の周囲は、プレート2の裏面側の平面で囲まれている。また、該凹部7の中央には補強接合部8が凹部の長手方向に沿って形成されており、その両端は、上記熱媒流入部5および熱媒流出部6から若干の距離を隔てた位置に達している。上記凹部7は、プレート2、2が裏面側を対向して組み付けられることにより熱媒流路層9を構成する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the heat exchanger core 1 shown in FIGS. 3 and 4 has a large number of stacked plates 2... 2, and the two plates 1 and 1 face the same side. Thus, a hydrogen storage unit is configured, and the hydrogen storage units are stacked in multiple stages.
As shown in FIG. 1, the plate 2 has an elongated shape and has five cylindrical portions 3... 4, 4. The hole of each cylinder part 3 and 4 penetrates in the back surface side, the hole of the cylinder part 3 becomes the heat-medium inflow part 5, and the hole of the cylinder part 4 becomes the heat-medium outflow part 6. On the back side of the plate 2, a recess 7 is formed with a length reaching the heat medium inflow portion 5 and the heat medium outflow portion 6 and a width close to the full width. Surrounded by a side plane. A reinforcing joint 8 is formed in the center of the recess 7 along the longitudinal direction of the recess, and both ends thereof are located at a distance from the heat medium inflow portion 5 and the heat medium outflow portion 6. Has reached. The concave portion 7 constitutes the heat medium flow path layer 9 by assembling the plates 2 and 2 with their back surfaces facing each other.

上記プレート2、2は、水素吸蔵合金ユニットの構成において、表面側を互いに対向して積層することで、互いの筒部3、3および筒部4、4が対向して当接し、その間の隙間が水素吸蔵合金層10を構成する。上記筒部3、4は、熱媒流入部5、熱媒流出部6と水素吸蔵合金層10とを隔離する隔壁に相当している。なお、水素吸蔵合金層10には、プレート2の長さ方向を波方向となる水素側フィン11が配置される。該水素側フィン11は、筒部3、4間の略全長に亘って配置され、筒部3、3と筒部4、4の対向当接によって形成されるプレート間隙間と同じ高さを有している。この実施形態では、水素側フィン11の長さは80mm、波の間の距離を2mmとする。該水素側フィン11はブレージングシートによって構成され、筒部3、4の先端面にも、ろう材が配置されている。一方、前記熱媒流路層9では、該補強接合部8の両側の凹部内に、補強接合部8と略同じ長さで凹部に略収まる幅で、凹部7の幅方向を波方向とする熱媒側フィン12、12がそれぞれ配置されている。該熱媒側フィン12はブレージングシートによって構成され、プレート2の裏面側平面にもろう材が配置されている。   In the configuration of the hydrogen storage alloy unit, the plates 2 and 2 are laminated so that the surface sides face each other, so that the cylindrical portions 3 and 3 and the cylindrical portions 4 and 4 face each other, and a gap therebetween Constitutes the hydrogen storage alloy layer 10. The cylindrical portions 3 and 4 correspond to partition walls that separate the heat medium inflow portion 5, the heat medium outflow portion 6, and the hydrogen storage alloy layer 10. In the hydrogen storage alloy layer 10, hydrogen-side fins 11 are disposed in which the length direction of the plate 2 is the wave direction. The hydrogen-side fin 11 is disposed over substantially the entire length between the tube portions 3 and 4 and has the same height as the inter-plate gap formed by the abutting contact between the tube portions 3 and 3 and the tube portions 4 and 4. is doing. In this embodiment, the length of the hydrogen-side fin 11 is 80 mm, and the distance between waves is 2 mm. The hydrogen-side fin 11 is constituted by a brazing sheet, and a brazing material is also disposed on the tip surfaces of the cylindrical portions 3 and 4. On the other hand, in the heat medium flow path layer 9, the width of the concave portion 7 is set to the wave direction within the concave portions on both sides of the reinforcing joint portion 8 and having a width that is substantially the same as the reinforcing joint portion 8 and that fits in the concave portion. Heat medium side fins 12 and 12 are arranged, respectively. The heat medium side fins 12 are constituted by a brazing sheet, and a brazing material is also disposed on the back side plane of the plate 2.

熱交換器コア1の製造に際しては、上記各プレート2…2および水素側フィン11、熱媒側フィン12を上記配置に従って配置、積層し、熱交換器コア最上部と最下部に上下用の外殻板20、21(厚さ2mm程度)を合わせ、一次ブレージングによって組み付け固定する。これにより図2に示すように、各プレート2、2は積層、固定され、かつ水素側フィン11の幅方向に沿った水素通路と、熱媒側フィン12の長さ方向に沿った熱媒流路とが形成される。熱媒流路においては、各段の熱媒流入部5および熱媒流出部6がそれぞれ水素通路と完全に隔離された状態で積層方向に連通する。なお、熱媒流入部5の最上段では、図4に示すように、熱媒流入管15が熱媒流入部5に連通して他端が外部に突出しており、該他端が熱媒流入口15aとなる。また、熱媒流出部6の最下段では、熱媒流出管16が熱媒流出部6に連通して他端側が外部に突出しており、該他端が熱媒流出口16aとなる。なお、図1〜図3では、上記熱媒流入管15および熱媒流出管16は省略している。   When the heat exchanger core 1 is manufactured, the plates 2... 2, the hydrogen side fins 11, and the heat medium side fins 12 are arranged and stacked in accordance with the above arrangement, and the top and bottom portions of the heat exchanger core are arranged vertically. The shell plates 20 and 21 (thickness of about 2 mm) are combined and assembled and fixed by primary brazing. As a result, as shown in FIG. 2, the plates 2 and 2 are stacked and fixed, and the hydrogen passage along the width direction of the hydrogen-side fins 11 and the heat medium flow along the length direction of the heat-medium side fins 12. A road is formed. In the heat medium flow path, the heat medium inflow portion 5 and the heat medium outflow portion 6 of each stage communicate with each other in the stacking direction in a state of being completely isolated from the hydrogen passage. In the uppermost stage of the heat medium inflow part 5, as shown in FIG. 4, the heat medium inflow pipe 15 communicates with the heat medium inflow part 5, and the other end protrudes to the outside. It becomes the entrance 15a. Further, at the lowest stage of the heat medium outflow portion 6, the heat medium outflow pipe 16 communicates with the heat medium outflow portion 6 and the other end protrudes to the outside, and the other end serves as the heat medium outflow port 16a. 1 to 3, the heat medium inflow pipe 15 and the heat medium outflow pipe 16 are omitted.

上記により構成された熱交換器コア1は、水素通路の一端側を開放した状態で、他の外面を外殻板によって覆う。この実施形態では、図3に示すように、積層されたプレートに対し、その他の3面をコ字形状の側壁用の外殻板22で覆う。外殻板22は、内面側がろう材となるブレージングシートによって構成されている。また、各外殻板の厚さは、2mm程度において強度上の問題点はない。なお、外殻板22には、熱媒流入管15と熱媒流出管16を突出させるための孔22a、22bが形成されている。また、水素吸蔵合金収容層の一つに連通する水素流通口22cを同じく外殻板22に形成しておく。また、外殻板20,21および外殻板22は、開放された水素通路の一端側に対し、僅かに突出する形状を有している。
上記熱交換器コア1と外殻板22とは、適当な治具で保持して二次ブレージングを行う。なお、二次ブレージングに用いられるろう材の溶融温度は一次ブレージングに用いられたろう材の溶融温度よりも5〜15℃低いものを用いる。それぞれのろう付温度は、これらろう材の溶融温度に合わせて適切な温度で行う。これにより二次ブレージングによる加熱の際には、一次ブレージングでろう付されたろう付部の接合には影響なくろう付を行うことができる。
The heat exchanger core 1 configured as described above covers the other outer surface with an outer shell plate in a state where one end side of the hydrogen passage is opened. In this embodiment, as shown in FIG. 3, the other three surfaces of the stacked plates are covered with a U-shaped outer shell plate 22 for side walls. The outer shell plate 22 is composed of a brazing sheet whose inner surface is a brazing material. Further, there is no problem in strength when the thickness of each outer shell plate is about 2 mm. The outer shell plate 22 is formed with holes 22a and 22b for allowing the heat medium inflow pipe 15 and the heat medium outflow pipe 16 to protrude. In addition, a hydrogen circulation port 22 c communicating with one of the hydrogen storage alloy containing layers is also formed in the outer shell plate 22. Moreover, the outer shell plates 20 and 21 and the outer shell plate 22 have a shape that slightly protrudes from one end side of the opened hydrogen passage.
The heat exchanger core 1 and the outer shell plate 22 are held by an appropriate jig to perform secondary brazing. Note that the melting temperature of the brazing material used for the secondary brazing is 5 to 15 ° C. lower than the melting temperature of the brazing material used for the primary brazing. Each brazing temperature is performed at an appropriate temperature according to the melting temperature of these brazing materials. Thereby, in the case of heating by secondary brazing, brazing can be performed without affecting the joining of the brazed part brazed by primary brazing.

上記により外殻板22の固定がなされた熱交換器コア1は、2つを用意し、それぞれの水素吸蔵合金収容層に所望の水素吸蔵合金粉末28を収容する。この際に、水素吸蔵合金粉末は、熱交換器コア1の開放された水素通路を通して収容作業を行うことができ、容易に収容作業を行うことができる。図2には、この水素吸蔵合金粉末28が収容された状態を示している。
上記により水素吸蔵合金を収容した熱交換器コア1、1は、図3に示すように、互いに開放された水素吸蔵合金収容層10、10の一端部を対向するようにして並設し、上下の外殻板20,21および側壁用の外殻板22を突き合わせ、溶接する。また、前記孔22a、22bに合わせて熱媒ヘッダ23、24を溶接固定し、前記孔22cに合わせて水素ヘッダ25を溶接固定する。上記固定において、対向する水素吸蔵合金層10、10間には、小隙間が形成され、共通水素通路26を構成する。上記工程によって本発明の水素貯蔵容器100が得られる。以上の製造工程においては、少数の外殻板を用いて容器を構成でき、また、通気材も不要であるので効率よく製造を行うことができ、ろう付も良好に行うことができる。
なお、上記実施形態では、一次ブレージングによって熱交換器コアと上下外殻板の組付けを行い、二次ブレージングにおいて、さらに側壁となる外殻板の組付けを行ったが、これらを同時にブレージングするものであってもよく、外殻板の全てを二次ブレージングによって組み付けするものとしてもよい。
Two heat exchanger cores 1 to which the outer shell plate 22 is fixed as described above are prepared, and the desired hydrogen storage alloy powder 28 is stored in each of the hydrogen storage alloy storage layers. At this time, the hydrogen storage alloy powder can be accommodated through the open hydrogen passage of the heat exchanger core 1 and can be easily accommodated. FIG. 2 shows a state where the hydrogen storage alloy powder 28 is accommodated.
As shown in FIG. 3, the heat exchanger cores 1, 1 containing the hydrogen storage alloy as described above are arranged in parallel so that one end portions of the hydrogen storage alloy storage layers 10, 10 opened to each other face each other. The outer shell plates 20 and 21 and the outer shell plate 22 for the side wall are butted and welded. Further, the heat medium headers 23 and 24 are welded and fixed according to the holes 22a and 22b, and the hydrogen header 25 is welded and fixed according to the holes 22c. In the above fixing, a small gap is formed between the hydrogen storage alloy layers 10 and 10 facing each other, and the common hydrogen passage 26 is formed. The hydrogen storage container 100 of the present invention is obtained by the above process. In the above manufacturing process, a container can be constituted by using a small number of outer shell plates, and since a ventilation material is not required, it can be manufactured efficiently and brazing can be performed well.
In the above embodiment, the heat exchanger core and the upper and lower outer shell plates are assembled by primary brazing, and the outer shell plate as the side wall is further assembled in the secondary brazing, but these are brazed simultaneously. The outer shell plate may be assembled by secondary brazing.

次に、上記水素貯蔵合金容器100の動作を説明する。
先ず、水素を吸蔵する場合について説明する。外部の水素供給装置(図示しない)から水素ヘッダ25を通して水素を導入する。すると図6(a)に示すように、プレート2、2間の水素吸蔵合金層10の端部隙間を通して共通水素通路26を経て水素側フィン11間の各水素通路を通して収容されている水素吸蔵合金粉末に吸蔵される。この際には、合金で発熱が生じるため、熱媒ヘッダ23を通して冷却用の熱媒(例えば冷却水)を導入する。すると冷却水は、図6(b)に示すように、熱媒流入管15を通して熱媒流入部5に至り、連通している熱媒流入部5を通して各段の熱媒流路層9を流れ、他端側の各部の熱媒流出部6から連通している熱媒流出部6を通して熱媒流出管16に至り、さらに熱媒ヘッダ24から排出される。水素吸蔵合金収容層10で発生した熱は、水素側フィン11を通してプレート2に伝達される。一方、冷却水の温度は、熱媒側フィン12を通してプレート2に伝達され、熱交換される。これにより水素吸蔵合金が冷却され、水素の吸蔵効率が向上する。
Next, the operation of the hydrogen storage alloy container 100 will be described.
First, the case of storing hydrogen will be described. Hydrogen is introduced through a hydrogen header 25 from an external hydrogen supply device (not shown). Then, as shown in FIG. 6A, the hydrogen storage alloy accommodated through the hydrogen passages between the hydrogen-side fins 11 through the common hydrogen passage 26 through the end gap of the hydrogen storage alloy layer 10 between the plates 2 and 2. Occluded in powder. At this time, since heat is generated by the alloy, a cooling heat medium (for example, cooling water) is introduced through the heat medium header 23. Then, as shown in FIG. 6B, the cooling water reaches the heat medium inflow part 5 through the heat medium inflow pipe 15 and flows through the heat medium flow path layers 9 of the respective stages through the heat medium inflow part 5 in communication. Then, the heat medium outflow part 6 communicates with the heat medium outflow part 6 of each part on the other end side, reaches the heat medium outflow pipe 16, and is further discharged from the heat medium header 24. Heat generated in the hydrogen storage alloy containing layer 10 is transmitted to the plate 2 through the hydrogen-side fins 11. On the other hand, the temperature of the cooling water is transmitted to the plate 2 through the heat medium side fins 12 and is subjected to heat exchange. As a result, the hydrogen storage alloy is cooled, and the hydrogen storage efficiency is improved.

上記により水素を吸蔵した水素吸蔵合金から水素を放出する動作について説明する。
熱媒ヘッダ23を通して加熱用の熱媒(例えば熱水や蒸気)を導入する。熱媒は上記と同様に、熱媒流入管15、熱媒流入部5を通して各段の熱媒流路層9を流れ、他端側の熱媒流出部6、熱媒流出管16を通して熱媒ヘッダ24から排出される。これにより、水素吸蔵合金収容層10にある水素吸蔵合金粉末28を水素側フィン11を通して加熱する。加熱された水素吸蔵合金粉末28では、水素が放出され、各水素吸蔵合金収容層10を通って共通水素通路26からプレート2、2間の水素吸蔵合金層10の端部隙間を通して水素ヘッダ25から外部に排出される。上記により、水素吸蔵合金粉末は効率よく熱交換され、また、水素も円滑に粉末間および容器内を移動して効率的な水素吸放出動作がなされる。
The operation of releasing hydrogen from the hydrogen storage alloy that has stored hydrogen as described above will be described.
A heating medium (for example, hot water or steam) is introduced through the heating medium header 23. In the same manner as described above, the heat medium flows through the heat medium flow path layer 9 of each stage through the heat medium inflow pipe 15 and the heat medium inflow part 5, and passes through the heat medium outflow part 6 and the heat medium outflow pipe 16 on the other end side. It is discharged from the header 24. Thereby, the hydrogen storage alloy powder 28 in the hydrogen storage alloy containing layer 10 is heated through the hydrogen side fin 11. In the heated hydrogen storage alloy powder 28, hydrogen is released and passes through each hydrogen storage alloy containing layer 10 from the common hydrogen passage 26 through the end gap of the hydrogen storage alloy layer 10 between the plates 2 and 2 and from the hydrogen header 25. It is discharged outside. As described above, the hydrogen storage alloy powder is efficiently heat-exchanged, and hydrogen is also smoothly moved between the powders and in the container to perform an efficient hydrogen absorption / release operation.

上記に示した水素貯蔵合金容器と、従来の構造の水素貯蔵合金容器について、同量の水素吸蔵合金に水素を吸蔵させた場合の発熱量を測定した。図7に示すグラフは、水素吸蔵合金容器における水素吸蔵時の合金発熱速度を示している。従来の容器構造に対して、本発明による高性能な容器構造にすることで、熱交換性能は2.5倍になり水素吸蔵時発熱速度は約2倍と速くなった。
以上本発明について上記実施形態に基づいて説明したが、本発明は上記説明の内容に限定されるものではなく、本発明の範囲内において変更が可能である。
About the hydrogen storage alloy container shown above and the hydrogen storage alloy container of the conventional structure, the calorific value when hydrogen was stored in the same amount of hydrogen storage alloy was measured. The graph shown in FIG. 7 shows the alloy heat generation rate during hydrogen storage in the hydrogen storage alloy container. By adopting a high-performance container structure according to the present invention compared to the conventional container structure, the heat exchange performance is increased by 2.5 times, and the heat generation rate at the time of hydrogen storage is increased by approximately twice.
Although the present invention has been described above based on the above embodiment, the present invention is not limited to the above description and can be modified within the scope of the present invention.

本発明の一実施形態における熱交換器コアの一部分解斜視図である。It is a partial exploded perspective view of the heat exchanger core in one embodiment of the present invention. 同じく、一部正面図である。Similarly, it is a partial front view. 同じく、水素貯蔵容器の製造工程を示す概略図である。Similarly, it is the schematic which shows the manufacturing process of a hydrogen storage container. 同じく、水素貯蔵容器の正面及び平面を示す図である。Similarly, it is a figure which shows the front and plane of a hydrogen storage container. 同じく、熱媒流入口近傍および水素流通口近傍を示す一部拡大図である。Similarly, it is a partially enlarged view showing the vicinity of the heat medium inlet and the vicinity of the hydrogen outlet. 同じく、水素貯蔵容器における水素ガスの流れを示す平面図および熱媒の流れを示す正面図である。Similarly, it is the top view which shows the flow of the hydrogen gas in a hydrogen storage container, and the front view which shows the flow of a heat carrier. 本発明の一実施形態の水素貯蔵容器と従来の水素貯蔵容器について水素吸蔵時の発熱量を測定したグラフである。It is the graph which measured the emitted-heat amount at the time of hydrogen occlusion about the hydrogen storage container of one Embodiment of this invention, and the conventional hydrogen storage container. 従来の水素貯蔵容器を示す斜視図である。It is a perspective view which shows the conventional hydrogen storage container.

符号の説明Explanation of symbols

1 熱交換器
2 プレート
3 筒部
4 筒部
5 熱媒流入部
6 熱媒流出部
9 熱媒流路層
10 水素吸蔵合金層
11 水素側フィン
12 熱媒側フィン
15 熱媒流入管
15a 熱媒流入口
16 熱媒流出管
16a 熱媒流出口
20 外殻板
21 外殻板
22 外殻板
22c 水素流通口
23 熱媒ヘッダ
24 熱媒ヘッダ
25 水素ヘッダ
26 共通水素通路
28 水素吸蔵合金粉末
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Plate 3 Cylinder part 4 Cylinder part 5 Heat medium inflow part 6 Heat medium outflow part 9 Heat medium flow path layer 10 Hydrogen storage alloy layer 11 Hydrogen side fin 12 Heat medium side fin 15 Heat medium inflow pipe 15a Heat medium Inlet 16 Heat medium outlet pipe 16a Heat medium outlet 20 Outer shell plate 21 Outer shell plate 22 Outer shell plate 22c Hydrogen distribution port 23 Heat medium header 24 Heat medium header 25 Hydrogen header 26 Common hydrogen passage 28 Hydrogen storage alloy powder

Claims (11)

複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアが、前記水素吸蔵合金収容層一端部を対向露出させるようにして互いに間隙を有して並設され、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板が固定され、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とが設けられていることを特徴とする水素貯蔵容器。   A heat exchanger core in which a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as a single layer between each plate by laminating a plurality of plates exposes one end of the hydrogen storage alloy containing layer facing each other. The outer shell plate is fixed to the outer surface of the heat exchanger core so as to close at least the gap between the plates and the gap between the cores. A hydrogen storage container, comprising: a hydrogen circulation port communicating with the heat medium; and a heat medium inlet and a heat medium outlet that communicate with the heat medium flow path layer. 前記水素吸蔵合金収容層に、前記熱交換器コアの並設方向に沿って伸長する水素側フィンが配設され、前記熱媒流路層に、前記並設方向と交差する方向に沿って伸長する熱媒側フィンが配設されていることを特徴とする請求項1記載の水素貯蔵容器。   Hydrogen-side fins extending along the parallel arrangement direction of the heat exchanger cores are disposed in the hydrogen storage alloy containing layer, and the heat medium flow path layer extends along a direction intersecting the parallel arrangement direction. The hydrogen storage container according to claim 1, wherein a heat medium side fin is disposed. 前記プレートは、プレート同士の一部の対向面にそれぞれ周囲がプレート面で囲まれて互いに対向する凹部と、該凹部に連通する熱媒流入部および熱媒流出部を有し、前記プレート同士の積層によって凹部の周囲が互いに当接したプレート面で封止されて該凹部間空間が熱媒流路層を構成していることを特徴とする請求項1または2に記載の水素貯蔵容器。   The plate has a concave portion that is surrounded by a plate surface and is opposed to each other on a part of the opposing surfaces of the plates, and a heat medium inflow portion and a heat medium outflow portion that communicate with the concave portion. 3. The hydrogen storage container according to claim 1, wherein the periphery of the recess is sealed with a plate surface in contact with each other by lamination, and the space between the recesses constitutes a heat medium flow path layer. 前記プレートは、前記水素吸蔵合金収容層が構成されているプレート間で、前記熱媒流入部および熱媒流出部と前記水素吸蔵合金収容層とを隔てる隔壁を有し、かつ積層されたプレート間で前記熱媒流入部同士および熱媒流出部同士がそれぞれ連通していることを特徴とする請求項1〜3のいずれかに記載の水素貯蔵容器。   The plate has a partition that separates the heat medium inflow portion and the heat medium outflow portion and the hydrogen storage alloy accommodating layer between the plates in which the hydrogen storage alloy accommodating layer is configured, and between the stacked plates The hydrogen storage container according to claim 1, wherein the heat medium inflow portions and the heat medium outflow portions communicate with each other. 前記水素吸蔵合金収容層の前記並設方向長さが100mm以下で、該水素吸蔵合金収容層内に通気材が配置されていないことを特徴とする請求項1〜4のいずれかに記載の水素貯蔵容器。   The hydrogen according to any one of claims 1 to 4, wherein the length in the juxtaposed direction of the hydrogen storage alloy containing layer is 100 mm or less, and no ventilation material is disposed in the hydrogen storage alloy containing layer. Storage container. 複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアを組み付け、該熱交換器コアを複数用意して、前記水素吸蔵合金収容層の一端部が対向露出するようにして前記熱交換器コアを互いに間隙を有して並設し、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板を配置するとともに、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とを設けておき、上記熱交換器コアと外殻板とをブレージングによって組み付けることを特徴とする水素貯蔵容器の製造方法。   A plurality of heat exchanger cores are prepared by assembling a heat exchanger core in which a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as a single layer between each plate by laminating a plurality of plates, The heat exchanger cores are arranged side by side with a gap so that one end portions of the hydrogen storage alloy containing layer are exposed to face each other, and at least the gap between the plates and between the cores on the outer surface of the heat exchanger core An outer shell plate is disposed so as to close the gap, and a hydrogen circulation port communicating with the gap, a heat medium inlet port and a heat medium outlet port communicating with the heat medium flow path layer are provided in the outer shell plate. A method for producing a hydrogen storage container, wherein the heat exchanger core and the outer shell plate are assembled by brazing. 複数枚のプレートの積層によって各プレート間に水素吸蔵合金収容層と熱媒流路層とがそれぞれ一つの層で設けられた熱交換器コアを一次ブレージングによって組み付け、該熱交換器コアを複数用意して、前記水素吸蔵合金収容層の一端部が対向露出するようにして前記熱交換器コアを互いに間隙を有して並設し、前記熱交換器コアの外面に少なくとも前記プレート間の間隙およびコア間の間隙を塞ぐように外殻板を配置するとともに、該外殻板に前記間隙に連通する水素流通口と、前記熱媒流路層に連通する熱媒流入口と熱媒流出口とを設けておき、上記熱交換器コアと外殻板とを二次ブレージングによって組み付けることを特徴とする水素貯蔵容器の製造方法。   A plurality of heat exchanger cores are prepared by assembling a heat exchanger core in which a hydrogen storage alloy containing layer and a heat medium flow path layer are provided as a single layer between each plate by primary brazing by stacking multiple plates. Then, the heat exchanger cores are arranged side by side with a gap so that one end portions of the hydrogen storage alloy containing layers are exposed to face each other, and at least the gap between the plates and the outer surface of the heat exchanger core An outer shell plate is disposed so as to close a gap between the cores, a hydrogen circulation port communicating with the gap, a heat medium inlet port and a heat medium outlet port communicating with the heat medium channel layer, A method for producing a hydrogen storage container, wherein the heat exchanger core and the outer shell plate are assembled by secondary brazing. 一次ブレージングで用いるろう材の溶融温度が、2次ブレージングで用いるろう材溶融温度より5〜15℃高いことを特徴とする請求項7記載の水素貯蔵容器の製造方法。   The method for producing a hydrogen storage container according to claim 7, wherein the melting temperature of the brazing material used in the primary brazing is 5 to 15 ° C higher than the melting temperature of the brazing material used in the secondary brazing. ブレージング前に前記水素吸蔵合金収容層に、前記熱交換器コアの並設方向に沿って伸長するように水素側フィンを配設し、前記熱媒流路層に、前記並設方向と交差する方向に沿って伸長するように熱媒側フィンを配設して、ブレージングによって熱交換器コア内に組み付けることを特徴とする請求項6〜8のいずれかに記載の水素貯蔵容器の製造方法。   Before brazing, hydrogen-side fins are disposed in the hydrogen storage alloy containing layer so as to extend along the direction in which the heat exchanger cores are juxtaposed, and the heat medium passage layer intersects with the side-by-side direction. The method for producing a hydrogen storage container according to any one of claims 6 to 8, wherein the heat medium side fins are arranged so as to extend along the direction and assembled into the heat exchanger core by brazing. 一次ブレージングに際し、前記熱交換器コアの外面に外殻板の一部を配してろう付することを特徴とする請求項6〜9のいずれかに記載の水素貯蔵容器の製造方法。   The method for producing a hydrogen storage container according to any one of claims 6 to 9, wherein in the primary brazing, a part of the outer shell plate is disposed on the outer surface of the heat exchanger core and brazed. ブレージングに際し、前記熱交換器コアの外側面にコ字形状とした外殻板を配してろう付することを特徴とする請求項6〜10のいずれかに記載の水素貯蔵容器の製造方法。

The method for producing a hydrogen storage container according to any one of claims 6 to 10, wherein, during brazing, a U-shaped outer shell plate is disposed on the outer surface of the heat exchanger core and brazed.

JP2005083330A 2005-03-23 2005-03-23 Hydrogen storage container and manufacturing method thereof Expired - Fee Related JP4516462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083330A JP4516462B2 (en) 2005-03-23 2005-03-23 Hydrogen storage container and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083330A JP4516462B2 (en) 2005-03-23 2005-03-23 Hydrogen storage container and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006266350A true JP2006266350A (en) 2006-10-05
JP4516462B2 JP4516462B2 (en) 2010-08-04

Family

ID=37202547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083330A Expired - Fee Related JP4516462B2 (en) 2005-03-23 2005-03-23 Hydrogen storage container and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4516462B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002370A (en) * 2007-06-19 2009-01-08 Toyota Motor Corp Manufacturing method for hydrogen storage tank, and hydrogen storage tank
WO2012138833A2 (en) * 2011-04-05 2012-10-11 A123 Systems, Inc. Cooling assembly and method of control
JP2013518240A (en) * 2010-01-29 2013-05-20 ヴァレオ システム テルミク Heat exchanger
CN107664456A (en) * 2016-07-28 2018-02-06 青岛海尔智能技术研发有限公司 Metal hydride reactor
US10780409B2 (en) * 2017-12-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid-gas reaction substance-filled reactor and method for manufacturing the same
CN114508695A (en) * 2022-01-19 2022-05-17 中国科学院上海微***与信息技术研究所 Internal heating type expansion-resistant metal hydrogen storage device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455690A (en) * 1990-06-25 1992-02-24 Sanyo Electric Co Ltd Hydrogen absorbing and releasing device
JPH05248598A (en) * 1992-03-09 1993-09-24 Mazda Motor Corp Container for storing hydrogen storage alloy
JPH0826700A (en) * 1994-07-21 1996-01-30 Matsushita Electric Ind Co Ltd Raising and lowering device
JP2005009549A (en) * 2003-06-18 2005-01-13 Japan Steel Works Ltd:The Capsule container and hydrogen storage tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455690A (en) * 1990-06-25 1992-02-24 Sanyo Electric Co Ltd Hydrogen absorbing and releasing device
JPH05248598A (en) * 1992-03-09 1993-09-24 Mazda Motor Corp Container for storing hydrogen storage alloy
JPH0826700A (en) * 1994-07-21 1996-01-30 Matsushita Electric Ind Co Ltd Raising and lowering device
JP2005009549A (en) * 2003-06-18 2005-01-13 Japan Steel Works Ltd:The Capsule container and hydrogen storage tank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002370A (en) * 2007-06-19 2009-01-08 Toyota Motor Corp Manufacturing method for hydrogen storage tank, and hydrogen storage tank
JP2013518240A (en) * 2010-01-29 2013-05-20 ヴァレオ システム テルミク Heat exchanger
WO2012138833A2 (en) * 2011-04-05 2012-10-11 A123 Systems, Inc. Cooling assembly and method of control
WO2012138833A3 (en) * 2011-04-05 2012-11-29 A123 Systems, Inc. Cooling assembly and method of control
CN107664456A (en) * 2016-07-28 2018-02-06 青岛海尔智能技术研发有限公司 Metal hydride reactor
US10780409B2 (en) * 2017-12-04 2020-09-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid-gas reaction substance-filled reactor and method for manufacturing the same
CN114508695A (en) * 2022-01-19 2022-05-17 中国科学院上海微***与信息技术研究所 Internal heating type expansion-resistant metal hydrogen storage device
CN114508695B (en) * 2022-01-19 2024-05-24 中国科学院上海微***与信息技术研究所 Internal heat type expansion-resistant metal hydrogen storage device

Also Published As

Publication number Publication date
JP4516462B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4516462B2 (en) Hydrogen storage container and manufacturing method thereof
JP4555114B2 (en) Heat storage device
JP4880095B2 (en) Heat exchanger
JP2010101617A (en) Plate type heat exchanger
JP2007042453A (en) Aligned structure of storage body cell
JP2005147443A (en) Laminated type heat exchanger
JP2010286202A (en) Heat exchanger
JP4574783B2 (en) Hydrogen storage alloy tank
WO2024082953A1 (en) Battery pack heat dissipation device, battery pack, and vehicle
JPS60243484A (en) Heat exchanger
JP5393606B2 (en) Heat exchanger
TWI437200B (en) Heat exchanger
JP4163541B2 (en) Method for manufacturing gas storage tank
WO2018092423A1 (en) Hydrogen storage unit and fuel cell system
JP2001050683A (en) Indirect heat exchanger charged with solid-gas reactive granules
JP6148034B2 (en) Manufacturing method of heat exchanger
JP6766797B2 (en) Solid-air reactant filling reactor and its manufacturing method
JP5180662B2 (en) Heat exchanger
JP2006207719A (en) Hydrogen storage container
JP2000170998A (en) Hydrogen storing container
JP4109932B2 (en) Laminate heat exchanger
JPH0642887A (en) Heat accumulator
CN220304342U (en) Shell assembly, heat exchanger and vehicle
JP2018059684A (en) Chemical heat storage reactor and chemical heat storage system
JPH01130728A (en) Production of solid-phase reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees