JP2006265055A - Method of manufacturing piezoelectric ceramic - Google Patents

Method of manufacturing piezoelectric ceramic Download PDF

Info

Publication number
JP2006265055A
JP2006265055A JP2005087653A JP2005087653A JP2006265055A JP 2006265055 A JP2006265055 A JP 2006265055A JP 2005087653 A JP2005087653 A JP 2005087653A JP 2005087653 A JP2005087653 A JP 2005087653A JP 2006265055 A JP2006265055 A JP 2006265055A
Authority
JP
Japan
Prior art keywords
compound
particle size
raw material
nickel
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005087653A
Other languages
Japanese (ja)
Inventor
Manabu Okudo
学 奥土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005087653A priority Critical patent/JP2006265055A/en
Publication of JP2006265055A publication Critical patent/JP2006265055A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a lead titanate zirconate based piezoelectric ceramic having good electromechanical coupling coefficient Kr and using a lead compound, a titanium compound, a zirconium compound, a nickel compound and a niobium compound as powdery raw materials by densely sintering at a relatively low temperature. <P>SOLUTION: In the lead titanate zirconate based piezoelectric ceramic using the lead compound, the titanium compound, the zirconium compound, the nickel compound and the niobium compound as the powdery raw materials, the nickel compound having an average particle diameter controlled to 0 μm<(average particle diameter)≤0.6μm and the maximum particle diameter controlled to 0 μm<(maximum average particle diameter)≤ 2.0 μm is used as the nickel raw material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧電セラミックスの製造方法に関し、特に、積層型圧電アクチュエータ、積層型圧電トランス、積層型圧電ジャイロおよび積層型圧電コンデンサに好適な低温焼結用圧電セラミックスの製造方法に関する。   The present invention relates to a method for manufacturing a piezoelectric ceramic, and more particularly to a method for manufacturing a low-temperature sintering piezoelectric ceramic suitable for a multilayer piezoelectric actuator, a multilayer piezoelectric transformer, a multilayer piezoelectric gyro, and a multilayer piezoelectric capacitor.

酸化物や炭酸化合物原料を混合、仮焼、粉砕、成形、焼成し、分極処理を行うことによって圧電セラミックスは製造される。それを用いた圧電振動子は、超音波機器、フィルタ、センサ、音響機器等幅広く用いられている。特に、近年、圧電アクチュエータ、圧電トランス、圧電ジャイロなどの高機能積層デバイスへの応用から、高い圧電特性を示し、低温で内部電極と一体焼結できる圧電セラミックスが求められている。   Piezoelectric ceramics are manufactured by mixing, calcining, pulverizing, molding, firing, and polarization treatment of oxide and carbonate compound raw materials. Piezoelectric vibrators using it are widely used in ultrasonic equipment, filters, sensors, acoustic equipment, and the like. In particular, in recent years, piezoelectric ceramics that exhibit high piezoelectric characteristics and can be integrally sintered with internal electrodes at low temperatures have been demanded from application to highly functional laminated devices such as piezoelectric actuators, piezoelectric transformers, and piezoelectric gyros.

粉末原料および仮焼物の粉砕とともに長時間の湿式粉砕をすることで、85%以上を粒径1.5μm以下の微細粒子からなる混合粉末とすることができ、さらに90%を粒径1.5μm以下の微細粒子からなる仮焼粉末とすることができる。また、長時間の湿式粉砕に加え、特定の微細な粉末原料を使用することで、90%以上を粒径1.5μm以下の微細粒子からなる混合粉末とし、さらに95%以上が粒径1.5μm以下の微細粒子からなる仮焼粉末とする。このような工程を導入することで、焼成温度900℃程度で、高い圧電特性を有する緻密な焼結体の製造を可能とする技術が、特許文献1に開示されている。   85% or more can be made into a mixed powder composed of fine particles having a particle size of 1.5 μm or less, and 90% can be made to have a particle size of 1.5 μm. It can be set as the calcination powder which consists of the following fine particles. In addition to long-time wet pulverization, a specific fine powder raw material is used, so that 90% or more is mixed powder composed of fine particles having a particle size of 1.5 μm or less, and 95% or more is a particle size of 1. The calcined powder is made of fine particles of 5 μm or less. Patent Document 1 discloses a technique that enables the production of a dense sintered body having high piezoelectric characteristics at a firing temperature of about 900 ° C. by introducing such a process.

一酸化鉛(PbO)、二酸化ジルコニウム(ZrO2)、二酸化チタン(TiO2)からなる平均結晶粒径を0.3〜0.5μm、最大結晶粒径を1μm以下でかつ気孔率が2%である圧電セラミックスにすることで、経時変化が少なく、エネルギー閉じ込め型の圧電素子の作製を可能にする技術が、特許文献2に開示されている。 The average crystal grain size made of lead monoxide (PbO), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ) is 0.3 to 0.5 μm, the maximum crystal grain size is 1 μm or less, and the porosity is 2%. Patent Document 2 discloses a technology that makes it possible to fabricate an energy confinement type piezoelectric element by using a certain piezoelectric ceramic with little change over time.

セラミックス粉末に有機溶媒と有機系バインダーとを添加混合して得られるスラリーを多孔質の成形型に注入する工程と、有機溶媒を蒸発させて固化した成形体を得る工程と、得られた成形体を成形型から脱型し脱脂処理する工程によりセラミックス焼結体を得る製造方法において、平均開孔径が3〜10μmで、平均開孔率が10〜40%の多孔質の成形型を用いてスラリーの周囲から有機溶媒を蒸発させ、有機溶媒を蒸発指数が150〜350の範囲のものを用いることで、セラミック成形型を透過し、スラリーの周囲から有機溶媒を適度な速度で均一に蒸発させることで、乾燥による応力を撲滅し、スラリー周囲からの乾燥固化を効率よく行うことができ、クラックのない成形体および焼結体の作製を可能とする技術が、特許文献3に開示されている。   A step of injecting a slurry obtained by adding and mixing an organic solvent and an organic binder to a ceramic powder into a porous mold, a step of obtaining a solidified body by evaporating the organic solvent, and an obtained molded body In a manufacturing method for obtaining a ceramic sintered body by demolding from a mold and degreasing, slurry is obtained using a porous mold having an average pore diameter of 3 to 10 μm and an average pore ratio of 10 to 40%. By evaporating the organic solvent from the periphery of the catalyst and using the organic solvent having an evaporation index in the range of 150 to 350, the organic solvent is permeated through the ceramic mold and uniformly evaporated from the periphery of the slurry at an appropriate speed. Patent Document 3 discloses a technique that can eliminate stress caused by drying, efficiently dry and solidify the slurry, and enable the production of a molded body and a sintered body without cracks. It is shown.

特開2000−154059号公報JP 2000-154059 A 特開平5−17216号公報Japanese Patent Laid-Open No. 5-17216 特開2004−174866号公報JP 2004-174866 A

上述した特許文献1では、湿式混合を用いて微細化し、さらに長時間〔60時間以上〕湿式粉砕することで所望の圧電セラミックスを作製するので、混合粉砕に非常に時間がかかり生産効率が悪いという量産性の問題があった。   In Patent Document 1 described above, since desired piezoelectric ceramics are produced by finely pulverizing using wet mixing and further wet pulverizing for a long time [60 hours or more], it is said that mixing pulverization takes a very long time and production efficiency is poor. There was a problem of mass productivity.

上述した特許文献2では、一酸化鉛(PbO)、二酸化ジルコニウム(ZrO2)、二酸化チタン(TiO2)からなる平均結晶粒径を0.3〜0.5μm、最大結晶粒径を1μm以下で、かつ気孔率が2%である圧電セラミックスにすることが重要であり、粉末原料の粒径と結晶粒径の対応に関しては特定の相関関係がなく、その製造条件に大きく依存することが示唆されている。 In Patent Document 2 described above, the average crystal grain size composed of lead monoxide (PbO), zirconium dioxide (ZrO 2 ), and titanium dioxide (TiO 2 ) is 0.3 to 0.5 μm, and the maximum crystal grain size is 1 μm or less. In addition, it is important to use piezoelectric ceramics with a porosity of 2%, and there is no specific correlation in the correspondence between the particle size of the powder raw material and the crystal particle size, which suggests that it largely depends on the manufacturing conditions. ing.

上述した特許文献3では、選択する有機溶媒、多孔質の成形型の平均開孔径、開孔率に依存して乾燥時間、クラックの有無が決定され、その製造条件により得られる圧電セラミックスの品質が大きく変化することが示唆されている。   In Patent Document 3 described above, the drying time and the presence or absence of cracks are determined depending on the organic solvent to be selected, the average pore diameter of the porous mold, and the porosity, and the quality of the piezoelectric ceramic obtained by the manufacturing conditions is determined. It has been suggested to change significantly.

また、鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として含むチタン酸ジルコン酸鉛系圧電セラミックスでは、上述した特許文献に開示されていないニッケル化合物であるNiOを使用する。NiOは、反応性が低く、主生成物以外の副生成物ができやすい特徴があり、仮焼反応を促進しにくいという問題があった。そのために、高い圧電特性(電気機械結合係数K)を有する低温焼結用圧電セラミックスを安定に製造する条件は、明確になっていないという問題があった。   In addition, lead zirconate titanate-based piezoelectric ceramics containing a lead compound, a titanium compound, a zirconium compound, a nickel compound raw material, and a niobium compound as a powder raw material use NiO, which is a nickel compound not disclosed in the above-mentioned patent documents. NiO has a feature that it has a low reactivity, and a by-product other than the main product is easily formed, and it is difficult to promote the calcination reaction. For this reason, there has been a problem that the conditions for stably producing low-temperature sintering piezoelectric ceramics having high piezoelectric characteristics (electromechanical coupling coefficient K) are not clear.

本発明は、上述した問題点を解決すべくなされたもので、その技術課題は、比較的低温で緻密に焼結し、良好な電気機械結合係数を有する鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として、ボールミルによる混合粉砕の後、仮焼する工程を含むチタン酸ジルコン酸鉛系の圧電セラミックスの製造方法を提供することである。   The present invention has been made to solve the above-mentioned problems, and its technical problem is that a lead compound, a titanium compound, a zirconium compound, nickel having a good electromechanical coupling coefficient sintered densely at a relatively low temperature. It is to provide a method for producing lead zirconate titanate-based piezoelectric ceramics including a step of calcining after mixing and pulverizing with a ball mill using a compound raw material and a niobium compound as a powder raw material.

上記目的を達成するための第1発明は、鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として、ボールミルによる混合粉砕の後、仮焼する工程を含むチタン酸ジルコン酸鉛系圧電セラミックスの製造方法において、ニッケル化合物原料の平均粒子径を、0μm<平均粒子径≦0.6μmにした圧電セラミックスの製造方法である。   The first invention for achieving the above object is a lead zirconate titanate comprising a step of mixing and grinding with a ball mill using a lead compound, a titanium compound, a zirconium compound, a nickel compound raw material, and a niobium compound as a powder raw material, followed by calcination In the method for manufacturing a piezoelectric ceramic, the average particle size of the nickel compound raw material is 0 μm <average particle size ≦ 0.6 μm.

上記目的を達成するための第2発明は、鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として、ボールミルによる混合粉砕の後、仮焼する工程を含むチタン酸ジルコン酸鉛系圧電セラミックスの製造方法において、ニッケル化合物原料の最大粒子径を、0μm<最大粒子径≦2.0μmにした圧電セラミックスの製造方法である。   A second invention for achieving the above object is a lead zirconate titanate comprising a step of mixing and grinding by a ball mill using a lead compound, a titanium compound, a zirconium compound, a nickel compound raw material, and a niobium compound as a powder raw material, followed by calcination In the piezoelectric ceramic manufacturing method, the maximum particle diameter of the nickel compound raw material is 0 μm <maximum particle diameter ≦ 2.0 μm.

鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として、ボールミルによる混合粉砕の後、仮焼する工程を含むチタン酸ジルコン酸鉛系圧電セラミックスの製造方法において、反応性が低く、主生成物以外の副生成物ができやすいNiOの特徴を鑑みて、ニッケル化合物が副生成物を生成しないようにニッケル原料の粒子径を変えて、仮焼反応の促進しやすい製造条件を検討したところ、ニッケル化合物原料の平均粒子径を、0μm<平均粒子径≦0.6μm、最大粒子径を、0μm<最大粒子径≦2.0μmの条件にすることで、比較的低温で緻密に焼結し、良好な電気機械結合係数を有する圧電セラミックスを湿式粉砕時間を短縮して製造できることを実験的に確認した。   In a method for producing lead zirconate titanate-based piezoelectric ceramics including a step of mixing and grinding with a ball mill using a lead compound, a titanium compound, a zirconium compound, a nickel compound raw material, and a niobium compound as a powder raw material, and a calcination step, the reactivity is low. In view of the characteristics of NiO, where by-products other than the main product are likely to form, change the particle size of the nickel raw material so that the nickel compound does not generate a by-product, and study production conditions that facilitate the calcination reaction As a result, the average particle size of the nickel compound raw material is 0 μm <average particle size ≦ 0.6 μm, and the maximum particle size is 0 μm <maximum particle size ≦ 2.0 μm. As a result, it was experimentally confirmed that a piezoelectric ceramic having a good electromechanical coupling coefficient can be manufactured with a reduced wet grinding time.

その結果、比較的低温で緻密に焼結し、良好な電気機械結合係数を有する鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として、ボールミルによる混合粉砕の後、仮焼する工程を含むチタン酸ジルコン酸鉛系の圧電セラミックスの製造方法を提供することが可能となる。   As a result, lead compound, titanium compound, zirconium compound, nickel compound raw material and niobium compound, which are sintered densely at a relatively low temperature and have a good electromechanical coupling coefficient, are used as powder raw materials, mixed and ground by a ball mill, and then calcined. It is possible to provide a method for producing a lead zirconate titanate-based piezoelectric ceramic including the step of:

本発明を実施するための最良の形態に係る圧電セラミックスの製造方法は、以下の製造方法で作製する。   The piezoelectric ceramic manufacturing method according to the best mode for carrying out the present invention is manufactured by the following manufacturing method.

最初に、一酸化鉛(PbO)、二酸化ジルコニウム(ZrO2)、二酸化チタン(TiO2)、五酸化ニオブ(Nb25)、酸化ニッケル(NiO)を所定量秤量する。鉛化合物の原料は一酸化鉛(リサージ)、一酸化鉛(マシコット)、鉛丹のどれを用いても良く、粉末粒径はできるだけ細かいほうが良い。ここでは、粒径1μmの一酸化鉛(リサージ)を用いる。ジルコニア化合物は平均粒子径が1μm以下のものが好ましい。ここでは、粒径0.8μmの二酸化ジルコニウム(ZrO2)を用いる。チタン化合物は二酸化チタン(ルチル)、二酸化チタン(アナターゼ)のどちらを用いても良く、平均粒径に制限なく使用することができる。ここでは、粒径2μmの二酸化チタン(TiO2)を用いる。なお、酸化ニッケル原料の平均粒子径は0.5μmで最大粒子径が1.8μmのものを用いる。 First, lead monoxide (PbO), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), and nickel oxide (NiO) are weighed in predetermined amounts. The lead compound material may be any of lead monoxide (resurge), lead monoxide (mascot), and red lead, and the powder particle size should be as fine as possible. Here, lead monoxide (resurge) having a particle diameter of 1 μm is used. The zirconia compound preferably has an average particle size of 1 μm or less. Here, zirconium dioxide (ZrO 2 ) having a particle diameter of 0.8 μm is used. As the titanium compound, either titanium dioxide (rutile) or titanium dioxide (anatase) may be used, and the average particle diameter can be used without limitation. Here, titanium dioxide (TiO 2 ) having a particle diameter of 2 μm is used. The nickel oxide raw material has an average particle size of 0.5 μm and a maximum particle size of 1.8 μm.

次に、これらの原料をボールミル内でイオン交換水を用いて20時間混合し、粉砕する。その後、乾燥し、大気雰囲気中で850℃の温度条件で、2時間仮焼する。また、この仮焼物を粗粉砕後、ボールミル内で10時間湿式粉砕する。粉砕および乾燥後、ポリビニルアルコールの成型用バインダーを0.6wt%添加し、乳鉢を用いて混合する。次に、1ton/cm2の圧力条件でプレスし、φ20mmの円柱状成形体を得る。この成形体をマグネシアルツボに入れ、電気炉内で900℃の温度条件で、2時間焼成し、焼結体を得る。 Next, these raw materials are mixed and pulverized in a ball mill using ion exchange water for 20 hours. Thereafter, it is dried and calcined in an air atmosphere at a temperature of 850 ° C. for 2 hours. The calcined product is coarsely pulverized and then wet pulverized in a ball mill for 10 hours. After grinding and drying, 0.6 wt% of a polyvinyl alcohol molding binder is added and mixed using a mortar. Next, it presses on the pressure conditions of 1 ton / cm < 2 >, and obtains a cylindrical molded object of (phi) 20mm. This molded body is put in a magnetic crucible and fired in an electric furnace at a temperature of 900 ° C. for 2 hours to obtain a sintered body.

本発明の実施例について、比較例と比較しながら図面にて詳細に説明する。   Examples of the present invention will be described in detail with reference to the drawings while comparing with comparative examples.

表1は、焼結温度と焼結密度のニッケル原料粒度依存性を示す表である。図1は、焼結温度と焼結密度のニッケル原料粒度依存性を示すグラフである。表2は、焼結温度と電気機械結合係数Krのニッケル原料粒度依存性を示す表である。図2は、焼結温度と電気機械結合係数Krのニッケル原料粒度依存性を示すグラフである。   Table 1 shows the nickel raw material particle size dependence of the sintering temperature and the sintering density. FIG. 1 is a graph showing the nickel raw material particle size dependence of the sintering temperature and the sintering density. Table 2 is a table showing the nickel raw material particle size dependency of the sintering temperature and the electromechanical coupling coefficient Kr. FIG. 2 is a graph showing the nickel raw material particle size dependence of the sintering temperature and the electromechanical coupling coefficient Kr.

最初に、一酸化鉛(PbO)、二酸化ジルコニウム(ZrO2)、二酸化チタン(TiO2)、五酸化ニオブ(Nb25)、酸化ニッケル(NiO)を所定量秤量した。鉛化合物の原料は、粒径1μmの一酸化鉛(リサージ)を用いる。ジルコニア化合物の原料は、粒径0.8μmの二酸化ジルコニウム(ZrO2)を用いる。チタン化合物の原料は、粒径2μmの二酸化チタン(TiO2)を用いる。なお、酸化ニッケル原料は、以下に示す4種類の粒子径の試料1、試料2、試料3および試料4を用いた。 First, lead monoxide (PbO), zirconium dioxide (ZrO 2 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), and nickel oxide (NiO) were weighed in predetermined amounts. As a lead compound raw material, lead monoxide (resurge) having a particle diameter of 1 μm is used. Zirconium dioxide (ZrO 2 ) having a particle size of 0.8 μm is used as a raw material for the zirconia compound. Titanium dioxide (TiO 2 ) having a particle size of 2 μm is used as a raw material for the titanium compound. As the nickel oxide raw material, Sample 1, Sample 2, Sample 3, and Sample 4 having the following four particle sizes were used.

(1)試料1:酸化ニッケル(NiO)、平均粒子径=0.5μm、最大粒子径=1.8μm
(2)試料2:酸化ニッケル(NiO)、平均粒子径=0.5μm、最大粒子径=3.0μm
(3)試料3:酸化ニッケル(NiO)、平均粒子径=0.8μm、最大粒子径=1.8μm
(4)試料4:酸化ニッケル(NiO)、平均粒子径=1.2μm、最大粒子径=3.5μm
(1) Sample 1: Nickel oxide (NiO), average particle size = 0.5 μm, maximum particle size = 1.8 μm
(2) Sample 2: Nickel oxide (NiO), average particle size = 0.5 μm, maximum particle size = 3.0 μm
(3) Sample 3: Nickel oxide (NiO), average particle size = 0.8 μm, maximum particle size = 1.8 μm
(4) Sample 4: Nickel oxide (NiO), average particle size = 1.2 μm, maximum particle size = 3.5 μm

次に、これらの原料をボールミル内でイオン交換水を用いて20時間混合し、粉砕した。その後、乾燥し、大気雰囲気中で850℃の温度条件で、2時間仮焼した。また、この仮焼物を粗粉砕後、ボールミル内で10時間湿式粉砕した。粉砕および乾燥後、ポリビニルアルコールの成型用バインダーを0.6wt%添加し、乳鉢を用いて混合した。次に、1ton/cm2の圧力条件でプレスし、φ20mmの円柱状成形体を得た。この成形体をマグネシアルツボに入れ、電気炉内で900〜1200℃の温度条件で、2時間焼成し、焼結体を得た。 Next, these raw materials were mixed in a ball mill using ion exchange water for 20 hours and pulverized. Then, it dried and calcined for 2 hours at 850 degreeC temperature conditions in air | atmosphere. The calcined product was coarsely pulverized and then wet pulverized in a ball mill for 10 hours. After grinding and drying, 0.6 wt% of a polyvinyl alcohol molding binder was added and mixed using a mortar. Next, it pressed on the pressure conditions of 1 ton / cm < 2 >, and obtained the cylindrical molded object of (phi) 20mm. This molded body was put in a magnetic crucible and fired in an electric furnace at a temperature of 900 to 1200 ° C. for 2 hours to obtain a sintered body.

これらの焼結体は、アルキメデス法を用いて焼結体密度の測定を行った。その後、焼結体を厚さ1mmに加工し、両面の電極に銀ペーストを焼き付け、80℃のシリコンオイル中で2kV/mmの電界を15分印加して分極処理を行い、圧電セラミックスを作製した。次に、インピーダンスアナライザーを用いて、圧電セラミックスの電気機械結合係数Krを共振−***振法で測定した。   For these sintered bodies, the density of the sintered bodies was measured using the Archimedes method. Thereafter, the sintered body was processed to a thickness of 1 mm, a silver paste was baked onto the electrodes on both sides, and an electric field of 2 kV / mm was applied for 15 minutes in silicon oil at 80 ° C. to produce a piezoelectric ceramic. . Next, using an impedance analyzer, the electromechanical coupling coefficient Kr of the piezoelectric ceramic was measured by a resonance-antiresonance method.

焼結温度と圧電セラミックスの焼結体密度を比較すると、平均及び最大粒子径の大きなNiO原料を用いた試料4では、1100℃以上の焼結温度で焼結体密度=8.00g/cm3を得た。それに対し、試料1、試料2および試料3では、900℃以上の焼結温度≧8.00g/cm3の密度を得た。平均粒子径≦0.8μm、最大粒子径≦3.0μmの試料にて、焼結温度を約200℃低減できることを確認した(表1および図1参照)。 Comparing the sintering temperature and the sintered ceramic density of the piezoelectric ceramic, in the sample 4 using the NiO raw material having a large average and maximum particle diameter, the sintered compact density = 8.00 g / cm 3 at a sintering temperature of 1100 ° C. or higher. Got. In contrast, Sample 1, Sample 2, and Sample 3 obtained a sintering temperature of 900 ° C. or higher and a density of 8.00 g / cm 3 . It was confirmed that the sintering temperature could be reduced by about 200 ° C. for samples having an average particle size ≦ 0.8 μm and a maximum particle size ≦ 3.0 μm (see Table 1 and FIG. 1).

Figure 2006265055
Figure 2006265055

焼結温度と電気機械結合係数Krを比較すると、平均及び最大粒子径の大きなNiO原料を用いた試料4では、1100℃以上の焼結温度でKr=60%を得た。それに対して、試料1、試料2および試料3では、900℃以上の焼結温度でKr≧60%を得た。平均粒子径≦0.8μm、最大粒子径≦3.0μmの試料にて、電気機械結合係数Kr≧60%を確保した上で、焼結温度を約200℃低減できることを確認した(表2および図2参照)。   When the sintering temperature and the electromechanical coupling coefficient Kr were compared, in the sample 4 using the NiO raw material having a large average and maximum particle diameter, Kr = 60% was obtained at a sintering temperature of 1100 ° C. or higher. In contrast, Sample 1, Sample 2, and Sample 3 obtained Kr ≧ 60% at a sintering temperature of 900 ° C. or higher. It was confirmed that the sintering temperature could be reduced by about 200 ° C. after securing the electromechanical coupling coefficient Kr ≧ 60% in the sample having an average particle size ≦ 0.8 μm and the maximum particle size ≦ 3.0 μm (Table 2 and (See FIG. 2).

Figure 2006265055
Figure 2006265055

なお、実施例で特に示していないが、本発明で製造できる圧電セラミックスは、PZTと呼ばれるチタン酸ジルコン酸鉛系セラミックスで、PZTに第三成分としてPb(Ni1/3Nb2/3)O3を含みその他に第四成分としてPb(Mg1/3Nb2/3)O3、Pb(Zn1/3Nb2/3)O3、Pb(Sb1/2Nb1/2)O3、Pb(Mn1/3Sb1/3)O3等を固溶させたものや、添加材としてNb25、MnO、La23、SiO2、Fe23等の微量成分を添加したものも含まれる。 Although not specifically shown in the examples, the piezoelectric ceramic that can be manufactured by the present invention is a lead zirconate titanate ceramic called PZT, and Pb (Ni 1/3 Nb 2/3 ) O as a third component in PZT. In addition, Pb (Mg 1/3 Nb 2/3 ) O 3 , Pb (Zn 1/3 Nb 2/3 ) O 3 , Pb (Sb 1/2 Nb 1/2 ) O 3 , Pb (Mn 1/3 Sb 1/3 ) O 3, etc., and minor components such as Nb 2 O 5 , MnO, La 2 O 3 , SiO 2 , Fe 2 O 3 as additives. Additions are also included.

また、この実施例に示していないが、ここで使用しているNiOの平均粒子径および最大粒子径は、より小さいほど電気機械結合係数Kr≧60%を確保した上で、焼結温度を下げることができることを実験的に確認している。   Although not shown in this example, the smaller the average particle size and the maximum particle size of NiO used here, the lower the sintering temperature after securing the electromechanical coupling coefficient Kr ≧ 60%. It is confirmed experimentally that it is possible.

以上のとおり、本発明は、平均粒子径0.6μm以下または最大粒子径2.0μm以下のニッケル化合物原料を用いることでAg−Pdを内部電極で構成される積層デバイスが作製可能な焼結温度(約900℃)で、要求される圧電特性を確保できる圧電セラミックスの製造が可能であることを確認した。   As described above, the present invention provides a sintering temperature at which a laminated device composed of Ag—Pd with internal electrodes can be produced by using a nickel compound raw material having an average particle size of 0.6 μm or less or a maximum particle size of 2.0 μm or less. It was confirmed that it is possible to produce piezoelectric ceramics that can ensure the required piezoelectric characteristics at (about 900 ° C.).

焼結温度と焼結密度のニッケル原料粒度依存性を示すグラフ。The graph which shows the nickel raw material particle size dependence of sintering temperature and a sintering density. 焼結温度と電気機械結合係数Krのニッケル原料粒度依存性を示すグラフ。The graph which shows the nickel raw material particle size dependence of sintering temperature and the electromechanical coupling coefficient Kr.

Claims (2)

鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として、ボールミルによる混合粉砕の後、仮焼する工程を含むチタン酸ジルコン酸鉛系圧電セラミックスの製造方法において、ニッケル化合物原料の平均粒子径を、0μm<平均粒子径≦0.6μmにしたことを特徴とする圧電セラミックスの製造方法。   In a method for producing lead zirconate titanate-based piezoelectric ceramics comprising a lead compound, a titanium compound, a zirconium compound, a nickel compound raw material, a niobium compound as a powder raw material, and a mixed pulverization by a ball mill, followed by calcination, A method for producing a piezoelectric ceramic, characterized in that the average particle size is 0 μm <average particle size ≦ 0.6 μm. 鉛化合物、チタニウム化合物、ジルコニウム化合物、ニッケル化合物原料、ニオブ化合物を粉末原料として、ボールミルによる混合粉砕の後、仮焼する工程を含むチタン酸ジルコン酸鉛系圧電セラミックスの製造方法において、ニッケル化合物原料の最大粒子径を、0μm<最大粒子径≦2.0μmにしたことを特徴とする圧電セラミックスの製造方法。   In a method for producing lead zirconate titanate-based piezoelectric ceramics comprising a lead compound, a titanium compound, a zirconium compound, a nickel compound raw material, a niobium compound as a powder raw material, and a mixed pulverization by a ball mill, followed by calcination, A method for producing a piezoelectric ceramic, wherein the maximum particle size is 0 μm <maximum particle size ≦ 2.0 μm.
JP2005087653A 2005-03-25 2005-03-25 Method of manufacturing piezoelectric ceramic Pending JP2006265055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087653A JP2006265055A (en) 2005-03-25 2005-03-25 Method of manufacturing piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087653A JP2006265055A (en) 2005-03-25 2005-03-25 Method of manufacturing piezoelectric ceramic

Publications (1)

Publication Number Publication Date
JP2006265055A true JP2006265055A (en) 2006-10-05

Family

ID=37201401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087653A Pending JP2006265055A (en) 2005-03-25 2005-03-25 Method of manufacturing piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JP2006265055A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005536A (en) * 2007-06-25 2009-01-08 National Institute Of Advanced Industrial & Technology High-strength, high-conductivity thin film and actuator manufacturing method using carbon nanotube
JP2014101271A (en) * 2007-10-18 2014-06-05 Ceramtec Gmbh Piezoelectric ceramic multilayer element
CN114380593A (en) * 2022-01-25 2022-04-22 无锡市惠丰电子有限公司 Piezoelectric ceramic material for tumor electric field therapeutic apparatus and preparation method thereof
CN114853466A (en) * 2022-04-27 2022-08-05 苏州思萃电子功能材料技术研究所有限公司 Bismuth scandate-lead titanate-based high-temperature piezoelectric ceramic with low high-temperature loss factor and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition
JPH07277822A (en) * 1994-04-11 1995-10-24 Matsushita Electric Ind Co Ltd Piezoelectric element material and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133152A (en) * 1993-11-04 1995-05-23 Nec Corp Production of piezoelectric porcelain composition
JPH07277822A (en) * 1994-04-11 1995-10-24 Matsushita Electric Ind Co Ltd Piezoelectric element material and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009005536A (en) * 2007-06-25 2009-01-08 National Institute Of Advanced Industrial & Technology High-strength, high-conductivity thin film and actuator manufacturing method using carbon nanotube
JP2014101271A (en) * 2007-10-18 2014-06-05 Ceramtec Gmbh Piezoelectric ceramic multilayer element
CN114380593A (en) * 2022-01-25 2022-04-22 无锡市惠丰电子有限公司 Piezoelectric ceramic material for tumor electric field therapeutic apparatus and preparation method thereof
CN116063075A (en) * 2022-01-25 2023-05-05 海陶(湖州)新材料科技有限公司 Functional ceramic material for tumor electric field therapeutic apparatus and preparation method thereof
CN114853466A (en) * 2022-04-27 2022-08-05 苏州思萃电子功能材料技术研究所有限公司 Bismuth scandate-lead titanate-based high-temperature piezoelectric ceramic with low high-temperature loss factor and preparation method thereof
CN114853466B (en) * 2022-04-27 2023-06-23 苏州思萃电子功能材料技术研究所有限公司 Bismuth scandium-lead titanate-based high-temperature piezoelectric ceramic with low-high Wen Sunhao property and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2010120835A (en) Piezoelectric ceramic, vibrator and ultrasonic motor
JP5929640B2 (en) Piezoelectric ceramic and piezoelectric element
CN108569897B (en) Piezoelectric composition and piezoelectric element
JP2005179143A (en) Piezoelectric ceramic and method of producing the same
CN104024180A (en) Ceramic material, method for producing the ceramic material, and electroceramic component comprising the ceramic material
JP2011068516A (en) Piezoelectric ceramic composition, piezoelectric ceramic, piezoelectric element and oscillator
JP2004300012A (en) Piezoelectric ceramic composition, its production method, piezoelectric element, and dielectric element
JP2008156172A (en) Lead-free piezoelectric porcelain composition
JP6175528B2 (en) Piezoelectric device
JP2000169223A (en) Piezoelectric ceramic composition and its production
JP2007084408A (en) Piezoelectric ceramic
JP2006265055A (en) Method of manufacturing piezoelectric ceramic
JP2004075448A (en) Piezoelectric ceramic composition, method of manufacturing piezoelectric ceramic composition and piezoelectric ceramic part
JP2005008516A (en) Piezoelectric ceramic composition and piezoelectric element using the same
JP2011195382A (en) Piezoelectric ceramic and piezoelectric element using the same
JP2000272963A (en) Piezoelectric ceramic composition
JP2006335576A (en) Piezoelectric material
KR101768585B1 (en) manufacturing method of piezoelectric ceramics in lead-free, and piezoelectric ceramics using of it
JP2008056549A (en) Unleaded piezoelectric porcelain composition
JP2003095737A (en) Piezoelectric ceramic composition
JP2001097774A (en) Piezoelectric porcelain composition
KR101666302B1 (en) Method of manufacturing the multi-layered actuator
JP5018648B2 (en) Piezoelectric ceramic and resonator using the same
JP2001048641A (en) Piezoelectric porcelain composition
JP2010052977A (en) Piezoelectric ceramic and piezoelectric element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101222