JP2006257936A - Exhaust gas-dust collecting denitration method of diesel engine - Google Patents

Exhaust gas-dust collecting denitration method of diesel engine Download PDF

Info

Publication number
JP2006257936A
JP2006257936A JP2005075159A JP2005075159A JP2006257936A JP 2006257936 A JP2006257936 A JP 2006257936A JP 2005075159 A JP2005075159 A JP 2005075159A JP 2005075159 A JP2005075159 A JP 2005075159A JP 2006257936 A JP2006257936 A JP 2006257936A
Authority
JP
Japan
Prior art keywords
exhaust gas
diesel engine
denitration
catalyst
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005075159A
Other languages
Japanese (ja)
Inventor
Yuichi Ikeda
裕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005075159A priority Critical patent/JP2006257936A/en
Publication of JP2006257936A publication Critical patent/JP2006257936A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas-dust collecting denitration method of a diesel engine, capable of surely collecting and denitrating dust in a short time from starting an engine, without enlarging a device. <P>SOLUTION: The concentration can be reduced by removing nitrogen oxides in exhaust gas from when starting the engine, by adsorbing NH<SB>3</SB>in advance to a catalyst filter 25 by supplying NH<SB>3</SB>mixed air before operation of the diesel engine 1, and the nitrogen oxides can be surely removed even in operation of the diesel engine 1 in a relatively short operation time such as being used as an emergency generator. The concentration of the nitrogen oxides can also be largely reduced by making a catalyst actively function from when starting the diesel engine 1 by preheating the catalyst filter 25 by this mixed air with the NH<SB>3</SB>mixed as a hot blast. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディーゼルエンジンの排ガス除塵脱硝方法に関し、詳細には非常用発電機として用いられるディーゼルエンジンの排ガス除塵脱硝方法に関する。   The present invention relates to an exhaust gas dust removal denitration method for a diesel engine, and more particularly to an exhaust gas dust removal denitration method for a diesel engine used as an emergency generator.

一般的に、ディーゼルエンジンの起動時には黒煙が発生し、その排ガスには比較的多量の窒素酸化物が含まれている。窒素酸化物は公害及び環境破壊の原因となるために、ディーゼルエンジンの排ガスから窒素酸化物を除去するための方法が従来から提案されている。例えば、脱硝触媒を用いて窒素酸化物を除去する方法が一般的に知られており、排ガス中にアンモニアを注入し、それを下流側に設けた脱硝触媒に接触させて反応させて窒素酸化物を浄化し無害化するという方法が用いられている。   Generally, black smoke is generated when a diesel engine is started, and the exhaust gas contains a relatively large amount of nitrogen oxides. Since nitrogen oxides cause pollution and environmental destruction, methods for removing nitrogen oxides from diesel engine exhaust gas have been proposed. For example, a method of removing nitrogen oxides using a denitration catalyst is generally known. Ammonia is injected into exhaust gas, and then brought into contact with a denitration catalyst provided on the downstream side to react with nitrogen oxides. The method of purifying and detoxifying is used.

しかしながら、エンジンを始動してからしばらくの間は排ガスの温度が低く、触媒が活性化するための温度まで上昇するのに時間がかかるため、排ガスの温度が上昇するまでは窒素酸化物の除去が効果的に行えず、窒素酸化物を含んだ排ガスがそのまま大気中に放出されてしまうという問題があった。このような問題を解決するために、例えば特許文献1に記載の発明では、排ガスの浄化装置においてディーゼルエンジンと脱硝触媒との間に窒素酸化物の吸着剤を設け、触媒に接触する排ガスの温度が低いときには排ガス中の窒素酸化物を吸着剤に吸着させ、高温になったときに離脱させるという技術が開示されている。このように構成された浄化装置を用いて浄化を行うことにより、排ガスの温度が低いときにも窒素酸化物の除去を確実に行うことができるという効果が得られる。
特開2000−295241号公報
However, since the temperature of the exhaust gas is low for a while after the engine is started and it takes time to increase the temperature to activate the catalyst, removal of nitrogen oxides is not possible until the temperature of the exhaust gas rises. There is a problem in that the exhaust gas containing nitrogen oxides cannot be effectively used and is discharged into the atmosphere as it is. In order to solve such a problem, for example, in the invention described in Patent Document 1, a nitrogen oxide adsorbent is provided between the diesel engine and the denitration catalyst in the exhaust gas purification device, and the temperature of the exhaust gas in contact with the catalyst Discloses a technique in which nitrogen oxides in exhaust gas are adsorbed by an adsorbent when the temperature is low, and separated when the temperature becomes high. By performing purification using the purification apparatus configured as described above, it is possible to reliably remove nitrogen oxides even when the temperature of the exhaust gas is low.
JP 2000-295241 A

しかしながら、上記特許文献1に記載の発明に係る技術では、排ガスの流路に窒素酸化物の吸着剤を設けるために圧力損失が上昇してしまうという問題や、また後段に設けた黒煙除去装置が大型化する問題や、誘引ファンの動力が増大するという問題があった。   However, in the technology according to the invention described in Patent Document 1, there is a problem that the pressure loss increases because the nitrogen oxide adsorbent is provided in the exhaust gas flow path, and the black smoke removing device provided in the subsequent stage. There is a problem that the size of the fan increases and the power of the attracting fan increases.

本発明は、上記課題を解決するためになされたものであり、装置の大型化を招くことなく、エンジン始動から短時間で確実に除塵及び脱硝をすることができるディーゼルエンジンの排ガス除塵脱硝方法を提供することを目的とする。   The present invention has been made to solve the above problems, and provides a diesel engine exhaust gas dust removal and denitration method capable of reliably removing dust and denitration in a short time from the start of the engine without increasing the size of the apparatus. The purpose is to provide.

上記目的を達成するために、請求項1に記載の発明は、非常用発電機として用いられるディーゼルエンジンの排ガスを脱硝触媒に通して脱硝するディーゼルエンジンの排ガス除塵脱硝方法であって、前記ディーゼルエンジンの運転前にNH混合空気を供給し、前記脱硝触媒にNHを予め吸着させることを特徴とする。 In order to achieve the above object, the invention described in claim 1 is a diesel engine exhaust gas dust removal and denitration method in which exhaust gas from a diesel engine used as an emergency power generator is passed through a denitration catalyst and denitrated. NH 3 mixed air is supplied before the operation, and NH 3 is adsorbed in advance on the denitration catalyst.

また、請求項2に記載のディーゼルエンジンの排ガス除塵脱硝方法では、請求項1に記載のディーゼルエンジンの排ガス除塵脱硝方法の構成に加えて、前記NH混合空気が熱風であり、該混合空気によって前記脱硝触媒を予備加熱することを特徴とする。 In addition, in the exhaust gas dust removal and denitration method for a diesel engine according to claim 2, in addition to the configuration of the exhaust gas dust removal and denitration method for a diesel engine according to claim 1, the NH 3 mixed air is hot air, The denitration catalyst is preheated.

また、請求項3に記載のディーゼルエンジンの排ガス除塵脱硝方法では、請求項1または2に記載のディーゼルエンジンの排ガス除塵脱硝方法の構成に加えて、前記脱硝触媒が200℃以上になるまで予備加熱を実施することを特徴とする。   Further, in the exhaust gas dust removal and denitration method for a diesel engine according to claim 3, in addition to the configuration of the exhaust gas dust removal and denitration method for a diesel engine according to claim 1 or 2, preheating until the denitration catalyst reaches 200 ° C. or higher. It is characterized by implementing.

本発明に係るディーゼルエンジンの排ガス除塵脱硝方法では、ディーゼルエンジンの運転前にNH混合空気を供給し、脱硝触媒にNHを予め吸着させておくことにより、エンジンの始動時から排ガス中の窒素酸化物を除去してその濃度を低くすることができ、非常用発電機として用いられるような運転時間の比較的短いディーゼルエンジンの運転中にも確実に窒素酸化物を除去することができる。また、NH混合空気を熱風としてこの混合空気によって脱硝触媒の予備加熱を実施することにより、エンジンの始動時に既に脱硝触媒の温度を上昇させて、該触媒を効果的に機能させることができ、さらに脱硝触媒を200℃以上になるまで予備加熱を実施することで、脱硝触媒をより効果的に機能させることができるので、排ガス中の窒素酸化物濃度を大幅に低減することができる。 In the exhaust gas dust removal and denitration method for a diesel engine according to the present invention, NH 3 mixed air is supplied before operation of the diesel engine, and NH 3 is adsorbed in advance on the denitration catalyst, so that nitrogen in the exhaust gas from the start of the engine. Oxide can be removed to reduce its concentration, and nitrogen oxide can be reliably removed even during operation of a diesel engine with a relatively short operating time, such as used as an emergency generator. Further, by preheating the denitration catalyst with NH 3 mixed air as hot air, the temperature of the denitration catalyst can be raised already at the start of the engine and the catalyst can function effectively. Furthermore, by carrying out preheating until the denitration catalyst reaches 200 ° C. or higher, the denitration catalyst can function more effectively, so that the concentration of nitrogen oxides in the exhaust gas can be greatly reduced.

以下、本発明を具体化したディーゼルエンジンの排ガス除塵脱硝方法の一実施形態について図を参照して説明する。図1に示すように、ディーゼルエンジン1には、排ガスが流される第1の流路5の一端が接続されており、第1の流路5の他端には排ガス中の窒素酸化物を除去するための触媒フィルタ25が設けられている。触媒フィルタ25の直後には第2の流路6が設けられており、この第2の流路6を介して触媒フィルタ25と排ガスファン10とが連結されている。そして、排ガスファン10の直後には、排ガスを外部へ排出するための煙突50に連結された第3の流路7が設けられている。尚、触媒フィルタ25ではフィルタと触媒とが一体となっているが、両者を別体としてもよい。   Hereinafter, an embodiment of a diesel engine exhaust gas dust removal denitration method embodying the present invention will be described with reference to the drawings. As shown in FIG. 1, one end of a first flow path 5 through which exhaust gas flows is connected to the diesel engine 1, and nitrogen oxides in the exhaust gas are removed at the other end of the first flow path 5. A catalyst filter 25 is provided. A second flow path 6 is provided immediately after the catalyst filter 25, and the catalyst filter 25 and the exhaust gas fan 10 are connected through the second flow path 6. Immediately after the exhaust gas fan 10, a third flow path 7 connected to a chimney 50 for exhausting the exhaust gas to the outside is provided. In the catalyst filter 25, the filter and the catalyst are integrated, but they may be separated.

また、第1の流路5には脱硝用のアンモニア混合空気がディーゼルエンジン1の運転前から供給されており、このアンモニア混合空気は触媒フィルタ25に送られることになる。触媒フィルタ25の近傍にはバーナ20が設けられ、このバーナ20には空気及びLNGが投入されている。触媒フィルタ25に送られてきたアンモニア混合空気は、バーナ20によって暖められ、ディーゼルエンジン1の始動前からアンモニア混合空気のNHが予め触媒フィルタ25の触媒面に吸着した状態となる。また、触媒フィルタ25はディーゼルエンジン1の運転前から予備加熱されて、エンジン運転時には既にある程度まで温度上昇した状態となっている。ここで、本実施形態において、予備加熱後の触媒フィルタ25の温度は、触媒を効果的に機能させるために200℃以上となるように設定している。尚、アンモニア濃度を高くするのに伴って高い脱硝効果を得ることができるが、排ガスは煙突50から外部へ排出されるため、アンモニア濃度はある程度低くしておくことが必要である。 Further, ammonia mixed air for denitration is supplied to the first flow path 5 before the diesel engine 1 is operated, and this ammonia mixed air is sent to the catalyst filter 25. A burner 20 is provided in the vicinity of the catalyst filter 25, and air and LNG are introduced into the burner 20. The ammonia mixed air sent to the catalyst filter 25 is warmed by the burner 20, and the NH 3 of the ammonia mixed air is adsorbed on the catalyst surface of the catalyst filter 25 in advance before the diesel engine 1 is started. Further, the catalyst filter 25 is preheated before the diesel engine 1 is operated, and has already risen to some extent during the engine operation. Here, in the present embodiment, the temperature of the catalyst filter 25 after the preheating is set to be 200 ° C. or higher in order to make the catalyst function effectively. A high denitration effect can be obtained as the ammonia concentration is increased. However, since the exhaust gas is discharged from the chimney 50 to the outside, it is necessary to reduce the ammonia concentration to some extent.

ディーゼルエンジン1の運転時には、排ガスが第1の流路5を通って触媒フィルタ25へ送られると、触媒フィルタ25に吸着したNHによって排ガス中の窒素酸化物が除去されることになる。NH混合空気はバーナ20によって高温となっており、それに伴い触媒フィルタ25も高温になっているので触媒を活発に機能させることができる。特に、本発明に係るディーゼルエンジンのように、非常用発電機に用いるディーゼルエンジンはその運転時間が短く、従来では触媒が活性化する温度まで上がりきる前に運転が終わってしまうことが多いために、エンジン運転中に触媒を効果的に機能させることが困難であったが、上記のように触媒フィルタ25を予め加熱しておくことにより、ディーゼルエンジン1の始動時から触媒を活発に機能させることができる。それにより、排ガス中の窒素酸化物を確実に除去して、窒素酸化物濃度を大幅に低減することができる。 During operation of the diesel engine 1, when exhaust gas is sent to the catalyst filter 25 through the first flow path 5, nitrogen oxides in the exhaust gas are removed by NH 3 adsorbed on the catalyst filter 25. The NH 3 mixed air is heated by the burner 20, and the catalyst filter 25 is also heated accordingly, so that the catalyst can function actively. In particular, the diesel engine used in the emergency generator, such as the diesel engine according to the present invention, has a short operation time, and in the past, the operation often ends before the temperature reaches the temperature at which the catalyst is activated. Although it was difficult to make the catalyst function effectively during engine operation, the catalyst can be made to function actively from the start of the diesel engine 1 by preheating the catalyst filter 25 as described above. Can do. Thereby, the nitrogen oxide in exhaust gas can be removed reliably and the nitrogen oxide concentration can be greatly reduced.

尚、本実施形態では、ディーゼルエンジン1の排ガスを煙突50から外部へ排出するようにしているが、排ガスを外部へ排出せずに図1に示す系内で循環させるようにしてもよい。この場合、図1に示す第3の流路7と煙突50との間に弁を設けて、排ガスが煙突方向へ流れないようにしておけばよい。排ガスを系内で循環させることによってアンモニアが外部へ漏れることがないので、アンモニアの濃度を低くする必要がなく、より高い脱硝効果を得ることができる。   In the present embodiment, the exhaust gas of the diesel engine 1 is discharged from the chimney 50 to the outside. However, the exhaust gas may be circulated in the system shown in FIG. 1 without being discharged to the outside. In this case, a valve may be provided between the third flow path 7 and the chimney 50 shown in FIG. 1 so that the exhaust gas does not flow in the chimney direction. By circulating the exhaust gas in the system, ammonia does not leak to the outside, so there is no need to lower the concentration of ammonia and a higher denitration effect can be obtained.

次に、ディーゼルエンジンの始動にあたり、触媒フィルタをバーナで予備加熱しなかった場合(コールドスタート)、予備加熱のみした場合、予備加熱及びアンモニアの予備供給を行った場合のそれぞれについて、排ガス中窒素酸化物濃度の経時変化について説明する。図2に示すように、予備加熱なしでディーゼルエンジンをコールドスタートさせた場合、時間が僅かに経過した時点で窒素酸化物濃度は一旦減少するが、その後また増加し、時間の経過と共に緩やかに窒素酸化物濃度は低下していく。また、バーナによる予備加熱のみをしておいてディーゼルエンジンを始動させた場合は、時間の経過に伴って窒素酸化物濃度はコールドスタート時よりも急激に減少していく。しかしながら、窒素酸化物濃度を100ppm程度に低くするまでには、依然としてコールドスタート時と同じくらいの時間(約20分)が経過しているのが確認できる。即ち、バーナによる予備加熱のみでは、窒素酸化物濃度を減少させる時間の短縮には効果がないことが分かる。   Next, when starting the diesel engine, the catalyst filter was not preheated with a burner (cold start), only preheated, or preheated and preliminarily supplied with ammonia. The change with time of the object concentration will be described. As shown in FIG. 2, when the diesel engine is cold-started without preheating, the nitrogen oxide concentration once decreases when the time slightly passes, but then increases again, and gradually increases with time. The oxide concentration decreases. Further, when the diesel engine is started only by preheating with a burner, the nitrogen oxide concentration decreases more rapidly than the cold start with the passage of time. However, it can be confirmed that the same time (about 20 minutes) as that at the cold start has elapsed until the nitrogen oxide concentration is lowered to about 100 ppm. That is, it can be seen that preheating only with a burner is not effective in shortening the time for reducing the nitrogen oxide concentration.

また、上記実施形態のように、バーナによる予備加熱とアンモニアの予備供給とをしておいてディーゼルエンジンを始動させた場合は、バーナによる予備加熱のみをした場合と比較してもより早く窒素酸化物濃度は減少していき、上記2つの場合では窒素酸化物濃度を100ppm程度にするまでにおよそ20分かかっていたのが、予備加熱及びアンモニア予備供給をすることで5分程度短縮することができたのが確認できる。尚、アンモニア濃度をより上げることでこの時間をさらに短縮できると考えられる。   Further, as in the above embodiment, when the diesel engine is started with the preheating by the burner and the preliminary supply of ammonia, the nitrogen oxidation is faster than the case where only the preheating by the burner is performed. In the above two cases, it took about 20 minutes for the nitrogen oxide concentration to reach about 100 ppm, but it can be shortened by about 5 minutes by preheating and preliminarily supplying ammonia. You can see that it was done. It is considered that this time can be further shortened by increasing the ammonia concentration.

以上説明したように、本実施形態のディーゼルエンジンの排ガス除塵脱硝方法では、予備加熱及びアンモニアの予備供給をしておくだけで、エンジン始動直後から触媒を活発に機能させて排ガス中の窒素酸化物濃度を効果的に低減することができ、また窒素酸化物濃度を低減するのに必要な時間も短縮することができる。従って、運転時間が比較的短い非常用発電機として用いられるディーゼルエンジンにおいては特に効果的に用いることができる。また、脱硝装置及び黒煙除去装置等が大型化することもない。   As described above, in the diesel engine exhaust gas dust removal and denitration method according to the present embodiment, the nitrogen oxides in the exhaust gas can be activated by just preheating and preliminarily supplying ammonia so that the catalyst functions actively immediately after the engine is started. The concentration can be effectively reduced, and the time required to reduce the nitrogen oxide concentration can be shortened. Therefore, it can be used particularly effectively in a diesel engine used as an emergency generator with a relatively short operation time. Further, the denitration device, the black smoke removal device and the like are not increased in size.

ディーゼルエンジン1の脱硝装置を模式的に示す図である。1 is a diagram schematically showing a denitration device of a diesel engine 1. コールドスタート時、予備加熱時、予備加熱及びアンモニア予備供給時における窒素酸化物濃度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the nitrogen oxide density | concentration at the time of a cold start, the time of preheating, the time of preheating, and ammonia preliminary supply.

符号の説明Explanation of symbols

1 ディーゼルエンジン
10 排ガスファン
20 バーナ
25 触媒フィルタ
1 Diesel engine 10 Exhaust gas fan 20 Burner 25 Catalytic filter

Claims (3)

非常用発電機として用いられるディーゼルエンジンの排ガスを脱硝触媒に通して脱硝するディーゼルエンジンの排ガス除塵脱硝方法であって、
前記ディーゼルエンジンの運転前にNH混合空気を供給し、前記脱硝触媒にNHを予め吸着させることを特徴とするディーゼルエンジンの排ガス除塵脱硝方法。
A diesel engine exhaust gas dust removal and denitration method in which exhaust gas from a diesel engine used as an emergency power generator is passed through a denitration catalyst for denitration,
An exhaust gas dust removal denitration method for a diesel engine, wherein NH 3 mixed air is supplied before the diesel engine is operated, and NH 3 is adsorbed in advance on the denitration catalyst.
前記NH混合空気が熱風であり、該混合空気によって前記脱硝触媒を予備加熱することを特徴とする請求項1に記載のディーゼルエンジンの排ガス除塵脱硝方法。 The exhaust gas denitration denitration method for a diesel engine according to claim 1, wherein the NH 3 mixed air is hot air, and the denitration catalyst is preheated by the mixed air. 前記脱硝触媒が200℃以上になるまで予備加熱を実施することを特徴とする請求項1または2に記載のディーゼルエンジンの排ガス除塵脱硝方法。   The exhaust gas dust removal denitration method for diesel engines according to claim 1 or 2, wherein preheating is performed until the denitration catalyst reaches 200 ° C or higher.
JP2005075159A 2005-03-16 2005-03-16 Exhaust gas-dust collecting denitration method of diesel engine Pending JP2006257936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075159A JP2006257936A (en) 2005-03-16 2005-03-16 Exhaust gas-dust collecting denitration method of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075159A JP2006257936A (en) 2005-03-16 2005-03-16 Exhaust gas-dust collecting denitration method of diesel engine

Publications (1)

Publication Number Publication Date
JP2006257936A true JP2006257936A (en) 2006-09-28

Family

ID=37097488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075159A Pending JP2006257936A (en) 2005-03-16 2005-03-16 Exhaust gas-dust collecting denitration method of diesel engine

Country Status (1)

Country Link
JP (1) JP2006257936A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104799A1 (en) 2008-02-22 2009-08-27 トヨタ自動車株式会社 Exhaust gas purifier for internal-combustion engine
CN111167289A (en) * 2020-02-26 2020-05-19 四川恒泰环境技术有限责任公司 Industrial flue gas co-processing system and processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128126A (en) * 1982-01-28 1983-07-30 Babcock Hitachi Kk Method for introducing reducing agent
JPH024424A (en) * 1988-06-23 1990-01-09 Babcock Hitachi Kk Exhaust gas treatment apparatus and operation thereof
JPH0436002A (en) * 1990-05-30 1992-02-06 Hitachi Ltd Nitrogen oxide concentration control device
JPH09510652A (en) * 1994-03-25 1997-10-28 シーメンス アクチエンゲゼルシヤフト Supply / mixing combination device
JP2004176703A (en) * 2002-10-02 2004-06-24 Toshiba Corp Gas purification apparatus, gas purification method, and discharge reactant used for the gas purification apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128126A (en) * 1982-01-28 1983-07-30 Babcock Hitachi Kk Method for introducing reducing agent
JPH024424A (en) * 1988-06-23 1990-01-09 Babcock Hitachi Kk Exhaust gas treatment apparatus and operation thereof
JPH0436002A (en) * 1990-05-30 1992-02-06 Hitachi Ltd Nitrogen oxide concentration control device
JPH09510652A (en) * 1994-03-25 1997-10-28 シーメンス アクチエンゲゼルシヤフト Supply / mixing combination device
JP2004176703A (en) * 2002-10-02 2004-06-24 Toshiba Corp Gas purification apparatus, gas purification method, and discharge reactant used for the gas purification apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104799A1 (en) 2008-02-22 2009-08-27 トヨタ自動車株式会社 Exhaust gas purifier for internal-combustion engine
US8516808B2 (en) 2008-02-22 2013-08-27 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
CN111167289A (en) * 2020-02-26 2020-05-19 四川恒泰环境技术有限责任公司 Industrial flue gas co-processing system and processing method

Similar Documents

Publication Publication Date Title
CA2694862A1 (en) Method and apparatus for treating exhaust gas
JPH03135417A (en) Nox removing device
KR20180079573A (en) Exhaust gas treatment device using exhaust gas recirculation
EP2853718A1 (en) Method of exhaust gas treatment for a gas turbine system and exhaust gas treatment assembly
TWI744523B (en) Method and system for the removal of noxious compounds from flue-gas
JP2009197761A (en) Exhaust gas purifier
WO2009099181A1 (en) Exhaust gas purification device
JP2008075610A (en) Exhaust gas treating device
JP2006257936A (en) Exhaust gas-dust collecting denitration method of diesel engine
TWI744524B (en) Method and system for the removal of particulate matter and noxious compounds from flue-gas
KR102173487B1 (en) Heating system and method for selective catalytic reduction apparatus
JP2002119830A (en) Method of treating waste gas from long term continuous operation equipment
TWI744525B (en) Method and system for the removal of noxious compounds from flue-gas
JP5285309B2 (en) Exhaust gas purification device
CN106979529B (en) Combustion treatment apparatus
JP2007327389A (en) Exhaust gas treatment device
JPH06106058A (en) Method for regenerating ammonia adsorbent
JPH07213859A (en) Waste gas treating device
JP2009221922A (en) Exhaust emission control device
JPH06233915A (en) Denitration equipment of combustion exhaust gas
JP4760702B2 (en) Leak ammonia reduction method in non-catalytic denitration of non-transfer type ash melting furnace exhaust gas
JP2007014930A (en) Method and apparatus for treating gas using catalyst
JP2000167395A (en) Method and apparatus for regenerating adsorbent for removing harmful substance in exhaust gas
JP2001330230A (en) Method for treating nitrogen oxide separated from flue gas
KR102164367B1 (en) Selective Catalytic Reduction System for Energy Savings During the Catalyst Regeneration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629