JP2006256888A - Hydrogen storage material and its manufacturing method - Google Patents

Hydrogen storage material and its manufacturing method Download PDF

Info

Publication number
JP2006256888A
JP2006256888A JP2005074740A JP2005074740A JP2006256888A JP 2006256888 A JP2006256888 A JP 2006256888A JP 2005074740 A JP2005074740 A JP 2005074740A JP 2005074740 A JP2005074740 A JP 2005074740A JP 2006256888 A JP2006256888 A JP 2006256888A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
storage material
lisi
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005074740A
Other languages
Japanese (ja)
Inventor
Masakazu Aoki
正和 青木
Nobuko Oba
伸子 大庭
Tatsuo Noritake
達夫 則竹
Kazutoshi Miwa
和利 三輪
Shinichi Towata
真一 砥綿
Manabu Miyoshi
学 三好
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2005074740A priority Critical patent/JP2006256888A/en
Publication of JP2006256888A publication Critical patent/JP2006256888A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material which contains a small amount of rare elements, and is lightweight and capable of storing/releasing a large amount of hydrogen at a relatively low temperature. <P>SOLUTION: The hydrogen storage material is represented by composition formula: (Ca<SB>1-x</SB>Li<SB>x</SB>)<SB>1-z</SB>Si<SB>z</SB>(wherein, 0.25≤x≤0.4 and 0.38≤x≤0.58). The method for manufacturing the hydrogen storage material has a compounding process of blending CaH<SB>2</SB>, LiH and Si so that the ratios of Ca, Li and Si satisfy the composition formula: (Ca<SB>1-x</SB>Li<SB>x</SB>)<SB>1-z</SB>Si<SB>z</SB>(wherein, 0.25≤x≤0.4 and 0.38≤x≤0.58) and compounding the resulting blend in a mechanical mixing process and a heat treating process of heat treating the composite of the hydrides obtained in the compounding process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、可逆的な水素の吸蔵・放出が可能な水素吸蔵材料及びその製造方法に関する。   The present invention relates to a hydrogen storage material capable of reversibly storing and releasing hydrogen and a method for producing the same.

近年、二酸化炭素の排出による地球の温暖化等の環境問題や、石油資源の枯渇等のエネルギー問題から、クリーンな代替エネルギーとして水素エネルギーが注目されている。水素エネルギーの実用化に向けて、水素を安全に貯蔵、輸送する技術の開発が重要となる。水素の貯蔵方法にはいくつかの候補があるが、中でも可逆的に水素を貯蔵・放出することのできる水素化物/水素吸蔵材料を用いる方法は、最も安全に水素を貯蔵・輸送する手段と考えられており、燃料電池車に搭載する水素吸蔵媒体として期待されている。   In recent years, hydrogen energy has attracted attention as a clean alternative energy due to environmental problems such as global warming caused by carbon dioxide emissions and energy problems such as exhaustion of petroleum resources. For the practical application of hydrogen energy, it will be important to develop technology for safely storing and transporting hydrogen. There are several candidates for hydrogen storage methods. Among them, a method using a hydride / hydrogen storage material capable of reversibly storing and releasing hydrogen is considered to be the safest means for storing and transporting hydrogen. It is expected as a hydrogen storage medium to be installed in fuel cell vehicles.

水素吸蔵材料としては、活性炭、フラーレン、ナノチューブ等の炭素材料や、LaNi、TiFe等の水素吸蔵合金が知られている。これらの内、水素吸蔵合金は、炭素材料に比べて単位体積当たりの水素密度が高いので、水素を貯蔵・輸送するための水素吸蔵材料として有望視されている。
しかしながら、LaNi、TiFe等の水素吸蔵合金は、La、Ni、Ti等の希少金属を含んでいるため、その資源確保が困難であり、コストも高いという問題がある。
また、LaNi等の希土類系合金のように、初めから容易に水素を吸蔵するものもあるが、水素吸蔵合金は、一般に、合金表面に吸着しているガスや酸化被膜のため、初期の水素吸蔵能力は低い。そのため、このような合金においては、清浄な合金表面を露出させるための前処理(初期活性化)が必要となる。特に、TiFeは、初期活性化が難しく、相対的に多量の水素を吸蔵・放出させるためには、高温・高圧下での水素の吸蔵と吸蔵された水素の放出とを複数回繰り返す処理(活性化処理)が必要となる。
さらに、従来の水素吸蔵合金は、合金自体の重量が大きいために、単位重量当たりの水素密度が小さい、すなわち、大量の水素を貯蔵するために極めて重い吸蔵材料を必要とするという問題がある。
Known hydrogen storage materials include carbon materials such as activated carbon, fullerene, and nanotubes, and hydrogen storage alloys such as LaNi 5 and TiFe. Among these, hydrogen storage alloys have a high hydrogen density per unit volume compared to carbon materials, and thus are promising as hydrogen storage materials for storing and transporting hydrogen.
However, since hydrogen storage alloys such as LaNi 5 and TiFe contain rare metals such as La, Ni, and Ti, there are problems that it is difficult to secure resources and the cost is high.
In addition, some rare-earth alloys such as LaNi 5 easily absorb hydrogen from the beginning, but hydrogen-absorbing alloys are generally gas or oxide films adsorbed on the surface of the alloy, so The storage capacity is low. Therefore, in such an alloy, pretreatment (initial activation) for exposing a clean alloy surface is required. In particular, TiFe is difficult to activate at the initial stage, and in order to occlude and release a relatively large amount of hydrogen, a process of repeating the occlusion of hydrogen at a high temperature and high pressure and the release of the occluded hydrogen multiple times (activity) Processing) is required.
Furthermore, since the conventional hydrogen storage alloy has a large weight, the hydrogen density per unit weight is small, that is, a very heavy storage material is required to store a large amount of hydrogen.

そこでこの問題を解決するために、軽元素を含む種々の水素吸蔵材料の開発が試みられている。例えば、特許文献1及び非特許文献1には、六方晶系C12型結晶構造を有するCa(Si2−x)(0<x≦0.5、0.8≦y≦1.2)、及び、Cr型結晶構造を有するCaSiが開示されている。 In order to solve this problem, development of various hydrogen storage materials containing light elements has been attempted. For example, Patent Document 1 and Non-Patent Document 1 describe Ca (Si 2−x B x ) y (0 <x ≦ 0.5, 0.8 ≦ y ≦ 1.2) having a hexagonal C12 type crystal structure. ) And Ca 5 Si 3 having a Cr 5 B 3 type crystal structure is disclosed.

また、特許文献2には、組成式(Ca1−x)(Si1−y)(Aは、アルカリ金属元素、アルカリ土類金属元素、希土類元素、3〜6族元素、Ni、Au、In、Tl、Sn、Fe、Co、Cu、Agから選ばれる少なくとも1種、Bは、7〜17族元素、希土類元素、Hf、Beから選ばれる少なくとも1種、0≦x<1、0≦y<1)で表される水素吸蔵材料が開示されている。
さらに、非特許文献2には、LiHとSiの混合物を遊星ボールミルで機械的に粉砕することにより得られる混合物が開示されている。同文献には、2.5LiH+Si混合物及びこれから脱水素することにより得られるLixSi合金は、476℃において、約5wt%の水素を吸蔵/放出する点が記載されている。
Further, Patent Document 2, the composition formula (Ca 1-x A x) (Si 1-y B y) (A is an alkali metal element, an alkaline earth metal element, a rare earth element, 3-6 group elements, Ni , Au, In, Tl, Sn, Fe, Co, Cu, Ag, B is at least one selected from Group 7-17 elements, rare earth elements, Hf, Be, 0 ≦ x <1 , 0 ≦ y <1) is disclosed.
Further, Non-Patent Document 2 discloses a mixture obtained by mechanically pulverizing a mixture of LiH and Si with a planetary ball mill. This document describes that a 2.5 LiH + Si mixture and a LixSi alloy obtained by dehydrogenation from this absorb and release about 5 wt% of hydrogen at 476 ° C.

特開平10−8180号公報Japanese Patent Laid-Open No. 10-8180 特開2004−176089号公報JP 2004-176089 A J.Solid State Chem., 2001, 159, p.149-162J. Solid State Chem., 2001, 159, p.149-162 J.J.Vajo et al., J.Phys.Chem.B, 2004, 108, 13977-13983J.J.Vajo et al., J.Phys.Chem.B, 2004, 108, 13977-13983

Ca及びSiは、資源が豊富であるので、これらを構成元素とする水素吸蔵材料は、低コストである。しかしながら、Ca(Si2−x)、及び、CaSiは、いずれも、室温付近での水素の吸蔵は困難である。また、水素を吸蔵・放出させるためには、高温、高圧下での活性化処理が必要となる。
また、LiH+Si混合物及びこれから脱水素することにより得られるLixSi合金は、Li量(x)を最適化することによって、相対的に多量の水素を吸蔵/放出することができるが、動作温度が400℃以上と非常に高い。
Since Ca and Si are abundant in resources, hydrogen storage materials containing these as constituent elements are low in cost. However, it is difficult for both Ca (Si 2−x B x ) y and Ca 5 Si 3 to store hydrogen near room temperature. Moreover, in order to occlude / release hydrogen, an activation treatment under high temperature and high pressure is required.
Also, the LiH + Si mixture and the LixSi alloy obtained by dehydrogenation from this can occlude / release a relatively large amount of hydrogen by optimizing the Li amount (x), but the operating temperature is 400 ° C. Above and very high.

本発明が解決しようとする課題は、希少元素の含有量が少なく、軽量であり、かつ、多量の水素を相対的に低温で吸蔵/放出することが可能な水素吸蔵材料及びその製造方法を提供することにある。
また、本発明が解決しようとする他の課題は、いわゆる「活性化処理」が不要な水素吸蔵材料及びその製造方法を提供することにある。
The problem to be solved by the present invention is to provide a hydrogen storage material that has a low content of rare elements, is lightweight, and can store / release a large amount of hydrogen at a relatively low temperature, and a method for producing the same. There is to do.
Another object of the present invention is to provide a hydrogen storage material that does not require so-called “activation treatment” and a method for manufacturing the same.

上記課題を解決するために本発明に係る水素吸蔵材料は、
組成式: (Ca1−xLi)1−zSi
(但し、0.25≦x≦0.4、0.38≦z≦0.58)
で表されるものからなる。
また、本発明に係る水素吸蔵材料の製造方法は、Ca、Li及びSiの比が、
組成式: (Ca1−xLi)1−zSi
(但し、0.25≦x≦0.4、0.38≦z≦0.58)
となるように、CaHと、LiHと、Siとを配合し、配合物を機械的混合プロセスで複合化する複合工程と、該複合工程で得られた水素化物複合体を熱処理する熱処理工程とを備えていることを要旨とする。
In order to solve the above problems, the hydrogen storage material according to the present invention is:
Composition formula: (Ca 1-x Li x ) 1-z Si z
(However, 0.25 ≦ x ≦ 0.4, 0.38 ≦ z ≦ 0.58)
It consists of what is represented by.
In the method for producing a hydrogen storage material according to the present invention, the ratio of Ca, Li and Si is
Composition formula: (Ca 1-x Li x ) 1-z Si z
(However, 0.25 ≦ x ≦ 0.4, 0.38 ≦ z ≦ 0.58)
A compound step of compounding CaH 2 , LiH and Si, and compounding the compound by a mechanical mixing process, and a heat treatment step of heat-treating the hydride composite obtained in the compound process The main point is that

Ca、Li及びSiを含む水素吸蔵材料において、これらの元素比を最適化すると、200℃〜230℃において、相対的に多量の水素を吸蔵/放出する。これは、
(1) 水素と反応しやすい親水素性元素であるCaやLiと、水素と反応し難い疎水素性元素であるSiとを合金化することにより、これらが熱的に不安定となり、より低温での水素の吸蔵・放出が可能となること、及び、
(2) CaLiSi型結晶構造を有する化合物相の割合が高くなるほど、より低温で水素吸蔵/放出反応が進行すること、
によると考えられる。
In a hydrogen storage material containing Ca, Li, and Si, when these element ratios are optimized, a relatively large amount of hydrogen is stored / released at 200 ° C. to 230 ° C. this is,
(1) By alloying Ca or Li, which is a hydrophilic element that easily reacts with hydrogen, and Si, which is a hydrophobic element that does not easily react with hydrogen, these become thermally unstable, and at lower temperatures The ability to occlude and release hydrogen; and
(2) The higher the ratio of the compound phase having a Ca 2 LiSi 3 type crystal structure, the more the hydrogen storage / release reaction proceeds at a lower temperature.
It is thought that.

以下、本発明の一実施の形態について詳細に説明する。
なお、本発明において、「水素吸蔵材料」とは、水素ガスを吸蔵する能力を有するものをいう。「水素吸蔵材料」という時は、水素を完全に放出した材料だけでなく、最大吸蔵量に満たない水素を吸蔵している材料も含まれる。
また、本発明において、「水素化物複合体」とは、2種以上の金属水素化物を含む複合体であって、水素ガスを放出する能力を有するものをいう。
Hereinafter, an embodiment of the present invention will be described in detail.
In the present invention, the “hydrogen storage material” refers to a material having the ability to store hydrogen gas. The term “hydrogen storage material” includes not only a material that completely releases hydrogen but also a material that stores hydrogen that is less than the maximum storage amount.
In the present invention, the “hydride complex” refers to a complex containing two or more metal hydrides and capable of releasing hydrogen gas.

本発明に係る水素吸蔵材料は、(1)式に示す組成式で表されるものからなる。
(Ca1−xLi)1−zSi ・・・(1)
(但し、0.25≦x≦0.4、0.38≦z≦0.58)
(1)式において、xが0.25未満であると、水素吸蔵量が低下する。一方、xが0.40を超えると、水素の吸蔵/放出が容易なCaLiSi型結晶構造を有する化合物相(以下、これを単に「CaLiSi型化合物相」という。)の含有量が少なくなる。CaLiSi型化合物相の含有量をある一定量以上とし、水素の吸蔵/放出を容易化するためには、xは、さらに好ましくは、0.30以上0.36以下である。
また、(1)式において、zが0.38未満である場合、及び、zが0.58を超える場合は、いずれも、CaLiSi型結晶構造を有する化合物相の含有量が少なくなる。CaLiSi型化合物相の含有量をある一定量以上とするためには、zは、さらに好ましくは、0.45以上0.55以下である。
The hydrogen storage material which concerns on this invention consists of what is represented by the composition formula shown to (1) Formula.
(Ca 1-x Li x ) 1-z Si z (1)
(However, 0.25 ≦ x ≦ 0.4, 0.38 ≦ z ≦ 0.58)
In the formula (1), when x is less than 0.25, the hydrogen storage amount decreases. On the other hand, when x exceeds 0.40, the inclusion of a compound phase having a Ca 2 LiSi 3 type crystal structure (hereinafter simply referred to as “Ca 2 LiSi 3 type compound phase”) in which hydrogen is easily occluded / released. The amount is reduced. In order to make the content of the Ca 2 LiSi 3 type compound phase equal to or greater than a certain amount and facilitate hydrogen storage / release, x is more preferably 0.30 or more and 0.36 or less.
In the formula (1), when z is less than 0.38 and when z exceeds 0.58, the content of the compound phase having a Ca 2 LiSi 3 type crystal structure is reduced. . In order to make the content of the Ca 2 LiSi 3 type compound phase more than a certain amount, z is more preferably 0.45 or more and 0.55 or less.

Ca−Li−Si系には、種々の化合物相がある。これらの化合物相の中でも、CaLiSi型化合物相は、優れた水素吸蔵/放出特性を示す。優れた水素吸蔵/放出特性を得るためには、水素吸蔵材料は、CaLiSi型化合物相を主相とするものが好ましい。
ここで、「CaLiSi型化合物相を主相とする」とは、水素吸蔵材料全体に占めるCaLiSi型化合物相の割合が50mol%以上であることを言う。高い水素吸蔵/放出特性を得るためには、CaLiSi型化合物相の割合は、高いほど良い。後述する方法を用いると、CaLiSi型化合物相の割合が80mol%以上である水素吸蔵材料が得られる。
There are various compound phases in the Ca-Li-Si system. Among these compound phases, the Ca 2 LiSi 3 type compound phase exhibits excellent hydrogen storage / release characteristics. In order to obtain excellent hydrogen storage / release characteristics, the hydrogen storage material preferably has a Ca 2 LiSi 3 type compound phase as a main phase.
Here, “with the Ca 2 LiSi 3 type compound phase as the main phase” means that the proportion of the Ca 2 LiSi 3 type compound phase in the entire hydrogen storage material is 50 mol% or more. In order to obtain high hydrogen storage / release characteristics, the higher the proportion of the Ca 2 LiSi 3 type compound phase, the better. When the method to be described later is used, a hydrogen storage material in which the proportion of the Ca 2 LiSi 3 type compound phase is 80 mol% or more can be obtained.

次に、本発明に係る水素吸蔵材料の製造方法について説明する。本発明に係る水素吸蔵材料の製造方法は、複合工程と、熱処理工程とを備えている。複合工程は、Ca、Li及びSiの比が(1)式に示す組成式となるように、CaHと、LiHと、Siとを配合し、配合物を機械的混合プロセスで複合化する工程である。 Next, the manufacturing method of the hydrogen storage material which concerns on this invention is demonstrated. The method for producing a hydrogen storage material according to the present invention includes a composite process and a heat treatment process. Step composite process, Ca, such that the ratio of Li and Si is (1) a composition in the expression type, which is blended with CaH 2, and LiH, and Si, complexing with mechanical mixing process formulation It is.

まず、出発原料であるCaH、LiH及びSiを所定の比率で配合する。出発原料の形態は、特に限定されるものではないが、通常は、粉末を用いる。
また、出発原料として粉末を用いる場合、その粒径は、特に限定されるものではない。一般に、出発原料として粒径の細かい粉末を用いるほど、複合化させる際の負荷を軽減することができる。一方、必要以上に細かい粉末を出発原料として用いると、粉末表面が酸化等により被毒されるおそれがある。従って、粉末の粒径は、作業性、コスト、被毒の有無等を考慮して、最適な粒径を選択するのが好ましい。
First, CaH 2 , LiH and Si as starting materials are blended at a predetermined ratio. The form of the starting material is not particularly limited, but usually powder is used.
Moreover, when using powder as a starting material, the particle size is not specifically limited. In general, the more the powder having a smaller particle diameter is used as a starting material, the more the load at the time of compounding can be reduced. On the other hand, if a finer powder than necessary is used as a starting material, the powder surface may be poisoned by oxidation or the like. Therefore, it is preferable to select an optimum particle size in consideration of workability, cost, presence / absence of poisoning, and the like.

次に、所定の比率で配合された出発原料を機械的混合プロセスで複合化する。機械的混合プロセスにより出発原料を処理すると、CaH、LiH及びSiが所定の比率で配合された水素化物複合体が得られる。
この場合、水素化物複合体は、CaH、LiH及びSiが均一、かつ、微細に分散しているのが好ましい。構成物質が均一かつ微細に分散しているほど、後述する熱処理工程において、合金化が容易化する。また、水素の吸蔵/放出反応は、元素の拡散を伴うので、各構成物質が均一かつ微細に分散しているほど、可逆的な水素の吸蔵/放出を容易に行うことができる。構成物質が均一かつ微細に分散している水素化物複合体は、機械的混合プロセスの処理条件を最適化することにより得られる。
Next, the starting materials blended at a predetermined ratio are combined by a mechanical mixing process. When the starting material is processed by a mechanical mixing process, a hydride composite containing CaH 2 , LiH and Si in a predetermined ratio is obtained.
In this case, in the hydride composite, CaH 2 , LiH and Si are preferably uniformly and finely dispersed. As the constituent materials are uniformly and finely dispersed, alloying is facilitated in the heat treatment step described later. In addition, since the hydrogen storage / release reaction involves element diffusion, reversible hydrogen storage / release can be performed more easily as each constituent material is uniformly and finely dispersed. A hydride composite in which constituent materials are uniformly and finely dispersed can be obtained by optimizing the processing conditions of the mechanical mixing process.

ここで、「機械的混合プロセス」とは、出発原料に機械的応力を与え、粉砕しながら均一に混合するプロセスをいう。このような機械的混合プロセスとしては、具体的には、遊星ボールミル、回転ミル、振動ミル等の粉砕機で原料粉末を混合粉砕する方法、乳鉢で原料粉末を混合粉砕する方法などがある。
機械的混合プロセスは、出発原料の酸化を防ぐために、非酸化雰囲気下(例えば、アルゴン雰囲気下、水素雰囲気下など)で行うのが好ましい。
また、機械的混合プロセスの処理時間は、出発原料の均一かつ微細な混合物が得られるように、処理方法、出発原料の種類、形態等に応じて、最適な処理時間を選択する。一般に、処理時間が長くなるほど、出発原料が微細に粉砕され、粉砕された粉末が均一に混合した複合体が得られる。但し、必要以上の処理は、効果に差がなく、実益がない。例えば、遊星ボールミルを用いて混合粉砕する場合において、出発原料として粉末を用いる時には、処理時間は、1〜十数時間が好ましい。
Here, the “mechanical mixing process” refers to a process in which mechanical stress is applied to the starting material and the mixture is uniformly mixed while being pulverized. Specific examples of such a mechanical mixing process include a method of mixing and pulverizing raw material powder with a pulverizer such as a planetary ball mill, a rotating mill, and a vibration mill, and a method of mixing and pulverizing raw material powder with a mortar.
The mechanical mixing process is preferably performed in a non-oxidizing atmosphere (for example, in an argon atmosphere, a hydrogen atmosphere, etc.) in order to prevent oxidation of the starting material.
In addition, as the processing time of the mechanical mixing process, an optimal processing time is selected according to the processing method, the type and form of the starting material, and the like so that a uniform and fine mixture of the starting materials can be obtained. In general, the longer the treatment time, the finer the starting material is, and the composite in which the pulverized powder is uniformly mixed is obtained. However, the treatment more than necessary does not have a difference in effect and has no actual profit. For example, in the case of mixing and pulverizing using a planetary ball mill, when using powder as a starting material, the treatment time is preferably from 1 to 10 hours.

熱処理工程は、複合工程で得られた水素化物複合体を熱処理する工程である。水素化物複合体を所定の条件下で熱処理すると、水素化物複合体から水素が放出されると同時に、Ca−Li−Siが合金化し、(1)式に示す組成を有する水素吸蔵材料が得られる。   The heat treatment step is a step of heat-treating the hydride composite obtained in the composite step. When the hydride composite is heat-treated under predetermined conditions, hydrogen is released from the hydride composite and at the same time, Ca—Li—Si is alloyed to obtain a hydrogen storage material having a composition represented by formula (1). .

熱処理条件は、特に限定されるものではなく、水素化物複合体の組成や、水素吸蔵材料に要求される特性等に応じて、最適な条件を選択する。
一般に、加熱温度が高くなるほど、脱水素が容易化する。また、加熱温度が高くなるほど、元素の拡散が容易化するので、合金化が促進され、CaLiSi型化合物相の含有量が多い水素吸蔵材料が得られる。但し、加熱温度が高くなりすぎると、CaLiSi型化合物相以外の化合物相の割合が増加するので好ましくない。
加熱時間は、加熱温度に応じて、最適な時間を選択する。一般に、加熱温度が高くなるほど、短時間で脱水素及び合金化を完了させることができる。また、加熱時の雰囲気は、非酸化雰囲気下(例えば、アルゴン雰囲気下)が好ましい。
The heat treatment conditions are not particularly limited, and optimum conditions are selected according to the composition of the hydride composite, the characteristics required for the hydrogen storage material, and the like.
In general, the higher the heating temperature, the easier the dehydrogenation. Further, the higher the heating temperature, the easier the diffusion of elements, so that alloying is promoted and a hydrogen storage material with a high content of the Ca 2 LiSi 3 type compound phase can be obtained. However, if the heating temperature is too high, the ratio of the compound phase other than the Ca 2 LiSi 3 type compound phase is not preferable.
As the heating time, an optimum time is selected according to the heating temperature. Generally, dehydrogenation and alloying can be completed in a short time as the heating temperature increases. The atmosphere during heating is preferably a non-oxidizing atmosphere (for example, an argon atmosphere).

このようにして得られた水素吸蔵材料と水素ガスとを所定の条件下で反応させると、水素が吸蔵され、最終的には水素化物複合体に戻る。最適な水素との反応条件は、水素吸蔵材料の組成によって異なるが、通常は、水素ガスの圧力:0.1〜50MPa程度、温度:100〜800℃(373〜1073K)程度である。
例えば、(1)式で表される水素吸蔵材料を、水素ガスの圧力:9MPa、温度:230〜250℃(503〜523K)の条件下で水素と反応させると、2.5〜2.9wt%の水素ガスを吸蔵することができる。また、このようにして得られた水素化物複合体を、温度:250℃(523K)、水素ガスの圧力:1MPaの条件下で加熱すると、吸蔵した水素ガスの全量を放出することができる。
When the hydrogen storage material thus obtained and hydrogen gas are reacted under predetermined conditions, hydrogen is stored and finally returns to the hydride complex. Optimum reaction conditions with hydrogen vary depending on the composition of the hydrogen storage material, but usually the pressure of hydrogen gas is about 0.1 to 50 MPa, and the temperature is about 100 to 800 ° C. (373 to 1073 K).
For example, when the hydrogen storage material represented by the formula (1) is reacted with hydrogen under the conditions of hydrogen gas pressure: 9 MPa and temperature: 230 to 250 ° C. (503 to 523 K), 2.5 to 2.9 wt. % Hydrogen gas can be occluded. Further, when the hydride composite thus obtained is heated under the conditions of temperature: 250 ° C. (523 K) and hydrogen gas pressure: 1 MPa, the entire amount of the stored hydrogen gas can be released.

次に、本発明に係る水素吸蔵材料及びその製造方法の作用について説明する。
本発明に係る水素吸蔵材料(及び水素化物複合体)は、500K程度の低温において、相対的に多量(3wt%程度)の水素を放出/吸蔵することができる。このような優れた水素放出/吸蔵特性を示す理由の詳細については、明らかではないが、以下のような理由によると考えられる。
Next, the operation of the hydrogen storage material and the manufacturing method thereof according to the present invention will be described.
The hydrogen storage material (and hydride composite) according to the present invention can release / occlude a relatively large amount (about 3 wt%) of hydrogen at a low temperature of about 500K. The details of the reason for such excellent hydrogen release / occlusion properties are not clear, but are considered to be as follows.

すなわち、CaやLiは、水素と反応しやすい親水素性元素である。そのため、CaやLiと結合している水素を放出させるためには、相対的に大きなエネルギーを必要とする。一方、Siは、水素と反応し難い疎水素性元素である。そのため、Ca、Liに対してSiを合金化させると、水素化物が熱的に不安定となり、相対的に低温において水素の可逆的な吸蔵・放出が可能となると考えられる。   That is, Ca and Li are hydrophilic elements that easily react with hydrogen. Therefore, relatively large energy is required to release hydrogen bonded to Ca and Li. On the other hand, Si is a hydrophobic element that hardly reacts with hydrogen. Therefore, it is considered that when Si is alloyed with Ca and Li, the hydride becomes thermally unstable, and hydrogen can be reversibly occluded / released at a relatively low temperature.

また、Ca−Li−Si系の金属間化合物の中でも、CaLiSiは、他の化合物に比べて、水素吸蔵量が多く、しかも、水素吸蔵・放出反応が比較的容易である。次の(2)式に、CaLiSiの水素吸蔵・放出反応の反応式を示す。
CaLiSi+5/2H ⇔ 2CaH+LiH+3Si ・・・(2)
(水素吸蔵・放出量 2.9wt%)
そのため、水素吸蔵材料に含まれるCaLiSi型化合物相の割合が高くなるほど、相対的に低温における水素の吸蔵・放出が容易化し、水素吸蔵量も増大すると考えられる。
Among Ca—Li—Si-based intermetallic compounds, Ca 2 LiSi 3 has a larger amount of hydrogen storage than other compounds, and the hydrogen storage / release reaction is relatively easy. The following equation (2) shows the reaction equation of the hydrogen storage / release reaction of Ca 2 LiSi 3 .
Ca 2 LiSi 3 + 5 / 2H 2 ⇔2CaH 2 + LiH + 3Si (2)
(Hydrogen storage / release amount 2.9wt%)
Therefore, it is considered that as the proportion of the Ca 2 LiSi 3 type compound phase contained in the hydrogen storage material increases, hydrogen storage and release at a relatively low temperature is facilitated and the hydrogen storage amount increases.

CaLiSi型化合物相は、所定の比率で配合されたCa、Li及びSiの混合物を溶解・鋳造することによっても生成する。しかしながら、溶解・鋳造法では、単相のCaLiSiを得るのは難しい。これに対し、水素化物を出発原料に用いて、これらを機械的混合プロセスにより複合化し、水素を放出させると、CaLiSi型化合物相の含有量が高い均質な材料を容易に作製することができる。 The Ca 2 LiSi 3 type compound phase is also generated by melting and casting a mixture of Ca, Li and Si mixed at a predetermined ratio. However, it is difficult to obtain single-phase Ca 2 LiSi 3 by the melting / casting method. In contrast, when hydride is used as a starting material, these are compounded by a mechanical mixing process and hydrogen is released, a homogeneous material having a high content of Ca 2 LiSi 3 type compound phase is easily produced. Can do.

本発明に係る水素吸蔵材料は、Ca、Siを主要構成元素としているので、軽量かつ安価である。また、Ca、Siに対して、さらにLiが添加されているため、より軽量となり、単位重量当たりの水素密度が向上する。さらに、本発明に係る水素吸蔵材料は、活性化が容易であり、基本的には、高温・高圧下での水素の吸蔵と吸蔵された水素の放出とを複数回繰り返す活性化処理を必要としない。
そのため、これを例えば、燃料電池システム用の水素貯蔵物質に応用すれば、燃料電池システムのエネルギー効率を飛躍的に向上させることができる。
Since the hydrogen storage material according to the present invention contains Ca and Si as main constituent elements, it is lightweight and inexpensive. Moreover, since Li is further added with respect to Ca and Si, it becomes lighter and the hydrogen density per unit weight improves. Furthermore, the hydrogen storage material according to the present invention is easy to activate, and basically requires an activation treatment in which the storage of hydrogen and the release of stored hydrogen are repeated a plurality of times under high temperature and high pressure. do not do.
Therefore, if this is applied to, for example, a hydrogen storage material for a fuel cell system, the energy efficiency of the fuel cell system can be dramatically improved.

(実施例1)
Ca−Li−Si3元系合金(CaLiSi、CaLiSi、及び、Ca1.65Li1.85Si)の水素化反応の生成熱ΔHの計算を行った。計算には、密度汎関数法を用いた。なお、交換相関エネルギーには、局所密度近似に密度勾配の補正を施したものを使用した。表1に、生成熱ΔH及び水素吸蔵量の計算結果を示す。なお、表1には、比較のためにCaSiの実験結果も併せて示した。
表1より、CaLiSiは、生成熱ΔHの絶対値が最も小さく、かつ、水素吸蔵量が最も大きいことがわかる。生成熱ΔHの絶対値が小さいことは、より低温において水素の吸蔵・放出反応が生ずる可能性があることを示している。
Example 1
The heat of formation ΔH of the hydrogenation reaction of Ca—Li—Si ternary alloy (CaLiSi 2 , Ca 2 LiSi 3 , and Ca 1.65 Li 1.85 Si 4 ) was calculated. The density functional method was used for the calculation. As the exchange correlation energy, the one obtained by correcting the density gradient to the local density approximation was used. Table 1 shows the calculation results of the generated heat ΔH and the hydrogen storage amount. Table 1 also shows CaSi experimental results for comparison.
From Table 1, it can be seen that Ca 2 LiSi 3 has the smallest absolute value of the generated heat ΔH and the largest hydrogen storage capacity. A small absolute value of the generated heat ΔH indicates that hydrogen storage / release reaction may occur at a lower temperature.

Figure 2006256888
Figure 2006256888

(実施例2)
CaH粉末(純度95%)、LiH粉末(純度95%)、Si粉末(純度99.999%)をArガスで満たされたグローブボックス内で秤量した。次いで、秤量された混合粉末0.8gを鋼鉄製ボールと一緒にミリング容器に入れ、アルゴン雰囲気下で10時間ミリング処理した。得られた粉末を冷間プレスし、さらに加熱炉を用いてAr雰囲気下で熱処理し、Ca0.67Li0.33Si組成を有する合金を得た。
(Example 2)
CaH 2 powder (purity 95%), LiH powder (purity 95%), and Si powder (purity 99.999%) were weighed in a glove box filled with Ar gas. Next, 0.8 g of the weighed mixed powder was put into a milling container together with a steel ball and milled for 10 hours in an argon atmosphere. The obtained powder was cold-pressed and further heat-treated in an Ar atmosphere using a heating furnace to obtain an alloy having a Ca 0.67 Li 0.33 Si composition.

得られた合金をグローブボックス内で粉砕後、水素吸蔵・放出特性の評価を行った。Ca0.67Li0.33Si合金の場合、活性化処理することなく、水素圧力:9MPa、温度:230℃の条件下で水素と反応させたところ、2.9wt%の水素を吸蔵した。また、水素を吸蔵した後の材料を250℃に加熱すると、吸蔵した水素の全量を放出した。さらに、水素吸蔵・放出過程を10サイクル繰り返した後の水素吸蔵量を測定したところ、1サイクル目の水素量と同等の値であった。 The obtained alloy was pulverized in a glove box, and then the hydrogen storage / release characteristics were evaluated. In the case of the Ca 0.67 Li 0.33 Si alloy, it was allowed to react with hydrogen under the conditions of hydrogen pressure: 9 MPa and temperature: 230 ° C. without activation, and occluded 2.9 wt% of hydrogen. Moreover, when the material after storing the hydrogen was heated to 250 ° C., the entire amount of the stored hydrogen was released. Further, when the hydrogen storage amount after the hydrogen storage / release process was repeated 10 cycles was measured, it was a value equivalent to the hydrogen amount in the first cycle.

また、得られた合金及び水素吸蔵後の合金について、粉末X線回折測定を行った。その結果、粉末X線回折プロファイルから、
(1) 水素吸蔵前の合金は、ほぼCaLiSi型化合物相の単相であること、
(2) 水素を吸蔵させると、CaH、LiH及びSiに分解すること、並びに、
(3) 水素を放出させると、再度、CaLiSi型化合物相に戻ること、
を確認した。
Moreover, the powder X-ray diffraction measurement was performed about the obtained alloy and the alloy after hydrogen occlusion. As a result, from the powder X-ray diffraction profile,
(1) The alloy before hydrogen storage is substantially a single phase of Ca 2 LiSi 3 type compound phase,
(2) When hydrogen is occluded, it decomposes into CaH 2 , LiH and Si, and
(3) When hydrogen is released, it returns to the Ca 2 LiSi 3 type compound phase again.
It was confirmed.

(実施例3)
CaH粉末(純度95%)、LiH粉末(純度95%)、Si粉末(純度99.999%)をArガスで満たされたグローブボックス内で秤量した。次いで、秤量された混合粉末2.0gを鋼鉄製ボールと一緒にミリング容器に入れ、アルゴン雰囲気下で5時間ミリング処理した。得られた粉末を冷間プレスし、さらに加熱炉を用いてAr雰囲気下で熱処理し、Ca0.75Li0.25Si組成を有する合金を得た。
(Example 3)
CaH 2 powder (purity 95%), LiH powder (purity 95%), and Si powder (purity 99.999%) were weighed in a glove box filled with Ar gas. Next, 2.0 g of the weighed mixed powder was put into a milling container together with a steel ball and milled for 5 hours under an argon atmosphere. The obtained powder was cold-pressed and further heat-treated in an Ar atmosphere using a heating furnace to obtain an alloy having a Ca 0.75 Li 0.25 Si composition.

得られた合金をグローブボックス内で粉砕後、水素吸蔵・放出特性の評価を行った。Ca0.75Li0.25Si合金の場合、活性化処理することなく、水素圧力:9MPa、温度:230℃の条件下で水素と反応させたところ、2.5wt%の水素を吸蔵した。また、水素を吸蔵した後の材料を250℃に加熱すると、吸蔵した水素の全量を放出した。さらに、水素吸蔵・放出過程を10サイクル繰り返した後の水素吸蔵量を測定したところ、1サイクル目の水素量と同等の値であった。 The obtained alloy was pulverized in a glove box, and then the hydrogen storage / release characteristics were evaluated. In the case of the Ca 0.75 Li 0.25 Si alloy, 2.5 wt% hydrogen was occluded when reacted with hydrogen under the conditions of hydrogen pressure: 9 MPa and temperature: 230 ° C. without activation. Moreover, when the material after storing the hydrogen was heated to 250 ° C., the entire amount of the stored hydrogen was released. Further, when the hydrogen storage amount after the hydrogen storage / release process was repeated 10 cycles was measured, it was a value equivalent to the hydrogen amount in the first cycle.

(実施例4)
CaH粉末(純度95%)、LiH粉末(純度95%)、Si粉末(純度99.999%)をArガスで満たされたグローブボックス内で秤量した。次いで、秤量された混合粉末1.0gを鋼鉄製ボールと一緒にミリング容器に入れ、アルゴン雰囲気下で2時間ミリング処理した。得られた粉末を冷間プレスし、さらに加熱炉を用いてAr雰囲気下で熱処理し、Ca0.6Li0.4Si組成を有する合金を得た。
Example 4
CaH 2 powder (purity 95%), LiH powder (purity 95%), and Si powder (purity 99.999%) were weighed in a glove box filled with Ar gas. Next, 1.0 g of the weighed mixed powder was put in a milling container together with a steel ball and milled for 2 hours in an argon atmosphere. The obtained powder was cold-pressed and further heat-treated in an Ar atmosphere using a heating furnace to obtain an alloy having a Ca 0.6 Li 0.4 Si composition.

得られた合金をグローブボックス内で粉砕後、水素吸蔵・放出特性の評価を行った。Ca0.6Li0.4Si合金の場合、活性化処理することなく、水素圧力:9MPa、温度:230℃の条件下で水素と反応させたところ、2.8wt%の水素を吸蔵した。また、水素を吸蔵した後の材料を250℃に加熱すると、吸蔵した水素の全量を放出した。さらに、水素吸蔵・放出過程を10サイクル繰り返した後の水素吸蔵量を測定したところ、1サイクル目の水素量と同等の値であった。 The obtained alloy was pulverized in a glove box, and then the hydrogen storage / release characteristics were evaluated. In the case of a Ca 0.6 Li 0.4 Si alloy, 2.8 wt% of hydrogen was occluded when reacted with hydrogen under the conditions of hydrogen pressure: 9 MPa and temperature: 230 ° C. without being activated. Moreover, when the material after storing the hydrogen was heated to 250 ° C., the entire amount of the stored hydrogen was released. Further, when the hydrogen storage amount after the hydrogen storage / release process was repeated 10 cycles was measured, it was a value equivalent to the hydrogen amount in the first cycle.

図1に、(Ca1−xLi)Si合金のLi量xと、水素吸蔵量との関係を示す。図1より、Li量xを0.25以上とすると、水素吸蔵量が2.5wt%以上である水素吸蔵材料が得られることがわかる。 FIG. 1 shows the relationship between the Li amount x of the (Ca 1-x Li x ) Si alloy and the hydrogen storage amount. FIG. 1 shows that when the Li amount x is 0.25 or more, a hydrogen storage material having a hydrogen storage amount of 2.5 wt% or more can be obtained.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係る水素吸蔵材料及びその製造方法は、燃料電池システム用の水素貯蔵手段、超高純度水素製造装置、ケミカル式ヒートポンプ、アクチュエータ、金属−水素蓄電池用の水素貯蔵体等に用いられる水素吸蔵材料及びその製造方法として使用することができる。   A hydrogen storage material and a method for producing the same according to the present invention include a hydrogen storage means for a fuel cell system, an ultrahigh purity hydrogen production apparatus, a chemical heat pump, an actuator, a hydrogen storage body for a metal-hydrogen storage battery, and the like. It can be used as a material and its manufacturing method.

(Ca1−xLi)Si合金のLi量と水素吸蔵量との関係を示す図である。It is a diagram showing the relationship between (Ca 1-x Li x) Li amount of Si alloy and hydrogen storage capacity.

Claims (3)

組成式: (Ca1−xLi)1−zSi
(但し、0.25≦x≦0.4、0.38≦z≦0.58)
で表される水素吸蔵材料。
Composition formula: (Ca 1-x Li x ) 1-z Si z
(However, 0.25 ≦ x ≦ 0.4, 0.38 ≦ z ≦ 0.58)
Hydrogen storage material represented by
CaLiSi型結晶構造を有する化合物相を主相とする請求項1に記載の水素吸蔵材料。 The hydrogen storage material according to claim 1, wherein the main phase is a compound phase having a Ca 2 LiSi 3 type crystal structure. Ca、Li及びSiの比が、
組成式: (Ca1−xLi)1−zSi
(但し、0.25≦x≦0.4、0.38≦z≦0.58)
となるように、CaHと、LiHと、Siとを配合し、配合物を機械的混合プロセスで複合化する複合工程と、
該複合工程で得られた水素化物複合体を熱処理する熱処理工程とを備えた水素吸蔵材料の製造方法。
The ratio of Ca, Li and Si is
Composition formula: (Ca 1-x Li x ) 1-z Si z
(However, 0.25 ≦ x ≦ 0.4, 0.38 ≦ z ≦ 0.58)
And so that, with CaH 2, a composite step of blending and LiH, and Si, complexing with mechanical mixing process formulation,
A method for producing a hydrogen storage material, comprising a heat treatment step of heat treating the hydride composite obtained in the composite step.
JP2005074740A 2005-03-16 2005-03-16 Hydrogen storage material and its manufacturing method Pending JP2006256888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074740A JP2006256888A (en) 2005-03-16 2005-03-16 Hydrogen storage material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074740A JP2006256888A (en) 2005-03-16 2005-03-16 Hydrogen storage material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006256888A true JP2006256888A (en) 2006-09-28

Family

ID=37096536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074740A Pending JP2006256888A (en) 2005-03-16 2005-03-16 Hydrogen storage material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006256888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047113A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Silicon compound, anode for lithium battery, lithium battery and method of manufacturing silicon compound
EP3292578A4 (en) * 2015-05-04 2018-12-05 BASF Corporation Electrochemical hydrogen storage electrodes and cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108180A (en) * 1996-06-21 1998-01-13 Sanyo Electric Co Ltd Hydrogen storage alloy
JP2004176089A (en) * 2002-11-25 2004-06-24 Toyota Central Res & Dev Lab Inc Hydrogen storage material
JP2005232583A (en) * 2003-06-13 2005-09-02 Toyota Central Res & Dev Lab Inc Hydrogen storage material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108180A (en) * 1996-06-21 1998-01-13 Sanyo Electric Co Ltd Hydrogen storage alloy
JP2004176089A (en) * 2002-11-25 2004-06-24 Toyota Central Res & Dev Lab Inc Hydrogen storage material
JP2005232583A (en) * 2003-06-13 2005-09-02 Toyota Central Res & Dev Lab Inc Hydrogen storage material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047113A (en) * 2012-08-31 2014-03-17 Toyota Central R&D Labs Inc Silicon compound, anode for lithium battery, lithium battery and method of manufacturing silicon compound
EP3292578A4 (en) * 2015-05-04 2018-12-05 BASF Corporation Electrochemical hydrogen storage electrodes and cells
US10522827B2 (en) 2015-05-04 2019-12-31 Basf Corporation Electrochemical hydrogen storage electrodes and cells

Similar Documents

Publication Publication Date Title
Zaluska et al. Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage
US8012452B2 (en) Nanocrystalline composite for storage of hydrogen
JP3677220B2 (en) Magnesium-based hydrogen storage alloy
JP5152822B2 (en) Mg-MH-based hydrogen storage alloy and method for producing the same
Zhang et al. Dehydriding properties of ternary Mg2Ni1− xZrx hydrides synthesized by ball milling and annealing
JP2955662B1 (en) Ternary hydrogen storage alloy and method for producing the same
Varin et al. Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JPH101731A (en) Hydrogen storage alloy and its production
JP2007117989A (en) Hydrogen storage material and its production method
US8512630B2 (en) Pulverulent intermetallic materials for the reversible storage of hydrogen
JP2006256888A (en) Hydrogen storage material and its manufacturing method
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
JP4835824B2 (en) Hydride composite, hydrogen storage material, and production method thereof
JP2011020901A (en) Hydride complex and hydrogen storage material
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
JP2009143790A (en) Hydride complex and hydrogen storage material
JP2002241884A (en) Hydrogen storage alloy
JPH09184040A (en) Yttrium-magnesium hydrogen storage alloy
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP2002097535A (en) Hydrogen absorbing alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JP2007289877A (en) Hydrogen storage material, manufacturing method thereof and hydride compound material
JP2003193166A (en) Mg HYDROGEN-STORAGE ALLOY AND ITS MANUFACTURING METHOD
JP2001279361A (en) V-based solid solution type hydrogen storage alloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100507