JP2006255738A - Roll for conveying high temperature member, its production method, and thermal spray material - Google Patents

Roll for conveying high temperature member, its production method, and thermal spray material Download PDF

Info

Publication number
JP2006255738A
JP2006255738A JP2005074826A JP2005074826A JP2006255738A JP 2006255738 A JP2006255738 A JP 2006255738A JP 2005074826 A JP2005074826 A JP 2005074826A JP 2005074826 A JP2005074826 A JP 2005074826A JP 2006255738 A JP2006255738 A JP 2006255738A
Authority
JP
Japan
Prior art keywords
mass
roll
less
alloy powder
thermal spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005074826A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Sadato Shigemura
貞人 重村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2005074826A priority Critical patent/JP2006255738A/en
Publication of JP2006255738A publication Critical patent/JP2006255738A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique of forming a sprayed coating having excellent durability to a roll for conveying such as a hot run table roller for conveying a high temperature member such as a hot rolled steel at high speed without causing technical problems as shown in the conventional techniques, to provide an advantageous production method for forming a homogeneous hardened layer on the surface of the roll, also capable of maintaining the effect over a long period of time and further capable of forming the sprayed coating having satisfactory durability at a low cost, and to provide a thermal spray material therefor. <P>SOLUTION: The surface of a roll base material for conveying a high temperature member is coated with a sprayed coating in which Fe-Al alloy powder is dispersed into an Ni based self-fluxing alloy matrix. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高温部材搬送用ロールおよびその製造方法と溶射材料に関し、例えば、鋼材の熱間圧延設備用各種部材、特に熱延鋼材を搬送するためのホットランテーブルロールの表面に有用な皮膜を形成する技術に関するものである。   The present invention relates to a roll for conveying a high temperature member, a method for producing the same, and a thermal spray material. For example, a useful coating is formed on the surface of a hot run table roll for conveying various members for hot rolling equipment of steel, particularly hot rolled steel. It is related to the technology.

製鉄所における銅材の熱間圧延ラインには、仕上げスタンドを通過した高温の熱延鋼材を搬送するためのホットランテーブルが設けられている。即ち、熱間圧延設備においては、熱延鋼材が仕上げ圧延機を通過した後、コイラーに巻き取られるまでの間に、多数のロールを列設してなるホットランテーブルが設けられている。このホットランテーブルに用いられるロールに要求される特性としては、このロール上を通過する熱延鋼材との接触によく耐えること(耐摩耗性)、熱延鋼材が高温・高速で衝突する衝撃によく耐えること(耐熱衝撃性)等に優れることである。   A hot run table for transporting hot hot-rolled steel material that has passed through a finishing stand is provided in a hot rolling line for copper material at an ironworks. That is, in the hot rolling facility, a hot run table in which a number of rolls are arranged in a row is provided after the hot-rolled steel material passes through the finish rolling mill and is wound around the coiler. The properties required for the roll used in this hot run table are to withstand contact with the hot-rolled steel material passing over the roll (wear resistance), and to the impact of hot-rolled steel material colliding at high temperature and high speed. It is excellent in endurance (thermal shock resistance) and the like.

従来、上記ホットランテーブルのロール(即ち、高温部材搬送用ロール)については、高温の部材との接触による摺動摩耗や熱衝撃等に対処するために種々の工夫がなされてきた。例えば、特許文献1では、鉄系ロールの表面に硬化肉盛り溶接を行うと共に、その上にはさらに自溶合金を溶射し、衝撃荷重や負荷荷重による変形や歪みの防止を図る技術を開示している。また、特許文献2では、耐摩耗性および耐熱衝撃性を改善する目的で、Ni基自溶合金粉末に炭化タングステン粒子を添加した自溶合金溶射技術を提案している。さらに、特許文献3では、耐摩耗性、耐スリップ性、耐焼付き性を改善する目的で、Ni基自溶合金中にFeを4〜30mass%添加した自溶合金溶射技術を提案している。   Conventionally, various contrivances have been made for the roll of the hot run table (that is, the roll for conveying the high temperature member) to cope with sliding wear, thermal shock, etc. due to contact with the high temperature member. For example, Patent Document 1 discloses a technique for performing hard build-up welding on the surface of an iron-based roll and spraying a self-fluxing alloy thereon to prevent deformation and distortion due to impact load or load load. ing. Patent Document 2 proposes a self-fluxing alloy spraying technique in which tungsten carbide particles are added to a Ni-based self-fluxing alloy powder for the purpose of improving wear resistance and thermal shock resistance. Furthermore, Patent Document 3 proposes a self-fluxing alloy spraying technique in which 4 to 30 mass% of Fe is added to a Ni-based self-fluxing alloy for the purpose of improving wear resistance, slip resistance, and seizure resistance.

特許第1537899号公報Japanese Patent No. 1533799 特開平11−267731号公報Japanese Patent Application Laid-Open No. 11-267331 特開2004−167599号公報JP 2004-167599 A

しかしながら、特許文献1に開示の硬化肉盛り溶接技術は、肉盛り時の過大な入熱によりロール基材自体が変形したり、肉盛り層の温度履歴に起因する各種析出物の偏析などによりロール表面に均質な硬化層を形成することができない、という問題点があった。また、特許文献2に開示の炭化タングステン粒子を添加してなるNi基自溶合金粉末の溶射技術は、その炭化タングステンの耐熱特性が悪く(耐用温度は瞬間で約540℃、常用で約450℃)、ホットランテーブルロールに使用した場合、その炭化タングステンが酸化して添加効果が消失するという問題があった。さらに、特許文献3に開示の技術では、Ni基自溶合金にFeを添加することにより、溶射皮膜への焼付き性の改善、高温での耐摩耗性の向上等を目指しているが、単に、JIS規格値(JIS H8303 自溶合金溶射)相当材料を提案しているに過ぎず、とくに、Feの添加は、ホットランテーブルローラなどの高温環境下で使用すると、Feが酸化消耗するため、所期した効果が消失するという問題があった。   However, the hardening build-up welding technique disclosed in Patent Document 1 is based on the roll base material itself being deformed due to excessive heat input at the time of build-up, or by segregation of various precipitates resulting from the temperature history of the build-up layer. There was a problem that a uniform hardened layer could not be formed on the surface. Further, the thermal spraying technology of Ni-based self-fluxing alloy powder disclosed in Patent Document 2 to which tungsten carbide particles are added has poor heat resistance characteristics of tungsten carbide (the service temperature is about 540 ° C. instantaneously and about 450 ° C. for normal use). ), When used in a hot run table roll, there was a problem that the tungsten carbide was oxidized and the effect of addition disappeared. Furthermore, the technique disclosed in Patent Document 3 aims to improve the seizure property to the sprayed coating and improve the wear resistance at high temperature by adding Fe to the Ni-based self-fluxing alloy. , Only JIS standard (JIS H8303 self-fluxing alloy spraying) equivalent material has been proposed, especially when Fe is used in a high temperature environment such as a hot run table roller. There was a problem that the expected effect disappeared.

このように、従来、高温部材搬送用ロールのための表面処理技術として種々の提案がなされているが、これらの技術については、硬化層の偏析により皮膜構成が不均質化して搬送鋼材の蛇行を招いたり、該搬送材に傷が発生する等、製品品質に悪影響を及ぼしているのが実情である。   Thus, various proposals have conventionally been made as surface treatment techniques for high-temperature member conveying rolls. However, these techniques make the coating structure inhomogeneous due to segregation of the hardened layer, and meandering the conveying steel material. The actual situation is that the quality of the product is adversely affected, such as inviting or scratching the conveying material.

そこで、本発明の目的は、熱延鋼材のような高温部材を、高速で搬送するためのホットランテーブルローラの如き搬送用ロールに対し、上述したような技術的問題点を招くことなく、耐久性に優れた皮膜を形成する技術を提案することにある。   Therefore, an object of the present invention is to provide durability without causing the technical problems described above with respect to a transfer roll such as a hot run table roller for transferring a high-temperature member such as a hot-rolled steel material at high speed. The purpose is to propose a technique for forming an excellent film.

また、本発明のさらに他の具体的な目的は、ロール表面に均質な硬化層を形成することができ、かつその効果が長期に亘って維持でき、しかも耐久性の良好な溶射皮膜を安価に形成することができる他、そのための有利な製造方法と溶射材料とを提案することにある。   Further, another specific object of the present invention is to form a uniform hardened layer on the roll surface and maintain its effect over a long period of time. In addition to being able to form, it is to propose an advantageous manufacturing method and thermal spray material for that purpose.

これらの目的を達成するため、本発明では、高温環境下において優れた耐摩耗性(グリッピング性)、耐高温酸化性、および耐食性を有し、さらに耐熱衝撃性や耐焼付き性にも優れた溶射皮膜を形成した高温部材搬送用ロールを提案するものである。   In order to achieve these objects, the present invention is a thermal spraying that has excellent wear resistance (gripping property), high temperature oxidation resistance, and corrosion resistance in a high temperature environment, and also has excellent thermal shock resistance and seizure resistance. The present invention proposes a roll for conveying a high temperature member on which a film is formed.

すなわち、本発明は、ロール基材の表面に、Ni基自溶合金マトリックス中にFe−Al合金粉末が分散した溶射皮膜を被覆してなる高温部材搬送用ロールを提案するものである。   That is, the present invention proposes a roll for conveying a high temperature member formed by coating the surface of a roll base material with a thermal spray coating in which a Fe-Al alloy powder is dispersed in a Ni-based self-fluxing alloy matrix.

なお、本発明においては、前記Fe−Al合金は、Al含有量が5〜50mass%で、粒径が1〜100μmの粉末であること、前記Ni基自溶合金マトリックス中に分散させたFe−Al合金粉末の分散量が、5〜35mass%であること、前記Ni基自溶合金が、必須成分としてCr、B、SiおよびCを含み、さらに、選択的添加成分としてFe、Co、Mo、CuおよびWのうちから選ばれる1種または2種以上を含み、残部がNiおよび不可避的不純物からなる成分を含むこと、とくに、それらの各成分の含有量が、Cr:1〜25mass%、B:1〜5mass%、Si:1〜5mass%、C:1.5mass%以下、Fe:4mass%未満、Co:1mass%以下、Mo:8mass%以下、Cu:5mass%以下、W:15mass%以下であることが好ましい。   In the present invention, the Fe—Al alloy is a powder having an Al content of 5 to 50 mass% and a particle size of 1 to 100 μm, and Fe— dispersed in the Ni-based self-fluxing alloy matrix. The dispersion amount of the Al alloy powder is 5 to 35 mass%, and the Ni-based self-fluxing alloy contains Cr, B, Si and C as essential components, and Fe, Co, Mo, Including one or two or more selected from Cu and W, with the balance including components composed of Ni and inevitable impurities, in particular, the content of each component is Cr: 1 to 25 mass%, B : 1-5 mass%, Si: 1-5 mass%, C: 1.5 mass% or less, Fe: less than 4 mass%, Co: 1 mass% or less, Mo: 8 mass% or less, Cu: 5 mass% or less, W: 15 mass% or less Preferably there is.

また、本発明は、ロール基材の表面に、Al含有量が5〜50mass%のFe−Al合金粉末をNi基自溶合金粉末中に5〜35mass%の割合で混合してなる溶射材料を溶射して、厚さ100〜5000μmの溶射皮膜を形成し、その後、この溶射皮膜で被覆したロール基材を1050〜1150℃、0.1〜5時間の条件で加熱することにより、該溶射皮膜中のNi基自溶合金マトリックスを溶融させることを特徴とする高温部材搬送用ロールの製造方法を提案するものである。   In addition, the present invention provides a thermal spray material obtained by mixing an Fe-Al alloy powder having an Al content of 5 to 50 mass% in a Ni-based self-fluxing alloy powder at a ratio of 5 to 35 mass% on the surface of a roll base. Thermal spraying is performed to form a thermal spray coating having a thickness of 100 to 5000 μm, and then the roll base material coated with this thermal spray coating is heated at 1050 to 1150 ° C. for 0.1 to 5 hours. The present invention proposes a method for producing a roll for conveying a high-temperature member characterized by melting a Ni-based self-fluxing alloy matrix.

さらに、本発明は、上述した高温部材搬送用ロール表面に被覆する溶射皮膜に用いられるものであって、必須成分としてCr:1〜25mass%、B:1〜5mass%、Si:1〜5mass%、C:1.5mass%以下を含み、その他選択的添加成分として、Fe:4mass%未満、Co:1mass%以下、Mo:8mass%以下、Cu:5mass%以下およびW:15mass%以下を含み、かつ残部がNiおよび不可避的不純物からなるNi基自溶合金粉末に、Al含有量が5〜50mass%で、粒径が1〜100μm以上であるFe−Al合金粉末を5〜35mass%の割合で混合してなることを特徴とする溶射材料を提案するものである。   Furthermore, this invention is used for the thermal spray coating which coat | covers the roll surface for a high temperature member conveyance mentioned above, Comprising: Cr: 1-25mass%, B: 1-5mass%, Si: 1-5mass% as an essential component C: 1.5 mass% or less, Fe: less than 4 mass%, Co: 1 mass% or less, Mo: 8 mass% or less, Cu: 5 mass% or less, and W: 15 mass% or less, Fe-Al alloy powder with Al content of 5-50 mass% and particle size of 1-100 μm or more is mixed with Ni-based self-fluxing alloy powder consisting of Ni and inevitable impurities at a ratio of 5-35 mass%. The present invention proposes a thermal spray material characterized by the above.

以上説明した構成からなる本発明によれば、基本的にロール表面にNi基自溶合金マトリックス中にFe−Al合金粉末を分散させてなる溶射皮膜を被覆形成することにより、熱延鋼材の搬送に際し、優れた耐摩耗性(グリッピング性)、耐熱衝撃性に加え、耐高温酸化性、耐焼付き性、冷却水噴霧環境下での良好な耐食性など諸特性を長期間にわたって発揮する皮膜を、高温部材搬送用ロールの表面に形成することができる。その結果、熱間圧延設備における、とくに熱延鋼材用製造ラインの安定操業、および保守点検費用の低減とともに、鋼板の生産量の向上、製造コストの低減などに大きな効果が期待できる。   According to the present invention having the configuration described above, the hot-rolled steel material can be conveyed by coating the thermal spray coating formed by dispersing the Fe-Al alloy powder in the Ni-based self-fluxing alloy matrix on the roll surface. In addition to excellent wear resistance (gripping) and thermal shock resistance, a film that exhibits various properties such as high-temperature oxidation resistance, seizure resistance, and good corrosion resistance in a cooling water spray environment over a long period of time It can form on the surface of the roll for member conveyance. As a result, it is expected that the hot rolling facility, in particular, the stable operation of the production line for hot-rolled steel materials and the reduction of maintenance and inspection costs, as well as the improvement of the production amount of steel sheets and the reduction of the production cost can be expected.

本発明の特徴の1つは、Ni基自溶合金マトリックス中に分散させる材料として、Fe−A1合金粉末に着目したことにある。このFe−Al合金粉末は、溶射法によってNi基自溶合金材料とともにロール表面に被覆された場合、とくにその後の再溶融(フュージング)工程において、マトリックスの役割を担う融点の低い自溶合金成分が先行溶融して、当該皮膜の融合化とロール基材との密着性を向上させる一方、融点が高いFe−Al合金粉末の方は、溶融せずに固体粒子としてそのまま残存する。しかも、このFe−Al合金粉末中のAl成分は、溶融状態のNi基自溶合金マトリックス中のNiと強固に結合し、優れた耐食性および耐高温酸化性を発揮すると共に、マトリックス中に拡散し、硬質のM−Al系金属間化合物(ここで、Mはマトリックスを構成する金属成分)を生成析出し、溶射皮膜全体の耐摩耗性(グリッピング性)を向上させると共に、耐高温酸化性、耐焼付性を向上させる働きを有する。
また、Fe−Al合金粒子自体は、硬質で、耐高温酸化性、耐食性に優れるとともに、熱延鋼材の搬送時には、高いグリッピング性を発揮して、ホットランテーブルロールの安定した稼動を支援するという効果がある。
One of the features of the present invention is that attention is paid to Fe-A1 alloy powder as a material to be dispersed in the Ni-based self-fluxing alloy matrix. When this Fe-Al alloy powder is coated on the surface of a roll together with a Ni-based self-fluxing alloy material by a thermal spraying method, a self-fluxing alloy component having a low melting point that plays a role of a matrix, especially in the subsequent re-melting (fusing) process. While pre-melting, the fusion of the film is improved and the adhesion to the roll base is improved, while the Fe-Al alloy powder having a higher melting point remains as solid particles without melting. Moreover, the Al component in this Fe-Al alloy powder is firmly bonded to Ni in the molten Ni-based self-fluxing alloy matrix, exhibiting excellent corrosion resistance and high-temperature oxidation resistance, and diffuses into the matrix. , Hard M-Al-based intermetallic compounds (where M is a metal component constituting the matrix) to precipitate and improve the wear resistance (gripping) of the entire sprayed coating, as well as high temperature oxidation resistance, Has the function of improving seizure properties.
In addition, the Fe-Al alloy particles themselves are hard and excellent in high-temperature oxidation resistance and corrosion resistance, and at the time of transporting hot-rolled steel material, exhibit high gripping properties and support the stable operation of the hot run table roll. There is.

以下、本発明の機構と作用について、さらに詳細に説明する。
上述したように、高温部材搬送用ロールに被覆される本発明に適合する溶射皮膜の成分は、Ni基自溶性合金マトリックス中にFe−Al合金粉末粒子を均等に分散させてなるNi基自溶合金皮膜である。
そこで、まず、本発明に特有の構成であるNi基自溶性合金マトリックス中に分散させるFe−Al合金粉末の性状とその作用機構、およびFe−Al合金粉末を分散させた自溶合金皮膜の性状とその特徴について説明する。
Hereinafter, the mechanism and operation of the present invention will be described in more detail.
As described above, the component of the thermal spray coating conforming to the present invention that is coated on the roll for conveying a high-temperature member is a Ni-based self-melting solution in which Fe-Al alloy powder particles are uniformly dispersed in a Ni-based self-fluxing alloy matrix. Alloy film.
Therefore, first, the properties of the Fe-Al alloy powder dispersed in the Ni-based self-fluxing alloy matrix, which is a structure unique to the present invention, and the mechanism of its action, and the properties of the self-fluxing alloy film in which the Fe-Al alloy powder is dispersed And its features.

(1)Fe−Al合金粉末
本発明において用いられるFe−Al合金は、Alを5〜50mass%含み、残部が主としてFeからなる合金である。この合金粉末は、多くのFe−Al系金属間化合物を含んでいるため、ビッカース硬さが700以上を示すとともに、金属間化合物特有の性質として800℃以上の高温においても硬さの低下が少ないことが特徴である。さらに、Fe−Al合金は耐食性とともに、耐高温酸化性に優れるため、腐食や高温酸化による消耗が極めて少ないという特徴もある。
(1) Fe—Al alloy powder The Fe—Al alloy used in the present invention is an alloy containing 5 to 50 mass% of Al, with the balance being mainly Fe. Since this alloy powder contains a lot of Fe-Al intermetallic compounds, it exhibits a Vickers hardness of 700 or more, and has a low hardness decrease even at a high temperature of 800 ° C. or more as a characteristic property of the intermetallic compounds. It is a feature. Furthermore, since Fe-Al alloy is excellent in corrosion resistance and high-temperature oxidation resistance, it is also characterized by very little wear due to corrosion and high-temperature oxidation.

なお、Fe−Al合金粉末のAl含有量が5mass%未満の場合では、上記に示したような高温硬さや耐食性、耐高温酸化性に乏しく、一方、Al含有量が50mass%超える場合では、耐高温酸化性を有するものの脆弱化するため、ロール皮膜として使用したときに局部的に破壊され、脱落する危険性が高い。また、Fe-Al合金粉末の粒度は、直径1〜100μmの範囲のものが好ましい。これは、1μm未満では、溶射材料としての取扱いが困難であり、100μmを超える場合では、皮膜化したときに気孔率が高くなり、粒子間結合力が弱くなるという問題が生じるためである。   When the Al content of the Fe-Al alloy powder is less than 5 mass%, the high temperature hardness, corrosion resistance, and high temperature oxidation resistance as described above are poor. On the other hand, when the Al content exceeds 50 mass%, Although it has high-temperature oxidation properties, it becomes brittle, so when it is used as a roll film, there is a high risk of local breakage and falling off. The particle size of the Fe—Al alloy powder is preferably in the range of 1 to 100 μm in diameter. This is because if it is less than 1 μm, it is difficult to handle it as a thermal spray material, and if it exceeds 100 μm, there is a problem that the porosity becomes high when the film is formed and the bonding force between particles becomes weak.

次に、本発明にかかる溶射材料として用いられるFe−Al合金粉末について、とくにその製造方法を示すが、これは例示である。
a. 拡散法:Fe粉末とAl粉末を所定量混合し、Arガス雰囲気中で600〜800℃、0.5〜5時間加熱する。
b. 溶融粉砕法:680℃〜720℃の溶融Al中にFe粉末を添加し、この状態を0.5〜5時間保持した後、冷却し、粉砕する。
c. CVD法:Fe粉末を、Arガス中で500℃〜800℃に加熱しつつ、Alのハロゲン化合物(例えば、AlX、XはCl、F、BrまたはIを示す)の蒸気を通じることによって、Fe粉末の表面に金属Alを析出させるとともに内部へ拡散させる。
d. PVD法:Alを、10〜10-1PaのArガス中で電子ビーム照射によって蒸気化させ、Fe粉末を、この蒸気に接触させることによってFe粉末の表面にAl皮膜を形成させる。
以上の各方法によって製造されたFe−Al合金粉末は、必要に応じてさらに熱処理を施してFe粉末中にAlを均等に拡散させたり、節を用いて粉末粒度を調整する。
Next, the Fe-Al alloy powder used as the thermal spraying material according to the present invention will be described by way of example.
a. Diffusion method: A predetermined amount of Fe powder and Al powder are mixed and heated in an Ar gas atmosphere at 600 to 800 ° C. for 0.5 to 5 hours.
b. Melt pulverization method: Fe powder is added to molten Al at 680 ° C to 720 ° C, this state is maintained for 0.5 to 5 hours, and then cooled and pulverized.
c. CVD method: While heating Fe powder in Ar gas at 500 ° C. to 800 ° C., by passing a vapor of Al halogen compound (for example, AlX, X represents Cl, F, Br or I). The metal Al is deposited on the surface of the Fe powder and diffused inward.
d. PVD method: Al is vaporized by irradiation with an electron beam in Ar gas of 10 to 10 −1 Pa, and an Al coating is formed on the surface of the Fe powder by bringing the Fe powder into contact with the vapor.
The Fe—Al alloy powder produced by each of the above methods is further subjected to heat treatment as necessary to diffuse Al evenly in the Fe powder or to adjust the powder particle size using a node.

なお、Fe−Al合金粉末を製造するためのFe粉末としては、JIS G5101(炭素鋼鋳鋼品)やJIS G5501(ねずみ鋳鉄品)などの鋳鉄および鋳鋼粉末を利用することもできる。その効果は、SS400などの鋼材および純度の高いFe粉末と同等である。   In addition, as iron powder for manufacturing Fe-Al alloy powder, cast iron and cast steel powder, such as JIS G5101 (carbon steel cast steel product) and JIS G5501 (grey cast iron product), can also be used. The effect is equivalent to steel materials such as SS400 and high purity Fe powder.

(2)Fe−Al合金粉末の添加量について
本発明にかかる高温部材搬送用ロールの製造方法では、上記Fe−Al合金粉末を、Ni基自溶合金粉末に対し、5〜35mass%の割合で混合する。Fe−Al合金粉末を、Ni基自溶合金粉末中に5〜35mass%の割合で混合させる理由は、Fe−Al合金粉末が、5mass%未満の場合、自溶合金皮膜中の分散量が少なくなり、硬質粒子の分散量の減少に起因する耐摩耗性の低下、搬送用鋼材との摩擦抵抗の低下、自溶合金マトリックス中における硬質のM−Al金属間化合物の析出量の減少などの問題点であり、35mass%を超えると、Fe-Al合金粉末の凝集現象が強くなって自溶合金マトリックスとの結合力が弱くなって、脱落しやすく、耐摩耗性が低下するとともに、脱落粒子によって溶射皮膜自体がアブレッシブ摩耗を受け易くなるためである。なお、Ni基自溶合金とFe-Al合金粉末の混合は、両粉末を混合機を用いて所定の割合に調整してもよいが、塩化ビニルなどの有機質バインダーを用いて両粉末を造粒するほうが、Fe-Al合金粉末の分散性が向上する。
(2) About addition amount of Fe-Al alloy powder In the manufacturing method of the roll for high temperature member conveyance concerning this invention, the said Fe-Al alloy powder is a ratio of 5-35 mass% with respect to Ni base self-fluxing alloy powder. Mix. The reason why the Fe-Al alloy powder is mixed in the Ni-based self-fluxing alloy powder at a rate of 5 to 35 mass% is that when the Fe-Al alloy powder is less than 5 mass%, the amount of dispersion in the self-fluxing alloy film is small. Problems such as a decrease in wear resistance due to a decrease in the amount of hard particles dispersed, a decrease in frictional resistance with the steel for transportation, a decrease in the amount of precipitation of hard M-Al intermetallic compounds in the self-fluxing alloy matrix, etc. If it exceeds 35 mass%, the agglomeration phenomenon of the Fe-Al alloy powder becomes stronger and the bonding force with the self-fluxing alloy matrix becomes weaker, and it is easy to fall off and wear resistance decreases. This is because the sprayed coating itself is susceptible to abrasive wear. In addition, mixing of Ni-based self-fluxing alloy and Fe-Al alloy powder may be adjusted to a predetermined ratio using a mixer, but both powders are granulated using an organic binder such as vinyl chloride. This improves the dispersibility of the Fe—Al alloy powder.

(3)次に、Ni基自溶合金について、以下にその化学成分と各成分を限定した理由について説明する。
(a)必須成分について
Cr:1〜25mass%
Crは1mass%より少ないと皮膜の耐高温酸化性に乏しく、一方、25mass%を超えると溶射皮膜が脆くなって、耐熱衝撃性が低下する。
(3) Next, regarding the Ni-based self-fluxing alloy, the chemical components and the reasons for limiting each component will be described below.
(A) About essential ingredients
Cr: 1-25mass%
When Cr is less than 1 mass%, the high-temperature oxidation resistance of the coating is poor. On the other hand, when it exceeds 25 mass%, the thermal spray coating becomes brittle and the thermal shock resistance is lowered.

B:1〜5mass%
Bは、自溶性成分として必須の元素であるが、1mass%より少ないと、皮膜としての融点が高くなり、溶射後の再溶融温度が高くなってロール基材の機械的強度が低下する。一方、Bは5mass%を超えて添加しても大きな融点の低下は期待できず、硬質のB化合物の生成による効果が飽和する。
B: 1-5 mass%
B is an essential element as a self-fluxing component, but if it is less than 1 mass%, the melting point as a film increases, the remelting temperature after spraying increases, and the mechanical strength of the roll base material decreases. On the other hand, even if B is added in excess of 5 mass%, a large decrease in melting point cannot be expected, and the effect of the formation of a hard B compound is saturated.

Si:1〜5mass%
SiはBと共存することによって、皮膜の自溶性を向上させる成分である。また、このSiは皮膜が再溶融されたとき、皮膜中に含まれる酸化物を還元し、自らが酸化物となって皮膜を構成する粒子の活性度を向上させる作用を有する。しかし、その添加量が1mass%未満ではその効果が少なく、一方、5mass%を超えて添加すると皮膜が脆化する傾向がある。
Si: 1-5 mass%
Si is a component that improves self-solubility of the film by coexisting with B. In addition, when the film is re-melted, this Si has an action of reducing the oxide contained in the film and improving the activity of the particles constituting the film by itself becoming an oxide. However, if the addition amount is less than 1 mass%, the effect is small. On the other hand, if the addition amount exceeds 5 mass%, the coating tends to become brittle.

C:1.5mass%以下
Cは、Crと共存することによって、皮膜の再溶融処理時など高温下においてCr23C6、Cr3C2、Cr7C3などの硬質クロム化合物を析出させ、皮膜の耐摩耗性(グリッピング性)を向上させる。
しかし、1.5mass%を超えると、皮膜全体が脆化し、熱衝撃抵抗が低下するため好ましくない。
C: 1.5 mass% or less C coexists with Cr, thereby precipitating hard chromium compounds such as Cr 23 C 6 , Cr 3 C 2 , and Cr 7 C 3 at a high temperature such as during remelting of the film. Improves wear resistance (gripping property).
However, if it exceeds 1.5 mass%, the entire coating becomes brittle and the thermal shock resistance decreases, which is not preferable.

(b) 選択的添加成分について
Fe:4mass%未満
Feは、溶射皮膜と搬送用鋼材との焼付き防止および摩耗係数を向上させる効果があるため、必要に応じて添加するが、耐熱性、耐高温酸化性に乏しいので4mass%未満とした。
(B) About selectively added ingredients
Fe: Less than 4 mass%
Fe has the effects of preventing seizure between the thermal spray coating and the steel material for conveyance and improving the wear coefficient. Therefore, Fe is added as necessary, but it is less than 4 mass% because it has poor heat resistance and high-temperature oxidation resistance.

Co:1mass%以下
Ni基自溶合金では、Coはとくには必要としないが、1mass%程度の含有は、本発明の効果を阻害することはないので0.1mass%程度とした。
Co: 1 mass% or less
In the Ni-based self-fluxing alloy, Co is not particularly required, but the inclusion of about 1 mass% does not hinder the effects of the present invention, so it is set to about 0.1 mass%.

Mo:8mass%以下
Moは皮膜の高温強度の向上と炭化物の析出に効果的である。ただし、8mass%を超えて添加してもその効果が格別に向上する訳ではないし、また高価でもあるため、8mass%以下とした。
Mo: 8 mass% or less
Mo is effective in improving the high-temperature strength of the film and precipitating carbides. However, even if added in excess of 8 mass%, the effect is not significantly improved, and it is also expensive, so it was set to 8 mass% or less.

Cu:5mass%以下
Cuは、皮膜の耐食性の向上に有効である。しかし、5mass%を超えると皮膜が高温下において、割れ易くなるため5mass%以下とした。
Cu: 5 mass% or less
Cu is effective in improving the corrosion resistance of the film. However, if it exceeds 5 mass%, the film tends to break at high temperatures, so it was set to 5 mass% or less.

W:15mass%以下
WはMoと並んで皮膜の高温強度の向上に効果的であるが、耐高温酸化性に乏しいため、15mass%以下とした。
W: 15 mass% or less W is effective in improving the high-temperature strength of the film along with Mo, but is poor in high-temperature oxidation resistance, so is 15 mass% or less.

Ni:本発明の基本(残部)成分 (≧30mass%)
Niは、Crとともに皮膜のマトリックス組織としてオーステナイト相を形成し、皮膜の耐食性、耐熱性に加え、延性、靭性の向上に決定的な役割を果たす基本成分である。なお、このNiの含有量が30mass%より少ないと、前記の効果が得られないため好ましくない。
Ni: Basic (remainder) component of the present invention (≧ 30 mass%)
Ni forms an austenite phase as a matrix structure of the film together with Cr, and is a basic component that plays a decisive role in improving ductility and toughness in addition to the corrosion resistance and heat resistance of the film. If the Ni content is less than 30 mass%, the above effect cannot be obtained, which is not preferable.

次に、Ni基自溶合金マトリックス中にFe−Al合金粉末を5〜35mass%分散させてなる溶射皮膜の成膜方法と皮膜の再溶融工程における両粉末粒子の挙動について説明する。 Next, a film-forming method of a sprayed coating in which Fe-Al alloy powder is dispersed in an Ni-based self-fluxing alloy matrix in an amount of 5 to 35 mass% and the behavior of both powder particles in the remelting step of the coating will be described.

(4)本発明にかかる搬送用ロールの製造方法(溶射皮膜の成膜方法)について
a.溶射工程
Fe−Al合金粉末を5〜35mass%含有するNi基自溶合金粉末を、ロール基材表面に、粉末式フレーム溶射法、高速フレーム溶射法あるいはプラズマ溶射法から選ばれるいずれかの溶射法によって溶射し、厚さ100〜5000μmの皮膜を形成する。このようにして成膜した皮膜は、Fe−Al合金粉末粒子が、自溶合金を含む皮膜全体にわたって均等に分散した状態となっている。
(4) About the manufacturing method (film formation method of a thermal spray coating) of the roll for conveyance concerning this invention a. Thermal spraying process
Ni-based self-fluxing alloy powder containing 5 to 35 mass% of Fe-Al alloy powder is sprayed on the surface of roll base by any one of spraying method selected from powder type flame spraying method, high-speed flame spraying method or plasma spraying method Then, a film having a thickness of 100 to 5000 μm is formed. The film thus formed is in a state in which the Fe—Al alloy powder particles are uniformly dispersed throughout the film including the self-fluxing alloy.

なお、上記溶射皮膜の厚さが100μm未満では、ホットランテーブルロール用の皮膜としての寿命が短くなり、一方、5000μmを超えると、皮膜の強度が低下するため好ましくない。   When the thickness of the sprayed coating is less than 100 μm, the life as a coating for a hot run table roll is shortened. On the other hand, when the thickness exceeds 5000 μm, the strength of the coating is decreased.

b.再溶融工程(フュージング工程)
ロール表面に形成した上記溶射皮膜は、酸素/アセチレンの燃焼フレーム、真空或いは大気中で加熱する電気炉、高周波誘導加熱などの方法によって、1050℃〜1180℃で0.5〜3時間加熱する。この工程では、溶射皮膜のマトリックスを構成するNi基自溶合金材料が完全に溶融し、マトリックス粒子は相互に融合するとともに、鉄鋼系基材からなるロール表面と冶金的反応によって、これとも強固に結合する。
b. Remelting process (fusing process)
The above-mentioned sprayed coating formed on the roll surface is heated at 1050 ° C. to 1180 ° C. for 0.5 to 3 hours by a method such as an oxygen / acetylene combustion flame, an electric furnace heated in vacuum or in the air, or high-frequency induction heating. In this process, the Ni-based self-fluxing alloy material that constitutes the matrix of the thermal spray coating is completely melted, the matrix particles are fused together, and the roll surface consisting of the steel-based substrate and the metallurgical reaction strongly strengthen this. Join.

一方、Fe−Al合金粉末は、その融点が1300〜1600℃と上記再溶融のための加熱温度よりも高いため、この再溶融工程では溶解せず、固体粒子としてNi基自溶合金マトリックスを種とする溶射皮膜中に残存する。そして、Fe−Al合金粉末中のAlが、自溶合金粉末マトリックス中のNiと容易に相互拡散反応を行うことにより、Fe−Al合金粉末が、マトリックス中に硬く固定される。   On the other hand, the Fe-Al alloy powder has a melting point of 1300 to 1600 ° C., which is higher than the heating temperature for remelting. Therefore, it does not melt in this remelting process, and seeds a Ni-based self-fluxing alloy matrix as solid particles. It remains in the thermal spray coating. Then, Al in the Fe—Al alloy powder easily undergoes an interdiffusion reaction with Ni in the self-fluxing alloy powder matrix, so that the Fe—Al alloy powder is firmly fixed in the matrix.

図1は、上記再溶融工程によって製造された皮膜の断面を模式的に示したものである。ロール基材1の上にNi基自溶合金溶射皮膜2が形成され、さらに皮膜中には粒径1〜100μmのFe−Al合金粒子3が分散した状態になっていることが明らかである。なお、Fe−Al合金粉末は、Ni基自溶合金マトリックスと冶金的に結合した状態にあるものと考えられる。   FIG. 1 schematically shows a cross section of a film produced by the remelting process. It is apparent that a Ni-based self-fluxing alloy sprayed coating 2 is formed on the roll base 1, and that Fe-Al alloy particles 3 having a particle size of 1 to 100 μm are dispersed in the coating. The Fe—Al alloy powder is considered to be in a state of being metallurgically bonded to the Ni-based self-fluxing alloy matrix.

上記の再溶融工程によって製造された皮膜中では、Fe−Al合金粉末中のAlがNi基自溶合金マトリックス中へ拡散し、多くの微粒子状のM−Al系金属間化合物(Mは金属成分を示す)が生成し、析出する。これらのM−Al系金属間化合物は硬く、耐摩耗性を発揮すると共に、Alの酸化によって生成するA1203は優れた耐食性と耐高温酸化性を有するため、皮膜全体の高温安定性を向上させる。 In the film produced by the remelting process, Al in the Fe-Al alloy powder diffuses into the Ni-based self-fluxing alloy matrix, and many fine M-Al intermetallic compounds (M is a metal component). Are formed and precipitated. These M-Al system intermetallic compound is hard, exhibit wear resistance, since with A1 2 0 3 excellent corrosion resistance and high temperature oxidation resistance generated by the oxidation of Al, the hot stability of the entire film Improve.

Fe−Al合金粒子中のAlとNi基自溶合金成分の冶金的反応によって生成するM−Al系金属間化合物の種類としては、次に示すようなものがある。
Fe−Al系:Fe3Al、Fe−Al、Fe−A12、Fe−Al
Ni−Al系:Ni−Al3、Ni2−Al3、Ni−Al、Ni3Al
Co−Al系:Co−Al,、Co4−Al12、Co2A13、Co−Al
Cr−Al系:Cr2Alll、Cr4−Al9、Cr3−Al8、Cr2−Al
また、市販のNi基自溶合金皮膜中には、Cr23C6、Cr3C2、NiBx、CrBx(ここではXは1〜5)などの金属間化合物も存在するが、前記M−Al系金属間化合物は、これらの金属間化合物と共存することによって、皮膜の耐摩耗性のみならず、耐高温酸化性を向上させる。
Examples of the types of M-Al intermetallic compounds produced by the metallurgical reaction between Al and Ni-based self-fluxing alloy components in Fe-Al alloy particles include the following.
Fe-Al system: Fe 3 Al, Fe-Al , Fe-A1 2, Fe-Al
Ni-Al series: Ni-Al 3 , Ni 2 -Al 3 , Ni-Al, Ni 3 Al
Co-Al system: Co-Al, Co 4 -Al 12 , Co 2 A1 3 , Co-Al
Cr-Al-based: Cr 2 Al ll, Cr 4 -Al 9, Cr 3 -Al 8, Cr 2 -Al
Further, in the commercially available Ni-based self-fluxing alloy film, there are also intermetallic compounds such as Cr 23 C 6 , Cr 3 C 2 , NiB x , CrB x (where X is 1 to 5). The -Al intermetallic compound coexists with these intermetallic compounds, thereby improving not only the wear resistance of the film but also the high temperature oxidation resistance.

なお、Ni基自溶合金マトリックス中に分散したFe−Al合金粉末は、自溶合金皮膜へのAlの供給源であり、硬質のM−Al系金属間化合物の生成と析出を促すほか、自溶合金皮膜とFe−Al合金粉末の固着力を向上させ、皮膜が鋼板などとの接触による強い衝撃に対する耐性を向上させる。しかも、Fe−Al合金粉末自体が、耐食性および耐高温酸化性に優れているため、ホットランテーブルローラーなどの稼働環境下において、冷却水を噴射させたり、高温状態に被曝されても、腐食や酸化による消耗を抑制する。さらには、Fe−Al合金粉末は、Fe、Al、Fe−Al、Fe−A12、Fe−Al3などの金属間化合物も含むため、硬質で耐摩耗性に富み、さらに高温環境下においても、この特性を維持することができる。 The Fe-Al alloy powder dispersed in the Ni-based self-fluxing alloy matrix is a source of Al to the self-fluxing alloy film, and promotes the formation and precipitation of hard M-Al intermetallic compounds. The adhesion between the molten alloy film and the Fe-Al alloy powder is improved, and the film improves the resistance to strong impact caused by contact with a steel plate or the like. Moreover, since the Fe-Al alloy powder itself is excellent in corrosion resistance and high-temperature oxidation resistance, even if it is sprayed with cooling water or exposed to high-temperature conditions in an operating environment such as a hot run table roller, it is not corroded or oxidized. Suppresses exhaustion caused by Furthermore, Fe-Al alloy powder, Fe, Al, Fe-Al, since the containing intermetallic compounds such as Fe-A1 2, Fe-Al 3, rich in abrasion resistance of a hard, even further a high temperature environment This characteristic can be maintained.

(実験1)
この実験では、自溶合金粉未申に添加するFe−Al合金粉末の耐高温酸化性を調査した。Fe−Al合金粉末は、粒度が80〜100μmの工業用鉄粉とAlをAl含有量が5〜50mass%となるように混合して作製した。なお、比較例としては、Al含有量が0mass%の市販の鉄粉、C量が0.20%の鉄鋼粉、および工業用鉄粉とAlをAl含有量がそれぞれ3mass%および55mass%となるように混合して作製したFe−Al合金粉末を用いた。
(Experiment 1)
In this experiment, the high temperature oxidation resistance of Fe-Al alloy powder added to the self-fluxing alloy powder was investigated. The Fe—Al alloy powder was prepared by mixing industrial iron powder having a particle size of 80 to 100 μm and Al so that the Al content was 5 to 50 mass%. As comparative examples, commercially available iron powder with an Al content of 0 mass%, steel powder with a C content of 0.20%, and industrial iron powder and Al so that the Al content is 3 mass% and 55 mass%, respectively. Fe-Al alloy powder prepared by mixing was used.

これらの各Fe−Al合金粉末について、大気中で800℃および900℃の温度でそれぞれ24時間加熱し、高温酸化試験を行った。なお、高温酸化試験は、試5gを耐火材製の小皿に平滑になるように並べ、大気中で行った。また、高温酸化試験後の粉末の外観は、目視および拡大鏡で観察することにより評価した。   Each of these Fe-Al alloy powders was heated in the atmosphere at temperatures of 800 ° C. and 900 ° C. for 24 hours, respectively, and a high temperature oxidation test was performed. The high-temperature oxidation test was performed in the atmosphere by placing 5 g of the sample on a small plate made of refractory material so as to be smooth. The appearance of the powder after the high temperature oxidation test was evaluated by visual observation and observation with a magnifying glass.

試験結果を表1に示す。この結果から明らかなように、Al含有量が0mass%の場合(比較例1−1および比較例1−2)はいずれも、800℃および900℃の加熱によって完全に酸化し、酸化物(Fe3O4、FeO、Fe2O3など)に変化した。また、Al含有量が3mass%の場合(比較例1−3)では、800℃および900℃の加熱によって、粉末の大部分が初期の形状をとどめないほどに酸化消耗した。これに対し、Al含有量が55mass%の場合(比較例1−4)は、900℃の加熱においても優れた耐酸化性を発揮したが、この粉末は非常に脆く、耐衝撃性に乏しいものになった。 The test results are shown in Table 1. As is clear from this result, when the Al content is 0 mass% (Comparative Example 1-1 and Comparative Example 1-2), the oxide is completely oxidized by heating at 800 ° C. and 900 ° C. 3 O 4 , FeO, Fe 2 O 3, etc.). In the case where the Al content was 3 mass% (Comparative Example 1-3), most of the powder was oxidized and consumed by heating at 800 ° C. and 900 ° C. so as not to retain the initial shape. On the other hand, when the Al content was 55 mass% (Comparative Example 1-4), although excellent oxidation resistance was exhibited even when heated at 900 ° C., this powder was very brittle and poor in impact resistance. Became.

これに対し、Fe−Al合金粉末は5mass%Al粉末(本発明1−1)では、900℃の加熱によって全体の約10%が酸化したものの、粉末形状を維持し、15〜50mass%Al含有粉末(本発明1-2〜1‐6)においては、全く変化が見られなかった。したがって、Fe−Al合金粉末は、Alの含有量が5〜50mass%の場合に好な耐高温酸化性を示すことがわかった。   On the other hand, in the case of 5 mass% Al powder (Invention 1-1), the Fe-Al alloy powder is about 10% of the whole oxidized by heating at 900 ° C., but maintains the powder shape and contains 15 to 50 mass% Al. In the powder (Invention 1-2 to 1-6), no change was observed. Therefore, it has been found that the Fe—Al alloy powder exhibits favorable high-temperature oxidation resistance when the Al content is 5 to 50 mass%.

Figure 2006255738
Figure 2006255738

(実験2)
この実験では、表2に示した7種類の本発明の自溶合金粉末(No.1〜7)に、Al含有量の異なるFe−Al合金粉末(Al含有量:3、5、30、50、55mass%)を、25mass%添加した後、これをSUS304鋼試験片(幅50mm×長さ80mm×厚さ6mm)の片面にフレーム溶射法により500μm厚さに成膜し、その後、真空電気炉内で1050℃〜1130℃、0.5時間加熱を行った。このようにして得た7種類の供試体について、皮膜表面および断面におけるFe−Al合金粉末の分散状況と自溶合金マトリックスとの結合状態を拡大鏡によって調査した。なお、Fe−Al合金粉末の粒径は50〜80μmである。
(Experiment 2)
In this experiment, seven types of self-fluxing alloy powders (Nos. 1 to 7) of the present invention shown in Table 2 were mixed with Fe-Al alloy powders having different Al contents (Al contents: 3, 5, 30, 50). , 55 mass%), 25 mass% was added, and this was deposited on one side of a SUS304 steel test piece (width 50 mm x length 80 mm x thickness 6 mm) to a thickness of 500 μm by flame spraying, and then a vacuum electric furnace In the inside, it heated at 1050 to 1130 degreeC for 0.5 hour. With respect to the seven types of specimens thus obtained, the state of dispersion of the Fe—Al alloy powder and the bonding state of the self-fluxing alloy matrix on the coating surface and cross section were examined with a magnifying glass. The particle size of the Fe—Al alloy powder is 50 to 80 μm.

調査結果を表2に示す。この結果から明らかなように、Al含有量が5、30、50mass%のFe-Al合金粉末(本発明2−1〜2−3)は、再溶融処理(フュージング処理)によって、各種の組成を有するNi基自溶合金皮膜に対し、良好な分散性を示すとともに、自溶合金マトリックスとの冶金的結合によって、わずかな隙間もなく強固に密着している状態が観察された。しかし、Al含有量が55mass%のFe-Al合金粉末(比較例2−2)の分散は、均等でなく、局部的な凝集現象が認められた。これは、再溶融処理時において、自溶合金マトリックス中へ高濃度のAlが拡散したためマトリックスの粘度が上昇し、合金粉末の分散が困難になったものと考えられる。一方、Al含有量が3mass%のFe-Al合金粉末の場合(比較例2−1)は、良好な分散状態を示すものの、粉末同士の間隔が大きく、硬質の合金粉末の耐摩耗性、グリッピング性などの作用機構に劣るような表面状態が観察された。   The survey results are shown in Table 2. As is apparent from the results, Fe-Al alloy powders (invention 2-1 to 2-3) having Al contents of 5, 30, and 50 mass% have various compositions by remelting treatment (fusing treatment). It was observed that the Ni-based self-fluxing alloy film had good dispersibility and was in close contact with the self-fluxing alloy matrix without any slight gaps due to metallurgical bonding. However, the dispersion of the Fe-Al alloy powder (Comparative Example 2-2) having an Al content of 55 mass% was not uniform, and a local aggregation phenomenon was observed. This is presumably because during the remelting process, a high concentration of Al diffused into the self-fluxing alloy matrix, so that the viscosity of the matrix increased and it became difficult to disperse the alloy powder. On the other hand, in the case of the Fe-Al alloy powder having an Al content of 3 mass% (Comparative Example 2-1), although it shows a good dispersion state, the distance between the powders is large, and the wear resistance and gripping of the hard alloy powder are large. A surface state inferior to the action mechanism such as the property was observed.

Figure 2006255738
Figure 2006255738

(実験3)
この実験では、自溶合金皮膜に分散させた状態でのFe-Al合金粉末の耐高温酸化性を調査した。表2のNo.1の自溶合金材料に、Fe−30mass%Al合金粉末(粒径40〜80μm)を23mass%添加し、混合材料を調整した。これをSUS304鋼(寸法:幅50mm×長さ80mm×厚さ6mm)の片面に300μm厚に溶射、成膜した。その後、この試験片を用いて大気中で900℃×50時間の条件で連続酸化試験を行った。なお、比較例の試験片としては、鉄粉末を23mass%添加した自溶合金皮膜を用いた。
(Experiment 3)
In this experiment, the high-temperature oxidation resistance of Fe-Al alloy powder in a state dispersed in a self-fluxing alloy film was investigated. To the No. 1 self-fluxing alloy material in Table 2, Fe-30 mass% Al alloy powder (particle size 40-80 μm) was added 23 mass% to prepare a mixed material. This was thermally sprayed to a thickness of 300 μm on one side of SUS304 steel (dimensions: width 50 mm × length 80 mm × thickness 6 mm) to form a film. Thereafter, a continuous oxidation test was performed using this test piece in the atmosphere at 900 ° C. for 50 hours. In addition, as a test piece of a comparative example, a self-fluxing alloy film added with 23 mass% of iron powder was used.

試験結果を表3に示す。比較例3−1の皮膜では、添加した鉄粉末が完全に酸化消耗し、わずかな衝撃で皮膜表面から脱落してしまった。これに対し、本発明3−1のFe−30mass%Al合金粉末を分散させた皮膜では、粒子の酸化消耗は全く認められなかった。   The test results are shown in Table 3. In the film of Comparative Example 3-1, the added iron powder was completely oxidized and consumed, and dropped off from the film surface with a slight impact. In contrast, in the film in which the Fe-30 mass% Al alloy powder of the present invention 3-1 was dispersed, no oxidative consumption of particles was observed.

Figure 2006255738
Figure 2006255738

(実験4)
実験3において供試した2種類の溶射皮膜試験片を用いて塩水噴霧試験を行い、皮膜の耐食性を調査した。
(Experiment 4)
The salt spray test was conducted using the two types of sprayed coating specimens tested in Experiment 3, and the corrosion resistance of the coating was investigated.

表4は、塩水噴霧試験96時間後の皮膜の外観観察結果を要約したものである。比較例4−1の試験片は、分散させたFe粉末が、赤さびを発生しているのみならず、赤さびが自溶合金皮膜マトリックスにも流出して皮膜全体が赤さび色を呈していた。これに対し、Fe−Al合金粉末を分散させた本発明4−1の皮膜では、赤さびの発生は全く認められず、良好な耐食性を発揮していることが確認された。   Table 4 summarizes the results of observation of the appearance of the film after 96 hours of the salt spray test. In the test piece of Comparative Example 4-1, not only the dispersed Fe powder generated red rust, but also the red rust flowed into the self-fluxing alloy film matrix, and the entire film exhibited a red rust color. On the other hand, in the film of the invention 4-1 in which the Fe—Al alloy powder was dispersed, no red rust was observed, and it was confirmed that good corrosion resistance was exhibited.

Figure 2006255738
Figure 2006255738

(実験5)
この実験では、Fe−Al合金粉末を分散させた自溶合金溶射皮膜の耐摩耗性、耐焼付き性および耐熱衝撃性を調査した。
(1)供試溶射皮膜の作製
本発明に適合する溶射皮膜として、Fe−10mass%Fe−Al合金粉末(粒径30〜60μm)を表2のNo.3の組成からなる自溶合金粉末中に、それぞれ10、20、25mass%になるように添加、混合し、3種類の溶射材料を調整した。その後、フレーム溶射法を用いて、SUS430鋼の平板(寸法:幅50mm×長さ80mm×厚さ5mm)および円筒状(寸法:外径35mm、内径25mm、長さ50mm)の試験片の表面に500μm厚の溶射皮膜を形成した後、大気中で酸素/アセチレンの燃焼フレームによって溶射皮膜を加熱溶融させて製作した。
なお、比較例の溶射皮膜試験片として、JIS H8303規定のSF Ni5(Ni基)、SF Col(Co基)の自溶合金粉末を用いた。
(Experiment 5)
In this experiment, the wear resistance, seizure resistance, and thermal shock resistance of the self-fluxing alloy spray coating in which Fe-Al alloy powder was dispersed were investigated.
(1) Preparation of test spray coating As a spray coating conforming to the present invention, Fe-10 mass% Fe-Al alloy powder (particle size: 30 to 60 μm) is contained in a self-fluxing alloy powder having the composition No. 3 in Table 2. In addition, they were added and mixed so as to be 10%, 20% and 25% by mass, respectively, and three types of thermal spray materials were prepared. Then, using a flame spraying method, the surface of a SUS430 steel flat plate (dimensions: width 50 mm x length 80 mm x thickness 5 mm) and cylindrical (dimensions: outer diameter 35 mm, inner diameter 25 mm, length 50 mm) After forming a 500 μm thick thermal spray coating, the thermal spray coating was heated and melted in the atmosphere by an oxygen / acetylene combustion flame.
In addition, as a thermal spray coating test piece of a comparative example, a self-fluxing alloy powder of SF Ni5 (Ni base) and SF Col (Co base) specified in JIS H8303 was used.

(2)摩耗試験方法
摩耗試験は、図2に示すように、平板試験片21を使用し、皮膜22の表面にSiCペーパー23を被覆した円盤片24を、回転させながら摺動させるテーパー式アプレシブ摩耗試験法を採用した。また、摩擦係数の測定は、図3に示す要領で実施した。すなわち、円筒状の試験片を用い、溶射皮膜31を形成させたロール32の表面に鉄フォイル33を巻き付け、フォイルが滑り始めた時の荷重から動摩擦係数を算出した。34はスプリング、35はウエイト、36はロードセル、37はモーターを示す。
(2) Wear test method As shown in FIG. 2, the wear test uses a flat plate test piece 21 and a taper type abrasive slide 24 in which a disk piece 24 coated with SiC paper 23 on the surface of the coating 22 is rotated and rotated. A wear test method was adopted. The coefficient of friction was measured as shown in FIG. That is, using a cylindrical test piece, the iron foil 33 was wound around the surface of the roll 32 on which the sprayed coating 31 was formed, and the dynamic friction coefficient was calculated from the load when the foil started to slide. 34 is a spring, 35 is a weight, 36 is a load cell, and 37 is a motor.

(3)焼付き性試験方法
溶射皮膜の焼付き性は、図4に示すように表面に溶射皮膜42が形成された円筒状試験片基材41を回転させ、これにSS400鋼板43を押し付けることにより、皮膜42と鋼板43の接触面において、焼付きが発生した時点での押し付け圧力を測定することによって評価した。なお、基材41の回転速度は、2m/sとした。
(3) Seizure test method The seizure property of the sprayed coating is determined by rotating a cylindrical test piece base material 41 having a sprayed coating 42 formed on its surface as shown in FIG. Thus, evaluation was performed by measuring the pressing pressure at the time when seizure occurred on the contact surface between the coating 42 and the steel plate 43. The rotation speed of the base material 41 was 2 m / s.

(4)熱衝撃試験方法
溶射皮膜の熱衝撃試験は、円筒状試験片を電気炉中で600℃、15分間加熱した後、15℃の水道水中に投入する操作を1サイクルとし、最長25サイクル実施した。この間1サイクル毎に溶射皮膜の表面を目視または拡大鏡で観察し、皮膜表面の変化を記録した。
(4) Thermal shock test method The thermal shock test of the thermal spray coating consists of heating a cylindrical specimen in an electric furnace at 600 ° C for 15 minutes and then putting it into tap water at 15 ° C for one cycle, with a maximum of 25 cycles. Carried out. During this time, the surface of the sprayed coating was observed visually or with a magnifying glass every cycle, and changes in the coating surface were recorded.

(5)試験結果
(I)摩耗試験結果を図5に示す。この結果から明らかなように、本発明に適合する溶射皮膜の摩耗量は摩擦回数1200回の試験でも、最高6mgであり、比較例5−1の皮膜の摩耗量14mgと比較して、優れた耐摩耗性を有することが認められた。
(II)溶射皮膜の摩擦係数、焼付き試験結果および熱衝撃試験結果を、表5に示す。本発明の皮膜はいずれも比較用の皮膜に対し、摩擦係数が1.2〜1.4倍程度高く、グリッピング性に優れた特性をもっている。また、耐焼付き性においては、比較例の皮膜に比べて2.7倍の線圧に耐え、熱衝撃試験では比較例の皮膜が10サイクル目にクラックが発生したのに対し、本発明に適合する溶射皮膜は25サイクル後でも健全な状態を維持していた。
(5) Test results (I) The wear test results are shown in FIG. As is apparent from the results, the wear amount of the sprayed coating conforming to the present invention is 6 mg at the maximum even in the test with 1200 frictions, which is superior to the wear amount of 14 mg of the film of Comparative Example 5-1. It was found to have wear resistance.
(II) Table 5 shows the friction coefficient, the seizure test result, and the thermal shock test result of the thermal spray coating. All of the films of the present invention have a friction coefficient that is about 1.2 to 1.4 times higher than that of the comparative film, and has excellent gripping properties. In addition, in terms of seizure resistance, it withstood a linear pressure 2.7 times that of the comparative film, and in the thermal shock test, the comparative film was cracked at the 10th cycle. The film remained healthy after 25 cycles.

Figure 2006255738
Figure 2006255738

本発明にかかる高温部材搬送用ロールおよびその製造方法と溶射材料は、鋼材の熱間圧延設備用各種部材、例えば熱延鋼材(板)を搬送するための搬送用ロール、その他の熱関連設備部材としても好適に用いられる。その他、アルミニウムやチタンなどの非金属介在物の熱設備用部材としても好適に用いられる。   The roll for high-temperature member conveyance according to the present invention, its production method, and the thermal spray material are various members for hot rolling equipment of steel, for example, a roll for conveyance of hot-rolled steel (plate), and other heat-related equipment members. Also preferably used. In addition, it can also be suitably used as a heat equipment member for non-metallic inclusions such as aluminum and titanium.

Fe−Al合金粉末を含む自溶合金溶射皮膜の断面図である。It is sectional drawing of the self-fluxing alloy sprayed coating containing Fe-Al alloy powder. 溶射皮膜の摩耗特性を評価する試験装置の概念図である。It is a conceptual diagram of the test apparatus which evaluates the abrasion characteristic of a thermal spray coating. 溶射皮膜の摩耗係数を測定する方法を示す図である。It is a figure which shows the method of measuring the abrasion coefficient of a thermal spray coating. 溶射皮膜の焼付き性特性を評価する試験装置の概念図である。It is a conceptual diagram of the testing apparatus which evaluates the seizure property of a thermal spray coating. 摩耗試験結果を示す図である。It is a figure which shows an abrasion test result.

符号の説明Explanation of symbols

1 ロール基材
2 自溶合金マトリックス
3 Fe−Al合金粒子
21 平板試験片
22 溶射皮膜
23 SiCペーパー
24 円板形状の回転体
31 溶射皮膜
32 ロール状の部材
33 鉄フォイル
34 スプリング
35 ウエイト(重量)
36 ロードセノレ
37 モータ
41 試験片基材
42 溶射皮膜
43 鋼板

1 Roll base material 2 Self-fluxing alloy matrix 3 Fe-Al alloy particles
21 Flat specimen
22 Thermal spray coating
23 SiC paper
24 Disc-shaped rotating body
31 Thermal spray coating
32 Roll material
33 Iron foil
34 Spring
35 Weight (weight)
36 Road Senore
37 Motor
41 Specimen base material
42 Thermal spray coating
43 Steel plate

Claims (7)

ロール基材の表面に、Ni基自溶合金マトリックス中にFe−Al合金粉末が分散した溶射皮膜を被覆してなる高温部材搬送用ロール。   A roll for conveying a high temperature member formed by coating the surface of a roll base material with a thermal spray coating in which an Fe-Al alloy powder is dispersed in a Ni-based self-fluxing alloy matrix. 前記Fe−Al合金は、Al含有量が5〜50mass%で、粒径が1〜100μmの粉末であることを特徴とする請求項1記載の高温部材搬送用ロール。   The roll for high-temperature member conveyance according to claim 1, wherein the Fe-Al alloy is a powder having an Al content of 5 to 50 mass% and a particle size of 1 to 100 µm. 前記Ni基自溶合金マトリックス中に分散させたFe−Al合金粉末の分散量が、5〜35mass%であることを特徴とする請求項1または2に記載の高温部材搬送用ロール。   The roll for high-temperature member conveyance according to claim 1 or 2, wherein the amount of dispersion of the Fe-Al alloy powder dispersed in the Ni-based self-fluxing alloy matrix is 5 to 35 mass%. 前記Ni基自溶合金は、Cr:1〜25mass%、B:1〜5mass%、Si:1〜5mass%およびC:1.5mass%以下を含有し、残部がNiおよび不可避的不純物からなる成分組成を有するものであることを特徴とする請求項1〜3のいずれか1項に記載の高温部材搬送用ロール。   The Ni-based self-fluxing alloy contains Cr: 1 to 25 mass%, B: 1 to 5 mass%, Si: 1 to 5 mass%, and C: 1.5 mass% or less, with the balance being Ni and inevitable impurities It has a composition, The roll for high temperature member conveyance of any one of Claims 1-3 characterized by the above-mentioned. 前記Ni基自溶合金は、Cr:1〜25mass%、B:1〜5mass%、Si:1〜5mass%およびC:1.5mass%以下を含み、かつFe:4mass%未満、Co:1mass%以下、Mo:8mass%以下、Cu:5mass%以下およびW:15mass%以下のうちから選ばれる1種または2種以上を含有し、残部がNiおよび不可避的不純物からなる成分組成を有するものであることを特徴とする請求項1〜3のいずれか1項に記載の高温部材搬送用ロール。   The Ni-based self-fluxing alloy includes Cr: 1 to 25 mass%, B: 1 to 5 mass%, Si: 1 to 5 mass%, and C: 1.5 mass% or less, and Fe: less than 4 mass%, Co: 1 mass% Hereinafter, Mo: 8 mass% or less, Cu: 5 mass% or less, and W: 15 mass% or less, one or two or more selected from the following, containing Ni and inevitable impurities. The roll for high temperature member conveyance of any one of Claims 1-3 characterized by the above-mentioned. ロール基材の表面に、Al含有量が5〜50mass%のFe−Al合金粉末をNi基自溶合金粉末中に5〜35mass%の割合で混合してなる溶射材料を溶射して、厚さ100〜5000μmの溶射皮膜を形成し、その後、この溶射皮膜で被覆したロール基材を1050〜1150℃、0.1〜5時間の条件で加熱することにより、該溶射皮膜中のNi基自溶合金マトリックスを溶融させることを特徴とする高温部材搬送用ロールの製造方法。   The surface of the roll base material is sprayed with a thermal spray material obtained by mixing an Fe-Al alloy powder with an Al content of 5 to 50 mass% in a Ni-based self-fluxing alloy powder at a ratio of 5 to 35 mass%, A Ni-based self-fluxing alloy matrix in the thermal spray coating is formed by forming a thermal spray coating of 100 to 5000 μm and then heating the roll base material coated with the thermal spray coating at 1050 to 1150 ° C. for 0.1 to 5 hours. A method for producing a roll for conveying a high-temperature member, characterized in that the material is melted. 請求項1に記載の高温部材搬送用ロールの表面に被覆する溶射皮膜に用いられるものであって、必須成分としてCr:1〜25mass%、B:1〜5mass%、Si:1〜5mass%およびC:1.5mass%以下を含み、その他選択的添加成分として、Fe:4mass%未満、Co:1mass%以下、Mo:8mass%以下、Cu:5mass%以下およびW:15mass%以下、残部がNiおよび不可避的不純物からなるNi基自溶合金粉末に、Al含有量が5〜50mass%で、粒径が1〜100μm以上のFe−Al合金粉末を5〜35mass%の割合で混合してなることを特徴とする溶射材料。   It is used for the thermal spray coating which coat | covers on the surface of the roll for high temperature member conveyance of Claim 1, Comprising: Cr: 1-25mass%, B: 1-5mass%, Si: 1-5mass% and as an essential component C: 1.5 mass% or less, and other selectively added components: Fe: less than 4 mass%, Co: 1 mass% or less, Mo: 8 mass% or less, Cu: 5 mass% or less and W: 15 mass% or less, the balance being Ni and The Ni-based self-fluxing alloy powder composed of unavoidable impurities is mixed with Fe-Al alloy powder having an Al content of 5 to 50 mass% and a particle size of 1 to 100 μm or more in a proportion of 5 to 35 mass%. Characteristic thermal spray material.
JP2005074826A 2005-03-16 2005-03-16 Roll for conveying high temperature member, its production method, and thermal spray material Pending JP2006255738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074826A JP2006255738A (en) 2005-03-16 2005-03-16 Roll for conveying high temperature member, its production method, and thermal spray material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074826A JP2006255738A (en) 2005-03-16 2005-03-16 Roll for conveying high temperature member, its production method, and thermal spray material

Publications (1)

Publication Number Publication Date
JP2006255738A true JP2006255738A (en) 2006-09-28

Family

ID=37095507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074826A Pending JP2006255738A (en) 2005-03-16 2005-03-16 Roll for conveying high temperature member, its production method, and thermal spray material

Country Status (1)

Country Link
JP (1) JP2006255738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056598A (en) * 2019-04-11 2019-07-26 宁波顺达粉末冶金工业有限公司 A kind of guider and preparation method thereof
CN114309586A (en) * 2021-12-31 2022-04-12 西安稀有金属材料研究院有限公司 High-entropy alloy/carbon black composite electromagnetic wave-absorbing material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110056598A (en) * 2019-04-11 2019-07-26 宁波顺达粉末冶金工业有限公司 A kind of guider and preparation method thereof
CN110056598B (en) * 2019-04-11 2020-10-09 宁波顺达粉末冶金工业有限公司 Guider and preparation method thereof
CN114309586A (en) * 2021-12-31 2022-04-12 西安稀有金属材料研究院有限公司 High-entropy alloy/carbon black composite electromagnetic wave-absorbing material and preparation method thereof
CN114309586B (en) * 2021-12-31 2024-01-26 西安稀有金属材料研究院有限公司 High-entropy alloy/carbon black composite electromagnetic wave-absorbing material and preparation method thereof

Similar Documents

Publication Publication Date Title
Xie et al. Microstructure and wear resistance of WC/Co-based coating on copper by plasma cladding
EP2787095B1 (en) Ni-fe-cr alloy and engine valve welded or coated with the same alloy
EP1838889B1 (en) Weldable, crack-resistant cobalt-based alloy
JP6377733B2 (en) New powder
TWI726875B (en) New powder composition and use thereof
EP2514854B1 (en) Member for conveying high-temperature materials
Liu et al. Effects of titanium additive on microstructure and wear performance of iron-based slag-free self-shielded flux-cored wire
WO2012063512A1 (en) Wear-resistant cobalt-based alloy and engine valve coated with same
Rao et al. Friction surfaced Stellite6 coatings
EP3584022A1 (en) Ni-BASED THERMAL SPRAYING ALLOY POWDER AND METHOD FOR MANUFACTURING ALLOY COATING
Wu et al. Effects of annealing on the microstructures and wear resistance of CoCrFeNiMn high-entropy alloy coatings
US20050142026A1 (en) Ductile cobalt-based Laves phase alloys
WO2014069397A1 (en) Engine valve
JP5976535B2 (en) Method for producing roll for hot rolling equipment
JP4295239B2 (en) High temperature member transport roll, manufacturing method thereof and thermal spray material
JP2006255738A (en) Roll for conveying high temperature member, its production method, and thermal spray material
Majumdar et al. Kinetics of oxide scale growth on a (Ti, Mo) 5Si3 based oxidation resistant Mo-Ti-Si alloy at 900-1300∘ C
JP4412563B2 (en) High temperature material conveying member
KR20050062764A (en) Run out table roll of hot rolled steel&#39;s manufacturing method
WO2019167149A1 (en) Member for equipment in baths, equipment in molten metal bath, and molten metal plating material production device
WO2010047137A1 (en) Roll for use in continuous casting
Chen et al. Effect of current on microstructures and properties of tin bronze/steel bimetallic sheets fabricated by arc deposited technique
Moreno et al. Comparative analyzes between thermal spray coatings-40Fe30Ni30CW without and with refusion and coating performed by the coated electrode process-SMAW
KR20080010219A (en) Self-fluxing alloy powders and roll having spraying coating layer
JP2018040023A (en) Member for in-bath apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113