JP2006254802A - Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda - Google Patents

Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda Download PDF

Info

Publication number
JP2006254802A
JP2006254802A JP2005077230A JP2005077230A JP2006254802A JP 2006254802 A JP2006254802 A JP 2006254802A JP 2005077230 A JP2005077230 A JP 2005077230A JP 2005077230 A JP2005077230 A JP 2005077230A JP 2006254802 A JP2006254802 A JP 2006254802A
Authority
JP
Japan
Prior art keywords
fresh
activity
cephalopods
maintaining
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005077230A
Other languages
Japanese (ja)
Inventor
Yasunobu Kinoshita
康宣 木下
Takeya Yoshioka
武也 吉岡
Hiroyuki Yoshino
博之 吉野
Ryuji Kofushiwaki
隆二 古伏脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKODATE CHIIKI SANGYO SHINKO
KOSEI SHOTEN KK
Hakodate Regional Industry Promotion Organization
Original Assignee
HAKODATE CHIIKI SANGYO SHINKO
KOSEI SHOTEN KK
Hakodate Regional Industry Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKODATE CHIIKI SANGYO SHINKO, KOSEI SHOTEN KK, Hakodate Regional Industry Promotion Organization filed Critical HAKODATE CHIIKI SANGYO SHINKO
Priority to JP2005077230A priority Critical patent/JP2006254802A/en
Publication of JP2006254802A publication Critical patent/JP2006254802A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Meat, Egg Or Seafood Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda realized through finding an optimal condition regarding color mechanism of fresh marine cephalopoda and control of the mechanism based on investigation into possibility performed by utilizing chromatophore activity of the epidermis of the fresh marine cephalopoda and ATP which is an energy-rich compound through suppressing energy level reduction caused under postmortem anaerobic condition so as to maintain the cellular activity for a long period of time even after death of an individual organism to control color development. <P>SOLUTION: The method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda comprises soaking or floating the fresh marine cephalopoda into or on such a solution as to have an Mg concentration of ≥12 mM to maintain cellular activity thereof. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、個体の死後も細胞活性を持続させることによって、生鮮海産頭足類の表皮色素胞活動能を維持させる方法に関する。   The present invention relates to a method for maintaining the ability of a fresh sea cephalopod to maintain epidermal pigmentosa activity by maintaining cell activity even after the death of an individual.

イカ・タコ等の海産頭足類には、活魚として流通されるもの、鮮魚として流通されるもの、冷凍されて流通されるものがあり、商品上この順に価格が高く設定されている。
最も鮮度が良いとされ、高い価格で取引されている活魚については、関連分野で活かしたまま保管又は輸送するため、つまり活魚流通するための多くの技術開発がなされている。しかし、個体の死後に保管又は輸送される鮮魚の品質(鮮度)保持技術については、産業上有益と思われる先行技術は乏しい。特に、ここでいう品質保持の主眼を表皮の色素胞活動能に向けた知見はほとんどない。
最近、生鮮品の品質保持技術としては、いくつかの研究報告がなされているので、その概要を以下に示す。
Marine cephalopods such as squid and octopus include those that are distributed as live fish, those that are distributed as fresh fish, and those that are frozen and distributed.
With regard to live fish that has the highest freshness and is traded at a high price, many technologies have been developed to store or transport the fish while taking advantage of it in related fields, that is, to distribute live fish. However, as for the technology for maintaining the quality (freshness) of fresh fish stored or transported after the death of an individual, there are few prior arts that are considered to be industrially useful. In particular, there is almost no knowledge that the main focus of quality maintenance here is directed to the ability of the epidermis to act on the melanophores.
Recently, several research reports have been made on the quality maintenance technology of fresh products, and the outline is shown below.

(ホタテガイ貝柱)
空気中で貯蔵するよりも酸素ガスで貯蔵する方が、ATP(アデノシン三リン酸と呼ばれ、生体におけるエネルギー伝達体としてエネルギーの獲得及び利用に重要な役割を果すものである。細胞の死と共に消失する)の低下と硬直が遅くなることを報告している。その中で、ATP低下とK値(生鮮水産物の鮮度指標として利用されているもので、ATPの代謝産物総量(ATP+ADP+AMP+IMP+HxR+Hx)に対する最終産物(HxR+Hx)の割合で示される)の上昇が、-3°Cよりも5°Cで遅いことが報告されている。更に、溶存酸素濃度の高い人工海水で保存することにより、ATPの低下を抑制できるとしている(非特許文献1参照)。
(Scallop shell)
ATP (adenosine triphosphate) is more important for the acquisition and use of energy as an energy transfer body in the living body than oxygen storage than in the air. It has been reported that the decline and stiffness of the varnish disappears slowly. Among them, decrease in ATP and increase in K value (used as a freshness index of fresh fish and fish products, indicated by the ratio of end product (HxR + Hx) to total amount of ATP metabolites (ATP + ADP + AMP + IMP + HxR + Hx)) is -3 ° Slower than 5 ° C at 5 ° C. Furthermore, it is said that the decrease in ATP can be suppressed by storing in artificial seawater with a high dissolved oxygen concentration (see Non-Patent Document 1).

(ウニ)
本願発明者でもある木下康宣らは、ミョウバン処理を施していない剥き身のウニを人工海水とともに包装し、酸素ガスを充填することによって、ATPと官能的な品質の低下を遅延できるということを報告している(非特許文献2参照)。
(ワカメ)
本願発明者でもある木下康宣らは、未加熱のワカメは加熱することによって緑色に変化するが、鮮度低下に伴い緑色化しなくなり、酸素ガスとともに包装することにより緑色化を起こさなくなるまでの期間を延長できるということを報告している(非特許文献3参照)。
(Sea urchin)
Yasunobu Kinoshita et al., The inventor of the present application, reported that by wrapping stripped sea urchins not treated with alum with artificial seawater and filling with oxygen gas, ATP and sensory quality degradation can be delayed. (See Non-Patent Document 2).
(Wakame)
Yasunori Kinoshita et al., The inventor of the present application, turns green when unheated seaweed is heated, but it does not turn green as the freshness decreases, and extends the period until greening does not occur by packaging with oxygen gas. It is reported that it can be done (see Non-Patent Document 3).

(イカ)
イカ表皮の色調劣化(赤から白くなっていくこと)や身で起こる白濁・食感低下・ATPの低下が、0°Cや10°Cよりも5°Cの方が遅いことを報告している。同時に、イカの身については、酸素濃度が高いほどそれらの劣化を抑制しやすいと報告している(非特許文献4参照)。
これらの多くは、生鮮水産物において、個体の死後でも細胞の活性は一定期間持続しており、(おそらく細胞単位の呼吸の必要上)酸素を提供することで、その活性低下を抑制できることを示唆するものである。これらの知見は、特にホタテガイ貝柱で多く見られるが、イカに関して実証されたものはない。特に、イカの場合、表皮の発色具合が現場的な鮮度判断の一つの指標とされているが、より高い鮮度を意味する表皮の色素胞活動能の持続性に主眼を置いたアプローチは全く無い。
(squid)
Reported that the color deterioration of the squid epidermis (from white to red) and the cloudiness that occurs in the body, the decrease in texture, and the decrease in ATP are slower at 5 ° C than at 0 ° C or 10 ° C. Yes. At the same time, it has been reported that squid bodies tend to suppress their deterioration as the oxygen concentration increases (see Non-Patent Document 4).
Many of these suggest that in fresh seafood, cell activity persists for a period of time even after the death of the individual, and providing oxygen (possibly for cell-by-cell respiration) can suppress the decrease in activity. Is. These findings are particularly common in scallops, but nothing has been demonstrated for squid. In particular, in the case of squid, the color development of the epidermis is considered as one of the indicators of on-site freshness judgment, but there is no approach that focuses on the persistence of the epidermal plastid activity, which means higher freshness. .

その他、屠殺直後の魚体を酸素飽和無機塩水に2〜12時間浸漬し、12時間経過後空気中に出して冷蔵し鮮度を保つという技術が開示されている(特許文献1参照)。この場合、12時間を越える浸漬は鮮度が低下するというものである。
また、屠殺直後の魚体を吸収シートで包み、これを酸素ガス中で保持し鮮度を維持するという技術が開示されている(特許文献2参照)。また、食塩水にカリウムイオンと糖類を混ぜてイカの変色を防止する技術が開示されている(特許文献3参照)。また、鮮魚を樹脂袋等に空気を遮断して密封包装し、冷却した塩水に浮遊させておくという技術が開示されている(特許文献4参照)。
しかし、これらの特許文献1、2、4に記載されている技術は、生鮮海産頭足類の表皮色素胞活動能の維持に関する技術ではなく、その効果も充分でないと考えられる。なお、特許文献3のみが、イカの変色に関心があるようであるが、糖類を混ぜることによる十分なデータが示されておらず、その効果は確認できない。
埜澤尚範外2名著「10.ホタテガイ貝柱の生存保蔵技術」技術雑誌“水産物の品質・ 鮮度とその高度保持技術”113〜119頁、恒星社厚生閣発行(平成16年) 木下康宣外2名著「塩水パックウニの品質に及ぼす酸素充填の影響」“平成14年度日本水産学会、北海道支部・東北支部合同支部大会、講演要旨集”218頁、日本水産学会発行(会期:2002年11月29日〜30日) 木下康宣外4名著「生鮮ワカメの保存性に及ぼす酸素パックの影響」“平成16年度日本水産学会、北海道支部、講演要旨集”103頁、日本水産学会発行(会期:2004年11月26日、27日) 「スルメイカの品質保持に関する研究開発」財団法人函館地域産業振興財団発行(平成15年3月)38〜70頁 特開昭61−185152号公報 特開昭61−56038号公報 特開平4−360643号公報 特開2004−113149号公報
In addition, a technique is disclosed in which a fish body immediately after slaughter is immersed in oxygen-saturated inorganic salt water for 2 to 12 hours, and after 12 hours, the fish body is put out into the air and refrigerated to keep freshness (see Patent Document 1). In this case, soaking for more than 12 hours decreases the freshness.
Moreover, the technique of wrapping the fish body immediately after slaughtering with the absorption sheet, hold | maintaining this in oxygen gas, and maintaining freshness is disclosed (refer patent document 2). Moreover, the technique which prevents discoloration of a squid by mixing potassium ion and saccharides in salt solution is disclosed (refer patent document 3). In addition, a technique is disclosed in which fresh fish is sealed in a resin bag or the like while air is sealed and suspended in cooled salt water (see Patent Document 4).
However, the techniques described in these Patent Documents 1, 2, and 4 are not related to the maintenance of the ability of the fresh sea cephalopods to have epidermal plastid activity, and it is considered that the effects are not sufficient. Only Patent Document 3 seems to be interested in discoloration of squid, but sufficient data by mixing sugar is not shown, and the effect cannot be confirmed.
Nao Serizawa's two authors, “10. Survival storage technology for scallop shells”, technical magazine “Seafood quality / freshness and advanced retention technology”, pages 113-119, published by Hoshiseisha Koseikaku (2004) Published by Yasunobu Kinoshita, “The Effect of Oxygen Filling on the Quality of Salted Sea Urchins” “Abstracts of the 2002 Annual Meeting of the Fisheries Society of Japan, Hokkaido and Tohoku Branches”, page 218, published by the Japanese Society of Fisheries Science (Date: 2002) November 29-30 4 works written by Yasunori Kinoshita, “Effects of oxygen packs on the preservation of fresh seaweed”, “2004 Annual Meeting of the Fisheries Society of Japan, Hokkaido Chapter, Abstracts”, page 103, published by the Japanese Society of Fisheries Science (Date: November 26, 2004, 27th) "Research and development on quality maintenance of squid," issued by Hakodate Regional Industry Promotion Foundation (March 2003), pages 38-70 JP-A-61-185152 JP-A-61-56038 JP-A-4-360643 JP 2004-113149 A

本発明の目的は、海産頭足類における表皮の発色機構とその制御に関するものであり、表皮の色素胞活動が高エネルギー化合物であるATPを利用して行われている可能性を究明すること、すなわち死後の嫌気的な条件下で起こるエネルギーレベルの低下を抑制することによって、個体の死後も長期間細胞活性を持続させ、発色を制御できる可能性を究明することにより、長期間に亘り表皮色素胞活動能を維持させる最適条件を見出すことにある。
本発明は、個体の死後も細胞活動が継続している間は、神経刺激がATPの消費に大きな影響を与えると考え、神経興奮を安静化するための技術的要素を検討した結果、主として一定濃度のMgを含有させた塩水中で保存することによって、表皮の色素胞活動能を長期間に渡って維持できる最適な技術を提供することを課題とする。
The object of the present invention relates to the coloring mechanism of the epidermis in marine cephalopods and its control, and to investigate the possibility that the epidermal plastid activity is performed using ATP, which is a high energy compound, In other words, by suppressing the decrease in energy level that occurs under anaerobic conditions after death, by investigating the possibility of maintaining cell activity for a long period of time after death of an individual and controlling color development, The goal is to find the optimum condition for maintaining the ability to activate the cells.
The present invention considers that nerve stimulation has a large effect on ATP consumption while cell activity continues after death of an individual, and as a result of examining technical elements for calming nerve excitation, It is an object of the present invention to provide an optimal technique capable of maintaining the chromophoric activity of the epidermis over a long period of time by storing it in salt water containing a concentration of Mg.

本発明者らは、下記1)〜16)を提供するものである。
1)生鮮海産頭足類をMg濃度が12mM以上である液体に浸漬又は浮遊状態にして細胞活性を持続させることを特徴とする生鮮海産頭足類の表皮色素胞活動能の維持方法。
2)さらに、Ca濃度を8mM以上とすることを特徴とする請求項1記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
3)さらに、K濃度を5〜12mMとすることを特徴とする請求項1又は2記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
4)前記液体に酸素又は空気を連続的又は間歇的に供給した後、液体中に生鮮海産頭足類を浸漬又は浮遊状態にして保管又は輸送することを特徴とする請求項1〜3のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
5)液体中の溶存酸素量を7mg/L以上とすることを特徴とする請求項4記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
6)液体中の溶存酸素量を8mg/L以上とすることを特徴とする請求項4記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
7)生鮮海産頭足類が、苦悶死したもの又は即殺による活き絞めしたものであることを特徴とする請求項1〜6のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
8)包装資材に生鮮海産頭足類と溶存酸素量を増加させた液体を封入したものを保管又は輸送することを特徴とする請求項4〜7のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
9)包装資材に生鮮海産頭足類と液体と空気又は酸素を封入して保管又は輸送することを特徴とする請求項4〜7のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
10)容器内に生鮮海産頭足類と液体を入れ、連続的又は間歇的に空気又は酸素を曝気して溶存酸素量を増加させて保管又は輸送することを特徴とする請求項4〜7のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
11)包装生鮮海産頭足類を、直接氷蔵を行わずに間接氷蔵を行い、氷と生鮮品の直接接触を防止して、保管又は輸送することを特徴とする請求項4〜10のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
12)液体の塩濃度を17〜68‰に保持することを特徴とする請求項1〜11のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
13)液体のpHを7.0〜8.5に維持することを特徴とする請求項1〜12のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
14)液体として、塩水、天然海水又は人工海水を用いることを特徴とする請求項1〜13のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
15)生鮮海産頭足類を-2°C〜15°Cに維持した液体に浸漬又は浮遊させることを特徴とする請求項1〜14のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
16)液体に、さらに神経伝達物質であるGABA(γ-アミノ酪酸)を10〜50mM添加し、このGABAによる色素胞活動の抑制効果を用いて、長期に亘って細胞活動を持続させることを特徴とする請求項1〜15のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
The present inventors provide the following 1) to 16).
1) A method for maintaining the activity of epidermopigment of fresh sea cephalopods, which comprises immersing or floating fresh sea cephalopods in a liquid having a Mg concentration of 12 mM or more to maintain cell activity.
2) The method for maintaining epidermal plastid activity of fresh seafood cephalopods according to claim 1, wherein the Ca concentration is 8 mM or more.
3) The method for maintaining the epidermal plastid activity of fresh seafood cephalopods according to claim 1 or 2, wherein the K concentration is 5 to 12 mM.
4) Oxygen or air is continuously or intermittently supplied to the liquid, and then fresh seafood cephalopods are immersed or suspended in the liquid and stored or transported. A method for maintaining the ability of the epidermis pigmentoid activity of fresh seafood cephalopods.
5) The method for maintaining the epidermal plastid activity of fresh sea cephalopods according to claim 4, wherein the amount of dissolved oxygen in the liquid is 7 mg / L or more.
6) The method for maintaining the ability of epidermodermophores of fresh sea cephalopods according to claim 4, wherein the amount of dissolved oxygen in the liquid is 8 mg / L or more.
7) The ability of fresh seafood cephalopods to die of agony or to be squeezed by instant killing. Maintenance method.
8) The fresh seafood cephalopods according to any one of claims 4 to 7, characterized by storing or transporting fresh seafood cephalopods and a liquid in which the amount of dissolved oxygen is increased. A method for maintaining the ability of epidermal plastids.
9) Epidermal plastid activity of fresh seafood cephalopods according to any one of claims 4 to 7, characterized in that fresh seafood cephalopods, liquid and air or oxygen are enclosed in packaging materials and stored or transported. How to maintain performance.
10) The fresh seafood cephalopod and liquid are put in a container, and air or oxygen is continuously or intermittently aerated to increase the amount of dissolved oxygen, and stored or transported. A method for maintaining the ability of epidermodermophores of a fresh seafood cephalopod described in any one of the above.
11) The packaged fresh sea cephalopods are stored or transported by performing indirect ice storage without direct ice storage, preventing direct contact between ice and fresh products. A method for maintaining the ability of epidermodermophore activity of fresh seafood cephalopods described in 1.
12) The liquid salt concentration is maintained at 17 to 68 ‰, The method for maintaining the ability of epidermodermophores in fresh sea cephalopods according to any one of claims 1 to 11.
13) The method for maintaining the epidermal plastid activity of fresh sea cephalopods according to any one of claims 1 to 12, wherein the pH of the liquid is maintained at 7.0 to 8.5.
14) The method for maintaining the activity of epidermopigment of fresh sea cephalopods according to any one of claims 1 to 13, wherein salt water, natural sea water or artificial sea water is used as the liquid.
15) The epidermis pigmentosa of fresh seafood cephalopods according to any one of claims 1 to 14, wherein fresh seafood cephalopods are immersed or suspended in a liquid maintained at -2 ° C to 15 ° C. How to maintain activity ability.
16) It is characterized by adding 10-50 mM of GABA (γ-aminobutyric acid), which is a neurotransmitter, to the liquid, and maintaining the cell activity over a long period of time by using this GABA-suppressing effect of melanophore activity A method for maintaining the epidermal plastid activity of fresh seafood cephalopods according to any one of claims 1 to 15.

本発明の生鮮海産頭足類の表皮色素胞活動能の維持方法は、上記の通り、生鮮海産頭足類を液体に浸漬し、かつこの液体に十分なMgを供給して、Mg濃度を12mM以上とするものである。これによって、死後の神経興奮を安静化することが可能となり、死後の嫌気的な条件下で起こるエネルギーレベルの低下を抑制し、個体の死後も長期間細胞活性を持続させ、表皮の発色を任意に制御することを可能とし、生鮮海産頭足類の色素胞活動能を長期間に亘って維持できるという優れた効果が得られた。   As described above, the method for maintaining the ability of the epidermodermophore activity of fresh sea cephalopods of the present invention is to immerse the fresh sea cephalopods in a liquid and supply sufficient Mg to the liquid, and the Mg concentration is 12 mM. That is all. This makes it possible to calm post-mortem neural excitement, suppress the decrease in energy level that occurs under anaerobic conditions after death, maintain cell activity for a long time after the individual's death, and arbitrarily color the epidermis It was possible to control the chromophore activity of fresh seafood cephalopods over a long period of time.

本発明の内容を、研究の内容と具体例を紹介しながら下記に説明する。しかし、下記の説明は本発明の理解を容易にするためのものであり、これらの例あるいは説明に制限されるものではない。すなわち、本発明の技術思想に基づく、他の態様若しくは変形又は実施条件若しくは例は全て本発明に含まれるものである。
また、以下の説明は主としてイカについて説明するが、タコを含む頭足類全般に共通して言えることであり、本願発明は生鮮海産頭足類を包含するものである。
The contents of the present invention will be described below while introducing research contents and specific examples. However, the following description is for facilitating the understanding of the present invention, and is not limited to these examples or descriptions. That is, all other aspects or modifications or implementation conditions or examples based on the technical idea of the present invention are included in the present invention.
In addition, although the following description mainly explains squid, it can be said in common to all cephalopods including octopus, and the present invention includes fresh seafood cephalopods.

一般に、漁場、販売者、流通者等の現場、さらには消費者における生鮮海産頭足類の鮮度評価は経験的に、表皮の色合いや、身の透明感で判断されている。スルメイカの場合では、表皮は活き絞めした直後、透明感があり高い色素胞活動能を有しているが、通常採られる空気中保存の場合、24時間かけて赤黒みが増すとともに徐々に色素胞活動能が弱くなり、その後鮮度低下に伴って色素胞が動かなくなり白色化していく。
図1に保存期間(日)と発色率の関係を示す。ここでいう発色率は、観察視野の中でどの程度の色素胞が拡張しているかを示すもので、イカ表皮の色彩情報をデジタルカメラあるいは実体顕微鏡を通してデジタルビデオカメラに記録し、これを画像処理することによって二階調化し、観察視野面積に対する色素胞の拡張面積を百分率で表したものである。
この図1では、死後1日(24時間)で発色率はピークに達し、その後2日(48時間まで)を経て急激に減少しているのが分かる。一般に消費者は、赤黒いものが高鮮度と考えていることが多いが、実際は絞めた直後は赤黒くないので、ある意味では誤解があるかも知れない。しかし、その後は赤黒く変色していき、この赤黒くなっていく段階でも鮮度は十分に維持され、食感を損なうことはない。
In general, the freshness assessment of fresh seafood cephalopods on the grounds of fishing grounds, sellers, distributors, etc., as well as consumers, is empirically determined by the hue of the epidermis and the transparency of the body. In the case of Japanese squid, the epidermis is transparent and has high chromophoric activity immediately after being squeezed. The activity becomes weak, and then the chromophores move and become white as the freshness decreases.
FIG. 1 shows the relationship between the storage period (days) and the color development rate. The color development rate here indicates how much the chromophore has expanded in the observation field. Color information of the squid epidermis is recorded on a digital video camera through a digital camera or a stereo microscope, and this is processed by image processing. By doing so, the gradation is converted into two gradations, and the expanded area of the chromophore with respect to the observation visual field area is expressed as a percentage.
In FIG. 1, it can be seen that the color development rate reached a peak one day after death (24 hours), and then rapidly decreased after two days (up to 48 hours). In general, consumers often think that reddish-black ones are high freshness, but since they are not red-black right after they are actually squeezed, there may be some misunderstandings. However, after that, the color changes to red and black, and even at this stage of red and black, the freshness is sufficiently maintained and the texture is not impaired.

実際に赤黒いことが高鮮度という消費者の感覚を考えると、生鮮頭足類の物流上、一般消費者に渡る数十時間から数日後に最も赤黒い状態に仕上げることができれば、産業上の利点が大きいと言えるかも知れない。このことは活き絞め後の初期段階で、鮮度低下したものを高鮮度に見せかけるということではなく、いかに高鮮度のものを高鮮度として理解してもらうように提供するかという点にあるということである。誤解を受けないために付言する。
また、生鮮頭足類の高鮮度の本質は、色素胞活動が見られないが赤黒く体色が変化してといるとうものではなく、色素胞活動が維持しているということに視線がそそがれるべきだと考える。
Considering the consumer's perception that reddish black is actually high freshness, if it can be finished in the most reddish state after several tens of hours to several days for general consumers in the distribution of fresh cephalopods, there are industrial advantages. It may be said that it is big. This is not in the early stage after being squeezed, but in terms of how to provide a high freshness so that it can be understood as high freshness, not to make it look like it is fresh. is there. I will add to avoid misunderstanding.
In addition, the essence of the freshness of fresh cephalopods is not to say that the chromophore activity is not seen but the body color has changed in red and black. I think it should be.

イカの場合、表皮の発色は色素胞に付属している放射筋の収縮によるものであると言われており、放射筋が弛緩状態にあると色素胞は収縮して赤黒化は見られないが、放射筋が収縮すると色素胞が伸長し赤黒化が起こると考えられている。
おそらく、色素胞放射筋の収縮にはATPの消失が関与していると思われるが、現在では不明な点が多い。外套膜のATP消失と表皮の発色率の最大になる時間が、一致しているという現象がある。この点も、興味の尽きないところである。
生鮮イカの通常の保管状態では、24時間を経ると発色率が低下し、色素胞活動が認められなくなり白色化していく。この白色化は表皮細胞が破壊されるためと考えられているが、これも不明な点が多い。いずれにしても、イカの死後でも細胞自体は活きている状況にあることが明らかであり、イカ表皮の赤黒化の維持は、鮮度維持の重要な指標となる。
In the case of squid, it is said that the color development of the epidermis is due to the contraction of the radiation muscle attached to the pigment vesicle, and when the radiation muscle is in a relaxed state, the melanophore contracts and reddening is not seen. It is thought that when the radiation muscle contracts, the melanophore grows and reddening occurs.
Probably, the loss of ATP seems to be involved in the contraction of melanophore emitting muscle, but there are many unclear points at present. There is a phenomenon that the time to maximize the ATP disappearance of the mantle and the color development rate of the epidermis coincides. This is also where I am not interested.
Under normal storage conditions for fresh squid, the color development rate decreases after 24 hours, and chromophore activity is not observed and the color becomes white. This whitening is thought to be due to the destruction of epidermal cells, but there are many unclear points. In any case, it is clear that the cells themselves are still alive even after the death of the squid, and the maintenance of redness of the squid epidermis is an important index for maintaining freshness.

生鮮イカの多くは、発砲プラスチック製の容器に下氷を敷き、その上に整然と並べられて流通に供されている。この場合、イカの表皮は氷や隣り合うイカと直接触れる状態にあり、比較的短い時間で色素胞活動が停止し白濁してしまう。
これは、後述するように、その原因の一つとして、触れている部分が雰囲気から遮断されるために、酸欠によるところが大きいと考えられ、その酸素が遮断された部分の細胞が早期に死に至り、その機能が停止すると考えられる。このように氷に接触した部分とそうでない部分があると、イカ表皮は赤黒い部分と白い部分が混在することになり、外観上まばらな色調を呈し、やや汚らしく感じるので、商品価値が著しく低下してしまう。
これらのことから、イカの表皮の発色(鮮度)を制御できれば、産業上の利点は大きいと考えられる。しかし、その発色機構については、学術的に解明されておらず、それに関連する知見もほとんどないというのが現状である。
Many fresh squids are distributed for sale by placing glacial ice in a plastic container and arranging them in an orderly manner. In this case, the skin of the squid is in direct contact with ice and the adjacent squid, and the chromophore activity stops and becomes cloudy in a relatively short time.
As will be described later, one of the causes is that the touched part is shielded from the atmosphere, so it is thought that this is largely due to lack of oxygen, and the cells in the part where the oxygen is blocked die early. The function will stop. If there are parts that are in contact with the ice and parts that are not, the squid epidermis will have a mixture of red and black parts and white parts, appearing sparsely colored, and slightly dirty, thus significantly reducing the commercial value. End up.
From these facts, if the color development (freshness) of the cuttlefish skin can be controlled, it is considered that the industrial advantage is great. However, the color development mechanism has not been elucidated academically, and there is almost no knowledge related to it.

そこで、まず初めに、通常イカが接触する可能性が最も高いと思われる海水の影響を調べた。具体的には、海水の塩濃度、海水のイオン組成が色素胞活動に与える影響を検討した。なお、以降の各種試験においては、調合した塩水を使用することが良いのであるが、特に処理液を限定的しない限り、入手し易い人工海水を使用して説明する。
通常、天然海水の塩濃度は34‰程度であるが、塩が少なくなるにつれ、色素胞の活動が活発化し赤黒くなり易く、特に塩濃度17‰未満では発色率が高くなる。
図2に、人工海水の塩濃度と発色率の関係を示す。塩濃度が低い場合には、急速に赤黒なるが、その後は色素胞の活動が衰えていく可能性がある。
逆に、塩濃度17‰以上では色素胞活動を安静化できることが分かる。これは、色素胞の活動を持続させる意味で重要である。また、図2から明らかなように、68‰を超えても発色率は高くなる傾向にある。これは天然の海水だけでなく、塩水又は人工海水からなる液体においても同様である。
So, first of all, we examined the influence of seawater, which is most likely to come into contact with squid. Specifically, the influence of the salt concentration of seawater and the ionic composition of seawater on chromosomal activity was examined. In the following various tests, it is preferable to use the prepared salt water. However, unless the treatment liquid is particularly limited, explanation will be made using readily available artificial seawater.
Normally, the salt concentration of natural seawater is about 34 ‰, but as the salt decreases, the activity of the chromophores tends to become active and tends to become reddish, and the color development rate increases particularly when the salt concentration is less than 17 ‰.
FIG. 2 shows the relationship between the salt concentration of artificial seawater and the color development rate. If the salt concentration is low, the color rapidly turns red and black, but then the activity of the chromophore may decline.
In contrast, it can be seen that the plastid activity can be calmed at a salt concentration of 17 ‰ or higher. This is important in the sense that the activity of the melanophore is sustained. Further, as is apparent from FIG. 2, the color development rate tends to be high even if it exceeds 68 ‰. This applies not only to natural seawater, but also to liquids composed of salt water or artificial seawater.

したがって、塩水、天然海水又は人工海水からなる液体中の塩濃度を17〜68‰の範囲に調整すれば、色素胞の活動を安静化でき、長期の活動能を維持することが可能となる。また、このことから塩水、天然海水又は人工海水は、死後でも細胞の死を抑制していることが分かる。これは本願発明の大きな特徴の一つである。
但し、上記塩濃度の数値範囲は、好ましい範囲を示すものであって、この範囲外の塩濃度でも発色率の変化が極端に大きくなることはないので、範囲外の条件を否定するものではないことを知るべきである。
Therefore, if the salt concentration in the liquid composed of salt water, natural seawater or artificial seawater is adjusted to a range of 17 to 68 ‰, the activity of the chromophore can be calmed down and the long-term activity ability can be maintained. Moreover, it turns out that salt water, natural seawater, or artificial seawater has suppressed cell death even after death. This is one of the major features of the present invention.
However, the numerical range of the salt concentration shows a preferable range, and even if the salt concentration is outside this range, the change in the color development rate does not become extremely large, so it does not deny conditions outside the range. You should know that.

通常、天然海水のpHは8.0〜8.5程度だが、塩水のpHが7.0〜8.0の間では、低い方が安静化に寄与する。図3に示すpHと発色率の関係から明らかなように、すなわち中性域に維持することが望ましいことが分かる。これによって、色素胞の活動を安静化でき、色素胞活動に要するエネルギーの浪費を抑制できるため、長期間色素胞活動能を維持することが可能となる。
天然海水に含まれるCa(カルシウム)やMg(マグネシウム)の濃度は、それぞれ10mM、12mM程度であるが、特にMgの場合は、12mM以上で色素胞の活動を抑制できることが分かった。図4に、Ca濃度と発色率との関係、図5に、Mg濃度と発色率との関係、図6に、K(カリウム)濃度と発色率の関係を示す。
図5に示すように、特にMgは13mM,14mM,15mM,16mM,・18mM,・・・・・24mMと増加するにつれて、さらに色素胞の活動を抑制できるので、Mg濃度の増加は、より好ましいことが分る。但し、Mgを多量に添加すると、イカ等の生鮮海産頭足類の食品に苦味が生じるようになるので好ましくない。このことからMg添加量は多くても300mM程度にするのが望ましいと言える。
Usually, the pH of natural seawater is about 8.0 to 8.5, but when the pH of salt water is between 7.0 and 8.0, the lower one contributes to the calming. As is apparent from the relationship between the pH and the color development rate shown in FIG. 3, it is understood that it is desirable to maintain the neutral range. As a result, the activity of chromophores can be calmed down, and the waste of energy required for chromophore activity can be suppressed, so that it is possible to maintain chromophore activity ability for a long period of time.
Concentrations of Ca (calcium) and Mg (magnesium) in natural seawater are about 10 mM and 12 mM, respectively. However, it was found that the activity of pigment vesicles can be suppressed at 12 mM or more, especially in the case of Mg. FIG. 4 shows the relationship between Ca concentration and color development rate, FIG. 5 shows the relationship between Mg concentration and color development rate, and FIG. 6 shows the relationship between K (potassium) concentration and color development rate.
As shown in FIG. 5, especially as Mg increases to 13 mM, 14 mM, 15 mM, 16 mM, .18 mM,... 24 mM, the activity of the melanophore can be further suppressed. I understand that. However, it is not preferable to add a large amount of Mg because a bitter taste is produced in fresh seafood cephalopod foods such as squid. From this, it can be said that the amount of Mg added is preferably about 300 mM at most.

図5から明らかなように、Mg濃度が6mM以下の場合は、発色率が急速に進む。したがって、Mg濃度を上げることは、色素胞の活動を安静化でき、長期の活動能を維持することに極めて有効であることが分かる。特にMgについては、天然海水に含まれる濃度である12mMより多い時に著しく色素胞の活動を抑制できることが分かった。このMg濃度を維持することは非常に重要であり、本願発明の重要な構成要件であり、また大きな特徴の一つである。
天然海水のMg濃度を上げる方法としては、食品に供することができる任意のMg化合物を混合・溶解させることによることも可能であるし、天然海水を電気透析等の手法によって濃度調整処理しても良い。前者の場合は、更に塩化マグネシウム、硫酸マグネシウム等を単独で使用しても構わないし、あるいは混合して用いても差し支えない。
As is apparent from FIG. 5, when the Mg concentration is 6 mM or less, the color development rate proceeds rapidly. Therefore, it can be seen that increasing the Mg concentration can calm the activity of the melanophore and is extremely effective in maintaining the long-term activity ability. In particular, for Mg, it was found that the activity of chromophores can be remarkably suppressed when the concentration is higher than 12 mM, which is the concentration in natural seawater. Maintaining this Mg concentration is very important, is an important component of the present invention, and is one of the major features.
As a method of increasing the Mg concentration of natural seawater, it is possible to mix and dissolve any Mg compound that can be used for food, or even if natural seawater is subjected to concentration adjustment treatment by a technique such as electrodialysis. good. In the former case, magnesium chloride, magnesium sulfate or the like may be used alone or in combination.

また、図4から明らかなように、Ca濃度が8mM未満の場合は、発色率が進む。したがって、特にCa濃度を8mM以上とすることは、色素胞の活動を安静化でき、長期の発色を維持することに有効であることが分かる。このCa濃度は、Mgほどの著しい効果はないが、Mgとの相加的効果が存在することが確認できる。Ca濃度は8mM以上とすることが有効である。
但し、Mgと同様に、Caを多量に添加すると、イカ等の生鮮海産頭足類の食品に渋みと刺激が強くなり好ましくない。このことからCa添加量は多くても200mM程度にするのが望ましいと言える。
As is clear from FIG. 4, when the Ca concentration is less than 8 mM, the color development rate proceeds. Therefore, it can be seen that setting the Ca concentration to 8 mM or more can stabilize the activity of the chromophore and is effective in maintaining long-term color development. This Ca concentration is not as significant as Mg, but it can be confirmed that there is an additive effect with Mg. It is effective that the Ca concentration is 8 mM or more.
However, as in the case of Mg, adding a large amount of Ca is not preferable because it causes astringency and irritation to fresh seafood cephalopod foods such as squid. From this, it can be said that it is desirable that the amount of Ca added is at most about 200 mM.

Kについては、天然海水に含まれる濃度の10mM程度で色素胞が穏やかな状態にあり、それ前後の濃度だと著しく活発になることが分かった。Kは、Na(ナトリウム)と拮抗的に働き、神経的な刺激を制御している。このことは、神経刺激が色素胞の活動を制御している可能性を示唆するものである。特に、K濃度を5〜12mMとすることが望ましいと言える。
一般に、活き絞めしたイカを海水に浸漬することは行わず、大気中に置くか又は氷冷するのであるが、上記の数値範囲にCa, Mg, Kを厳しく調整した塩水、人工海水又は天然の海水に浸漬することは、イカの死後も色素胞の活動を安静化させ、長期の活動能を維持することに極めて有効であることが分かる。
As for K, it was found that the melanophore is in a calm state at a concentration of about 10 mM contained in natural seawater, and that the concentration before and after that is extremely active. K acts antagonistically with Na (sodium) to control neurological stimulation. This suggests the possibility that nerve stimulation controls the activity of plastids. In particular, it can be said that the K concentration is preferably 5 to 12 mM.
In general, live squid is not immersed in seawater, but is placed in the atmosphere or ice-cooled. However, salt water, artificial seawater or natural seawater with strictly adjusted Ca, Mg, K in the above numerical range. It can be seen that soaking in seawater is extremely effective in calming the activity of chromophores and maintaining long-term activity after death of squid.

次に、神経伝達物質が色素胞活動に与える影響を検討した。試験を進めるにあたり、神経伝達物質には、その作用が知られているもののうち、食品に供することが容易と思われるアミノ酸系の物質を選択した。具体的には、興奮性の伝達作用を示すとされるGlu(グルタミン酸、試験ではグルタミン酸ナトリウムを使用)と、抑制性の作用を有するとされるGABA(γ-アミノ酪酸)を使用した。
未剥皮の外套膜を用いて試験したところ、Gluで強い発色効果、GABAで発色の抑制効果があることが分かった。図7にGluを用いた場合の発色率の関係を示し、図8にGABAを用いた場合の発色率の関係を示す。
この図7から明らかなように、Gluの量が増えるに従い発色率が高くなっている。また、図8からGABAの量が多くなるに従い、発色率が低下しているのが分かる。
以上に示すように、外套膜の色素胞活動が神経伝達物質によって影響を受けること、すなわちイカの死後も、外套膜の色素胞が活動していることが確認できる。
また、この神経伝達物質であるGABA(γ-アミノ酪酸)の抑制効果を用いて、色素胞活動を制御し、エネルギーの消耗を抑制し、長期に亘って細胞活動を維持させることも可能である。このGABAを添加する量は10〜50mMの範囲とするのが望ましい。10mM未満ではGABAによる色素胞の活動の抑制効果が顕著ではなく、また50mMを超えると効果が飽和するので、上記の範囲とするのが良い。しかし、50mMを超える多量のGABAの添加は、特に制限されるものではない。本願発明はこれらを包含する。
Next, we examined the effect of neurotransmitters on plastid activity. In proceeding with the test, among the neurotransmitters whose action was known, amino acid substances that were considered to be easy to be used for food were selected. Specifically, Glu (glutamic acid, which uses sodium glutamate in the test), which is considered to exhibit excitatory transmission action, and GABA (γ-aminobutyric acid), which is considered to have an inhibitory action, were used.
When tested using an unstriped mantle, it was found that Glu has a strong coloring effect and GABA has a coloring-inhibiting effect. FIG. 7 shows the relationship between the color development rates when Glu is used, and FIG. 8 shows the relationship between the color development rates when GABA is used.
As is apparent from FIG. 7, the coloring rate increases as the amount of Glu increases. Further, it can be seen from FIG. 8 that the color development rate decreases as the amount of GABA increases.
As described above, it can be confirmed that the plastid activity of the mantle is affected by the neurotransmitter, that is, the mantle vesicle is active even after the death of the squid.
In addition, using the inhibitory effect of GABA (γ-aminobutyric acid), which is a neurotransmitter, it is possible to control plastid activity, suppress energy consumption, and maintain cellular activity over a long period of time. . The amount of GABA added is desirably in the range of 10 to 50 mM. If it is less than 10 mM, the inhibitory effect of GABA on the activity of chromophores is not remarkable, and if it exceeds 50 mM, the effect is saturated. However, the addition of a large amount of GABA exceeding 50 mM is not particularly limited. The present invention includes these.

また、イカの発色が神経的な興奮・抑制により左右されるのであれば、身からの刺激がなければ表皮の発色が起こらない可能性があると考え、空気中で外套膜から表皮を剥ぎとり、表皮のみで保存した場合の発色率を調べたところ、表皮のみでは保存中に発色率が急激に低下した。図9は、未剥皮保存の保存期間及び剥皮保存の保存期間と発色率との関係を示す。この図9に示すように、空気中での未剥皮保存に比べ、剥皮保存の場合に発色率が著しく低下するのが分かる。
なお、この場合でも、指でつついて刺激を与えれば、数日間は色素胞が動く状態にあった。これらのことから、保存中における表皮の発色は、神経的な興奮が一つの要因となっておこっている可能性があることが示唆された。
このことは、安静な状態で絞めて保存を行えば、従来よりも色素胞が活動できる状態を長期間に渡って持続させられる可能性があることを示していると考えられる。そこで、次に神経的な安静を与える可能性がある処理・保存・流通条件を検討した。
If the color of the squid is influenced by nervous excitement / suppression, the epidermis may not be colored without stimulation from the body, and the epidermis is peeled off from the mantle in the air. When the color development rate was examined when stored only with the epidermis, the color development rate rapidly decreased during storage with the epidermis alone. FIG. 9 shows the relationship between the color retention and the preservation period of unpeeled skin and the preservation period of peeled skin. As shown in FIG. 9, it can be seen that the color development rate is remarkably lowered in the case of storing the peel as compared with the case of storing in the air.
Even in this case, if the fist was applied with a finger, the chromophores were in motion for several days. These results suggest that the coloration of the epidermis during storage may be caused by a neural excitement.
This is considered to indicate that the state in which the pigment vesicles can be activated can be sustained for a long period of time if the storage is performed while being constricted in a resting state. Next, we examined processing, storage, and distribution conditions that could give a nervous rest.

(保存環境が発色率に与える影響)
生鮮イカは、通常空気中で保存される。しかし、イカの色素胞活動能を長期間保持するために、上記の試験結果から絞めた後のイカを塩水中で保存した方が好ましいことが予想される。そこで、次に即殺後のイカ外套膜を用いて、空気中と塩水中で保存した場合の発色率の変化を観察した。その結果、空気中保存では1日にかけて発色が起こり、その後発色率が低下する様子が認められた。これに対して、塩水中保存では保存7日目まで発色の程度に大きな変化がなかった。保存期間と発色率との関係を図10に示す。
この時、空気中保存では、保存2日目以降表皮に指で触れても色素胞の活動が認められなかったが、塩水中で保存したものでは、保存期間を通して指で触れることによって色素胞が動くことを確認した。
このことから、塩水に浸漬することによって、細胞自体が呼吸しやすい環境を提供することができ、同時に空気中の保存ではおきてしまう発色によるエネルギーの浪費を抑制できる可能性があると考えられた。これは後述する試験でさらに確認することができ、本発明における重要な用件の一つである。
(Effect of storage environment on color development rate)
Fresh squid is usually stored in air. However, it is expected that it is preferable to store the squid after squeezing in the salt water from the above test results in order to retain the squid chromophore activity ability for a long period of time. Then, using the squid mantle after immediate killing, changes in the color development rate were observed when stored in air and salt water. As a result, it was observed that color development occurred over one day during storage in the air, and thereafter the color development rate decreased. On the other hand, in the preservation in salt water, there was no significant change in the degree of color development until the seventh day of storage. FIG. 10 shows the relationship between the storage period and the color development rate.
At this time, in air storage, the activity of the chromophore was not observed even if the epidermis was touched with the finger after the second day of storage, but in the case of storage in salt water, the chromophore was removed by touching the finger throughout the storage period. Confirmed to move.
From this, it was thought that by immersing in salt water, it is possible to provide an environment where the cells themselves can easily breathe, and at the same time, it may be possible to suppress waste of energy due to color development that occurs during storage in the air. . This can be further confirmed by the test described later, and is one of the important requirements in the present invention.

(保存温度が発色率に与える影響:海水浸漬での試験)
生鮮イカは、通常氷上に静置して流通される。この場合、氷に接触している部分は0°Cに近いと想像される。従来、微生物の増殖を抑えて衛生的な保存流通環境を整えるために、生鮮水産物は漁獲後速やかに冷却することが必要とされてきた。
そこで、保存温度が発色率にどのような影響を与えるか検討を加えた。その結果同様に保存には-2〜15°Cの温度帯が望ましいこと、特に5°C前後(5°C±3°C)が良いことが分かった。しかし、低温保冷の場合において、イカの外套膜がまだらになる現象は、保存温度よりも、むしろ氷と接触することにより、酸素と遮断されることによる細胞活性の低下が原因である可能性が高いと考えられた。
(Effect of storage temperature on color development rate: test in seawater immersion)
Fresh squid is usually distributed on ice. In this case, it is assumed that the part in contact with ice is close to 0 ° C. Conventionally, in order to suppress the growth of microorganisms and to prepare a hygienic preservation and distribution environment, it has been necessary to cool fresh fishery products promptly after catching.
Therefore, the influence of the storage temperature on the color development rate was examined. As a result, it was found that the temperature range of -2 to 15 ° C is desirable for storage, especially around 5 ° C (5 ° C ± 3 ° C). However, the phenomenon of mottled squid mantles in the case of cold preservation may be due to a decrease in cellular activity due to contact with ice rather than the storage temperature, and by blocking from oxygen. It was considered expensive.

(絞め方が発色率に与える影響:海水浸漬での試験)
通常生鮮で流通されるイカは、漁獲後空気中にさらされて苦悶死する状態にある。絞める時にも、安静な環境が好ましいとすると、神経切断による活き絞め状態の方が発色環境は良いという可能性がある。
そこで、空気中に30分放置して苦悶死させたイカと、神経切断により即殺死させたイカを5°Cの人工海水中に浸漬保存し、保存中の発色率の経時的変化を観察した。なお、神経切断は、背側の外套膜と頭部の間にハサミを挿入し、頭部と内臓部の間(星神経節近傍)を切断することにより行った。これによって、外套神経と内臓神経が切断されていると考えられる。処理直後は、それまで拡張・収縮を行っていた表皮色素胞が収縮し、瞬時に外見上透明〜白色になるので、この変化によって神経が切断されていることが確認できる。
その結果、苦悶死では、保存初期に発色率が一旦低下し、その後一次回復することがわかった。しかし、即殺したものは、保存中安定して一定の発色率を維持し、保存7日目でも大きな低下が見られないことが確認できた。
この結果を図11に示す。図11は苦悶死と神経切断による即殺死の保存期間(日)と発色率との関係を示したものである。以上から、発色率では苦悶死と神経切断による即殺死のいずれでも保存は可能であるが、特に即殺死の方が長期間の保存という意味では勝っていることが分かる。
(Effects of how to squeeze the color development rate: test in seawater immersion)
Squids that are normally distributed fresh are exposed to the air after catching and are in agony. If a calm environment is preferable even when squeezing, there is a possibility that the coloring environment is better in the lively squeezed state by nerve cutting.
Therefore, the squid left to stand in the air for 30 minutes and the squid killed immediately by nerve cutting were immersed and stored in artificial seawater at 5 ° C, and the change in coloration rate during storage was observed over time. did. The nerve was cut by inserting scissors between the mantle on the back side and the head, and cutting between the head and the viscera (near the stellate ganglion). Thus, it is considered that the mantle nerve and the visceral nerve are cut off. Immediately after the treatment, the epidermal plastids that had been expanded / contracted contracted and instantly became transparent to white in appearance, so that it can be confirmed that the nerve is cut by this change.
As a result, it was found that in the agony death, the color development rate once decreased at the beginning of storage and then recovered primarily. However, it was confirmed that those killed immediately maintained a stable color development rate during storage, and no significant decrease was observed even after 7 days of storage.
The result is shown in FIG. FIG. 11 shows the relationship between the coloration rate and the storage period (days) of death from agony and immediate death due to nerve cutting. From the above, it can be seen that the color development rate can be preserved by both agony death and immediate death by nerve cutting, but immediate death is superior in terms of long-term preservation.

(Mg濃度が発色率に与える影響:海水浸漬での試験)
上記の通り、表皮を用いた試験では、Mg濃度が神経的な興奮度に影響を与えることが分かっている(図5参照)。このことから、死後の個体においてもMg濃度を調整した塩水に浸漬保存することによって、神経的な安静化を図り、結果的に色素胞活動の持続性を得られる。
(Effect of Mg concentration on color development rate: Test in immersion in seawater)
As described above, in the test using the epidermis, it has been found that the Mg concentration affects the degree of neural excitement (see FIG. 5). From this, even after death, it is possible to achieve neurological rest by immersing and storing in salt water with adjusted Mg concentration, and as a result, persistence of pigmented activity can be obtained.

一般に、発色率はその撮影時の外観を定量化しており、色素胞の活動の有無までは表現しきれないという問題がある。また、その動きを定量化する客観的方法も確立されていない。そこで、これを確証するため、保存後のイカの表皮に指を接触させることによって、色素胞の活動の有無とその程度を評価したところ、Mg濃度が高いほど、特に天然海水に含まれる濃度の12mMより多い場合に、保存後も色素胞の活動が良好に維持される傾向にあることが確認された。
この結果を表1に示す。このことから、死後のイカに対してもMgによる神経興奮抑制効果が期待できること、それが色素胞活動の長期に渡る維持に効果的であることが確認できる。
In general, the color development rate quantifies the appearance at the time of photographing, and there is a problem that it cannot be expressed until the presence or absence of chromophore activity. In addition, an objective method for quantifying the movement has not been established. Therefore, in order to confirm this, the presence or absence and degree of activity of the chromophore was evaluated by bringing the finger into contact with the squid epidermis after storage. The higher the Mg concentration, the higher the concentration in natural seawater. It was confirmed that when the concentration was higher than 12 mM, the activity of the plastids tended to be maintained well after storage.
The results are shown in Table 1. From this, it can be confirmed that the effect of suppressing the neuronal excitation by Mg can be expected even after the death of the squid, and that it is effective for the long-term maintenance of the pigmented activity.

Figure 2006254802
Figure 2006254802

(使用海水が発色率に与える影響:海水浸漬での試験)
これまで使用してきた塩水は、人工海水であるが、主に試験に使用してきた人工海水と天然海水との間に違いがないかを確認するための試験を行った。その結果、両者間で大きな差はないことが確認できた。この結果を図12に示す。
(Effects of seawater used on the color development rate: test in seawater immersion)
Although the salt water used so far is artificial seawater, a test was conducted to confirm whether there is a difference between the artificial seawater and natural seawater used mainly in the test. As a result, it was confirmed that there was no significant difference between the two. The result is shown in FIG.

(溶存酸素量が発色率に与える影響:海水パックでの試験)
絞めた後、個体としては死を迎えても、一定期間細胞活動が持続しているならば、酸素ガスがなければ生化学的な死後変化に由来する品質低下も早いと考え、溶存酸素量の異なる人工海水中に浸漬保存した際の発色率を調べた。
下記に使用した人工海水は、前記Mg、Ca、K量を本願発明の範囲で調整したものであり、かつ窒素ガス(N2)、空気(Air)、酸素(O2)により曝気したものである。この場合の溶存酸素量は、それぞれ約3 mg/L、7 mg/L、25mg/L、pHはそれぞれ8.5、8.3、8.5であった。
試験は、イカ外套膜と、そのおよそ10倍量の人工海水をガスバリア性の高い包装資材へ投入した後、直ちにシール加工を施して5°Cで1日間保存した後開封し、イカ外套膜のみをバット上で5°Cにて保存し、保存中の発色率を測定した。
その結果、Air曝気とO2曝気したものでは、発色率は非常に高く、また保存1日目では、両者には大きな差異は見られなかった。しかし、N2曝気したものは、パック中で1日保存した後の観察結果では著しく発色率が低下していた。この結果を図13に示す。
(Effect of dissolved oxygen amount on color development rate: Seawater pack test)
If the cell activity continues for a certain period of time even after death, if the cell activity continues for a certain period of time, if there is no oxygen gas, the quality degradation due to biochemical post-mortem changes is considered to be rapid, and the amount of dissolved oxygen The color development rate when immersed in different artificial seawater was examined.
The artificial seawater used below is one prepared by adjusting the Mg, Ca, and K amounts within the scope of the present invention, and aerated with nitrogen gas (N 2 ), air (Air), and oxygen (O 2 ). is there. In this case, the dissolved oxygen amounts were about 3 mg / L, 7 mg / L, 25 mg / L, and pH values were 8.5, 8.3, and 8.5, respectively.
In the test, after putting the squid mantle and about 10 times the amount of artificial seawater into the packaging material with high gas barrier properties, immediately seal it, store it at 5 ° C for 1 day, open it, and only the squid mantle Was stored on a vat at 5 ° C, and the color development rate during storage was measured.
As a result, the color development rate was very high in the air aerated and O 2 aerated, and there was no significant difference between the two on the first day of storage. However, in the case of N 2 aerated, the color development rate was remarkably lowered in the observation result after storing for 1 day in the pack. The result is shown in FIG.

パック保存後の海水の溶存酸素量を測定すると、N2およびAir曝気したものでは2mg/L未満の残存しかなく、O2曝気したものではまだ7mg/L以上残っていることがわかった。この結果を図14に示す。図14はN2曝気、Air曝気、O2曝気した場合の、パック保存前と後の溶存酸素量を示す図である。
更に、人工海水のpHを測定すると、N2曝気のものは7.8程度までの低下で納まっているのに対して、Air及びO2曝気したものでは7.5まで低下していることが明らかとなった。この結果を図15に示す。図15はN2曝気、Air曝気、O2曝気した場合の、パック保存前と後のpHの推移を示す図である。
When the amount of dissolved oxygen in the seawater after storing the pack was measured, it was found that only 2 mg / L remained after N 2 and Air aeration, and 7 mg / L or more remained after O 2 aeration. The result is shown in FIG. FIG. 14 is a diagram showing the amount of dissolved oxygen before and after storing the pack when N 2 aeration, Air aeration, and O 2 aeration are performed.
Furthermore, when the pH of artificial seawater was measured, it was found that the N 2 aerated ones fell to about 7.8, whereas the Air and O 2 aerated ones fell to 7.5. . The result is shown in FIG. FIG. 15 is a diagram showing the change in pH before and after storing the pack when N 2 aeration, Air aeration, and O 2 aeration are performed.

細胞が、個体の死後も呼吸活動を継続しているならば、二酸化炭素ガスの排出が起こると予想される。一般に、二酸化炭素ガスは水溶解性が高く、純粋や海水等に溶け込むことによってpHの低下が起こることが知られている。
Air及びO2曝気に比べてN2曝気で、保存後の人工海水のpH低下幅が小さいのは、もともとの溶存酸素量が少なく、呼吸に要する酸素が十分存在しなかったために、排出する二酸化炭素量自体も少なかったものと考えられる。
If cells continue to breathe after the individual's death, carbon dioxide gas excretion is expected to occur. In general, carbon dioxide gas is highly soluble in water, and it is known that pH is lowered by being dissolved in pure water or seawater.
Compared to Air and O 2 aeration, N 2 aeration and the pH drop of artificial seawater after storage are small because the amount of dissolved oxygen was originally small and oxygen required for respiration did not exist. It is thought that the amount of carbon itself was small.

この時の、保存中のイカ外套膜の表皮を指で突き、色素胞の反応性を感覚的に評価した。その結果、N2曝気した海水を用いたものでは、保存開始時から反応性が著しく劣っていることが確認された。この結果を表2に示す。
生体の高エネルギー化合物として知られるATPは、酸素が存在する好気的環境下で効率よく生産されることが知られていることから、今回認められた色素胞の反応性の低下は、保存中に細胞が、呼吸活動ができない環境にさらされることによってATPの再生が著しく抑制され、極めて低レベルに陥ったことによる結果と考えられる。以上から、塩水、天然海水又は人工海水からなる液体中の溶存酸素量は生鮮イカの発色率に与える影響が大であり、重要である。
試験の結果、Ca, Mg, Kを厳しく調整した塩水、人工海水又は天然の海水に浸漬すると同時に、液体中の溶存酸素量を7mg/L以上にすること、すなわち液体中への十分な酸素の供給は、イカの死後も色素胞の活動を安静化させ、長期の発色を維持することに極めて有効であることが分かる。
At this time, the epidermis of the preserved squid mantle was struck with a finger, and the reactivity of the pigmented vesicle was sensorially evaluated. As a result, it was confirmed that the reactivity using N 2 aerated seawater was remarkably inferior from the start of storage. The results are shown in Table 2.
ATP, known as a high-energy compound in living organisms, is known to be efficiently produced in an aerobic environment in the presence of oxygen. This is thought to be due to the fact that ATP regeneration was significantly suppressed by exposure to an environment incapable of breathing activity, resulting in extremely low levels. From the above, the amount of dissolved oxygen in a liquid composed of salt water, natural seawater or artificial seawater has a great influence on the color development rate of fresh squid, and is important.
As a result of the test, at the same time as immersing Ca, Mg, K in salt water, artificial seawater or natural seawater, the dissolved oxygen amount in the liquid should be 7 mg / L or more, that is, sufficient oxygen in the liquid It can be seen that feeding is extremely effective in calming chromophore activity after squid death and maintaining long-term color development.

このように、液体中の溶存酸素量が7mg/L未満では、色素胞活動の持続性が低下してくるので、できれば溶存酸素量が7mg/Lとすること、特に8mg/L以上とするのが望ましい。なお、活き絞めした生鮮イカに対しては、過度な酸素供給によって特に不利益が生じる事は無いので、酸素の上限値は飽和量とすることができる。
塩水、天然海水又は人工海水からなる液体中の溶存酸素量を増加させる方法としては、例えばこれらの液体を静置又は脱気した後、酸素又は空気を連続的又は間歇的に供給することにより行うことができる。
しかし、本願発明は、生鮮海産頭足類を液体中に浸漬又は浮遊状態にする際の、液体のMg濃度、Ca濃度、K濃度を調製して表皮色素胞活動能の維持することが主眼であるので、上記溶存酸素量は付加的なもので、より好ましい態様を示すものである。したがって、溶存酸素量は上記の範囲外でも適用できることを知るべきである。本願発明は、これらを全て包含する。
In this way, if the amount of dissolved oxygen in the liquid is less than 7 mg / L, the persistence of chromosomal activity will decrease, so if possible, the dissolved oxygen amount should be 7 mg / L, especially 8 mg / L or more. Is desirable. For fresh squid that has been squeezed, there is no particular disadvantage caused by excessive oxygen supply, so the upper limit value of oxygen can be made the saturation amount.
As a method for increasing the amount of dissolved oxygen in a liquid composed of salt water, natural seawater or artificial seawater, for example, these liquids are left standing or degassed, and then oxygen or air is supplied continuously or intermittently. be able to.
However, the main purpose of the present invention is to maintain the ability of epidermal plastids by adjusting the Mg concentration, Ca concentration, and K concentration of the liquid when the fresh sea cephalopods are immersed or suspended in the liquid. Therefore, the amount of dissolved oxygen is additional and shows a more preferable embodiment. Therefore, it should be known that the dissolved oxygen amount can be applied even outside the above range. The present invention includes all of these.

Figure 2006254802
Figure 2006254802

(保存期間が発色率に与える影響:海水パックでの試験)
これまでの研究結果に基づき、イカ表皮の色素胞活動能を維持させるよう処理・保存した場合の、保存に伴う発色面の現象を確認するため、神経切断により即殺死させたイカの外套膜を用いて、かつ30分程度O2を曝気して溶存酸素量を25mg/L程度に高めた人工海水とともに包装した場合の保存試験を行った。
試験では、パックしたものを1〜3日間5°Cで保存し、その後開封してイカ外套膜を取り出してバットにのせ、5°Cで空気中保存した。
その結果、開封後のイカの発色率は保存期間の延長とともに低下したが、その後の空気中保存によって発色が起こることが確認された。溶存酸素量を高めた海水パック保存は、数日程度の保管期間では極めて有効であり、その後の空気中への開放後も発色するエネルギーを有しており発色が可能で、イカの色素胞活動をさらに延長することができることが分かった。
以上については、主としてイカについて説明したが、タコを含む頭足類全般について共通した結果が得られるものであり、本願発明はこれらの生鮮海産頭足類を全て包含するものである。
(Effect of storage period on color development rate: test with seawater pack)
Based on the results of previous research, the squid mantle that was killed immediately by nerve cutting to confirm the phenomenon of color development due to preservation when it was treated and preserved to maintain the pigmented activity of the squid epidermis In addition, a preservation test was performed when packaging with artificial seawater in which O 2 was aerated for about 30 minutes and the dissolved oxygen content was increased to about 25 mg / L.
In the test, the packed product was stored at 5 ° C for 1 to 3 days, then opened, the squid mantle was removed, placed on a bat, and stored in air at 5 ° C.
As a result, the color development rate of the squid after opening decreased with the extension of the storage period, but it was confirmed that color development occurred by subsequent storage in the air. Preserving seawater packs with increased dissolved oxygen is extremely effective for storage periods of several days, and has the energy to develop color even after being released into the air. It was found that can be further extended.
In the above, squid was mainly explained, but common results are obtained for all cephalopods including octopus, and the present invention encompasses all these fresh sea cephalopods.

以上から、本発明の生鮮海産頭足類の色素胞活動能を維持するためには、生鮮海産頭足類を-2°C〜15°Cに維持させかつ液体のMg濃度を12mM以上とした塩水、天然海水又は人工海水からなる液体に浸漬すること、さらには必要に応じて、該液体に酸素又は空気を連続的又は間歇的に供給して液体中の溶存酸素量を7mg/L以上とした液体中に生鮮海産頭足類を浮遊状態にすることが最も良いことが分かる。
必要に応じて、前記液体中の溶存酸素量は、8mg/L以上とすることができる。また、Ca濃度を8mM以上とすること、さらにはK濃度を5〜12mMとすることが望ましい。これによって、生鮮海産頭足類の色素胞活動能を長期に亘って維持でき、生鮮品の鮮度を保持することが可能となる。
From the above, in order to maintain the chromophore activity ability of the fresh sea cephalopods of the present invention, the fresh sea cephalopods were maintained at -2 ° C to 15 ° C and the liquid Mg concentration was 12 mM or more. Immerse in a liquid made of salt water, natural seawater or artificial seawater, and if necessary, supply oxygen or air continuously or intermittently to the liquid, so that the dissolved oxygen amount in the liquid is 7 mg / L or more. It can be seen that it is best to float fresh sea cephalopods in the liquid.
If necessary, the amount of dissolved oxygen in the liquid can be 8 mg / L or more. Further, it is desirable that the Ca concentration is 8 mM or more, and further the K concentration is 5 to 12 mM. Thereby, the chromophore activity ability of fresh seafood cephalopods can be maintained over a long period of time, and the freshness of fresh products can be maintained.

また、生鮮海産頭足類は上記の通り、苦悶死したもの又は即殺による活き絞めしたものを使用できるが、特に即殺により活き絞めした生鮮海産頭足類を使用する方が望ましいと言える。
さらに、塩水、天然海水又は人工海水からなる液体中の塩濃度を17〜68‰の範囲に調整し、またpHを7.0〜8.5に維持することが、色素胞の活動を安静化でき、より長期の色素胞活動能の維持に貢献することとなるので望ましいと言える。
In addition, as described above, fresh seafood cephalopods can be those that have been killed in agony or those that have been squeezed by instant killing, but it is particularly desirable to use fresh seafood cephalopods that have been squeezed by instant killing.
Furthermore, adjusting the salt concentration in the liquid consisting of salt water, natural seawater or artificial seawater to the range of 17-68 ‰, and maintaining the pH at 7.0-8.5 can stabilize the activity of the chromophore, and it will last longer. This is desirable because it contributes to the maintenance of the ability of chromophores to act.

実用的には、空気又は酸素を連続的又は間歇的に曝気して溶存酸素量を増加させた塩水、天然海水又は人工海水からなる液体を生鮮海産頭足類とともに封入するか、又は塩水、天然海水又は人工海水からなる液体を生鮮海産頭足類とともに空気又は酸素を封入するか、あるいは容器に生鮮海産頭足類と塩水、天然海水又は人工海水からなる液体を投入し、この容器内に連続的又は間歇的に空気又は酸素を投入あるいは交換することによって、さらには包装生鮮品を、直接氷蔵を行わずに間接氷蔵を行い、氷と生鮮品の直接接触を防止して、保管又は輸送することにより、上記の条件を効率良く維持することが可能となり、生鮮海産頭足類の色素胞活動能を長期間に亘って維持する方法として有効である。   Practically, a liquid composed of salt water, natural seawater or artificial seawater in which the amount of dissolved oxygen is increased by continuous or intermittent aeration of air or oxygen is enclosed with fresh seafood cephalopods, or salt water, natural water Enclose air or oxygen with seawater or artificial seawater along with fresh seafood cephalopods, or put fresh seafood cephalopods and salt water, natural seawater or artificial seawater into a container, and continuously in this container By storing or transporting packaged fresh products by indirect ice storage without direct ice storage, and by directly or intermittently supplying or exchanging air or oxygen, either directly or intermittently, preventing direct contact between ice and fresh products This makes it possible to efficiently maintain the above conditions, and is effective as a method for maintaining the chromophore activity of fresh sea cephalopods over a long period of time.

本発明は、生鮮海産頭足類を-2°C〜15°Cに維持した塩水、天然海水又は人工海水からなる液体に浸漬し、かつこの塩水、天然海水又は人工海水からなる液体のMg濃度を12mM以上とし、必要に応じてCa濃度を8mM以上又はK濃度を5〜12mMとすることによって、生鮮海産頭足類の鮮度を飛躍的に向上させることができる。また、付加的に酸素又は空気を連続的又は間歇的に供給した液体を使用して、活き絞めした生鮮品周囲に十分な酸素を供給することにより、生鮮品の死後の嫌気的な条件下で起こるエネルギーレベルの低下を抑制することができ、個体の死後も長期間細胞活性を持続させ、生鮮海産頭足類の表皮の発色を任意に制御でき、生鮮品の鮮度を高く保持できるという優れた効果が得られる。したがって、本発明は、長期に亘る生鮮海産頭足類の表皮色素胞活動能の維持に極めて有効である。   The present invention immerses a fresh sea cephalopod in a liquid consisting of salt water, natural seawater or artificial seawater maintained at -2 ° C to 15 ° C, and Mg concentration of the liquid consisting of this saltwater, natural seawater or artificial seawater The freshness of fresh seafood cephalopods can be drastically improved by adjusting the Ca concentration to 8 mM or more or the K concentration to 5 to 12 mM as necessary. In addition, by using a liquid that is continuously or intermittently supplied with oxygen or air, supplying sufficient oxygen around the freshly squeezed fresh product, under anaerobic conditions after the death of the fresh product. It is possible to suppress the decrease in energy level that occurs, maintain cell activity for a long time after the death of an individual, arbitrarily control the color development of the epidermis of fresh marine cephalopods, and maintain excellent freshness of fresh products An effect is obtained. Therefore, the present invention is extremely effective in maintaining the ability of the epidermodermoplast activity of fresh seafood cephalopods over a long period of time.

保存期間(日数)と発色率の関係を示す図である。It is a figure which shows the relationship between a preservation | save period (days) and a coloring rate. 人工海水の塩濃度と発色率の関係を示す図である。It is a figure which shows the relationship between the salt concentration of artificial seawater, and a color development rate. pHと発色率の関係を示す図である。It is a figure which shows the relationship between pH and a color development rate. Ca濃度と発色率との関係を示す図である。It is a figure which shows the relationship between Ca density | concentration and color development rate. Mg濃度と発色率との関係を示す図である。It is a figure which shows the relationship between Mg density | concentration and color development rate. K(カリウム)濃度と発色率の関係を示す図である。It is a figure which shows the relationship between K (potassium) density | concentration and color development rate. Gluを用いた場合の発色率の関係を示す図である。It is a figure which shows the relationship of the coloring rate at the time of using Glu. GABAを用いた場合の発色率の関係を示す図である。It is a figure which shows the relationship of the coloring rate at the time of using GABA. 未剥皮保存の保存期間及び剥皮保存の保存期間と発色率との関係を示す図である。It is a figure which shows the relationship between the preservation | save period of unpeeled skin preservation | save, the preservation | save period of skin peel preservation | save, and a color development rate. 空気と海水を用いた保存環境に差異がある場合の、保存期間と発色率との関係を示す図である。It is a figure which shows the relationship between a preservation | save period and a coloring rate when there exists a difference in the preservation | save environment using air and seawater. 苦悶死と神経切断による即殺死の保存期間(日)と発色率との関係を示す図である。It is a figure which shows the relationship between the preservation | save period (day) of the death from an agony and the immediate death by nerve cutting, and a color development rate. 人工海水と天然海水との間の発色率の差異を調べた図である。It is the figure which investigated the difference in the coloring rate between artificial seawater and natural seawater. N2曝気、Air曝気、O2曝気した場合の、海水パックの発色率の差異を示す図である。N 2 aeration Air aeration, in the case of O 2 aeration is a diagram showing the difference in color development rate of seawater pack. N2曝気、Air曝気、O2曝気した場合の、海水パック保存前と後の溶存酸素量を示す図である。N 2 aeration Air aeration, in the case of O 2 aeration is a diagram showing the amount of dissolved oxygen before and after storage seawater pack. N2曝気、Air曝気、O2曝気した場合の、海水パック保存前と後のpHの推移を示す図である。N 2 aeration Air aeration, in the case of O 2 aeration illustrates a variation of pH before and after storage seawater pack.

Claims (16)

生鮮海産頭足類をMg濃度が12mM以上である液体に浸漬又は浮遊状態にして細胞活性を持続させることを特徴とする生鮮海産頭足類の表皮色素胞活動能の維持方法。   A method for maintaining the activity of epidermopigment in fresh sea cephalopods, which comprises immersing or floating fresh sea cephalopods in a liquid having a Mg concentration of 12 mM or more to maintain cell activity. さらに、Ca濃度を8mM以上とすることを特徴とする請求項1記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   Furthermore, Ca density | concentration shall be 8 mM or more, The maintenance method of the epidermophylloid activity ability of the fresh sea cephalopods of Claim 1 characterized by the above-mentioned. さらに、K濃度を5〜12mMとすることを特徴とする請求項1又は2記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   Furthermore, K concentration is 5-12 mM, The maintenance method of the epidermodermophoric activity of the fresh sea cephalopod of Claim 1 or 2 characterized by the above-mentioned. 前記液体に酸素又は空気を連続的又は間歇的に供給した後、液体中に生鮮海産頭足類を浸漬又は浮遊状態にして保管又は輸送することを特徴とする請求項1〜3のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   After supplying oxygen or air to the liquid continuously or intermittently, fresh seafood cephalopods are immersed or suspended in the liquid and stored or transported. A method for maintaining the ability of the fresh sea cephalopods described above to be active in the epidermis. 液体中の溶存酸素量を7mg/L以上とすることを特徴とする請求項4記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   The method for maintaining the epidermal plastid activity of fresh seafood cephalopods according to claim 4, wherein the amount of dissolved oxygen in the liquid is 7 mg / L or more. 液体中の溶存酸素量を8mg/L以上とすることを特徴とする請求項4記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   The method for maintaining the epidermal plastid activity of fresh seafood cephalopods according to claim 4, wherein the amount of dissolved oxygen in the liquid is 8 mg / L or more. 生鮮海産頭足類が、苦悶死したもの又は即殺による活き絞めしたものであることを特徴とする請求項1〜6のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   The maintenance of epidermal plastid activity of fresh seafood cephalopods according to any one of claims 1 to 6, characterized in that the fresh seafood cephalopods have been slaughtered or killed by instant killing. Method. 包装資材に生鮮海産頭足類と溶存酸素量を増加させた液体を封入したものを保管又は輸送することを特徴とする請求項4〜7のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   The epidermis pigment of fresh seafood cephalopods according to any one of claims 4 to 7, characterized by storing or transporting a packaging material containing a fresh seafood cephalopod and a liquid in which the amount of dissolved oxygen is increased. How to maintain cell activity. 包装資材に生鮮海産頭足類と液体と空気又は酸素を封入して保管又は輸送することを特徴とする請求項4〜7のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   The fresh seafood cephalopod, liquid, air, or oxygen are enclosed in a packaging material and stored or transported. Maintenance method. 容器内に生鮮海産頭足類と液体を入れ、連続的又は間歇的に空気又は酸素を曝気して溶存酸素量を増加させて保管又は輸送することを特徴とする請求項4〜7のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   8. A fresh sea cephalopod and liquid are put in a container, and air or oxygen is continuously or intermittently aerated to increase the amount of dissolved oxygen, and stored or transported. A method for maintaining the ability of epidermodermophore activity of fresh seafood cephalopods described in 1. 包装生鮮海産頭足類を、直接氷蔵を行わずに間接氷蔵を行い、氷と生鮮品の直接接触を防止して、保管又は輸送することを特徴とする請求項4〜10のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   11. The packaged fresh sea cephalopods are stored or transported by performing indirect ice storage without direct ice storage, preventing direct contact between ice and fresh products. Of maintaining the ability of epidermodermophores in fresh seafood cephalopods. 液体の塩濃度を17〜68‰に保持することを特徴とする請求項1〜11のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   12. The method for maintaining the ability of epidermodermophore activity of fresh marine cephalopods according to any one of claims 1 to 11, wherein the salt concentration of the liquid is maintained at 17 to 68 ‰. 液体のpHを7.0〜8.5に維持することを特徴とする請求項1〜12のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   13. The method for maintaining the ability of the fresh sea cephalopods epidermodermophore activity according to any one of claims 1 to 12, wherein the pH of the liquid is maintained at 7.0 to 8.5. 液体として、塩水、天然海水又は人工海水を用いることを特徴とする請求項1〜13のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   Salt water, natural seawater, or artificial seawater is used as a liquid, The method for maintaining the epidermodermophoric activity of fresh seafood cephalopods according to any one of claims 1 to 13. 生鮮海産頭足類を-2°C〜15°Cに維持した液体に浸漬又は浮遊させることを特徴とする請求項1〜14のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。   The ability of the fresh sea cephalopods to act on epidermal pigmentosa, wherein the fresh sea cephalopods are immersed or suspended in a liquid maintained at -2 ° C to 15 ° C. Maintenance method. 液体に、さらに神経伝達物質であるGABA(γ-アミノ酪酸)を10〜50mM添加し、このGABAによる色素胞活動の抑制効果を用いて、長期に亘って細胞活動を持続させることを特徴とする請求項1〜15のいずれかに記載の生鮮海産頭足類の表皮色素胞活動能の維持方法。
GABA (γ-aminobutyric acid), a neurotransmitter, is further added to the liquid in an amount of 10 to 50 mM, and the cell activity is sustained over a long period of time by using the inhibitory effect of GABA. The method for maintaining the ability of epidermodermophore activity of fresh seafood cephalopods according to any one of claims 1 to 15.
JP2005077230A 2005-03-17 2005-03-17 Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda Withdrawn JP2006254802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005077230A JP2006254802A (en) 2005-03-17 2005-03-17 Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077230A JP2006254802A (en) 2005-03-17 2005-03-17 Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda

Publications (1)

Publication Number Publication Date
JP2006254802A true JP2006254802A (en) 2006-09-28

Family

ID=37094665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077230A Withdrawn JP2006254802A (en) 2005-03-17 2005-03-17 Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda

Country Status (1)

Country Link
JP (1) JP2006254802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237094A (en) * 2007-03-27 2008-10-09 Hakodate Chiiki Sangyo Shinko Zaidan Method for retaining motor ability of skin chromatophore of fresh marine cephalopoda
JP2009278909A (en) * 2008-05-22 2009-12-03 Nippon Suisan Kaisha Ltd Method for landing fish
JP2013135661A (en) * 2011-07-25 2013-07-11 Mg Grow Up:Kk Method for producing highly-concentrated oxygen treated water, highly-concentrated oxygen treated water and freshness retention treatment of fresh fish and shellfish

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237094A (en) * 2007-03-27 2008-10-09 Hakodate Chiiki Sangyo Shinko Zaidan Method for retaining motor ability of skin chromatophore of fresh marine cephalopoda
JP2009278909A (en) * 2008-05-22 2009-12-03 Nippon Suisan Kaisha Ltd Method for landing fish
JP2013135661A (en) * 2011-07-25 2013-07-11 Mg Grow Up:Kk Method for producing highly-concentrated oxygen treated water, highly-concentrated oxygen treated water and freshness retention treatment of fresh fish and shellfish

Similar Documents

Publication Publication Date Title
Bono et al. Combining ozone and modified atmosphere packaging (MAP) to maximize shelf-life and quality of striped red mullet (Mullus surmuletus)
Balachandran Post-harvest technology of fish and fish products
Shulʹman et al. The biochemical ecology of marine fishes
Gokoglu et al. Seafood chilling, refrigeration and freezing: science and technology
Erikson et al. Superchilling of rested Atlantic salmon: Different chilling strategies and effects on fish and fillet quality
Alam et al. Nutritional values, consumption and utilization of Hilsa Tenualosa ilisha (Hamilton 1822)
CN101277619B (en) Method for processing mature eggs from aquatic animals into delicious foods and mature egg processed by the method
CN108185328A (en) A kind of processing method of chilled fish
Campos et al. Novel technologies for the preservation of chilled aquatic food products
US5124164A (en) Method for preserving fresh marine products with use of a deoxidant
JP6678622B2 (en) Method for blood removal of yellowtail, method for manufacturing bloody yellowtail, method for blood removal of tuna, and method for manufacturing bloodless tuna
JP2006254802A (en) Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda
Zuanazzi et al. Effects of freezing and thawing cycles on the quality of Nile tilapia fillets
JP2015015946A (en) Method for the refrigeration, freezing and storage of tunas or the like using oxygen gas substitution packaging or oxygen gas substitution storage, and the muscle of tunas subjected to oxygen gas substitution packaging
Safari et al. Changes in TVN (Total Volatile Nitrogen) and psycrotrophic bacteria in Persian sturgeon Caviar (Acipenser persicus) during processing and cold storage.
JP6211760B2 (en) Salt composition liquid for discoloration prevention treatment of non-heated meat, and discoloration prevention treatment method using the salt composition liquid
Turan et al. Salting technology in fish processing
JP2006254792A (en) Method for maintaining epidermis chromatophore activity potential of fresh marine cephalopoda
JP4797195B2 (en) Method of maintaining epidermal plastid motility in fresh sea cephalopods
JP2008237093A (en) Method for preserving or transporting fresh marine cephalopoda
Naik et al. Studies on the quality of canned fishery products prepared using ice stored mackerel and pink perch
US20200187532A1 (en) Method for producing caviar or a caviar-like product from live mature eggs of fish or crustaceans
Behera et al. Effect of insulated bags for minimizing post-harvest losses
JP2001045939A (en) Fishing bait held in hermetic storage container
Коренєва et al. SAFETY AND QUALITY OF MARINE FISH DEPEND FROM THE METHOD OF CONSERVATION

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603