JP2006253342A - Method of bonding semiconductor device and flux transfer pin - Google Patents

Method of bonding semiconductor device and flux transfer pin Download PDF

Info

Publication number
JP2006253342A
JP2006253342A JP2005066539A JP2005066539A JP2006253342A JP 2006253342 A JP2006253342 A JP 2006253342A JP 2005066539 A JP2005066539 A JP 2005066539A JP 2005066539 A JP2005066539 A JP 2005066539A JP 2006253342 A JP2006253342 A JP 2006253342A
Authority
JP
Japan
Prior art keywords
flux
semiconductor device
transfer pin
electrodes
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005066539A
Other languages
Japanese (ja)
Other versions
JP4586583B2 (en
Inventor
Tetsutoshi Aoyanagi
哲理 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005066539A priority Critical patent/JP4586583B2/en
Publication of JP2006253342A publication Critical patent/JP2006253342A/en
Application granted granted Critical
Publication of JP4586583B2 publication Critical patent/JP4586583B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of bonding a semiconductor device, along with a flux transfer pin used for it, capable of well bonding bump electrodes through flux. <P>SOLUTION: The method includes a step for supplying the flux 8 to the tip of a flux transfer pin 11; a step in which the tip is made to abut with the bump electrode 7 formed at a bonded object 5 to form a recess 7a at the bump electrode 7, and the flux 8 is transferred to the recess 7a; and a process in which the bump electrode 7 of the bonded object 5 on which the flux 8 is transferred, and a bump electrode 3 of a semiconductor device 1 are press-bonded, with the recess 7a being formed, and melted under heat for bonding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置と接合対象物とを互いの接合面に形成された突起電極どうしを接合させて一体とする半導体装置の接合方法及びこの接合に用いるフラックス転写ピンに関し、詳しくは両突起電極の接合前に先端部にフラックスが付与されたフラックス転写ピンを用いて一方の突起電極にフラックスを転写すると共にくぼみを形成するようにした半導体装置の接合方法及びフラックス転写ピンに関する。   The present invention relates to a semiconductor device bonding method in which a semiconductor device and an object to be bonded are integrated with each other by bonding protruding electrodes formed on each bonding surface, and a flux transfer pin used for the bonding. The present invention relates to a semiconductor device bonding method and a flux transfer pin in which a flux is transferred to one protruding electrode and a recess is formed using a flux transfer pin with a flux applied to the tip before bonding.

従来より、例えばメモリ素子とプロセッサ素子というように異なる機能を持つ半導体集積回路を有する第1の半導体チップと第2の半導体チップとがフェイスダウンボンディング方式により接合されてなるCOC(chip on chip)構造の半導体装置が提案されている。例えば特許文献1参照。   Conventionally, a COC (chip on chip) structure in which a first semiconductor chip and a second semiconductor chip each having a semiconductor integrated circuit having different functions such as a memory element and a processor element are joined by a face-down bonding method. A semiconductor device has been proposed. For example, see Patent Document 1.

特開2003−17655号公報JP 2003-17655 A

そのようなCOC構造において、図25Aに示すように、各半導体チップ1、5の集積回路形成面側にはパッド2、6、6aが形成され、それらパッド2、6aにははんだバンプ等の突起電極3、7が形成され、例えば下側のチップ5に対して上側のチップ1を押し付ける荷重を与えることで互いの突起電極3、7どうしを圧接させ、その状態で突起電極3、7を加熱溶融させることで、両半導体チップ1、5は互いに接合される。   In such a COC structure, as shown in FIG. 25A, pads 2, 6, 6a are formed on the integrated circuit forming surface side of each semiconductor chip 1, 5, and protrusions such as solder bumps are formed on the pads 2, 6a. The electrodes 3 and 7 are formed. For example, by applying a load for pressing the upper chip 1 against the lower chip 5, the protruding electrodes 3 and 7 are pressed against each other, and the protruding electrodes 3 and 7 are heated in this state. By melting, both the semiconductor chips 1 and 5 are joined to each other.

はんだバンプ3、7は、通常、パッド2、6a上にはんだボールを配置してからリフローさせることで半球状に形成される。したがって、両チップ1、5のはんだバンプ3、7が圧接されると球面どうしでの圧接となりすべりが生じて図25Bに示すように面方向への位置ずれが生じやすい。この位置ずれは接合不良につながる。   The solder bumps 3 and 7 are usually formed in a hemispherical shape by reflowing after placing solder balls on the pads 2 and 6a. Therefore, when the solder bumps 3 and 7 of both the chips 1 and 5 are in pressure contact with each other, the spherical surfaces are in pressure contact with each other and slip, and the positional deviation in the surface direction is likely to occur as shown in FIG. 25B. This misalignment leads to poor bonding.

また、はんだバンプ3、7どうしの接合においては、通常、その接合面の酸化膜等を除去して両バンプ3、7のぬれ性を高めて電気抵抗の小さい良好な接合となるようにフラックスが用いられる。従来は、図20に示すように、例えば一方の半導体チップ1のはんだバンプ3を、トレー9内に収容されたフラックス8に浸漬させて、はんだバンプ3に直接フラックス8を付着させる方法が採られていた。しかし、この方法では図20に示すように、はんだバンプ3間でフラックス8がつながるブリッジが発生しやすく、この状態のまま図21に示すように他方の半導体チップ5と接合させてしまうと、溶融したはんだバンプ3、7がブリッジされたフラックス8を伝わって隣接するはんだバンプ3、7の方へ流れて、結果として、図22に示すように、はんだバンプのブリッジ12’が形成され、隣接するランド間で短絡してしまう接合不良が生じる。   Further, in joining the solder bumps 3 and 7, the flux is usually removed so as to improve the wettability of both the bumps 3 and 7 by removing the oxide film or the like on the joining surface and to achieve a good joining with low electrical resistance. Used. Conventionally, as shown in FIG. 20, for example, a method is adopted in which the solder bump 3 of one semiconductor chip 1 is immersed in the flux 8 accommodated in the tray 9 and the flux 8 is directly attached to the solder bump 3. It was. However, in this method, as shown in FIG. 20, a bridge connecting the flux 8 between the solder bumps 3 is likely to occur, and if it is in this state and bonded to the other semiconductor chip 5 as shown in FIG. The solder bumps 3 and 7 are transferred to the adjacent solder bumps 3 and 7 along the bridged flux 8, and as a result, as shown in FIG. 22, a solder bump bridge 12 ′ is formed and adjacent. A junction failure that short-circuits between lands occurs.

さらに、はんだバンプ3を直接フラックス8に浸ける方法では、図23に示すように、各バンプ3へのフラックス付着量にばらつきが生じ、例えば図23において一番左のバンプ3には必要量のフラックス8が付かないかすれが生じ、そのまま接合してしまうと、図24において一番左側のバンプ3、7のように、接合不良(単に表面上が接しているだけで電気的には抵抗大)が生じる。   Further, in the method of immersing the solder bump 3 directly in the flux 8, as shown in FIG. 23, the amount of flux adhering to each bump 3 varies. For example, the leftmost bump 3 in FIG. If the 8 is not attached and the bonding occurs as it is, bonding failure (electrical resistance is large simply by touching the surface) as shown in the leftmost bumps 3 and 7 in FIG. Arise.

本発明は上述の問題に鑑みてなされ、その目的とするところは、フラックスを介在させた突起電極どうしの接合を良好に行うことのできる半導体装置の接合方法及びこれに用いられるフラックス転写ピンを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device joining method capable of satisfactorily joining the protruding electrodes with the flux interposed therebetween, and a flux transfer pin used therein. There is to do.

本発明は前記課題を解決するため以下の構成を採用した。
すなわち、本発明の半導体装置の接合方法は、フラックス転写ピンの先端部にフラックスを付与する工程と、その先端部を、半導体装置に形成された突起電極と接合対象物に形成された突起電極の少なくともどちらか一方の突起電極に突き当ててその突起電極にくぼみを形成すると共にそのくぼみにフラックスを転写する工程と、くぼみが形成され且つフラックスが転写された一方の突起電極と、他方の突起電極とを圧接させた状態で加熱溶融させて接合させる工程と、を有する。
The present invention employs the following configuration in order to solve the above problems.
That is, the semiconductor device bonding method of the present invention includes a step of applying a flux to the tip of the flux transfer pin, and the tip of the bump electrode formed on the semiconductor device and the bump electrode formed on the bonding target. A step of abutting at least one of the projecting electrodes to form a recess in the projecting electrode and transferring a flux to the recess; one projecting electrode in which the recess is formed and the flux is transferred; and the other projecting electrode And in a state of being in pressure contact with each other by heating and melting and joining.

すなわち、本発明では、フラックスを一旦、突起電極の平面サイズより小さい転写ピン先端部に付着させてから、その先端部を1対1で対応する個々の突起電極に突き当ててくぼみを形成すると共にそのくぼみ内にフラックスはぬれ性にて集められるように付着するので、突起電極自体をフラックスに直に浸ける従来例に比べて、突起電極間でフラックスがブリッジしにくくできる。この結果、後工程における突起電極の加熱溶融時に、ブリッジしたフラックスを伝わって隣の突起電極とつながってしまうことを防げ、突起電極どうしの短絡を防げる。   That is, in the present invention, the flux is once attached to the tip end portion of the transfer pin smaller than the planar size of the bump electrode, and then the tip portion is abutted with each corresponding bump electrode to form a recess. Since the flux adheres in the recess so as to be collected by wettability, the flux can hardly be bridged between the projecting electrodes as compared with the conventional example in which the projecting electrodes themselves are directly immersed in the flux. As a result, when the protruding electrodes are heated and melted in the subsequent process, the bridged flux is prevented from being connected to the adjacent protruding electrodes, and a short circuit between the protruding electrodes can be prevented.

半導体装置と接合対象物の少なくとも一方の突起電極に上記のようにフラックス転写が行われると、半導体装置と接合対象物とを互いの接合面(突起電極が形成された面)どうしを向き合わせて位置決めし、両者を近づけて互いの突起電極どうしを圧接させる。   When flux transfer is performed on at least one protruding electrode of the semiconductor device and the bonding target object as described above, the bonding surface (surface on which the protruding electrode is formed) of the semiconductor device and the bonding target object face each other. After positioning, the projecting electrodes are brought into pressure contact with each other.

上記転写ピンにてフラックス転写がなされた突起電極にはくぼみが形成されており、そのくぼみに他方の突起電極の先端部分が嵌まり込むようにして両突起電極は圧接される。すなわち、両突起電極は従来のような球面どうしの圧接ではなく、凹と凸との嵌合のように圧接されるので、面方向の位置ずれを防げる。この結果、その面方向の位置ずれに起因する隣接する突起電極間の短絡や、接合不良を防げる。   A depression is formed in the protruding electrode to which the flux transfer has been performed by the transfer pin, and both protruding electrodes are pressed into contact with each other so that the tip portion of the other protruding electrode is fitted into the depression. That is, since both the protruding electrodes are not in pressure contact with each other on the spherical surfaces but are in contact with each other like fitting between the concave and the convex, it is possible to prevent positional deviation in the surface direction. As a result, it is possible to prevent short-circuiting between adjacent protruding electrodes due to the positional deviation in the surface direction and poor bonding.

両突起電極は上記圧接された状態で加熱を受け、両突起電極は溶融し、さらにこのとき、一方の突起電極のくぼみに転写されたフラックスの活性作用により両突起電極の圧接面の酸化膜等の接合を阻害する異物が除去され両突起電極どうしがよくぬれて、電気抵抗が小さく良好な接合となる。以上のようにして、半導体装置と接合対象物とは突起電極を介して互いに電気的に接続される。   Both projecting electrodes are heated in the above-mentioned pressed state, both projecting electrodes are melted, and at this time, the oxide film on the contacting surface of both projecting electrodes by the active action of the flux transferred to the recess of one projecting electrode, etc. The foreign matter that obstructs the bonding is removed, the two protruding electrodes are wetted well, and the electric resistance is small and the bonding is excellent. As described above, the semiconductor device and the object to be joined are electrically connected to each other via the protruding electrodes.

また、本発明のフラックス転写は、半導体装置と接合対象物とを接合する突起電極に、先端部が突き当てられて突起電極にくぼみを形成すると共にそのくぼみにフラックスを転写するためのフラックス転写ピンであって、先端部には、隣接する突起電極に対して同時に突き当てられる複数の角部が隣接する突起電極極間のピッチに合わせたピッチで形成されていることを特徴とする。   Further, the flux transfer of the present invention is a flux transfer pin for transferring the flux into the recesses by forming the recesses in the protrusion electrodes by abutting the tips of the protrusion electrodes that join the semiconductor device and the object to be bonded. The tip portion is formed with a plurality of corner portions that are simultaneously abutted against the adjacent protruding electrodes at a pitch that matches the pitch between the adjacent protruding electrode electrodes.

このような構成において例えば上記角部を1本の転写ピンにつき2つ形成した場合には、隣接する2つの突起電極に対して必要な転写ピンは1本でよく、突起電極の数と同じ数の転写ピンを有する構成に比べて、突起電極の数を同じとした場合には、転写ピンの本数を半分にでき、その転写ピンの製造コストを削減できる。   In such a configuration, for example, when two corners are formed per transfer pin, only one transfer pin is required for two adjacent protruding electrodes, which is the same as the number of protruding electrodes. When the number of protruding electrodes is the same as that of the configuration having the transfer pins, the number of transfer pins can be halved, and the manufacturing cost of the transfer pins can be reduced.

また、本発明のフラックス転写ピンは、半導体装置と接合対象物とを接合する突起電極に、先端部が突き当てられて突起電極にくぼみを形成すると共にそのくぼみにフラックスを転写するためのフラックス転写ピンであって、先端部に通じ、フラックス供給源からのフラックスをその先端部に押し出すための中空孔が内部に形成されていることを特徴としている。   In addition, the flux transfer pin of the present invention is a flux transfer for transferring the flux into the depression as the tip is abutted against the projection electrode that joins the semiconductor device and the object to be joined. It is a pin and is characterized in that a hollow hole is formed inside to lead to the tip portion and to push the flux from the flux supply source to the tip portion.

このように、転写ピンの内部から先端部に強制的にフラックスを押し出すようにすれば、転写ピンの先端部をフラックスに浸けてその先端部にフラックスを付着させる場合に比べて、所望量のフラックスを安定して転写ピンの先端部に供給することができる。これにより、転写ピンから突起電極へのフラックス転写量のばらつきを抑えることができる。   Thus, if the flux is forcibly pushed out from the inside of the transfer pin to the tip, a desired amount of flux can be obtained as compared with the case where the tip of the transfer pin is immersed in the flux and the flux is attached to the tip. Can be stably supplied to the tip of the transfer pin. Thereby, variation in the amount of flux transferred from the transfer pin to the protruding electrode can be suppressed.

本発明によれば、半導体装置と接合対象物とを接合する突起電極に、転写ピンの先端部を突き当てて突起電極にくぼみを形成すると共にそのくぼみにフラックスを転写するので、半導体装置と接合対象物の互いの突起電極が球面で圧接することを回避でき、面方向の位置ずれを防げる。この結果、その面方向の位置ずれに起因する隣接する突起電極間の短絡や、接合不良を防げる。また、フラックスは、突起電極に対してピン転写にて付与されるので、隣接する突起電極間でのブリッジの発生を防げ、よってそのブリッジしたフラックスを伝わって溶融した突起電極がつながってしまうことを防げ、突起電極間の短絡を防げる。   According to the present invention, the tip of the transfer pin is abutted against the protruding electrode that joins the semiconductor device and the object to be bonded, and the depression is formed in the protruding electrode and the flux is transferred to the depression. It is possible to prevent the protruding electrodes of the object from being pressed against each other by a spherical surface, and to prevent positional displacement in the surface direction. As a result, it is possible to prevent short-circuiting between adjacent protruding electrodes due to the positional deviation in the surface direction and poor bonding. In addition, since the flux is applied to the protruding electrode by pin transfer, it is possible to prevent the occurrence of a bridge between adjacent protruding electrodes, and the molten protruding electrode is connected through the bridged flux. Prevents short circuit between protruding electrodes.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の技術的思想に基づいて種々の変形が可能である。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A various deformation | transformation is possible based on the technical idea of this invention.

[第1の実施形態]
図1〜図5は、本発明の第1の実施形態に係る半導体装置の接合方法を示す。以下に詳述する接合方法によって、図5に示すように半導体装置1は突起電極12を介して接合対象物5と接合される。半導体装置1としては、フリップチップ、CSP(Chip Size Package)、BGA(Ball Grid Array)などが挙げられる。接合対象物5は、フリップチップ、CSP、BGAなどの半導体装置、インターポーザ基板、その配線基板などである。
[First Embodiment]
1 to 5 show a semiconductor device bonding method according to the first embodiment of the present invention. As shown in FIG. 5, the semiconductor device 1 is bonded to the bonding target object 5 via the protruding electrodes 12 by a bonding method described in detail below. Examples of the semiconductor device 1 include a flip chip, a CSP (Chip Size Package), and a BGA (Ball Grid Array). The bonding object 5 is a semiconductor device such as a flip chip, CSP, or BGA, an interposer substrate, a wiring substrate thereof, or the like.

先ず、図1に示すフラックス転写ピン(以下単に転写ピンとも称する)11の先端部にフラックス8を付与する。具体的には、トレー9内に入れられた液状またはペースト状のフラックス8に転写ピン11の先端部を浸けてその先端部にフラックス8を付着させる。   First, a flux 8 is applied to the tip of a flux transfer pin (hereinafter also simply referred to as a transfer pin) 11 shown in FIG. Specifically, the tip of the transfer pin 11 is immersed in a liquid or paste-like flux 8 placed in the tray 9, and the flux 8 is attached to the tip.

転写ピン11は複数本が転写ヘッド10に取り付けられている。個々の転写ピン11は、クッションシートなどの弾性部材を介して個々に独立して上下動自在に転写ヘッド10に取り付けられている。転写ピン11は例えば金属材料からなり、その先端部は円錐状を呈し先鋭となっている。あるいは、図19に示す転写ピン11’のように先端部がブレード状であってもよい。   A plurality of transfer pins 11 are attached to the transfer head 10. Each transfer pin 11 is attached to the transfer head 10 so as to be independently movable up and down via an elastic member such as a cushion sheet. The transfer pin 11 is made of, for example, a metal material, and the tip thereof has a conical shape and is sharp. Alternatively, the tip portion may be a blade shape like a transfer pin 11 ′ shown in FIG. 19.

フラックス8はトレー9内で図示しないスキージにより厚さ(深さ)が均等になるように伸ばされ、転写ヘッド10がトレー9に対して近づくように下降することで、転写ピン11の先端部がフラックス8に浸かり、フラックス8はその先端部にぬれ上がり付着する。このとき、転写ピン11の先端部はトレー9の底面に当接され、各転写ピン11は弾性部材を介して個々が独立して上下動自在に転写ヘッド10に取り付けられているので、トレー9底面からの接触圧を均等に受ける。これにより、転写ピン11の長さにばらつきがあっても、各転写ピン11の先端部がフラックス8に浸かる深さを揃えることができ付着量のばらつきを抑えられる。   The flux 8 is stretched in the tray 9 by a squeegee (not shown) so that the thickness (depth) is uniform, and the transfer head 10 is lowered so as to approach the tray 9, so that the tip of the transfer pin 11 is moved. Immerse in the flux 8, and the flux 8 wets and adheres to the tip. At this time, the tip of the transfer pin 11 is brought into contact with the bottom surface of the tray 9, and each transfer pin 11 is attached to the transfer head 10 so as to be independently movable up and down via an elastic member. Evenly receives contact pressure from the bottom. Thereby, even if there is variation in the length of the transfer pin 11, the depth at which the tip of each transfer pin 11 is immersed in the flux 8 can be made uniform, and variation in the amount of adhesion can be suppressed.

次に、転写ヘッド10を上昇させ転写ピン11の先端部をフラックス8から離脱させ、図2に示すように接合対象物5の上方へと移動させる。転写ピン11の先端部には粘性によりフラックス8が付着されている。   Next, the transfer head 10 is raised, the tip end portion of the transfer pin 11 is detached from the flux 8, and is moved above the joining object 5 as shown in FIG. 2. A flux 8 is attached to the tip of the transfer pin 11 due to viscosity.

接合対象物5の一面には、接合対象物5に形成された配線に接続された導体からなる複数のパッド6、6aが形成され、そのうちパッド6a上には突起電極7が形成されている。突起電極7は、例えばパッド6a上にはんだボールを搭載した後加熱溶融させて半球状にされたはんだバンプである。その他、突起電極7としては、例えばめっき法や印刷法で形成された金属バンプであってもよい。パッド6aのサイズ及び突起電極7の直径は例えば30μmほどである。   A plurality of pads 6 and 6a made of a conductor connected to the wiring formed on the bonding object 5 are formed on one surface of the bonding object 5, and a protruding electrode 7 is formed on the pad 6a. The protruding electrode 7 is, for example, a solder bump that is formed into a hemispherical shape by mounting a solder ball on the pad 6a and then melting it by heating. In addition, the bump electrode 7 may be a metal bump formed by, for example, a plating method or a printing method. The size of the pad 6a and the diameter of the protruding electrode 7 are, for example, about 30 μm.

図2に示すように、フラックス8が付着された転写ピン11の先端部は、突起電極7に向き合わされる。転写ピン11間のピッチは突起電極7間のピッチに合わされており、個々の転写ピン11と突起電極7とは1対1で対応して向き合わされる。その状態で、転写ヘッド10が接合対象物5に近づく方向に下降して、各転写ピン11の各先端部を各突起電極7に対して同時に突き当てる。   As shown in FIG. 2, the tip end portion of the transfer pin 11 to which the flux 8 is attached faces the protruding electrode 7. The pitch between the transfer pins 11 is matched with the pitch between the protruding electrodes 7, and the individual transfer pins 11 and the protruding electrodes 7 face each other in a one-to-one correspondence. In this state, the transfer head 10 descends in a direction approaching the object 5 to be bonded, and the tips of the transfer pins 11 are simultaneously abutted against the protruding electrodes 7.

これにより、突起電極7には図3に示すようにくぼみ7aが形成されると共に、そのくぼみ7aにフラックス8が転写される。接合対象物5はこれを支持する図示しないステージから加熱を受けており、この熱によって転写ピン11の先端部に付着していたフラックス8は突起電極7に突き当てられると流動性が増し、且つ重力の作用もあってくぼみ7aに移る。   As a result, a recess 7a is formed in the protruding electrode 7 as shown in FIG. 3, and the flux 8 is transferred to the recess 7a. The object 5 to be joined is heated from a stage (not shown) that supports it, and the flux 8 attached to the tip of the transfer pin 11 by this heat is abutted against the protruding electrode 7 to increase its fluidity, and Due to the action of gravity, it moves to the recess 7a.

以上のフラックス転写工程において、個々の転写ピン11は十分細く(パッド6a及び突起電極7の平面サイズより小さい)、隣接する転写ピン11間の距離は、隣接する突起電極7間の距離よりも大きい。すなわち、転写ピン11間の間隔が十分離れているため、転写ピン11間でフラックス8がブリッジを形成してつながることが生じにくく、よってその転写ピン11からフラックス8が転写される突起電極7間におけるフラックス8のブリッジも防げる。この結果、後述する突起電極7の加熱溶融時に、ブリッジしたフラックスを伝わって隣の突起電極7と接合することを防げ、突起電極7どうしの短絡を防げる。   In the above flux transfer process, each transfer pin 11 is sufficiently thin (smaller than the plane size of the pad 6a and the protruding electrode 7), and the distance between adjacent transfer pins 11 is larger than the distance between adjacent protruding electrodes 7. . That is, since the interval between the transfer pins 11 is sufficiently long, it is difficult for the flux 8 to form a bridge between the transfer pins 11, and therefore, between the protruding electrodes 7 to which the flux 8 is transferred from the transfer pin 11. The bridge of flux 8 can be prevented. As a result, when the protruding electrodes 7 described later are heated and melted, the bridged flux is prevented from being joined to the adjacent protruding electrodes 7 and a short circuit between the protruding electrodes 7 can be prevented.

以上のように、接合対象物5の突起電極7にフラックス転写が行われると、次に、図3に示すように半導体装置1と接合対象物5とを互いの接合面(パッド及び突起電極が形成された面)どうしを向き合わせて位置決めする。   As described above, when flux transfer is performed on the protruding electrode 7 of the bonding target object 5, next, as shown in FIG. 3, the semiconductor device 1 and the bonding target object 5 are bonded to each other. The formed surface) is positioned facing each other.

半導体装置1には、その集積回路形成面側に複数のパッド2が形成され、そのパッド2上に突起電極3が形成されている。突起電極3は、例えばパッド2上にはんだボールを搭載した後加熱溶融させて半球状にされたはんだバンプである。その他、突起電極3としては、例えばめっき法や印刷法で形成された金属バンプであってもよい。各突起電極3の平面サイズ(直径)は各突起電極7の平面サイズ(直径)とほぼ等しくされ、また突起電極3間のピッチも突起電極7間のピッチとほぼ等しくされる。   In the semiconductor device 1, a plurality of pads 2 are formed on the integrated circuit formation surface side, and the protruding electrodes 3 are formed on the pads 2. The protruding electrode 3 is, for example, a solder bump in which a solder ball is mounted on the pad 2 and then melted into a hemisphere by heating and melting. In addition, the bump electrode 3 may be a metal bump formed by, for example, a plating method or a printing method. The planar size (diameter) of each protruding electrode 3 is substantially equal to the planar size (diameter) of each protruding electrode 7, and the pitch between the protruding electrodes 3 is also approximately equal to the pitch between the protruding electrodes 7.

例えば真空吸着具で保持された半導体装置1を、ステージ上に支持された接合対象物5に対して近づけて、互いの突起電極3、7どうしを圧接させる。この互いに圧接された突起電極3、7の拡大図を図4に示す。   For example, the semiconductor device 1 held by the vacuum suction tool is brought close to the bonding target 5 supported on the stage, and the protruding electrodes 3 and 7 are pressed against each other. FIG. 4 shows an enlarged view of the protruding electrodes 3 and 7 that are in pressure contact with each other.

接合対象物5の突起電極7は上記転写ピン11によってくぼみ7aが形成されており、そのくぼみ7aに半導体装置1の突起電極3の半球状の面が嵌まり込むようにして両突起電極3、7は圧接される。すなわち、両突起電極3、7は従来のような球面どうしの圧接ではなく、凹と凸との嵌合のように圧接されるので、面方向の位置ずれを防げる。この結果、その面方向の位置ずれに起因する隣接する突起電極3、7間の短絡や、接合不良を防げる。   The projection electrode 7 of the object to be joined 5 has a recess 7 a formed by the transfer pin 11, and the projection electrodes 3 of the semiconductor device 1 are fitted into the recess 7 a so that the hemispherical surfaces of the projection electrode 3 are fitted into the recess 7 a. Press contact. That is, since both the protruding electrodes 3 and 7 are not in pressure contact with each other like a conventional spherical surface but are in pressure contact like a fitting between a concave and a convex, it is possible to prevent positional deviation in the surface direction. As a result, it is possible to prevent a short circuit between adjacent protruding electrodes 3 and 7 due to the positional deviation in the surface direction, and poor bonding.

両突起電極3、7は上記圧接された状態で加熱を受け、両突起電極3、7は溶融し、さらにこのとき、突起電極7のくぼみ7aに転写されたフラックス8の活性作用により両突起電極3、7の圧接面の酸化膜が除去され両突起電極3、7どうしがよくぬれて、図5に示すように、電気抵抗が小さく良好な接合形態である略球状の一体な突起電極12となる。また、上述したように、フラックス8は個々の突起電極7に対してピン転写にて付与されるので、隣接する突起電極7間でのブリッジの発生を防げ、よってそのブリッジしたフラックスを伝わって溶融した突起電極がつながってしまうことを防げ、突起電極12間の短絡を防げる。以上のようにして、半導体装置1と接合対象物5とは突起電極12を介して互いに電気的に接続される。   Both projecting electrodes 3 and 7 are heated in the above-mentioned pressure contact state, both projecting electrodes 3 and 7 are melted, and at this time, both projecting electrodes are activated by the active action of the flux 8 transferred to the recess 7a of the projecting electrode 7. The oxide films on the pressure contact surfaces 3 and 7 are removed so that the two protruding electrodes 3 and 7 are well wetted with each other. As shown in FIG. Become. Further, as described above, since the flux 8 is applied to each protruding electrode 7 by pin transfer, the bridge between adjacent protruding electrodes 7 can be prevented from being generated, so that the bridged flux is transmitted and melted. Thus, it is possible to prevent the protruding electrodes from being connected to each other and to prevent a short circuit between the protruding electrodes 12. As described above, the semiconductor device 1 and the bonding target object 5 are electrically connected to each other through the protruding electrodes 12.

なお、先端部にフラックス8を付着した転写ピン11を、半導体装置1側の突起電極3に対して突き当てて、その突起電極3にくぼみを形成すると共にそのくぼみにフラックス8を転写するようにしてもよい。   The transfer pin 11 with the flux 8 attached to the tip is abutted against the protruding electrode 3 on the semiconductor device 1 side to form a recess in the protruding electrode 3 and to transfer the flux 8 to the recess. May be.

[第2の実施形態]
次に、本発明の第2の実施形態について説明する。なお、上記第1の実施形態と同じ構成部分には同一の符号を付しその詳細な説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same component as the said 1st Embodiment, and the detailed description is abbreviate | omitted.

図6〜図8は、第2の実施形態に係る半導体装置の接合方法を示す。   6 to 8 show a semiconductor device bonding method according to the second embodiment.

先ず、図6に示すフラックス転写ピン(以下単に転写ピンとも称する)21の先端部にフラックス8を付与する。具体的には、トレー9内に入れられた液状またはペースト状のフラックス8に転写ピン21の先端部を浸けてその先端部にフラックス8を付着させる。   First, the flux 8 is applied to the tip of a flux transfer pin (hereinafter also simply referred to as a transfer pin) 21 shown in FIG. Specifically, the tip of the transfer pin 21 is dipped in a liquid or paste-like flux 8 placed in the tray 9, and the flux 8 is attached to the tip.

転写ピン21は複数本が転写ヘッド10に取り付けられている。個々の転写ピン21は、クッションシートなどの弾性部材を介して個々に独立して上下動自在に転写ヘッド10に取り付けられている。   A plurality of transfer pins 21 are attached to the transfer head 10. Each transfer pin 21 is attached to the transfer head 10 so as to be independently movable up and down via an elastic member such as a cushion sheet.

転写ピン21は例えば金属材料からなり、その先端部には、円錐状またはブレード状に2つの角部22が形成されている。転写ピン21は、図7に示すように、隣接する2つの突起電極7に対して1本が対応するように配置されおり、1本の転写ピン21における2つの角部22間のピッチは、その転写ピン21が対応する隣接する突起電極7間のピッチに合わせて設定されている。   The transfer pin 21 is made of, for example, a metal material, and two corner portions 22 are formed in a conical shape or a blade shape at a tip portion thereof. As shown in FIG. 7, one transfer pin 21 is arranged so as to correspond to two adjacent protruding electrodes 7, and the pitch between two corners 22 in one transfer pin 21 is The transfer pin 21 is set in accordance with the pitch between the corresponding adjacent protruding electrodes 7.

フラックス8はトレー9内で図示しないスキージにより厚さ(深さ)が均等になるように伸ばされ、転写ヘッド10がトレー9に対して近づくように下降することで、転写ピン21の角部22がフラックス8に浸かり、フラックス8はその角部22にぬれ上がり付着する。   The flux 8 is stretched in the tray 9 by a squeegee (not shown) so that the thickness (depth) is uniform, and the transfer head 10 is lowered so as to approach the tray 9, whereby the corner 22 of the transfer pin 21. Is immersed in the flux 8, and the flux 8 wets and adheres to the corners 22 thereof.

次に、転写ヘッド10を上昇させ転写ピン21の角部22をフラックス8から離脱させ、図7に示すように接合対象物5の上方へと移動させる。転写ピン21の角部22には粘性によりフラックス8が付着されている。   Next, the transfer head 10 is raised, and the corner 22 of the transfer pin 21 is separated from the flux 8 and moved to above the joining object 5 as shown in FIG. The flux 8 is attached to the corner portion 22 of the transfer pin 21 due to viscosity.

図7に示すように、フラックス8が付着された各々の角部22は、各々の突起電極7に対して1対1で対応して向き合わされる。その状態で、転写ヘッド10が接合対象物5に近づく方向に下降して、各転写ピン21の各角部22を各突起電極7に対して同時に突き当てる。   As shown in FIG. 7, each corner portion 22 to which the flux 8 is attached is opposed to each protruding electrode 7 in a one-to-one correspondence. In this state, the transfer head 10 descends in a direction approaching the bonding target 5, and each corner 22 of each transfer pin 21 is simultaneously abutted against each protruding electrode 7.

これにより、突起電極7には図8に示すようにくぼみ7aが形成されると共に、そのくぼみ7aにフラックス8が転写される。接合対象物5はこれを支持する図示しないステージから加熱を受けており、この熱によって転写ピン21の角部22に付着していたフラックス8は突起電極7に突き当てられると流動性が増し、且つ重力の作用もあってくぼみ7aに移る。   As a result, a recess 7a is formed in the protruding electrode 7 as shown in FIG. 8, and the flux 8 is transferred to the recess 7a. The object 5 to be joined is heated from a stage (not shown) that supports this, and when the flux 8 attached to the corner 22 of the transfer pin 21 is abutted against the protruding electrode 7 by this heat, the fluidity increases. Moreover, due to the action of gravity, the process moves to the recess 7a.

本実施形態においても、トレー9内のフラックス8を一旦、突起電極7の平面サイズより小さい角部22に付着させてから、その角部22を1対1で対応する個々の突起電極7に突き当ててくぼみ7aを形成すると共にそのくぼみ7a内にフラックス8はぬれ性で集められるように付着するので、突起電極7自体をトレー9内のフラックス8に直に浸ける従来例に比べて、突起電極7間でフラックス8がブリッジしにくくできる。この結果、後工程における突起電極7の加熱溶融時に、ブリッジしたフラックスを伝わって隣の突起電極7とつながってしまうことを防げ、突起電極7どうしの短絡を防げる。   Also in this embodiment, the flux 8 in the tray 9 is once attached to the corners 22 that are smaller than the planar size of the projection electrodes 7, and then the corners 22 are projected to the corresponding projection electrodes 7 on a one-to-one basis. Compared to the conventional example in which the projection electrode 7 itself is directly immersed in the flux 8 in the tray 9 since the recess 8a is formed and the flux 8 adheres to the recess 7a so as to be collected by wettability. It is possible to make it difficult for the flux 8 to bridge between 7. As a result, when the protruding electrodes 7 are heated and melted in the subsequent process, the bridged flux is prevented from being connected to the adjacent protruding electrodes 7 and a short circuit between the protruding electrodes 7 can be prevented.

以上のように、接合対象物5の突起電極7にフラックス転写が行われると、次に、図8に示すように半導体装置1と接合対象物5とを互いの接合面(パッド及び突起電極が形成された面)どうしを向き合わせて位置決めする。   As described above, when the flux transfer is performed on the protruding electrode 7 of the bonding target object 5, next, as shown in FIG. 8, the semiconductor device 1 and the bonding target object 5 are bonded to each other. The formed surface) is positioned facing each other.

以降は上記第1の実施形態と同様、例えば真空吸着具で保持された半導体装置1を、ステージ上に支持された接合対象物5に対して近づけて、互いの突起電極3、7どうしを圧接させる。この互いに圧接された突起電極3、7の拡大図を図4に示す。   Thereafter, as in the first embodiment, for example, the semiconductor device 1 held by a vacuum suction tool is brought close to the joining object 5 supported on the stage, and the protruding electrodes 3 and 7 are pressed against each other. Let FIG. 4 shows an enlarged view of the protruding electrodes 3 and 7 that are in pressure contact with each other.

接合対象物5の突起電極7は上記転写ピン21の角部22によってくぼみ7aが形成されており、そのくぼみ7aに半導体装置1の突起電極3の半球状の面が嵌まり込むようにして両突起電極3、7は圧接される。すなわち、両突起電極3、7は従来のような球面どうしの圧接ではなく、凹と凸との嵌合のように圧接されるので、面方向の位置ずれを防げる。この結果、その面方向の位置ずれに起因する隣接する突起電極3、7間の短絡や、接合不良を防げる。   The projection electrode 7 of the object to be joined 5 has a recess 7 a formed by the corner portion 22 of the transfer pin 21, and both projection electrodes 7 so that the hemispherical surface of the projection electrode 3 of the semiconductor device 1 fits into the recess 7 a. 3 and 7 are pressed. That is, since both the protruding electrodes 3 and 7 are not in pressure contact with each other like a conventional spherical surface but are in pressure contact like a fitting between a concave and a convex, it is possible to prevent positional deviation in the surface direction. As a result, it is possible to prevent a short circuit between adjacent protruding electrodes 3 and 7 due to the positional deviation in the surface direction, and poor bonding.

両突起電極3、7は上記圧接された状態で加熱を受け、両突起電極3、7は溶融し、さらにこのとき、突起電極7のくぼみ7aに転写されたフラックス8の活性作用により両突起電極3、7の圧接面の酸化膜が除去され両突起電極3、7どうしがよくぬれて、図5に示すように、電気抵抗が小さく良好な接合形態である略球状の一体な突起電極12となる。また、上述したように、フラックス8は個々の突起電極7に対してピン転写にて付与されるので、隣接する突起電極7間でのブリッジの発生を防げ、よってそのブリッジしたフラックスを伝わって溶融した突起電極がつながってしまうことを防げ、突起電極12間の短絡を防げる。以上のようにして、半導体装置1と接合対象物5とは突起電極12を介して互いに電気的に接続される。   Both projecting electrodes 3 and 7 are heated in the above-mentioned pressure contact state, both projecting electrodes 3 and 7 are melted, and at this time, both projecting electrodes are activated by the active action of the flux 8 transferred to the recess 7a of the projecting electrode 7. The oxide films on the pressure contact surfaces 3 and 7 are removed so that the two protruding electrodes 3 and 7 are well wetted with each other. As shown in FIG. Become. Further, as described above, since the flux 8 is applied to each protruding electrode 7 by pin transfer, the bridge between adjacent protruding electrodes 7 can be prevented from being generated, so that the bridged flux is transmitted and melted. Thus, it is possible to prevent the protruding electrodes from being connected to each other and to prevent a short circuit between the protruding electrodes 12. As described above, the semiconductor device 1 and the bonding target object 5 are electrically connected to each other through the protruding electrodes 12.

本実施形態によれば、隣接する2つの突起電極7に対して必要な転写ピン21は1本でよく、突起電極7の数と同じ数の転写ピン11を有する第1の実施形態に比べて、突起電極7の数を同じとした場合には、転写ピンの本数を半分にでき、その転写ピン21の製造コスト及び転写ピン21を転写ヘッド10に取り付ける工数を削減できる。   According to the present embodiment, only one transfer pin 21 is required for two adjacent protruding electrodes 7, compared to the first embodiment having the same number of transfer pins 11 as the number of protruding electrodes 7. When the number of protruding electrodes 7 is the same, the number of transfer pins can be halved, and the manufacturing cost of the transfer pins 21 and the number of steps for attaching the transfer pins 21 to the transfer head 10 can be reduced.

なお、1本の転写ピン21の先端部に形成する角部22の数は2つに限らず、3つ以上であってもよい。ただし、1本の転写ピン21に対する角部22の数があまり多くなると各角部22の高さ位置を揃えることが難しく、角部22間における高さ位置のばらつきにより、フラックス8への浸漬深さがばらついてフラックス付着量にばらつきが生じるおそれがある。   Note that the number of corners 22 formed at the tip of one transfer pin 21 is not limited to two, and may be three or more. However, if the number of corner portions 22 for one transfer pin 21 is too large, it is difficult to align the height positions of the corner portions 22, and the immersion depth in the flux 8 depends on the height position variation between the corner portions 22. There is a possibility that the amount of flux adhesion varies due to variations.

[第3の実施形態]
次に、本発明の第3の実施形態について説明する。なお、上記第1、第2の実施形態と同じ構成部分には同一の符号を付しその詳細な説明は省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same component as the said 1st, 2nd embodiment, and the detailed description is abbreviate | omitted.

図9〜図11は、第3の実施形態に係る半導体装置の接合方法を示す。   9 to 11 illustrate a semiconductor device bonding method according to the third embodiment.

先ず、図9に示すフラックス転写ピン(以下単に転写ピンとも称する)31の先端部にフラックス8を付与する。具体的には、トレー9内に入れられた液状またはペースト状のフラックス8に転写ピン31の先端部を浸けてその先端部にフラックス8を付着させる。   First, the flux 8 is applied to the tip of a flux transfer pin (hereinafter also simply referred to as a transfer pin) 31 shown in FIG. Specifically, the tip of the transfer pin 31 is immersed in a liquid or paste-like flux 8 placed in the tray 9 and the flux 8 is attached to the tip.

転写ピン31は複数本が転写ヘッド10に取り付けられている。個々の転写ピン31は、クッションシートなどの弾性部材を介して個々に独立して上下動自在に転写ヘッド10に取り付けられている。   A plurality of transfer pins 31 are attached to the transfer head 10. Each transfer pin 31 is attached to the transfer head 10 so as to be independently movable up and down via an elastic member such as a cushion sheet.

転写ピン31は例えば金属材料からなる角柱状を呈し、その先端部には、エッジ状の2つの角部32が形成されている。転写ピン31は、図10に示すように、隣接する2つの突起電極7に対して1本が対応するように配置されおり、1本の転写ピン31における2つの角部32間のピッチは、その転写ピン31が対応する隣接する突起電極7間のピッチに合わせて設定されている。   The transfer pin 31 has a prismatic shape made of, for example, a metal material, and two edge portions 32 having an edge shape are formed at the tip thereof. As shown in FIG. 10, one transfer pin 31 is arranged so as to correspond to two adjacent protruding electrodes 7, and the pitch between two corners 32 in one transfer pin 31 is The transfer pin 31 is set in accordance with the pitch between the corresponding adjacent protruding electrodes 7.

フラックス8はトレー9内で図示しないスキージにより厚さ(深さ)が均等になるように伸ばされ、転写ヘッド10がトレー9に対して近づくように下降することで、転写ピン31の角部32がフラックス8に浸かり、フラックス8はその角部32にぬれ上がり付着する。   The flux 8 is stretched in the tray 9 by a squeegee (not shown) so that the thickness (depth) is uniform, and the transfer head 10 is lowered so as to approach the tray 9, whereby the corner portion 32 of the transfer pin 31. Is immersed in the flux 8, and the flux 8 wets and adheres to the corner portion 32.

次に、転写ヘッド10を上昇させ転写ピン31の角部32をフラックス8から離脱させ、図10に示すように接合対象物5の上方へと移動させる。転写ピン31の角部32には粘性によりフラックス8が付着されている。   Next, the transfer head 10 is raised, and the corner portion 32 of the transfer pin 31 is separated from the flux 8 and is moved above the joining object 5 as shown in FIG. The flux 8 is attached to the corner portion 32 of the transfer pin 31 due to viscosity.

図10に示すように、フラックス8が付着された各々の角部32は、各々の突起電極7に対して1対1で対応して向き合わされる。その状態で、転写ヘッド10が接合対象物5に近づく方向に下降して、各転写ピン31の各角部32を各突起電極7に対して同時に突き当てる。   As shown in FIG. 10, each corner portion 32 to which the flux 8 is attached is opposed to each protruding electrode 7 in a one-to-one correspondence. In this state, the transfer head 10 is lowered in a direction approaching the object 5 to be bonded, and the corners 32 of the transfer pins 31 are simultaneously abutted against the protruding electrodes 7.

これにより、突起電極7には、図12に示すように隣接する突起電極7間で左右対称な形状のくぼみ7b、7cが形成されると共に、そのくぼみ7b、7cにフラックス8が転写される。接合対象物5はこれを支持する図示しないステージから加熱を受けており、この熱によって転写ピン31の角部32に付着していたフラックス8は突起電極7に突き当てられると流動性が増し、且つ重力の作用もあってくぼみ7b、7cに移る。   As a result, as shown in FIG. 12, in the protruding electrode 7, recesses 7b and 7c having a symmetrical shape are formed between adjacent protruding electrodes 7, and the flux 8 is transferred to the recesses 7b and 7c. The object 5 to be joined is heated from a stage (not shown) that supports it, and the flux 8 attached to the corner portion 32 of the transfer pin 31 by this heat is abutted against the protruding electrode 7 to increase its fluidity, Moreover, due to the action of gravity, the process moves to the recesses 7b and 7c.

本実施形態においても、トレー9内のフラックス8を一旦、突起電極7の平面サイズより小さい角部32に付着させてから、その角部32を1対1で対応する個々の突起電極7に突き当ててくぼみ7b、7cを形成すると共にそのくぼみ7b、7c内にフラックス8はぬれ性で集められるように付着するので、突起電極7自体をトレー9内のフラックス8に直に浸ける従来例に比べて、突起電極7間でフラックス8がブリッジしにくくできる。この結果、後工程における突起電極7の加熱溶融時に、ブリッジしたフラックスを伝わって隣の突起電極7とつながってしまうことを防げ、突起電極7どうしの短絡を防げる。   Also in this embodiment, the flux 8 in the tray 9 is once attached to the corners 32 smaller than the planar size of the projection electrodes 7 and then the corners 32 are projected to the corresponding projection electrodes 7 on a one-to-one basis. Since the recesses 7b and 7c are formed by contact and the flux 8 is attached to the recesses 7b and 7c so as to be collected by wettability, compared with the conventional example in which the protruding electrode 7 itself is directly immersed in the flux 8 in the tray 9. Thus, the flux 8 can be hardly bridged between the protruding electrodes 7. As a result, when the protruding electrodes 7 are heated and melted in the subsequent process, the bridged flux is prevented from being connected to the adjacent protruding electrodes 7 and a short circuit between the protruding electrodes 7 can be prevented.

以上のように、接合対象物5の突起電極7にフラックス転写が行われると、次に、図11に示すように半導体装置1と接合対象物5とを互いの接合面(パッド及び突起電極が形成された面)どうしを向き合わせて位置決めする。   As described above, when flux transfer is performed on the protruding electrode 7 of the bonding target object 5, next, as shown in FIG. 11, the semiconductor device 1 and the bonding target object 5 are bonded to each other's bonding surfaces (pads and protruding electrodes The formed surface) is positioned facing each other.

以降は上記第1の実施形態と同様、例えば真空吸着具で保持された半導体装置1を、ステージ上に支持された接合対象物5に対して近づけて、互いの突起電極3、7どうしを圧接させる。この互いに圧接された突起電極3、7の拡大図を図12に示す。   Thereafter, as in the first embodiment, for example, the semiconductor device 1 held by a vacuum suction tool is brought close to the joining object 5 supported on the stage, and the protruding electrodes 3 and 7 are pressed against each other. Let FIG. 12 shows an enlarged view of the protruding electrodes 3 and 7 in pressure contact with each other.

図12において左側の突起電極7には、図9に示す転写ピン31の左側の角部32によって、断面がL字に近い形状のくぼみ7bが形成され、右側の突起電極7には転写ピン31の右側の角部32によって、くぼみ7bを左右反転したようなくぼみ7cが形成される。したがって、半導体装置1における左側の突起電極3は、接合対象物5における左側の突起電極7に形成された壁部7dによって左方への位置ずれが規制され、半導体装置1における右側の突起電極3は、接合対象物5における右側の突起電極7に形成された壁部7eによって右方への位置ずれが規制されている。結果として、半導体装置1は左右方向への位置ずれが規制されている。この結果、その位置ずれに起因する隣接する突起電極3、7間の短絡や、接合不良を防げる。   In FIG. 12, the left protruding electrode 7 is formed with a recess 7b having a L-shaped cross section by the left corner 32 of the transfer pin 31 shown in FIG. The right corner portion 32 forms a recess 7c as if the recess 7b was reversed left and right. Accordingly, the left protruding electrode 3 in the semiconductor device 1 is regulated to be displaced to the left by the wall portion 7d formed on the left protruding electrode 7 in the bonding target 5, and the right protruding electrode 3 in the semiconductor device 1 is regulated. In the object 5 to be joined, the rightward displacement is regulated by the wall portion 7e formed on the right protruding electrode 7. As a result, the semiconductor device 1 is restricted from being displaced in the left-right direction. As a result, it is possible to prevent a short circuit between adjacent protruding electrodes 3 and 7 due to the misalignment and a bonding failure.

両突起電極3、7は上記圧接された状態で加熱を受け、両突起電極3、7は溶融し、さらにこのとき、突起電極7のくぼみ7b、7cに転写されたフラックス8の活性作用により両突起電極3、7の圧接面の酸化膜が除去され両突起電極3、7どうしがよくぬれて、図5に示すように、電気抵抗が小さく良好な接合形態である略球状の一体な突起電極12となる。また、上述したように、フラックス8は個々の突起電極7に対してピン転写にて付与されるので、隣接する突起電極7間でのブリッジの発生を防げ、よってそのブリッジしたフラックスを伝わって溶融した突起電極がつながってしまうことを防げ、突起電極12間の短絡を防げる。以上のようにして、半導体装置1と接合対象物5とは突起電極12を介して互いに電気的に接続される。   Both projecting electrodes 3 and 7 are heated in the above-mentioned pressure contact state, both projecting electrodes 3 and 7 are melted, and at this time, both are caused by the active action of the flux 8 transferred to the recesses 7b and 7c of the projecting electrode 7. The oxide film on the pressure contact surfaces of the projecting electrodes 3 and 7 is removed, the projecting electrodes 3 and 7 are both wetted well, and as shown in FIG. 12 Further, as described above, since the flux 8 is applied to each protruding electrode 7 by pin transfer, the bridge between adjacent protruding electrodes 7 can be prevented from being generated, so that the bridged flux is transmitted and melted. Thus, it is possible to prevent the protruding electrodes from being connected to each other and to prevent a short circuit between the protruding electrodes 12. As described above, the semiconductor device 1 and the bonding target object 5 are electrically connected to each other through the protruding electrodes 12.

本実施形態においても第2の実施形態と同様、隣接する2つの突起電極7に対して必要な転写ピン31は1本でよく、突起電極7の数と同じ数の転写ピン11を有する第1の実施形態に比べて、突起電極7の数を同じとした場合には、転写ピンの本数を半分にでき、その転写ピン31の製造コスト及び転写ピン31を転写ヘッド10に取り付ける工数を削減できる。さらに、転写ピン31は角柱状であるのでその加工も簡単である。   In the present embodiment, similarly to the second embodiment, only one transfer pin 31 is required for two adjacent protruding electrodes 7, and the first number of transfer pins 11 is the same as the number of protruding electrodes 7. When the number of protruding electrodes 7 is the same as that of the first embodiment, the number of transfer pins can be halved, and the manufacturing cost of the transfer pins 31 and the number of steps for attaching the transfer pins 31 to the transfer head 10 can be reduced. . Furthermore, since the transfer pin 31 has a prismatic shape, its processing is easy.

[第4の実施形態]
次に、本発明の第4の実施形態について説明する。なお、上記第1、第2、第3の実施形態と同じ構成部分には同一の符号を付しその詳細な説明は省略する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same component as the said 1st, 2nd, 3rd embodiment, and the detailed description is abbreviate | omitted.

図13に示すように、本実施形態に係る転写ピン41は、その根元部分(先鋭な先端部の反対側部分)が、フラックス供給源として機能するフラックス容器42と結合されている。転写ピン41の外形形状は上記第1の実施形態の転写ピン11と同じであるが、その内部には図17に示すように先端部41bに通じる中空孔41aが軸方向に沿って形成されパイプ状になっている。その中空孔41aは、フラックス容器42の内部と連通しており、そのフラックス容器42内に収容されたフラックス8を、例えば空気圧を利用して転写ピン41の中空孔41aに押し出し、フラックス8は中空孔41a内を先端部41bに向けて圧送され、先端部41bの開口から先端部41bの外側に押し出される。   As shown in FIG. 13, the transfer pin 41 according to this embodiment has a root portion (a portion opposite to the sharp tip) coupled to a flux container 42 that functions as a flux supply source. The outer shape of the transfer pin 41 is the same as that of the transfer pin 11 of the first embodiment, but a hollow hole 41a communicating with the tip 41b is formed along the axial direction inside the pipe as shown in FIG. It is in the shape. The hollow hole 41a communicates with the inside of the flux container 42, and the flux 8 accommodated in the flux container 42 is pushed out into the hollow hole 41a of the transfer pin 41 using, for example, air pressure. The inside of the hole 41a is pumped toward the tip portion 41b, and is pushed out from the opening of the tip portion 41b to the outside of the tip portion 41b.

トレー内のフラックス8に転写ピンを浸けることでその先端部にフラックスを付与する方法では、フラックス8の液面レベルや転写ピンの長さ等のばらつきで転写ピン先端部がフラックス8内に浸かる深さがばらついてフラックス付着量が転写ピン間でばらつく心配がある。転写ピンへのフラックス付着量がばらつくと突起電極への転写量もばらつき、突起電極に対するフラックス付着量が多すぎて隣接する突起電極間でブリッジを生じさせたり、逆に少なすぎて十分な活性作用を得られず接合不良をまねくおそれがある。   In the method in which the transfer pin is immersed in the flux 8 in the tray to apply the flux to the tip, the depth at which the tip of the transfer pin is immersed in the flux 8 due to variations in the liquid level of the flux 8, the length of the transfer pin, etc. There is a concern that the flux adhesion amount may vary between the transfer pins due to variations. If the amount of flux attached to the transfer pin varies, the amount of transfer to the bump electrode also varies, and the amount of flux attached to the bump electrode is too large, causing bridging between adjacent bump electrodes, or conversely, it is too small to provide sufficient active action. May not be obtained, resulting in poor bonding.

これに対して、本実施形態のように転写ピン41の内部から先端部に強制的にフラックス8を押し出す方法では、各転写ピン41の各先端部へのフラックス供給量を均一に且つ安定させることができ、よって突起電極へのフラックス転写量のばらつきを抑えることができる。   In contrast, in the method of forcibly pushing the flux 8 from the inside of the transfer pin 41 to the tip as in this embodiment, the amount of flux supplied to each tip of each transfer pin 41 is made uniform and stable. Therefore, variation in the amount of flux transferred to the protruding electrode can be suppressed.

また、本実施形態の方法によれば、重力に逆らう方向へのフラックス転写となる上側の半導体装置1の突起電極3に対しても安定して所望量のフラックス8を供給できる。先に突起電極3に転写ピン41を突き当ててくぼみ3a(図14)を形成してからそのくぼみ3aにフラックス8を供給するようにしてもよいし、くぼみ3aを形成しつつ同時にフラックス8を転写ピン41の先端部から押し出してフラックス供給を行うようにしてもよい。   In addition, according to the method of the present embodiment, a desired amount of flux 8 can be stably supplied to the protruding electrode 3 of the upper semiconductor device 1 that performs flux transfer in a direction against gravity. First, the transfer pin 41 may be abutted against the protruding electrode 3 to form the recess 3a (FIG. 14), and then the flux 8 may be supplied to the recess 3a, or the flux 8 may be simultaneously supplied while forming the recess 3a. The flux may be supplied by being pushed out from the tip of the transfer pin 41.

本実施形態においても、図15に示すように、半導体装置1の突起電極3に形成されたくぼみ3aに接合対象物5の突起電極7の半球状の面が嵌まり込むようにして両突起電極3、7は圧接される。すなわち、両突起電極3、7は従来のような球面どうしの圧接ではなく、凹と凸との嵌合のように圧接されるので、面方向の位置ずれを防げる。この結果、その面方向の位置ずれに起因する隣接する突起電極3、7間の短絡や、接合不良を防げる。   Also in the present embodiment, as shown in FIG. 15, both protruding electrodes 3, such that the hemispherical surface of the protruding electrode 7 of the object to be bonded 5 is fitted in the recess 3 a formed in the protruding electrode 3 of the semiconductor device 1. 7 is pressed. That is, since both the protruding electrodes 3 and 7 are not in pressure contact with each other like a conventional spherical surface but are in pressure contact like a fitting between a concave and a convex, it is possible to prevent positional deviation in the surface direction. As a result, it is possible to prevent a short circuit between adjacent protruding electrodes 3 and 7 due to the positional deviation in the surface direction, and poor bonding.

また、この第4の実施形態と上記第2の実施形態とを組み合わせてもよい。すなわち、図18に示すように、先端部に2つの角部52が形成されると共に内部に、先端部に通じる中空孔51aが軸方向に沿って形成されパイプ状になっている転写ピン51が、図16に示すように、フラックス供給源として機能するフラックス容器42と結合されている。   Moreover, you may combine this 4th Embodiment and the said 2nd Embodiment. That is, as shown in FIG. 18, two corner portions 52 are formed at the tip portion, and a hollow pin 51a leading to the tip portion is formed along the axial direction inside the transfer pin 51 in a pipe shape. As shown in FIG. 16, it is combined with a flux container 42 that functions as a flux supply source.

中空孔51aは、フラックス容器42の内部と連通しており、そのフラックス容器42内に収容されたフラックス8を、例えば空気圧を利用して転写ピン51の中空孔51aに押し出し、フラックス8は中空孔51a内を先端部に向けて圧送され、先端部の開口から先端部の外側に押し出され、角部52に付着する。   The hollow hole 51a communicates with the inside of the flux container 42, and the flux 8 accommodated in the flux container 42 is extruded into the hollow hole 51a of the transfer pin 51 using, for example, air pressure. The inside of 51a is pumped toward the tip portion, pushed out from the opening of the tip portion to the outside of the tip portion, and adheres to the corner portion 52.

なお、フラックス8を押し出す手段としては、空気圧に限らず、油圧やピストンなどを用いてもよい。   The means for extruding the flux 8 is not limited to air pressure, and hydraulic pressure, a piston, or the like may be used.

本発明の第1の実施形態に係る半導体装置の接合方法(その1)を示す図である。It is a figure which shows the joining method (the 1) of the semiconductor device which concerns on the 1st Embodiment of this invention. 同第1の実施形態に係る半導体装置の接合方法(その2)を示す図である。It is a figure which shows the joining method (the 2) of the semiconductor device which concerns on the said 1st Embodiment. 同第1の実施形態に係る半導体装置の接合方法(その3)を示す図である。It is a figure which shows the joining method (the 3) of the semiconductor device which concerns on the same 1st Embodiment. 同第1の実施形態に係る半導体装置の接合方法(その4)を示す図である。It is a figure which shows the joining method (the 4) of the semiconductor device which concerns on the same 1st Embodiment. 同第1の実施形態に係る半導体装置の接合方法(その5)を示す図である。It is a figure which shows the joining method (the 5) of the semiconductor device which concerns on the same 1st Embodiment. 本発明の第2の実施形態に係る半導体装置の接合方法(その1)を示す図である。It is a figure which shows the joining method (the 1) of the semiconductor device which concerns on the 2nd Embodiment of this invention. 同第2の実施形態に係る半導体装置の接合方法(その2)を示す図である。It is a figure which shows the joining method (the 2) of the semiconductor device which concerns on the 2nd Embodiment. 同第2の実施形態に係る半導体装置の接合方法(その3)を図である。It is a figure about the bonding method (the 3) of the semiconductor device concerning the 2nd embodiment. 本発明の第3の実施形態に係る半導体装置の接合方法(その1)を示す図である。It is a figure which shows the joining method (the 1) of the semiconductor device which concerns on the 3rd Embodiment of this invention. 同第3の実施形態に係る半導体装置の接合方法(その2)を示す図である。It is a figure which shows the joining method (the 2) of the semiconductor device which concerns on the said 3rd Embodiment. 同第3の実施形態に係る半導体装置の接合方法(その3)を示す図である。It is a figure which shows the joining method (the 3) of the semiconductor device which concerns on the same 3rd Embodiment. 同第3の実施形態に係る半導体装置の接合方法(その4)を示す図である。It is a figure which shows the joining method (the 4) of the semiconductor device which concerns on the said 3rd Embodiment. 本発明の第4の実施形態に係る半導体装置の接合方法(その1)を示す図である。It is a figure which shows the joining method (the 1) of the semiconductor device which concerns on the 4th Embodiment of this invention. 同第4の実施形態に係る半導体装置の接合方法(その2)を示す図である。It is a figure which shows the joining method (the 2) of the semiconductor device which concerns on the same 4th Embodiment. 同第4の実施形態に係る半導体装置の接合方法(その3)を示す図である。It is a figure which shows the joining method (the 3) of the semiconductor device which concerns on the same 4th Embodiment. 本発明の変形例に係る半導体装置の接合方法を示す図である。It is a figure which shows the joining method of the semiconductor device which concerns on the modification of this invention. 本発明の第4の実施形態に係るフラックス転写ピンの先端部側の断面図である。It is sectional drawing by the side of the front-end | tip part of the flux transfer pin which concerns on the 4th Embodiment of this invention. 変形例に係るフラックス転写ピンの先端部側の断面図である。It is sectional drawing by the side of the front-end | tip part of the flux transfer pin which concerns on a modification. 他変形例に係るフラックス転写ピンの斜視図である。It is a perspective view of the flux transfer pin concerning other modifications. 従来例の半導体装置の接合方法(その1)を示す図である。It is a figure which shows the joining method (the 1) of the semiconductor device of a prior art example. 従来例の半導体装置の接合方法(その2)を示す図である。It is a figure which shows the joining method (the 2) of the semiconductor device of a prior art example. 従来例の半導体装置の接合方法においてはんだブリッジが生じてしまった状態を示す図である。It is a figure which shows the state in which the solder bridge has arisen in the joining method of the semiconductor device of a prior art example. 従来例の半導体装置の接合方法において突起電極に対するフラックス付着量のばらつきを示す図である。It is a figure which shows the dispersion | variation in the amount of flux adhesion with respect to a projection electrode in the joining method of the semiconductor device of a prior art example. 従来例の半導体装置の接合方法において突起電極の接合不良が生じた状態を示す図である。It is a figure which shows the state which the joining defect of the bump electrode produced in the joining method of the semiconductor device of the prior art example. 従来例の半導体装置の接合方法において突起電極どうしの位置ずれを示す図である。It is a figure which shows the position shift of a protruding electrode in the joining method of the semiconductor device of a prior art example.

符号の説明Explanation of symbols

1…半導体装置、3…突起電極、5…接合対象物、7…突起電極、7a…くぼみ、8…フラックス、11…フラックス転写ピン。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 3 ... Projection electrode, 5 ... Bonding object, 7 ... Projection electrode, 7a ... Recess, 8 ... Flux, 11 ... Flux transfer pin.

Claims (5)

半導体装置と接合対象物とを互いの接合面にそれぞれ形成された突起電極どうしを接合させて一体とする半導体装置の接合方法であって、
フラックス転写ピンの先端部にフラックスを付与する工程と、
前記先端部を、前記半導体装置に形成された突起電極と前記接合対象物に形成された突起電極の少なくともどちらか一方の突起電極に突き当ててその突起電極にくぼみを形成すると共に前記くぼみに前記フラックスを転写する工程と、
前記くぼみが形成され且つ前記フラックスが転写された一方の突起電極と、他方の突起電極とを圧接させた状態で加熱溶融させて接合させる工程と、
を有することを特徴とする半導体装置の接合方法。
A method for joining a semiconductor device in which a protruding electrode formed on each joint surface of a semiconductor device and an object to be joined is joined together,
Applying flux to the tip of the flux transfer pin;
The tip is abutted against at least one of the projecting electrode formed on the semiconductor device and the projecting electrode formed on the object to be joined to form a recess in the projecting electrode, and the recess has the A process of transferring the flux;
A step of heating and melting and bonding one protruding electrode formed with the depression and the flux transferred thereto, and the other protruding electrode; and
A method for bonding a semiconductor device, comprising:
前記フラックス転写ピンの前記先端部には、隣接する前記突起電極間のピッチに合わせたピッチで複数の角部が形成され、
前記複数の角部を前記複数の突起電極に対して同時に突き当てる
ことを特徴とする請求項1に記載の半導体装置の接合方法。
At the tip of the flux transfer pin, a plurality of corners are formed at a pitch that matches the pitch between adjacent protruding electrodes,
The semiconductor device bonding method according to claim 1, wherein the plurality of corner portions are simultaneously brought into contact with the plurality of protruding electrodes.
前記フラックス転写ピンの内部に形成され前記先端部に通じる中空孔を介してフラックス供給源からのフラックスを前記先端部に押し出す
ことを特徴とする請求項1に記載の半導体装置の接合方法。
The semiconductor device bonding method according to claim 1, wherein a flux from a flux supply source is pushed out to the tip portion through a hollow hole formed in the flux transfer pin and leading to the tip portion.
半導体装置と接合対象物とを接合する突起電極に、先端部が突き当てられて前記突起電極にくぼみを形成すると共に前記くぼみにフラックスを転写するためのフラックス転写ピンであって、
前記先端部には、隣接する前記突起電極に対して同時に突き当てられる複数の角部が前記隣接する突起電極極間のピッチに合わせたピッチで形成されている
ことを特徴とするフラックス転写ピン。
A flux transfer pin for transferring a flux to the depression as well as forming a depression in the protruding electrode by abutting a tip portion on a protruding electrode that joins a semiconductor device and an object to be joined,
A flux transfer pin, wherein a plurality of corners that are simultaneously abutted against the adjacent protruding electrodes are formed at the tip portion at a pitch that matches the pitch between the adjacent protruding electrode electrodes.
半導体装置と接合対象物とを接合する突起電極に、先端部が突き当てられて前記突起電極にくぼみを形成すると共に前記くぼみにフラックスを転写するためのフラックス転写ピンであって、
前記先端部に通じフラックス供給源からのフラックスを前記先端部に押し出すための中空孔が内部に形成されている
ことを特徴とするフラックス転写ピン。
A flux transfer pin for transferring a flux to the depression as well as forming a depression in the protruding electrode by abutting a tip portion on a protruding electrode that joins a semiconductor device and an object to be joined,
A flux transfer pin, characterized in that a hollow hole is formed in the tip portion to push the flux from a flux supply source to the tip portion.
JP2005066539A 2005-03-10 2005-03-10 Semiconductor device bonding method Expired - Fee Related JP4586583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066539A JP4586583B2 (en) 2005-03-10 2005-03-10 Semiconductor device bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066539A JP4586583B2 (en) 2005-03-10 2005-03-10 Semiconductor device bonding method

Publications (2)

Publication Number Publication Date
JP2006253342A true JP2006253342A (en) 2006-09-21
JP4586583B2 JP4586583B2 (en) 2010-11-24

Family

ID=37093512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066539A Expired - Fee Related JP4586583B2 (en) 2005-03-10 2005-03-10 Semiconductor device bonding method

Country Status (1)

Country Link
JP (1) JP4586583B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056368A (en) * 2008-08-29 2010-03-11 Fuji Mach Mfg Co Ltd Transfer device and transfer method
JP2011216565A (en) * 2010-03-31 2011-10-27 Fujitsu Ltd Electronic component, electronic apparatus, and method for manufacturing them
US20120100668A1 (en) * 2010-10-21 2012-04-26 Samsung Electronics Co., Ltd. Method of manufacturing a flip chip package and apparatus to attach a semiconductor chip used in the method
JP2014078585A (en) * 2012-10-10 2014-05-01 Ntn Corp Coating unit, coating device and transfer coating method
JP2014167975A (en) * 2013-02-28 2014-09-11 Toshiba Corp Semiconductor production equipment and process of manufacturing the same
CN106409703A (en) * 2016-11-30 2017-02-15 广上科技(广州)有限公司 Special transfer nozzle for electronic component packaging and application thereof
WO2020250346A1 (en) * 2019-06-12 2020-12-17 株式会社Fuji Transfer device, component work machine, transfer amount measurement method, and transfer amount correction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0866650A (en) * 1994-08-30 1996-03-12 Matsushita Electric Ind Co Ltd Transfer head
JPH09232372A (en) * 1996-02-26 1997-09-05 Toshiba Microelectron Corp Manufacture of semiconductor device
JPH11330679A (en) * 1998-05-08 1999-11-30 Ueno Seiki Kk Flux coating head and coating apparatus with the same
JP2000357712A (en) * 1999-06-15 2000-12-26 Matsushita Electric Works Ltd Flip-chip mounting method
JP2002134896A (en) * 2000-10-19 2002-05-10 Ueno Seiki Kk Transfer pin for paste material transfer tool
JP3303109B2 (en) * 1993-05-31 2002-07-15 シチズン時計株式会社 Solder ball supply device and supply method
JP2004071873A (en) * 2002-08-07 2004-03-04 Nec Yamagata Ltd Flux coating device and manufacturing method of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303109B2 (en) * 1993-05-31 2002-07-15 シチズン時計株式会社 Solder ball supply device and supply method
JPH0866650A (en) * 1994-08-30 1996-03-12 Matsushita Electric Ind Co Ltd Transfer head
JPH09232372A (en) * 1996-02-26 1997-09-05 Toshiba Microelectron Corp Manufacture of semiconductor device
JPH11330679A (en) * 1998-05-08 1999-11-30 Ueno Seiki Kk Flux coating head and coating apparatus with the same
JP2000357712A (en) * 1999-06-15 2000-12-26 Matsushita Electric Works Ltd Flip-chip mounting method
JP2002134896A (en) * 2000-10-19 2002-05-10 Ueno Seiki Kk Transfer pin for paste material transfer tool
JP2004071873A (en) * 2002-08-07 2004-03-04 Nec Yamagata Ltd Flux coating device and manufacturing method of semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056368A (en) * 2008-08-29 2010-03-11 Fuji Mach Mfg Co Ltd Transfer device and transfer method
JP2011216565A (en) * 2010-03-31 2011-10-27 Fujitsu Ltd Electronic component, electronic apparatus, and method for manufacturing them
US20120100668A1 (en) * 2010-10-21 2012-04-26 Samsung Electronics Co., Ltd. Method of manufacturing a flip chip package and apparatus to attach a semiconductor chip used in the method
US8697494B2 (en) * 2010-10-21 2014-04-15 Samsung Electronics Co., Ltd Method of manufacturing a flip chip package and apparatus to attach a semiconductor chip used in the method
US20140196280A1 (en) * 2010-10-21 2014-07-17 Samsung Electronics Co., Ltd Method of manufacturing a flip chip package and apparatus to attach a semiconductor chip used in the method
JP2014078585A (en) * 2012-10-10 2014-05-01 Ntn Corp Coating unit, coating device and transfer coating method
JP2014167975A (en) * 2013-02-28 2014-09-11 Toshiba Corp Semiconductor production equipment and process of manufacturing the same
CN106409703A (en) * 2016-11-30 2017-02-15 广上科技(广州)有限公司 Special transfer nozzle for electronic component packaging and application thereof
WO2020250346A1 (en) * 2019-06-12 2020-12-17 株式会社Fuji Transfer device, component work machine, transfer amount measurement method, and transfer amount correction method
JP7177928B2 (en) 2019-06-12 2022-11-24 株式会社Fuji Transfer device, parts working machine, and transfer amount correction method

Also Published As

Publication number Publication date
JP4586583B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
JP3663938B2 (en) Flip chip mounting method
JP5160450B2 (en) Method of mounting semiconductor components on a circuit board
JP4618260B2 (en) Conductor pattern forming method, semiconductor device manufacturing method, and semiconductor device
JP4586583B2 (en) Semiconductor device bonding method
US20070090160A1 (en) Electronic Part Manufacturing Method
JP5645592B2 (en) Manufacturing method of semiconductor device
CN101252093B (en) Method of manufacturing an electronic component and an electronic device, the electronic component and electronic device
US20070273011A1 (en) Method for fabricating a module having an electrical contact-connection
JP5226937B2 (en) Method of mounting semiconductor chip on substrate using flip chip bonding technology
US6189772B1 (en) Method of forming a solder ball
JP2006202991A (en) Circuit board and its manufacturing method, and semiconductor package and its manufacturing method
JP5272922B2 (en) Semiconductor device and manufacturing method thereof
EP1916712A2 (en) Method for mounting electronic component on substrate and method for forming solder surface
JP2007005707A (en) Method and jig for jointing component
JP5097124B2 (en) Silicon device mounting substrate and mounting method
TWI546922B (en) Semiconductor device and manufacturing method thereof
US6852571B2 (en) Method of manufacturing stacked semiconductor device
JP2005101242A (en) Method for forming solder bump
JP2003218161A (en) Press jig for flattening solder bumps and method for manufacturing wiring board using the same
JP4934831B2 (en) Manufacturing method of semiconductor package
TWI257657B (en) Chip module having a flip chip mounted on a metal film (COM), a chip card and the metal film carrier
JPH11317469A (en) Conductive element array sheet and manufacture device thereof
KR20090069825A (en) Template for forming solder bump
JP2003243447A (en) Method of mounting semiconductor element
JP3645444B2 (en) Manufacturing method of semiconductor integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070824

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Effective date: 20100723

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20100823

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130917

LAPS Cancellation because of no payment of annual fees