JP2006252994A - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP2006252994A
JP2006252994A JP2005068780A JP2005068780A JP2006252994A JP 2006252994 A JP2006252994 A JP 2006252994A JP 2005068780 A JP2005068780 A JP 2005068780A JP 2005068780 A JP2005068780 A JP 2005068780A JP 2006252994 A JP2006252994 A JP 2006252994A
Authority
JP
Japan
Prior art keywords
sample
magnetic pole
objective lens
outer magnetic
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005068780A
Other languages
Japanese (ja)
Inventor
Yasuyuki Okano
野 康 之 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2005068780A priority Critical patent/JP2006252994A/en
Publication of JP2006252994A publication Critical patent/JP2006252994A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning electron microscope capable of providing a high-resolution image even if a sample is tilted when a surface of the sample is observed by a retarding method for applying a negative voltage to the sample. <P>SOLUTION: This scanning electron microscope is so structured that an insulation member 5d is arranged between an inner magnetic pole 5a and an outer magnetic pole 5b; and the inner magnetic pole 5a and the outer magnetic pole 5b are electrically insulated from each other. The sample 6 is mounted on a sample base 7 by being provided with electrical continuity; and the sample base 7 is mounted on a sample stage 8 by being electrically insulated from the sample stage 8. When a negative voltage is applied to the sample base 7 and the outer magnetic pole 5b by a power source 9, the sample base 7, the sample 6 and the outer magnetic pole 5b are set at the same potential; and the symmetry of an electric field with respect to the optical axis of an electron beam is kept even if the sample is tilted. Thereby, a high-resolution image can be observed even in an observation condition of a low-acceleration voltage with a simple structure and without carrying out complicated control. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、試料に電子線を照射して試料表面の観察を行う走査電子顕微鏡に関わり、特に試料に負電圧を印加するリターディング法により試料表面の観察を行う際に、試料を傾斜させても高分解能像を得ることを可能にする走査電子顕微鏡に関する。   The present invention relates to a scanning electron microscope that observes a sample surface by irradiating the sample with an electron beam, and in particular, when observing the sample surface by a retarding method in which a negative voltage is applied to the sample, the sample is tilted. Also relates to a scanning electron microscope that makes it possible to obtain a high-resolution image.

走査電子顕微鏡は、電子銃から放射され、加速した電子線を細く絞って試料表面に照射し、試料から発生する二次電子、反射電子などの信号を検出して、試料表面の観察を行う装置である。試料のチャージアップや損傷を低減するために、試料に照射する電子線のエネルギーを小さくすることが有効であり、生体試料、高分子材料をはじめ、特に近年の半導体試料などの観察においては、電子線の加速電圧が1kV以下の極めて低い条件で観察することも多い。   A scanning electron microscope is a device that observes the surface of a sample by detecting a signal of secondary electrons, reflected electrons, etc. generated from the sample by squeezing and irradiating the surface of the sample with an electron beam emitted from an electron gun. It is. In order to reduce the charge-up and damage of the sample, it is effective to reduce the energy of the electron beam applied to the sample. In the observation of biological samples, polymer materials, especially semiconductor samples in recent years, electrons In many cases, the observation is performed under an extremely low condition where the line acceleration voltage is 1 kV or less.

ところで、走査電子顕微鏡は、電子線を細く絞るために電子レンズを用いるが、電子レンズの収差は電子線のエネルギーが低いほど悪くなる傾向にあり、電子線を細く絞ることが困難になる。この問題を避けるために、電子線のエネルギーを比較的高く保ったまま電子線が対物レンズを通過するようにし、試料に負の電位を印加して、試料直前で電子線を減速させて試料に照射させる方法が実用化されている。このようにして、実質的に低加速電圧で高分解能の像観察を行う方法はリターディング法と呼ばれている。   By the way, the scanning electron microscope uses an electron lens to narrow down the electron beam, but the aberration of the electron lens tends to be worse as the energy of the electron beam is lower, and it is difficult to narrow down the electron beam. In order to avoid this problem, the electron beam passes through the objective lens while keeping the energy of the electron beam relatively high, a negative potential is applied to the sample, and the electron beam is decelerated immediately before the sample to apply to the sample. An irradiation method has been put into practical use. In this way, a method of performing high-resolution image observation with a substantially low acceleration voltage is called a retarding method.

図1に、リターディング法で観察を行う走査電子顕微鏡の概略構成例を示す。
図1において、鏡筒1の内部が断面図で示されている。電子銃2から放射された電子線EBは、集束レンズ3、対物レンズ5により細く集束されて試料6の表面に照射される。試料表面から発生した二次電子は、対物レンズ5の軸上磁界に導かれて対物レンズ5の上方に達し、二次電子検出器10で検出される。偏向コイル4により電子線EBを二次元的に走査することができ、二次電子検出器10で検出された二次電子の信号は、画像処理装置(図示せず)を経て表示装置(図示せず)に送られて二次電子像が表示される。試料6を支持する試料台7は試料ステージ8に載置される。試料ステージ8は試料ステージ駆動装置(図示せず)により、試料6を水平・垂直移動及び傾斜、回転させることができる。
FIG. 1 shows a schematic configuration example of a scanning electron microscope that performs observation by a retarding method.
In FIG. 1, the inside of the lens barrel 1 is shown in a sectional view. The electron beam EB emitted from the electron gun 2 is finely focused by the focusing lens 3 and the objective lens 5 and irradiated onto the surface of the sample 6. Secondary electrons generated from the sample surface are guided by the on-axis magnetic field of the objective lens 5, reach the upper side of the objective lens 5, and are detected by the secondary electron detector 10. The electron beam EB can be scanned two-dimensionally by the deflection coil 4, and the secondary electron signal detected by the secondary electron detector 10 passes through an image processing device (not shown) and a display device (not shown). The secondary electron image is displayed. A sample stage 7 that supports the sample 6 is placed on a sample stage 8. The sample stage 8 can horizontally / vertically move, tilt and rotate the sample 6 by a sample stage driving device (not shown).

試料台7は試料ステージ8と電気的に絶縁され、試料6には試料台7を介して、電源9により負電位が印加されている。このように試料に負電位を印加することにより、電子レンズの収差低減、検出信号の増加、試料の極表面からの情報取得など、試料を観察する上で多くの利点が得られる。   The sample stage 7 is electrically insulated from the sample stage 8, and a negative potential is applied to the sample 6 from the power source 9 via the sample stage 7. By applying a negative potential to the sample in this way, many advantages can be obtained in observing the sample, such as reducing aberration of the electron lens, increasing the detection signal, and acquiring information from the extreme surface of the sample.

リターディング法では、対物レンズと試料との間に電子線を減速させるための電界を生じさせているが、図2(a)に示すように試料を傾斜させない場合、接地電位の対物レンズ5と負電位が印加された試料6の間に生じる電界(等電位線で表す)は、電子線の光軸(破線で表す)に対して対称性が保たれる。しかし、図2(b)に示すように試料を傾斜させると、電界の対称性が失われて電子線が曲げられるため、電子線の非点収差が増大して高分解能観察が困難となる。こうした問題を解決する方法が、特許文献1の特許第3474082号公報、特許文献2の特開2004−87455号公報等に開示されている。   In the retarding method, an electric field for decelerating the electron beam is generated between the objective lens and the sample. When the sample is not tilted as shown in FIG. The electric field (represented by equipotential lines) generated between the samples 6 to which a negative potential is applied maintains symmetry with respect to the optical axis of the electron beam (represented by a broken line). However, when the sample is tilted as shown in FIG. 2B, the symmetry of the electric field is lost and the electron beam is bent, so that the astigmatism of the electron beam increases and high-resolution observation becomes difficult. Methods for solving such problems are disclosed in Japanese Patent No. 3447482 of Patent Document 1, Japanese Patent Application Laid-Open No. 2004-87455 of Patent Document 2, and the like.

特許第3474082号公報Japanese Patent No. 3474082 特開2004−87455号公報JP 2004-87455 A

上述のように、リターディング法で試料を傾斜させて観察を行う場合の問題を解決するために、特許文献1の特許第3474082号公報においては、対物レンズと試料との間に電極を設け、試料と該電極の電圧を同電位とすることで、試料傾斜に伴う非対称電界が発生しないようにする技術が開示されている。しかし、対物レンズと試料の間に大きな試料を傾斜させても干渉しないように新たな電極を設けるため、電極の大きさや形状に制限があり、充分な効果を上げられないという問題がある。また、試料を傾斜させない場合に、試料をできるだけ対物レンズに近づけて、より収差の少ない高分解能象を得る、ということができないという問題もある。   As described above, in order to solve the problem in the case where observation is performed by tilting the sample by the retarding method, in Japanese Patent No. 3474482 of Patent Document 1, an electrode is provided between the objective lens and the sample, A technique is disclosed in which the voltage of the sample and the electrode is set to the same potential so that an asymmetric electric field due to the sample tilt is not generated. However, since a new electrode is provided so as not to interfere even if a large sample is tilted between the objective lens and the sample, there is a problem that the size and shape of the electrode are limited and a sufficient effect cannot be obtained. In addition, when the sample is not tilted, there is a problem that it is impossible to obtain a high-resolution elephant with less aberration by bringing the sample as close to the objective lens as possible.

また、特許文献2の特開2004−87455号公報においては、対物レンズ内に収納可能な筒状のシールド電極を設け、該シールド電極は対物レンズの磁極と同等電位を与え、該シールド電極の先端に絶縁的に取り付けられる先端電極を設け、該先端電極には試料と同等の電位を与えるようにした技術が開示されている。また、該シールド電極を対物レンズ内に収納する代わりに、電子線通路から退避させる技術も開示されている。これによれば、試料を傾斜させても常に電子線の光軸に対する対称性が保たれ、必要に応じて試料を対物レンズに近づけることも可能である。しかし、これを可能にするためには、試料の傾斜角度や対物レンズと試料の距離に応じて、該シールド電極の位置を正確に制御する必要があるので、操作が煩雑になるという問題がある。また、該シールド電極の昇降機構または水平方向の移動機構を狭い空間内に組み込む必要があるので、装置の構造が複雑になるため技術的に解決する問題が多く、さらには装置の製造コストが高くなるという問題もある。   Also, in Japanese Patent Application Laid-Open No. 2004-87455 of Patent Document 2, a cylindrical shield electrode that can be housed in an objective lens is provided, the shield electrode gives an electric potential equivalent to the magnetic pole of the objective lens, and the tip of the shield electrode There is disclosed a technique in which a tip electrode which is attached insulatively is provided and a potential equivalent to that of a sample is applied to the tip electrode. Also disclosed is a technique for retracting the shield electrode from the electron beam path instead of housing it in the objective lens. According to this, the symmetry with respect to the optical axis of the electron beam is always maintained even when the sample is tilted, and the sample can be brought closer to the objective lens as necessary. However, in order to make this possible, it is necessary to accurately control the position of the shield electrode in accordance with the inclination angle of the sample and the distance between the objective lens and the sample, which causes a problem that the operation becomes complicated. . In addition, since it is necessary to incorporate the lifting / lowering mechanism of the shield electrode or the horizontal movement mechanism in a narrow space, the structure of the apparatus becomes complicated, so there are many problems to be solved technically, and the manufacturing cost of the apparatus is high. There is also a problem of becoming.

本発明は、上記の問題に鑑みてなされたものであって、装置の構造が簡単で、煩雑な操作を必要とせずに、リターディング法で試料を傾斜させて高分解能の観察を行うことが可能な走査電子顕微鏡の提供を目的としている。   The present invention has been made in view of the above problems, and the structure of the apparatus is simple, and it is possible to perform high-resolution observation by tilting a sample by the retarding method without requiring complicated operations. The aim is to provide a possible scanning electron microscope.

上記に問題を解決するため、本発明は、
電子銃と、前記電子銃から発生した電子線を集束して試料に照射するための対物レンズと、試料に負電圧を印加するための電源と、前記試料を電子線に対して傾斜させる手段とを備えた電子顕微鏡において、
前記対物レンズの磁極は、電子線通路に近い側の内側磁極に対して前記内側磁極を外周から囲む外側磁極が電気的に絶縁されるように構成すると共に、前記負電圧を印加するための電源により、前記対物レンズの外側磁極に前記試料と同等の負電圧を印加するようにしたことを特徴とする。
In order to solve the above problem, the present invention provides:
An electron gun, an objective lens for focusing and irradiating the sample with an electron beam generated from the electron gun, a power source for applying a negative voltage to the sample, and means for tilting the sample with respect to the electron beam In an electron microscope equipped with
The magnetic pole of the objective lens is configured such that the outer magnetic pole surrounding the inner magnetic pole from the outer periphery is electrically insulated from the inner magnetic pole on the side close to the electron beam path, and the power supply for applying the negative voltage Thus, a negative voltage equivalent to that of the sample is applied to the outer magnetic pole of the objective lens.

また本発明は、前記試料に負電圧を印加するための電源により、前記対物レンズの外側磁極に負電圧を印加するようにしたことを特徴とする。   The present invention is characterized in that a negative voltage is applied to the outer magnetic pole of the objective lens by a power source for applying a negative voltage to the sample.

対物レンズの電子線通路に近い側の内側磁極に対して外周に配置された外側磁極を電気的に絶縁するように構成すると共に、外側磁極に試料と同等の負電圧を印加するようにしたので、
リターディング法で試料を傾斜させても、電子線の光軸に対する対物レンズと試料との間の電界の対称性が保たれ、電子線の非点収差の増大を防止できる。そのため、簡単な構造で且つ複雑な制御を行うことなく、低加速電圧の観察条件においても高分解能の像観察が可能となった。
Since the outer magnetic pole arranged on the outer periphery is electrically insulated from the inner magnetic pole near the electron beam path of the objective lens, a negative voltage equivalent to the sample is applied to the outer magnetic pole. ,
Even if the sample is tilted by the retarding method, the symmetry of the electric field between the objective lens and the sample with respect to the optical axis of the electron beam is maintained, and an increase in astigmatism of the electron beam can be prevented. For this reason, it is possible to observe a high-resolution image even under observation conditions of a low acceleration voltage without performing complicated control with a simple structure.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。図3は、本発明に基づく走査顕微鏡のセミインレンズ型対物レンズ周辺の概略構成例を示した図である。セミインレンズ型対物レンズは、内側磁極と外側磁極の下端面の下方に漏れるレンズ磁界を形成し、電子線を集束して試料に照射するようにした対物レンズである。なお、各説明図中の各構成要素について、説明の重複を避けるため、同一または類似の動作を行うものには共通の符号を付している。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. FIG. 3 is a diagram showing a schematic configuration example around the semi-in-lens objective lens of the scanning microscope according to the present invention. The semi-in-lens type objective lens is an objective lens that forms a lens magnetic field that leaks below the lower end surfaces of the inner magnetic pole and the outer magnetic pole, focuses the electron beam, and irradiates the sample. In addition, about the component in each explanatory drawing, in order to avoid duplication of description, the same code | symbol is attached | subjected to what performs the same or similar operation | movement.

図3中の対物レンズ5は、内側磁極5a、外側磁極5b、励磁コイル5cと絶縁部材5dとで構成され、電子線の光軸を中心として円筒状に配置されており、その断面が示されている。従来のセミインレンズ型対物レンズの磁極は一体で作られているが、図3に示すように、本発明のセミインレンズ型対物レンズの磁極は、内側磁極5aと外側磁極5bの間に絶縁部材5dが配置され、内側磁極5aと外側磁極5bとが電気的に絶縁される構造となっている。試料6は試料台7に電気的導通を持たせて取り付けられ、試料台7は試料ステージ8と電気的に絶縁されて試料ステージ8に載置される。試料台7と外側磁極5bに電源9により負電位が印加されると、試料台7及び試料6と外側磁極5bは同電位となる。   The objective lens 5 in FIG. 3 is composed of an inner magnetic pole 5a, an outer magnetic pole 5b, an exciting coil 5c, and an insulating member 5d, and is arranged in a cylindrical shape around the optical axis of the electron beam, and its cross section is shown. ing. Although the magnetic poles of the conventional semi-in lens objective lens are integrally formed, as shown in FIG. 3, the magnetic poles of the semi-in lens objective lens of the present invention are insulated between the inner magnetic pole 5a and the outer magnetic pole 5b. The member 5d is disposed, and the inner magnetic pole 5a and the outer magnetic pole 5b are electrically insulated. The sample 6 is attached to the sample stage 7 with electrical continuity, and the sample stage 7 is placed on the sample stage 8 while being electrically insulated from the sample stage 8. When a negative potential is applied to the sample stage 7 and the outer magnetic pole 5b by the power source 9, the sample stage 7, the sample 6 and the outer magnetic pole 5b have the same potential.

図4は、上記のセミインレンズ型対物レンズで試料を観察する時に、試料台7と外側磁極5bに負電位を印加した場合の磁力線と等電位線の様子を模式的に表したものである。内側磁極5aと外側磁極5bによって作られる磁界の磁束密度は、内側磁極5aと外側磁極5bの先端部に集中して高くなり、電子線EBを強く集束する。一方、磁界に重畳して内側磁極5aと外側磁極5b及び試料6との間に生じている電界が、電子線EBに減速作用をもたらす。   FIG. 4 schematically shows magnetic field lines and equipotential lines when a negative potential is applied to the sample stage 7 and the outer magnetic pole 5b when the sample is observed with the semi-in-lens objective lens. . The magnetic flux density of the magnetic field generated by the inner magnetic pole 5a and the outer magnetic pole 5b is concentrated and increased at the tips of the inner magnetic pole 5a and the outer magnetic pole 5b, and the electron beam EB is strongly focused. On the other hand, the electric field generated between the inner magnetic pole 5a, the outer magnetic pole 5b, and the sample 6 superimposed on the magnetic field brings about a deceleration action on the electron beam EB.

図5は、上記のセミインレンズ型対物レンズについて、試料を傾斜しない状態で、試料台7と外側磁極5bに負電位を印加した場合の等電位線の様子をシミュレーション計算により求めたデータである。電子線EBが通過する光軸上において電位が急激に変化する場所(等電位線が密集している所)は、内側磁極5aと外側磁極5bの先端より上方の対物レンズ内であることがわかる。当然ながらこの場合の電界は光軸に対して対称となっている。   FIG. 5 shows data obtained by simulation calculation of the state of equipotential lines when a negative potential is applied to the sample stage 7 and the outer magnetic pole 5b without tilting the sample with respect to the semi-in-lens objective lens. . It can be seen that the place where the potential rapidly changes on the optical axis through which the electron beam EB passes (the place where the equipotential lines are concentrated) is in the objective lens above the tips of the inner magnetic pole 5a and the outer magnetic pole 5b. . Of course, the electric field in this case is symmetric with respect to the optical axis.

図6は、上記のセミインレンズ型対物レンズについて、試料を傾斜させた状態で、試料台7と外側磁極5bに負電位を印加した場合の等電位線の様子をシミュレーション計算により求めたデータである。この場合にも、電子線EBが通過する光軸上において電位が急激に変化する場所(等電位線が密集している所)は、試料を傾斜させない時と大きな変化は見られず、光軸に対する電界の対称性が保たれていることが分かる。   FIG. 6 is data obtained by simulation calculation of the state of equipotential lines when a negative potential is applied to the sample stage 7 and the outer magnetic pole 5b with the sample inclined with respect to the semi-in-lens objective lens. is there. Also in this case, the place where the potential changes rapidly on the optical axis through which the electron beam EB passes (the place where equipotential lines are densely packed) is not greatly changed when the sample is not tilted. It can be seen that the symmetry of the electric field with respect to is maintained.

以上のように、本発明の実施の形態を、セミインレンズ型対物レンズを例にとって説明したが、本発明は、セミインレンズ型対物レンズを搭載した走査電子顕微鏡に限定されるわけではない。例えば、図7に示すアウトレンズ型対物レンズを用いる走査電子顕微鏡においても実施することができる。アウトレンズ型対物レンズは分析機能を有する分析走査電子顕微鏡をはじめ多くの走査電子顕微鏡に汎用的に用いられている対物レンズである。   As described above, the embodiments of the present invention have been described by taking the semi-in lens objective lens as an example, but the present invention is not limited to the scanning electron microscope equipped with the semi-in lens objective lens. For example, it can also be implemented in a scanning electron microscope using an out-lens objective lens shown in FIG. The out-lens objective lens is an objective lens that is widely used in many scanning electron microscopes including an analytical scanning electron microscope having an analysis function.

図7において、対物レンズ5は、内側磁極5a、外側磁極5b、励磁コイル5cと絶縁部材5dとで構成され、電子線の光軸を中心として円筒状に配置されており、その断面が示されている。従来のアウトレンズ型対物レンズの磁極は一体で作られているが、図7に示すように、本発明のアウトレンズ型対物レンズの磁極は、内側磁極5aと外側磁極5bの間に絶縁部材5dが配置され、内側磁極5aと外側磁極5bとが電気的に絶縁される構造となっている。試料6は試料台7に電気的導通を持たせて取り付けられ、試料台7は試料ステージ8と電気的に絶縁されて試料ステージ8に載置される。試料台7と外側磁極5bに電源9により負電位が印加されると、試料台7及び試料6と外側磁極5bは同電位となる。   In FIG. 7, the objective lens 5 is composed of an inner magnetic pole 5a, an outer magnetic pole 5b, an exciting coil 5c, and an insulating member 5d, and is arranged in a cylindrical shape centering on the optical axis of the electron beam. ing. Although the magnetic poles of the conventional out-lens objective lens are integrally formed, as shown in FIG. 7, the magnetic pole of the out-lens objective lens of the present invention is an insulating member 5d between the inner magnetic pole 5a and the outer magnetic pole 5b. Is arranged, and the inner magnetic pole 5a and the outer magnetic pole 5b are electrically insulated. The sample 6 is attached to the sample stage 7 with electrical continuity, and the sample stage 7 is placed on the sample stage 8 while being electrically insulated from the sample stage 8. When a negative potential is applied to the sample stage 7 and the outer magnetic pole 5b by the power source 9, the sample stage 7, the sample 6 and the outer magnetic pole 5b have the same potential.

以上説明したように、対物レンズの外側磁極と試料とに同等の負電圧を印加することによって、装置の構造が簡単で、煩雑な操作を必要とせずに、リターディング法で試料を観察する時、試料を傾斜させても高分解の像観察が可能となった。   As described above, by applying the same negative voltage to the outer magnetic pole of the objective lens and the sample, the structure of the device is simple, and when the sample is observed by the retarding method without requiring complicated operations. Even when the sample is tilted, high resolution image observation is possible.


リターディング法で観察を行う従来の走査電子顕微鏡の概略構成例を示す図。The figure which shows the schematic structural example of the conventional scanning electron microscope which observes by the retarding method. 試料に負電位を印加して傾斜観察すると電子線が曲がることを説明するための図。The figure for demonstrating that an electron beam bends when a negative electric potential is applied to a sample and it inclines and observes. 本発明を実施する走査電子顕微鏡のセミインレンズ型対物レンズの概略構成例を示す図。The figure which shows the schematic structural example of the semi-in-lens type | mold objective lens of the scanning electron microscope which implements this invention. セミインレンズ型対物レンズで試料観察を行う場合、負電位を印加した時の磁力線と等電位線の様子を示す模式図。The schematic diagram which shows the mode of a magnetic force line and an equipotential line when a negative electric potential is applied when performing sample observation with a semi-in-lens type objective lens. セミインレンズ型対物レンズで試料観察を行う場合、試料を傾斜しない時の等電位線の様子をシミュレーション計算で求めたデータを示す図。The figure which shows the data which calculated | required the state of the equipotential line when not inclining a sample by simulation calculation, when observing a sample with a semi-in-lens type objective lens. セミインレンズ型対物レンズで試料観察を行う場合、試料を傾斜した時の等電位線の様子をシミュレーション計算で求めたデータを示す図。The figure which shows the data which calculated | required the mode of the equipotential line when inclining a sample when performing sample observation with a semi-in lens type | mold objective lens by simulation calculation. 本発明を実施する走査電子顕微鏡のアウトレンズ型対物レンズの概略構成例を示す図。The figure which shows the schematic structural example of the out lens type | mold objective lens of the scanning electron microscope which implements this invention.

符号の説明Explanation of symbols

(同一または類似の動作を行うものには共通の符号を付す。)
EB 電子線
1 鏡筒 2 電子銃
3 集束レンズ 4 偏向コイル
5 対物レンズ 5a 内側磁極
5b 外側磁極 5c 励磁コイル
5d 絶縁部材 6 試料
7 試料台 8 試料ステージ
9 電源 10 二次電子検出器
(Those that perform the same or similar operations are denoted by a common reference.)
EB electron beam 1 lens tube 2 electron gun 3 focusing lens 4 deflection coil 5 objective lens 5a inner magnetic pole 5b outer magnetic pole 5c exciting coil 5d insulating member 6 sample 7 sample stage 8 sample stage 9 power supply 10 secondary electron detector

Claims (2)

電子銃と、前記電子銃から発生した電子線を集束して試料に照射するための対物レンズと、試料に負電圧を印加するための電源と、前記試料を電子線に対して傾斜させる手段とを備えた電子顕微鏡において、
前記対物レンズの磁極は、電子線通路に近い側の内側磁極に対して前記内側磁極を外周から囲む外側磁極を電気的に絶縁されるように構成すると共に、前記対物レンズの外側磁極に前記試料と同等の負電圧を印加するようにした、ことを特徴とする走査電子顕微鏡。
An electron gun, an objective lens for focusing and irradiating the sample with an electron beam generated from the electron gun, a power source for applying a negative voltage to the sample, and means for tilting the sample with respect to the electron beam In an electron microscope equipped with
The magnetic pole of the objective lens is configured such that the outer magnetic pole surrounding the inner magnetic pole from the outer periphery is electrically insulated from the inner magnetic pole on the side close to the electron beam path, and the sample is connected to the outer magnetic pole of the objective lens. A scanning electron microscope characterized in that a negative voltage equivalent to the above is applied.
前記試料に負電圧を印加するための電源により、前記対物レンズの外側磁極に負電圧を印加するようにした、ことを特徴とする請求項1に記載の走査電子顕微鏡。

The scanning electron microscope according to claim 1, wherein a negative voltage is applied to an outer magnetic pole of the objective lens by a power source for applying a negative voltage to the sample.

JP2005068780A 2005-03-11 2005-03-11 Scanning electron microscope Withdrawn JP2006252994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068780A JP2006252994A (en) 2005-03-11 2005-03-11 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068780A JP2006252994A (en) 2005-03-11 2005-03-11 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JP2006252994A true JP2006252994A (en) 2006-09-21

Family

ID=37093246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068780A Withdrawn JP2006252994A (en) 2005-03-11 2005-03-11 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2006252994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107189A2 (en) * 2007-03-06 2008-09-12 Carl Zeiss Nts Gmbh Objective lens
EP2211368A1 (en) * 2005-11-28 2010-07-28 Carl Zeiss SMT AG Particle-optical component
JP2014511550A (en) * 2011-03-02 2014-05-15 ガタン インコーポレイテッド A microtome in a slow field scanning electron microscope using a movable knife and a slow field scanning electron microscope including the microtome

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211368A1 (en) * 2005-11-28 2010-07-28 Carl Zeiss SMT AG Particle-optical component
US10622184B2 (en) 2005-11-28 2020-04-14 Carl Zeiss Microscopy Gmbh Objective lens arrangement usable in particle-optical systems
US11527379B2 (en) 2005-11-28 2022-12-13 Carl Zeiss Microscopy Gmbh Objective lens arrangement usable in particle-optical systems
WO2008107189A2 (en) * 2007-03-06 2008-09-12 Carl Zeiss Nts Gmbh Objective lens
WO2008107189A3 (en) * 2007-03-06 2009-03-05 Zeiss Carl Nts Gmbh Objective lens
US8178849B2 (en) 2007-03-06 2012-05-15 Carl Zeiss Nts Gmbh Objective lens
US8362443B2 (en) 2007-03-06 2013-01-29 Carl Zeiss Microscopy Gmbh Objective lens
JP2014511550A (en) * 2011-03-02 2014-05-15 ガタン インコーポレイテッド A microtome in a slow field scanning electron microscope using a movable knife and a slow field scanning electron microscope including the microtome

Similar Documents

Publication Publication Date Title
JP5395118B2 (en) Objective lens for electron microscope system and electron microscope system
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
JP3786875B2 (en) Objective lens for charged particle beam devices
JP5850984B2 (en) Method for imaging a sample in a charged particle device
JP5791060B2 (en) Electron beam wafer inspection system and operating method thereof
JP4732917B2 (en) Scanning electron microscope and defect detection apparatus
JP4828433B2 (en) Focusing lens for charged particle beam
US9455120B2 (en) Particle beam device and method for processing and/or analyzing a sample
JPH0536371A (en) Corpuscular ray device
JP2014220241A5 (en)
KR100384727B1 (en) Scanning electron microscope and sample observation method using it
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
JP6346016B2 (en) Radiation analyzer
US10636615B2 (en) Composite beam apparatus
JP2001185066A (en) Electron beam device
JP2002042713A (en) Scanning electron microscope provided with detection part in objective lens
JP2018147764A (en) Scanning electron microscope
KR20120085303A (en) Scanning electron microscope
JP2006309952A (en) Composite charged particle beam device and method for determining irradiation position in it
JP2006252994A (en) Scanning electron microscope
CN111033677B (en) Charged particle beam device
JPH11329318A (en) Charged particle device
JP2008210702A (en) Charged particle beam device and applied voltage control method
JP2011222426A (en) Composite charged particle beam device
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513