JP2006251350A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material Download PDF

Info

Publication number
JP2006251350A
JP2006251350A JP2005067580A JP2005067580A JP2006251350A JP 2006251350 A JP2006251350 A JP 2006251350A JP 2005067580 A JP2005067580 A JP 2005067580A JP 2005067580 A JP2005067580 A JP 2005067580A JP 2006251350 A JP2006251350 A JP 2006251350A
Authority
JP
Japan
Prior art keywords
group
ring
general formula
substituent
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005067580A
Other languages
Japanese (ja)
Inventor
Shuntaro Mataga
駿太郎 又賀
Tsutomu Ishii
努 石井
Muneyuki Shigeiwa
統之 茂岩
Shuichi Maeda
修一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsubishi Chemical Corp
Original Assignee
Kyushu University NUC
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsubishi Chemical Corp filed Critical Kyushu University NUC
Priority to JP2005067580A priority Critical patent/JP2006251350A/en
Publication of JP2006251350A publication Critical patent/JP2006251350A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic nonlinear optical material easily inducing two-photon absorption and having high light emitting efficiency with a large Stokes shift value. <P>SOLUTION: The organic nonlinear optical material contains a compound represented by general formula (I). In formula (I), T denotes a trivalent aromatic cyclic group or a structure represented by general formula (II) (wherein N denotes a nitrogen atom and Ar<SP>10</SP>to Ar<SP>12</SP>each independently denotes a bivalent aromatic cyclic group which may have a substituent), Ar<SP>1</SP>to Ar<SP>3</SP>each independently denotes a bivalent aromatic cyclic group which may have a substituent, Ar<SP>4</SP>to Ar<SP>6</SP>each independently denotes a bivalent heterocyclic group represented by general formula (III) (wherein a ring A and a ring Z denote condensed rings having two carbon atoms in common and each may have a substituent) and Ar<SP>7</SP>to Ar<SP>9</SP>each independently denotes a monovalent aromatic cyclic group which may have a substituent. T and Ar<SP>1</SP>to Ar<SP>3</SP>are bonded in the state that conjugated systems are joined. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非線形光学特性を持つ有機材料に関し、詳しくは多光子吸収断面積が大きい有機波長変換材料に関し、さらに詳しくは2光子吸収断面積が大きく、2光子吸収により励起した化合物からの発光効率が大きい有機非線形光学材料に関する。   The present invention relates to an organic material having nonlinear optical characteristics, and more particularly to an organic wavelength conversion material having a large multiphoton absorption cross-section, and more specifically, a large two-photon absorption cross-section and a luminous efficiency from a compound excited by two-photon absorption. It relates to large organic nonlinear optical materials.

非線形効果とは強い光と物質との相互作用に基づく様々な現象であり、具体的な現象としては光高調波発生と光混合、誘導散乱、光学定数の光強度変化、多光子吸収等が挙げられる。近年、2次の非線形光学材料として2−メチル−4−ニトロアニリンをはじめとする有機化合物が、それまで使用されていたLiNbO3、LiTaO3などを遥かに凌ぐ非線形光学定数を示すことが報告され、これにより有機非線形光学材料が注目され、盛んに研究が行われるようになった。 Non-linear effects are various phenomena based on the interaction between strong light and matter, and specific phenomena include optical harmonic generation and light mixing, stimulated scattering, light intensity change of optical constants, multiphoton absorption, etc. It is done. In recent years, organic compounds such as 2-methyl-4-nitroaniline as a second-order nonlinear optical material have been reported to exhibit nonlinear optical constants far exceeding those of LiNbO 3 , LiTaO 3, etc. that have been used so far. As a result, organic nonlinear optical materials have attracted attention, and research has been actively conducted.

有機化合物の有する非線形光学特性の中でも、特に2光子吸収現象が注目されている。2光子吸収とは化合物が2つの光子を吸収して基底状態から励起状態へ遷移する現象であり、一光子励起波長の2倍程度の波長の光を用いて、2個の光子を1つの分子に当てることにより励起させることができる。1個の分子に同時に2個の光子が当たる確率は、光子密度の2乗に比例し、試料上でレーザー光が焦点を結ぶとき焦点面から離れるにつれ、光子密度は距離の2乗に比例して減少する。従って、2光子吸収の起こる確率は焦点面から離れるに伴い距離の4乗に比例して減少していく。この現象を利用して、光メモリー、2光子造形、2光子フォトダイナミックセラピー等の分野で2光子吸収の応用が期待されている。また、2光子吸収した励起状態から輻射失活過程において発光する2光子発光は、入射した光の波長より短波長の光(=エネルギーの高い光)を取り出せるため、光変換材料、光増感剤としても研究がなされている。   Among the nonlinear optical properties possessed by organic compounds, the two-photon absorption phenomenon has attracted particular attention. Two-photon absorption is a phenomenon in which a compound absorbs two photons and transitions from a ground state to an excited state. Using light having a wavelength about twice the one-photon excitation wavelength, two photons are converted into one molecule. It can be excited by applying to. The probability that two photons hit one molecule at a time is proportional to the square of the photon density, and as the laser beam is focused on the sample, the photon density is proportional to the square of the distance as it moves away from the focal plane. Decrease. Accordingly, the probability that two-photon absorption occurs decreases as the distance from the focal plane increases in proportion to the fourth power of the distance. Utilizing this phenomenon, application of two-photon absorption is expected in the fields of optical memory, two-photon modeling, two-photon photodynamic therapy, and the like. In addition, two-photon emission that emits light in a radiation deactivation process from an excited state that has been absorbed by two photons can extract light having a wavelength shorter than the wavelength of the incident light (= light with high energy). As well as research.

2光子吸収を種々の分野で応用する場合において重要となるのが、2光子吸収の起こりやすさを示す2光子吸収断面積であり、近年、高い二光子吸収断面積を持つ化合物がChem. Mater.,10(7),1863(1998)、Tetrahedron Lett.,44,8121(2003)、Polymer 44,6851(2003)、Chem.Commun.,2003,2168で報告されている。しかしながら、これらの化合物は線形最大吸収波長と蛍光波長との差(ストークスシフト)が小さい(例えば、Chem. Mater.,10(7),1863(1998)のTable1に記載の化合物のストークスシフトは最大で118である。)ために、2光子励起により発生した蛍光の再吸収が起こる欠点があった。   What is important in the application of two-photon absorption in various fields is the two-photon absorption cross section indicating the likelihood of two-photon absorption. In recent years, compounds with a high two-photon absorption cross section have been developed by Chem. Mater. ., 10 (7), 1863 (1998), Tetrahedron Lett., 44, 8121 (2003), Polymer 44, 6851 (2003), Chem. Commun., 2003, 2168. However, these compounds have a small difference (Stokes shift) between the linear maximum absorption wavelength and the fluorescence wavelength (for example, the Stokes shift of the compounds described in Table 1 of Chem. Mater., 10 (7), 1863 (1998) is the maximum). Therefore, there is a drawback that reabsorption of fluorescence generated by two-photon excitation occurs.

上述の如く、2光子吸収の応用のためには、2光子吸収断面積が大きいことが前提であるが、更に、2光子励起で発生した蛍光を効率的に利用するためには、ストークスシフトが大きい2光子吸収化合物であることが必要である。2光子吸収断面積とストークスシフトがともに大きい物質としては、非特許文献5に、ベンゾチアゾール環等に共役系を介して芳香族炭化水素環又は芳香属性を有する芳香環を結合させた化合物が提案されている。しかし、Chem.Commun.,2004,2342に提案されている物質は、ストークスシフトこそ125nm以上を達成しているものの、色素AF50の2光子吸収断面積を45GMとしたときの2光子吸収断面積は、2光子吸収材料として未だ十分ではなかった。
Chem. Mater.,10(7),1863(1998) Tetrahedron Lett.,44,8121(2003) Polymer 44,6851(2003) Chem.Commun.,2003,2168 Chem.Commun.,2004,2342
As described above, for application of two-photon absorption, it is premised that the two-photon absorption cross section is large. However, in order to efficiently use fluorescence generated by two-photon excitation, Stokes shift is required. It must be a large two-photon absorbing compound. As a substance having a large two-photon absorption cross section and a large Stokes shift, Non-Patent Document 5 proposes a compound in which an aromatic hydrocarbon ring or an aromatic ring having an aromatic attribute is bonded to a benzothiazole ring or the like via a conjugated system. Has been. However, although the substance proposed in Chem. Commun., 2004, 2342 achieves a Stokes shift of 125 nm or more, the two-photon absorption cross-section when the two-photon absorption cross-section of the dye AF50 is 45 GM is It has not been sufficient as a two-photon absorption material.
Chem. Mater., 10 (7), 1863 (1998) Tetrahedron Lett., 44,8121 (2003) Polymer 44,6851 (2003) Chem.Commun., 2003,2168 Chem. Commun., 2004, 2342

従って、本発明は、2光子吸収断面積が大きく、2光子吸収を起こし易く、しかもストークスシフトが大きく、2光子励起により発生した蛍光を効率的に取り出すことができる高発光効率の有機非線形光学材料を提供することを目的とする。   Therefore, the present invention is a high-efficiency organic nonlinear optical material that has a large two-photon absorption cross-section, is likely to cause two-photon absorption, has a large Stokes shift, and can efficiently extract fluorescence generated by two-photon excitation. The purpose is to provide.

本発明者らは、鋭意検討の結果、特定の化合物を構成成分の少なくとも一部として含有する材料であれば、上記課題を解決できることを見出し、本発明を完成した。
即ち、本発明は以下を要旨とする。
As a result of intensive studies, the present inventors have found that the above problems can be solved if the material contains a specific compound as at least a part of the constituent components, and the present invention has been completed.
That is, the gist of the present invention is as follows.

(1) 下記一般式(I)で表される化合物を構成成分の少なくとも一部として含有することを特徴とする有機非線形光学材料。

Figure 2006251350
[式(I)中、Tは3価の芳香環基又は、下記一般式(II)の構造を表し、
Ar1〜Ar3は各々独立に置換基を有していてもよい2価の芳香環基を表し、
Ar4〜Ar6は各々独立に下記一般式(III)で表される2価の複素環基を表し、
Ar7〜Ar9は各々独立に置換基を有していてもよい1価の芳香環基を表す。
ただし、TとAr1〜Ar3は共役系が繋がる状態で結合している。
Figure 2006251350
(式(II)中、Nは窒素原子を表し、Ar10〜Ar12は各々独立に置換基を有していてもよい2価の芳香環基を表す。)
Figure 2006251350
(式(III)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。)] (1) An organic nonlinear optical material comprising a compound represented by the following general formula (I) as at least a part of constituent components.
Figure 2006251350
[In the formula (I), T represents a trivalent aromatic ring group or a structure of the following general formula (II),
Ar 1 to Ar 3 each independently represents a divalent aromatic ring group which may have a substituent,
Ar 4 to Ar 6 each independently represents a divalent heterocyclic group represented by the following general formula (III),
Ar 7 to Ar 9 each independently represents a monovalent aromatic ring group which may have a substituent.
However, T and Ar 1 to Ar 3 are bonded in a state where the conjugated system is connected.
Figure 2006251350
(In formula (II), N represents a nitrogen atom, and Ar 10 to Ar 12 each independently represents a divalent aromatic ring group which may have a substituent.)
Figure 2006251350
(In Formula (III), Ring A and Ring Z represent a ring condensed by sharing two carbon atoms, and each may have a substituent.)]

(2) 一般式(III)において、環Zは置換基を有していてもよい6員環を表し、環Aは置換基を有していてもよい5員環を表していることを特徴とする(1)に記載の有機非線形光学材料。 (2) In the general formula (III), the ring Z represents a 6-membered ring which may have a substituent, and the ring A represents a 5-membered ring which may have a substituent. The organic nonlinear optical material according to (1).

(3) 一般式(III)が下記一般式(IIIa)又は(IIIb)で表されることを特徴とする(1)又は(2)に記載の有機非線形光学材料。

Figure 2006251350
[式(IIIa),(IIIb)において、環Zは一般式(III)における環Zと同義の環よりなる2価の基であり、一般式(IIIa)中、Yは16族元素を表し、一般式(IIIb)中、XはN又はSを表す。] (3) The organic nonlinear optical material according to (1) or (2), wherein the general formula (III) is represented by the following general formula (IIIa) or (IIIb):
Figure 2006251350
[In Formulas (IIIa) and (IIIb), Ring Z is a divalent group consisting of a ring having the same meaning as Ring Z in General Formula (III). In General Formula (IIIa), Y represents a Group 16 element; In general formula (IIIb), X represents N or S. ]

(4) 下記一般式(III)で表される構造を有し、AF50の2光子吸収断面積を45GMとしたときの2光子吸収断面積が250〜5000GMであり、ストークスシフトが120〜300nmであることを特徴とする有機非線形光学材料。

Figure 2006251350
[式(III)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。] (4) It has a structure represented by the following general formula (III), the two-photon absorption cross-section when the two-photon absorption cross-section of AF50 is 45 GM is 250 to 5000 GM, and the Stokes shift is 120 to 300 nm. An organic nonlinear optical material characterized by being.
Figure 2006251350
[In Formula (III), Ring A and Ring Z represent a ring condensed by sharing two carbon atoms, and each may have a substituent. ]

本発明によれば、多光子吸収断面積、特に2光子吸収断面積が大きく、2光子吸収を起こし易く、しかもストークスシフトが大きく、2光子励起により発生した蛍光を効率的に取り出すことができる高発光効率の有機非線形光学材料が提供される。   According to the present invention, the multiphoton absorption cross-sectional area, particularly the two-photon absorption cross-sectional area is large, two-photon absorption is easily caused, the Stokes shift is large, and the fluorescence generated by the two-photon excitation can be efficiently extracted. An organic nonlinear optical material with luminous efficiency is provided.

即ち、本発明の有機非線形光学材料によれば、ストークスシフトが大きく、AF50の2光子吸収断面積を45GMとしたときの2光子吸収断面積が150GM以上であり、2光子吸収現象を起こし、且つストークスシフトが大きく、好ましくは120nm以上である高発光効率の有機非線形光学材料が提供される。本発明の有機非線形光学材料の中で好ましいものは2光子吸収断面積が250〜5000GM、特に好ましいものは300〜1000GMである。   That is, according to the organic nonlinear optical material of the present invention, the Stokes shift is large, the two-photon absorption cross-section when the two-photon absorption cross-section of AF50 is 45 GM is 150 GM or more, and a two-photon absorption phenomenon occurs. Provided is an organic nonlinear optical material having a large Stokes shift, preferably having a high luminous efficiency of 120 nm or more. Among the organic nonlinear optical materials of the present invention, a two-photon absorption cross section is preferably 250 to 5000 GM, and particularly preferably 300 to 1000 GM.

以下に、本発明の有機非線形光学材料の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。   Hereinafter, embodiments of the organic nonlinear optical material of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications are made within the scope of the invention. be able to.

本発明の有機非線形光学材料は、下記一般式(I)で示される化合物を構成成分の少なくとも一部として含むものである。   The organic nonlinear optical material of the present invention contains a compound represented by the following general formula (I) as at least a part of the constituent components.

Figure 2006251350
[式(I)中、Tは3価の芳香環基又は、下記一般式(II)の構造を表し、
Ar1〜Ar3は各々独立に置換基を有していてもよい2価の芳香環基を表し、
Ar4〜Ar6は各々独立に下記一般式(III)で表される2価の複素環基を表し、
Ar7〜Ar9は各々独立に置換基を有していてもよい1価の芳香環基を表す。
ただし、TとAr1〜Ar3は共役系が繋がる状態で結合している。
Figure 2006251350
(式(II)中、Nは窒素原子を表し、Ar10〜Ar12は各々独立に置換基を有していてもよい2価の芳香環基を表す。)
Figure 2006251350
(式(III)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。)]
Figure 2006251350
[In the formula (I), T represents a trivalent aromatic ring group or a structure of the following general formula (II),
Ar 1 to Ar 3 each independently represents a divalent aromatic ring group which may have a substituent,
Ar 4 to Ar 6 each independently represents a divalent heterocyclic group represented by the following general formula (III),
Ar 7 to Ar 9 each independently represents a monovalent aromatic ring group which may have a substituent.
However, T and Ar 1 to Ar 3 are bonded in a state where the conjugated system is connected.
Figure 2006251350
(In formula (II), N represents a nitrogen atom, and Ar 10 to Ar 12 each independently represents a divalent aromatic ring group which may have a substituent.)
Figure 2006251350
(In Formula (III), Ring A and Ring Z represent a ring condensed by sharing two carbon atoms, and each may have a substituent.)]

なお、本発明において、「芳香環」とは、「芳香族性を有する環」を指し、「芳香族炭化水素環」とは「芳香族性を有する炭化水素環」を指し、「芳香族複素環」とは「芳香族性を有する複素環」を指す。また、単に「複素環」又は「炭化水素環」と称した場合には、芳香族性を有する環及び芳香族性を有しない環のいずれをも含むものとする。
また、本発明において、「置換基を有していてもよい」とは1個以上の置換基を有していてもよいことを意味する。
以下に、上記一般式(I)における各構成要素について説明する。
In the present invention, “aromatic ring” means “ring having aromaticity”, “aromatic hydrocarbon ring” means “hydrocarbon ring having aromaticity”, and “aromatic heterocycle”. “Ring” refers to “heterocyclic ring having aromaticity”. In addition, when the term “heterocycle” or “hydrocarbon ring” is simply used, it includes both a ring having aromaticity and a ring having no aromaticity.
In the present invention, “may have a substituent” means that it may have one or more substituents.
Below, each component in the said general formula (I) is demonstrated.

〈Tについて〉
上記一般式(I)において、Tは共役系パイ電子を有する3価の基を表し、具体的には3価の芳香環基又は上記一般式(II)の構造を表す。化合物の安定性の点では、Tは3価の芳香環基が好ましく、高い2光子吸収断面積を有する点では上記一般式(II)の構造が好ましい。
<About T>
In the general formula (I), T represents a trivalent group having a conjugated pi-electron, and specifically represents a trivalent aromatic ring group or the structure of the general formula (II). From the viewpoint of the stability of the compound, T is preferably a trivalent aromatic ring group, and the structure of the above general formula (II) is preferable from the viewpoint of having a high two-photon absorption cross section.

3価の芳香環基としては、ベンゼン環、ナフタレン環等の芳香族炭化水素環由来の基、ピリジン環、フラン環、チオフェン環等の芳香族複素環由来の基が挙げられ、好ましくは芳香族炭化水素環由来の基、中でも合成が容易という点でベンゼン環由来の基が特に好ましい。   Examples of the trivalent aromatic ring group include groups derived from aromatic hydrocarbon rings such as benzene ring and naphthalene ring, and groups derived from aromatic heterocycles such as pyridine ring, furan ring and thiophene ring. A group derived from a hydrocarbon ring, particularly a group derived from a benzene ring is particularly preferable because of easy synthesis.

上記一般式(II)のAr10〜Ar12は各々独立に2価の芳香環基であり、芳香族複素環基又は芳香族炭化水素環基、好ましくは5又は6員環の、単環又は2〜6縮合環からなる、芳香族炭化水素環基又は芳香族複素環基が挙げられ、これらは置換基を有していてもよい。中でも、合成の容易さの点で、Ar10〜Ar12は各々独立にベンゼン環、ナフタレン環、チオフェン環、ピリジン環、フラン環由来の基が好ましく、中でも安定で、電子供与効果を持つ環であるベンゼン環、ナフタレン環、チオフェン環由来の基が特に好ましい。 Ar 10 to Ar 12 in the general formula (II) are each independently a divalent aromatic ring group, an aromatic heterocyclic group or an aromatic hydrocarbon ring group, preferably a 5- or 6-membered monocyclic ring or An aromatic hydrocarbon ring group or an aromatic heterocyclic group consisting of 2 to 6 condensed rings may be mentioned, and these may have a substituent. Among them, Ar 10 to Ar 12 are each independently preferably a group derived from a benzene ring, a naphthalene ring, a thiophene ring, a pyridine ring, or a furan ring, and is a ring having a stable and electron donating effect. A group derived from a certain benzene ring, naphthalene ring or thiophene ring is particularly preferred.

これらの環が有していても良い置換基としては、アルキル基、アルキルオキシ基、アリールオキシ基、チオアルキル基、ハロゲン原子が挙げられる。Ar10〜Ar12の芳香環基が有していても良い置換基としては、具体的には、
メチル基、エチル基、イソプロピル基、オクチル基等のアルキル基;
メトキシ基、エトキシ基、2−プロピルオキシ基、オクチルオキシ基等のアルキルオキシ基;
フェニルオキシ基、ナフチルオキシ基、アントラニルオキシ基等のアリールオキシ基;
メチルチオ基、エチルチオ基、2-プロピルチオ基、オクチルチオ基などのチオアルキル基;
フッ素原子、塩素原子、臭素原子、沃素原子等のハロゲン原子;
が挙げられ、中でもアルキル基、アルキルオキシ基、アルキルチオ基は合成が容易な点で好ましい。
Examples of the substituent that these rings may have include an alkyl group, an alkyloxy group, an aryloxy group, a thioalkyl group, and a halogen atom. As the substituent that the aromatic ring group of Ar 10 to Ar 12 may have, specifically,
Alkyl groups such as methyl, ethyl, isopropyl and octyl;
Alkyloxy groups such as methoxy group, ethoxy group, 2-propyloxy group, octyloxy group;
Aryloxy groups such as phenyloxy group, naphthyloxy group, anthranyloxy group;
Thioalkyl groups such as methylthio group, ethylthio group, 2-propylthio group, octylthio group;
Halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom;
Among them, an alkyl group, an alkyloxy group, and an alkylthio group are preferable in terms of easy synthesis.

Tは、Ar1〜Ar3以外に、アルキル基、アルキルオキシ基、アリールオキシ基、ジ置換アミノ基、ハロゲン原子等の置換基を有していてもよい。 T may have a substituent such as an alkyl group, an alkyloxy group, an aryloxy group, a disubstituted amino group, and a halogen atom in addition to Ar 1 to Ar 3 .

TがAr1〜Ar3以外に有し得る置換基としては、具体的には、
メチル基、エチル基、イソプロピル基、オクチル基等のアルキル基;
メトキシ基、エトキシ基、2-プロピルオキシ基、オクチルオキシ基等のアルキルオキシ基;
フェニルオキシ基、ナフチルオキシ基、アントラニルオキシ基等のアリールオキシ基;
ジメチルアミノ基、ジエチルアミノ基、メチルフェニルアミノ基等のジ置換アミノ基;
フッ素原子、塩素原子、臭素原子、沃素原子等のハロゲン原子;
が挙げられ、中でもジ置換アミノ基、アルキルオキシ基は電子供与性が高い点で好ましく、最も高い電子供与効果を持つジ置換アミノ基が特に好ましい。
Specific examples of the substituent that T may have other than Ar 1 to Ar 3 include:
Alkyl groups such as methyl, ethyl, isopropyl and octyl;
Alkyloxy groups such as methoxy group, ethoxy group, 2-propyloxy group, octyloxy group;
Aryloxy groups such as phenyloxy group, naphthyloxy group, anthranyloxy group;
Disubstituted amino groups such as a dimethylamino group, a diethylamino group, and a methylphenylamino group;
Halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom;
Among them, a disubstituted amino group and an alkyloxy group are preferable in terms of high electron donating property, and a disubstituted amino group having the highest electron donating effect is particularly preferable.

〈Ar1〜Ar3について〉
前記一般式(I)において、Ar1〜Ar3は各々独立に2価の芳香環基であり、芳香族複素環基又は芳香族炭化水素環基、好ましくは5又は6員環の、単環又は2〜6縮合環からなる、芳香族炭化水素環基又は芳香族複素環基が挙げられ、これらは置換基を有していてもよい。
<About Ar 1 to Ar 3 >
In the general formula (I), Ar 1 to Ar 3 are each independently a divalent aromatic ring group, an aromatic heterocyclic group or an aromatic hydrocarbon ring group, preferably a 5- or 6-membered monocyclic ring Or the aromatic hydrocarbon cyclic group or aromatic heterocyclic group which consists of a 2-6 condensed ring is mentioned, These may have a substituent.

ここで芳香族炭化水素環基としては、好ましくは6員環の単環又は2〜10縮合環由来の基、具体的には、フェニレン基、ナフチレン基、アントラニレン基、フェナンスリレン基、ピレニレン基などが挙げられ、特にナフチレン基、フェニレン基が合成の容易さや原料の入手のしやすさな点で好ましい。   Here, the aromatic hydrocarbon ring group is preferably a 6-membered monocyclic group or a group derived from 2 to 10 condensed rings, specifically, a phenylene group, a naphthylene group, an anthranylene group, a phenanthrylene group, a pyrenylene group, or the like. In particular, a naphthylene group and a phenylene group are preferable in terms of ease of synthesis and availability of raw materials.

一方、芳香族複素環基としては、好ましくは5又は6員環、特に好ましくは5員環の、単環又は2〜10縮合環由来の基が挙げられる。複素環を構成するヘテロ原子としては特に制限はないが、通常、O、S、Se、N、P、Siなどの各原子が挙げられる。これらのヘテロ原子を2個以上含む場合、そのヘテロ原子は同じ原子であっても異なる原子であってもよい。芳香族複素環基の安定性の面から特に好ましいヘテロ原子はO,S,Nである。芳香族複素環基の具体例としては、フラン、チオフェン、ピロール、ベンゾフラン、イソベンゾフラン、1−ベンゾチオフェン、2−ベンゾチオフェン、インドール、イソインドール、インドリジン、カルバゾール、キサンテン、ピリジン、キノリン、イソキノリン、フェナンスリジン、アクリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、フラザン、イミダゾール、ピラゾール、ベンゾイミダゾール、1,8−ナフチリジン、ピラジン、ピリミジン、ピリダジン等の環由来の2価の芳香族複素環基が挙げられ、チオフェン、フラン、ピロール環由来の基は電子供与効果が高いために好ましく、チオフェン環由来の基が安定性及び電子供与性効果を併せ持つため特に好ましい。   On the other hand, examples of the aromatic heterocyclic group include a group derived from a single ring or a 2-10 condensed ring, preferably a 5- or 6-membered ring, particularly preferably a 5-membered ring. Although there is no restriction | limiting in particular as a hetero atom which comprises a heterocyclic ring, Usually, each atoms, such as O, S, Se, N, P, Si, are mentioned. When two or more of these heteroatoms are contained, the heteroatoms may be the same atom or different atoms. Particularly preferred heteroatoms are O, S, and N from the viewpoint of the stability of the aromatic heterocyclic group. Specific examples of the aromatic heterocyclic group include furan, thiophene, pyrrole, benzofuran, isobenzofuran, 1-benzothiophene, 2-benzothiophene, indole, isoindole, indolizine, carbazole, xanthene, pyridine, quinoline, isoquinoline, Divalent aromatic heterocyclic groups derived from rings such as phenanthridine, acridine, oxazole, isoxazole, thiazole, isothiazole, furazane, imidazole, pyrazole, benzimidazole, 1,8-naphthyridine, pyrazine, pyrimidine, pyridazine, etc. A group derived from a thiophene, furan or pyrrole ring is preferable because of its high electron donating effect, and a group derived from a thiophene ring is particularly preferable because it has both stability and electron donating effect.

Ar1〜Ar3は、互いに同一であってもよく、異なっていてもよい。 Ar 1 to Ar 3 may be the same as or different from each other.

Ar1〜Ar3が有していてもよい置換基としては、アルキル基、炭化水素環基、複素環基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アラルキルオキシ基、ヘテロアラルキルオキシ基、置換基を有していても良いアミノ基、アシル基、ニトロ基、シアノ基、エステル基、ハロゲン原子、水酸基、カルボキシル基などが挙げられる。より具体的には、以下の置換基群Qに具体例を挙げるような炭素数1〜9のアルキル基、炭素数3〜20の炭化水素環基、5又は6員環の単環又は2〜6縮合環由来の複素環基、炭素数1〜9のアルコキシ基、炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基、炭素数7〜18のアラルキルオキシ基、炭素数3〜18のヘテロアラルキルオキシ基、炭素数2〜20のアルキルアミノ基、炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基、炭素数1〜20のアシル基、ニトロ基、シアノ基、炭素数2〜6のエステル基、ハロゲン原子、水酸基、カルボキシル基などである。 As the substituent that Ar 1 to Ar 3 may have, an alkyl group, a hydrocarbon ring group, a heterocyclic group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an aralkyloxy group, a heteroaralkyloxy group, Examples thereof include an amino group, an acyl group, a nitro group, a cyano group, an ester group, a halogen atom, a hydroxyl group, and a carboxyl group, which may have a substituent. More specifically, an alkyl group having 1 to 9 carbon atoms, a hydrocarbon ring group having 3 to 20 carbon atoms, a monocyclic ring having 5 or 6 members, or 2- Heterocyclic group derived from 6 condensed rings, alkoxy group having 1 to 9 carbon atoms, aryloxy group having 6 to 18 carbon atoms, heteroaryloxy group having 2 to 18 carbon atoms, aralkyloxy group having 7 to 18 carbon atoms, carbon A heteroaralkyloxy group having 3 to 18 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 30 carbon atoms, a heteroarylamino group having 2 to 30 carbon atoms, an acyl group having 1 to 20 carbon atoms, A nitro group, a cyano group, an ester group having 2 to 6 carbon atoms, a halogen atom, a hydroxyl group, a carboxyl group, and the like.

[置換基群Q]
炭素数1〜9のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ヘキシル基、オクチル基などが挙げられる。
炭素数3〜20の炭化水素環基としては、シクロプロピル基、シクロヘキシル基、テトラデカヒドロアントラニル基、フェニル基、アントラニル基、フェナンスリル基などが挙げられる。
5又は6員環の単環又は2〜6縮合環由来の複素環基としては、1−ピレニル基、1−ナフチル基、2−ナフチル基、1−フェナントレニル基、1−ペリレニル基、2−ピペリジニル基、2−ピペラジニル基、デカヒドロキノリニル基、ジュロリジン−9−イル基などが挙げられる。
炭素数1〜9のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、iso−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ヘキシルオキシ基、オクチルオキシ基などが挙げられる。
炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基としては、フェノキシ基、ナフチルオキシ基等のアリールオキシ基や、2−チエニルオキシ基、2−フリルオキシ基、2−キノリルオキシ基等のヘテロアリールオキシ基などが挙げられる。
炭素数7〜18のアラルキルオキシ基、炭素数3〜18のヘテロアラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基、ナフチルメトキシ基等のアラルキルオキシ基や、2−チエニルメトキシ基、2−フリルメトキシ基、2−キノリルメトキシ基等のヘテロアラルキルオキシ基などが挙げられる。
炭素数2〜20のアルキルアミノ基としては、ジメチルアミノ基、メチルエチルアミノ基、ジブチルアミノ基、ジオクチルアミノ基などが挙げられる。
炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基としては、ジフェニルアミノ基、ジナフチルアミノ基、ナフチルフェニルアミノ基、ジトリルアミノ基等のアリールアミノ基や、ジ(2−チエニル)アミノ基、ジ(2−フリル)アミノ基、フェニル(2−チエニル)アミノ基等のヘテロアリールアミノ基などが挙げられる。
炭素数1〜20のアシル基としては、ホルミル基、アセチル基、プロピオニル基、イソブチリル基、バレリル基、シクロヘキシルカルボニル基等が挙げられる。
炭素数2〜6のエステル基の例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基などが挙げられる。
ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、沃素原子などが挙げられる。
[Substituent group Q]
Examples of the alkyl group having 1 to 9 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, butyl group, iso-butyl group, sec-butyl group, tert-butyl group, hexyl group and octyl group. .
Examples of the hydrocarbon ring group having 3 to 20 carbon atoms include a cyclopropyl group, a cyclohexyl group, a tetradecahydroanthranyl group, a phenyl group, an anthranyl group, and a phenanthryl group.
Examples of the heterocyclic group derived from a 5- or 6-membered monocyclic ring or a 2-6 condensed ring include 1-pyrenyl group, 1-naphthyl group, 2-naphthyl group, 1-phenanthrenyl group, 1-perylenyl group, 2-piperidinyl Group, 2-piperazinyl group, decahydroquinolinyl group, julolidin-9-yl group and the like.
Examples of the alkoxy group having 1 to 9 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, iso-butoxy group, sec-butoxy group, tert-butoxy group, hexyloxy group, octyloxy group, etc. Is mentioned.
Examples of the aryloxy group having 6 to 18 carbon atoms and the heteroaryloxy group having 2 to 18 carbon atoms include aryloxy groups such as phenoxy group and naphthyloxy group, 2-thienyloxy group, 2-furyloxy group, 2- And heteroaryloxy groups such as a quinolyloxy group.
Examples of the aralkyloxy group having 7 to 18 carbon atoms and the heteroaralkyloxy group having 3 to 18 carbon atoms include aralkyloxy groups such as benzyloxy group, phenethyloxy group and naphthylmethoxy group, 2-thienylmethoxy group, and 2-furyl. And heteroaralkyloxy groups such as methoxy group and 2-quinolylmethoxy group.
Examples of the alkylamino group having 2 to 20 carbon atoms include a dimethylamino group, a methylethylamino group, a dibutylamino group, and a dioctylamino group.
Examples of the arylamino group having 6 to 30 carbon atoms and the heteroarylamino group having 2 to 30 carbon atoms include arylamino groups such as diphenylamino group, dinaphthylamino group, naphthylphenylamino group, and ditolylamino group, and di (2- And a heteroarylamino group such as a thienyl) amino group, a di (2-furyl) amino group, and a phenyl (2-thienyl) amino group.
Examples of the acyl group having 1 to 20 carbon atoms include formyl group, acetyl group, propionyl group, isobutyryl group, valeryl group, and cyclohexylcarbonyl group.
Examples of the ester group having 2 to 6 carbon atoms include a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and an isopropoxycarbonyl group.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

また、Ar1〜Ar3において、各々の環が有する上述のような置換基のうち、隣接する基同士が結合して環状構造を形成していてもよい。隣接する置換基同士が結合して環状構造を形成するものとしては、例えば、Ar1〜Ar3としてのベンゼン環基に、該ベンゼン環が有する置換基同士が結合して下記構造式に示すようなフェノキサチン、フェノチアジン、フェノキサジン環を形成したものが挙げられる。 Moreover, in Ar < 1 > -Ar < 3 >, among the above substituents which each ring has, adjacent groups may couple | bond together and it may form the cyclic structure. As for what adjoins substituents couple | bond together and forms a cyclic structure, for example, the substituent which this benzene ring couple | bonds with the benzene ring group as Ar < 1 > -Ar < 3 >, and shows in following structural formula Phenoxatin, phenothiazine, and phenoxazine ring formed.

Figure 2006251350
Figure 2006251350

Ar1〜Ar3は、ジ置換アミノ基、特にアルキル基、アリール基、とりわけ電子供与性の大きいアリール基で置換されたジ置換アミノ基を置換基として有するものが好ましく、Ar1〜Ar3がすべてジ置換アミノ基で置換されているものが合成の容易さの面からより一層好ましい。 Ar 1 to Ar 3 is di-substituted amino group, particularly an alkyl group, an aryl group, especially preferably has an electron-donating large aryl-substituted di-substituted amino group with a group as a substituent group, is Ar 1 to Ar 3 Those that are all substituted with a di-substituted amino group are more preferable from the viewpoint of ease of synthesis.

なお、前記一般式(I)で表される化合物において、Ar1〜Ar3は各々Tと共役系が繋がる状態で結合している。この共役系が繋がる状態とは、Ar1−T(−Ar2)−Ar3の結合鎖間でπ電子が非局在化し得る状態を示し、例えば、Ar1〜Ar3の芳香環(炭化水素環、複素環)とTの芳香環又は窒素とが単結合、ビニレン基、エチニレン基等で連結されることにより共役系がつながる状態などが挙げられる。この結合鎖としては、具体的には、単結合、炭素/炭素二重結合、炭素/窒素二重結合、窒素/窒素二重結合、炭素/炭素三重結合が挙げられ、特に二光子吸収断面積が大きいことから、単結合、炭素/炭素二重結合が含まれるものが挙げられる。 In the compound represented by the general formula (I), Ar 1 to Ar 3 are bonded in a state where T and a conjugated system are connected to each other. The state in which this conjugated system is connected indicates a state in which π electrons can be delocalized between the bond chains of Ar 1 -T (-Ar 2 ) -Ar 3 , for example, an aromatic ring (carbonized) of Ar 1 to Ar 3. A hydrogen ring, a heterocyclic ring) and an aromatic ring or nitrogen of T are connected by a single bond, vinylene group, ethynylene group or the like, and a conjugated system is connected. Specific examples of the bond chain include a single bond, a carbon / carbon double bond, a carbon / nitrogen double bond, a nitrogen / nitrogen double bond, and a carbon / carbon triple bond, and particularly a two-photon absorption cross section. Because of a large value, those containing a single bond or a carbon / carbon double bond can be mentioned.

〈Ar4〜Ar6について〉
前記一般式(I)において、Ar4〜Ar6は芳香族性を有するものが高い2光子断面積を有する為好ましく、その基本構造は前記一般式(III)に表される2価の複素環基である。
<For Ar 4 ~Ar 6>
In the general formula (I), Ar 4 to Ar 6 are preferably aromatic and have a high two-photon cross-sectional area, and the basic structure thereof is a divalent heterocyclic ring represented by the general formula (III). It is a group.

前記一般式(III)において、環Zとしては、置換基を有していてもよい5又は6員環の、単環又は2〜6縮合環からなる複素環又は芳香族炭化水素環が挙げられる。環Zが複素環である場合、この複素環を構成するヘテロ原子としては特に制限はないが、通常、O、S、Se、N、P、Siなどの各原子が挙げられ、環の安定性の面から好ましくはO、S、Nが挙げられ、複素環が電子吸引性になり易いことから特に好ましくはNが挙げられる。これらのヘテロ原子を環Zに2個以上含む場合、そのヘテロ原子は同じ原子であっても異なる原子であってもよい。   In the general formula (III), examples of the ring Z include a 5- or 6-membered monocyclic or optionally substituted heterocyclic ring or aromatic hydrocarbon ring which may have a substituent. . When the ring Z is a heterocycle, the heteroatom constituting the heterocycle is not particularly limited, and usually includes atoms such as O, S, Se, N, P, Si, and the stability of the ring. In view of the above, O, S, and N are preferable, and N is particularly preferable because the heterocyclic ring is easily electron withdrawing. When two or more of these heteroatoms are contained in the ring Z, the heteroatoms may be the same atom or different atoms.

環Zの具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環、ピリジン環、チオフェン環、ピロール環、フラン環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、イミダゾール環、キノリン環、イソキノリン環、カルバゾール環、チアゾール環、ジベンゾチオフェン環等が挙げられ、生成物の溶解性が高いことから単環が好ましく、合成の容易さから特に好ましくはベンゼン環等の6員環の芳香族炭化水素環、ピリジン環等のN等のヘテロ原子を有する芳香族複素環である。   Specific examples of ring Z include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, pyridine ring, thiophene ring, pyrrole ring, furan ring, benzothiophene ring, benzofuran ring, benzopyrrole ring, imidazole ring, quinoline Ring, isoquinoline ring, carbazole ring, thiazole ring, dibenzothiophene ring, and the like. A monocyclic ring is preferable because of high solubility of the product, and a 6-membered aromatic such as a benzene ring is particularly preferable because of ease of synthesis. An aromatic heterocycle having a heteroatom such as N such as an aromatic hydrocarbon ring or a pyridine ring.

前記一般式(III)の環Aは、環Zと共有する2つの炭素原子とともに構成される、置換基を有してもよい複素環が挙げられ、この複素環を構成するヘテロ原子としては特に制限はないが、通常O、S、Se、N、P、Siなどの各原子が挙げられる。これらのヘテロ原子を環Aに2個以上含む場合、そのヘテロ原子は同じ原子であっても異なる原子であってもよい。環Aはヘテロ原子の電子吸引効果をπ共役系が分子全体に影響させる為に好ましくは芳香族複素環であり、特に好ましくは電子吸引効果の高いN、S、O等のヘテロ原子を有する5員環の芳香族複素環である。   The ring A in the general formula (III) includes a heterocyclic ring which may have a substituent, which is constituted with two carbon atoms shared with the ring Z, and the hetero atom constituting the heterocyclic ring is particularly preferable. Although there is no restriction | limiting, Usually, each atom, such as O, S, Se, N, P, Si, is mentioned. When two or more of these heteroatoms are contained in ring A, the heteroatoms may be the same or different. Ring A is preferably an aromatic heterocycle in order that the π-conjugated system affects the entire molecule with the electron-withdrawing effect of heteroatoms, and particularly preferably has a heteroatom such as N, S, or O having a high electron-withdrawing effect. It is a membered aromatic heterocycle.

前記一般式(III)において、環A及び環Zが有していてもよい置換基としては、一般式(IIIa),(IIIb)における置換基として後述する置換基が挙げられる。   In the general formula (III), examples of the substituent that the ring A and the ring Z may have include the substituents described later as the substituent in the general formulas (IIIa) and (IIIb).

特に、一般式(III)で表されるAr4〜Ar6は、下記一般式(IIIa),(IIIb)のいずれかで表される、互いに2つの炭素原子を共有する2つの環状構造からなる2価の複素環基であることが合成の容易である為に好ましく、特に、電子吸引性の5員環を有する下記一般式(IIIa)で表されることが好ましい。 In particular, Ar 4 to Ar 6 represented by the general formula (III) are composed of two cyclic structures sharing two carbon atoms, represented by any one of the following general formulas (IIIa) and (IIIb). A divalent heterocyclic group is preferable because of easy synthesis, and is particularly preferably represented by the following general formula (IIIa) having an electron-withdrawing 5-membered ring.

Figure 2006251350
[式(IIIa),(IIIb)において、環Zは一般式(III)における環Zと同義の環よりなる2価の基であり、一般式(IIIa)中、Yは16族元素を表し、一般式(IIIb)中、XはN又はSを表す。]
Figure 2006251350
[In Formulas (IIIa) and (IIIb), Ring Z is a divalent group consisting of a ring having the same meaning as Ring Z in General Formula (III). In General Formula (IIIa), Y represents a Group 16 element; In general formula (IIIb), X represents N or S. ]

上記一般式(IIIa)において、Yは電子吸引効果が高い為好ましくはO又はSである。   In the above general formula (IIIa), Y is preferably O or S because of its high electron withdrawing effect.

上記一般式(IIIa),(IIIb)で表されるAr4〜Ar6が有していてもよい置換基、即ち、環Z、或いは一般式(IIIa)におけるY原子を含む複素環、一般式(IIIb)におけるX原子を含む複素環が有し得る置換基としては、アルキル基、炭化水素環基、複素環基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アラルキルオキシ基、ヘテロアラルキルオキシ基、置換基を有していても良いアミノ基、アシル基、ニトロ基、シアノ基、エステル基、ハロゲン原子、水酸基、カルボキシル基などが挙げられる。 Ar 4 to Ar 6 represented by the above general formulas (IIIa) and (IIIb) may have a substituent, that is, a ring Z, or a heterocyclic ring containing a Y atom in the general formula (IIIa), a general formula As the substituent that the heterocyclic ring containing the X atom in (IIIb) may have, an alkyl group, a hydrocarbon ring group, a heterocyclic group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an aralkyloxy group, a heteroaralkyloxy group And an amino group, an acyl group, a nitro group, a cyano group, an ester group, a halogen atom, a hydroxyl group, and a carboxyl group, which may have a group or a substituent.

より具体的には、置換基群Qとして具体例を挙げたような炭素数1〜9のアルキル基、炭素数3〜20の炭化水素環基、5又は6員環の単環又は2〜6縮合環由来の複素環基、炭素数1〜9のアルコキシ基、炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基、炭素数7〜18のアラルキルオキシ基、炭素数3〜18のヘテロアラルキルオキシ基、炭素数2〜20のアルキルアミノ基、炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基、炭素数1〜20のアシル基、ニトロ基、シアノ基、炭素数2〜6のエステル基、ハロゲン原子、水酸基、カルボキシル基などである。   More specifically, the alkyl group having 1 to 9 carbon atoms, the hydrocarbon ring group having 3 to 20 carbon atoms, the monocyclic ring having 5 or 6 members, or 2 to 6 as exemplified in the substituent group Q. A heterocyclic group derived from a condensed ring, an alkoxy group having 1 to 9 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, a heteroaryloxy group having 2 to 18 carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, and a carbon number A heteroaralkyloxy group having 3 to 18 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 30 carbon atoms, a heteroarylamino group having 2 to 30 carbon atoms, an acyl group having 1 to 20 carbon atoms, nitro Group, cyano group, ester group having 2 to 6 carbon atoms, halogen atom, hydroxyl group, carboxyl group and the like.

また、一般式(IIIa)、(IIIb)において、各々の環が有する上述のような置換基のうち、隣接する基同士が結合して環状構造を形成していてもよい。隣接する置換基同士が結合して環状構造を形成するものとしては、例えば、一般式(IIIa)、(IIIb)における環Zのベンゼン環に、該ベンゼン環が有する置換基同士が結合して前述のフェノキサチン、フェノチアジン、フェノキサジン環を形成したものが挙げられる。   Further, in the general formulas (IIIa) and (IIIb), among the substituents as described above which each ring has, adjacent groups may be bonded to form a cyclic structure. Examples of those in which adjacent substituents are bonded to form a cyclic structure include, for example, those in which the substituents of the benzene ring are bonded to the benzene ring of the ring Z in the general formulas (IIIa) and (IIIb) described above. Phenoxatin, phenothiazine, and phenoxazine ring formed.

Ar4〜Ar6が有する置換基としては、好ましくは炭素数10以下の有機基、特にニトロ基、シアノ基、エステル基、カルボキシル基などの電子吸引性の基が挙げられる。特に、シアノ基、エステル基、カルボキシル基が好ましい。 Ar 4 to Ar 6 preferably have an organic group having 10 or less carbon atoms, particularly an electron-withdrawing group such as a nitro group, a cyano group, an ester group, or a carboxyl group. In particular, a cyano group, an ester group, and a carboxyl group are preferable.

〈Ar7〜Ar9について〉
前記一般式(I)中のAr7〜Ar9は各々独立に芳香環基、即ち複素環基又は芳香族炭化水素環基、好ましくは5又は6員環の、単環又は2〜6縮合環からなる、芳香族炭化水素環基又は芳香族複素環基を表し、これらは置換基を有していてもよい。
<For Ar 7 ~Ar 9>
Ar 7 to Ar 9 in the general formula (I) are each independently an aromatic ring group, that is, a heterocyclic group or an aromatic hydrocarbon ring group, preferably a 5- or 6-membered monocyclic ring or a 2-6 condensed ring. It represents an aromatic hydrocarbon ring group or an aromatic heterocyclic group, and these may have a substituent.

ここで芳香族炭化水素環基として、好ましくは6員環の単環又は2〜10縮合環由来の基が挙げられる。具体的には、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ピレニル基などが挙げられ、特に合成の容易さや、原料の入手のしやすさからフェニル基、ナフチル基が好ましい。   Here, the aromatic hydrocarbon ring group is preferably a 6-membered monocyclic group or a group derived from 2 to 10 condensed rings. Specific examples include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, and the like. Particularly, a phenyl group and a naphthyl group are preferable from the viewpoint of ease of synthesis and availability of raw materials.

一方、芳香族複素環基としては、好ましくは5又は6員環、特に好ましくは5員環の、単環又は2〜10縮合環由来の基が挙げられる。複素環を構成するヘテロ原子としては特に制限はないが、通常、O、S、Se、N、P、Siなどの各原子が挙げられる。これらのヘテロ原子を2個以上含む場合、そのヘテロ原子は同じ原子であっても異なる原子であってもよい。複素環の安定性の面から特に好ましいヘテロ原子はO,S,Nである。芳香族複素環基の具体例としては、フラン、チオフェン、ピロール、ベンゾフラン、イソベンゾフラン、1−ベンゾチオフェン、2−ベンゾチオフェン、インドール、イソインドール、インドリジン、カルバゾール、キサンテン、ピリジン、キノリン、イソキノリン、フェナンスリジン、アクリジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、フラザン、イミダゾール、ピラゾール、ベンゾイミダゾール、1,8−ナフチリジン、ピラジン、ピリミジン、ピリダジン等の環由来の1価の芳香族複素環基が挙げられる。これらのうち、チオフェン、フラン、ピロール環由来の基は電子供与効果が高いために好ましく、チオフェン環由来の基が安定性及び電子供与性効果を併せ持つ為特に好ましい。   On the other hand, examples of the aromatic heterocyclic group include a group derived from a single ring or a 2-10 condensed ring, preferably a 5- or 6-membered ring, particularly preferably a 5-membered ring. Although there is no restriction | limiting in particular as a hetero atom which comprises a heterocyclic ring, Usually, each atoms, such as O, S, Se, N, P, Si, are mentioned. When two or more of these heteroatoms are contained, the heteroatoms may be the same atom or different atoms. In view of the stability of the heterocyclic ring, particularly preferred heteroatoms are O, S and N. Specific examples of the aromatic heterocyclic group include furan, thiophene, pyrrole, benzofuran, isobenzofuran, 1-benzothiophene, 2-benzothiophene, indole, isoindole, indolizine, carbazole, xanthene, pyridine, quinoline, isoquinoline, Monovalent aromatic heterocyclic groups derived from rings such as phenanthridine, acridine, oxazole, isoxazole, thiazole, isothiazole, furazane, imidazole, pyrazole, benzimidazole, 1,8-naphthyridine, pyrazine, pyrimidine, pyridazine Can be mentioned. Among these, a group derived from a thiophene, furan, or pyrrole ring is preferable because of its high electron donating effect, and a group derived from a thiophene ring is particularly preferable because it has both stability and an electron donating effect.

これらAr7〜Ar9は、互いに同一であってもよく、異なっていてもよい。 These Ar 7 to Ar 9 may be the same as or different from each other.

これらAr7〜Ar9が有していてもよい置換基としては、アルキル基、炭化水素環基、複素環基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アラルキルオキシ基、ヘテロアラルキルオキシ基、置換基を有していても良いアミノ基、アシル基、ニトロ基、シアノ基、エステル基、ハロゲン原子、水酸基、カルボキシル基などが挙げられる。 Examples of the substituent that Ar 7 to Ar 9 may have include an alkyl group, a hydrocarbon ring group, a heterocyclic group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an aralkyloxy group, and a heteroaralkyloxy group. And an amino group, an acyl group, a nitro group, a cyano group, an ester group, a halogen atom, a hydroxyl group, a carboxyl group and the like which may have a substituent.

より具体的には、置換基群Qとして具体例を挙げたような炭素数1〜9のアルキル基、炭素数3〜20の炭化水素環基、5又は6員環の単環又は2〜6縮合環由来の複素環基、炭素数1〜9のアルコキシ基、炭素数6〜18のアリールオキシ基、炭素数2〜18のヘテロアリールオキシ基、炭素数7〜18のアラルキルオキシ基、炭素数3〜18のヘテロアラルキルオキシ基、炭素数2〜20のアルキルアミノ基、炭素数6〜30のアリールアミノ基、炭素数2〜30のヘテロアリールアミノ基、炭素数1〜20のアシル基、ニトロ基、シアノ基、炭素数2〜6のエステル基、ハロゲン原子、水酸基、カルボキシル基などである。   More specifically, the alkyl group having 1 to 9 carbon atoms, the hydrocarbon ring group having 3 to 20 carbon atoms, the monocyclic ring having 5 or 6 members, or 2 to 6 as exemplified in the substituent group Q. A heterocyclic group derived from a condensed ring, an alkoxy group having 1 to 9 carbon atoms, an aryloxy group having 6 to 18 carbon atoms, a heteroaryloxy group having 2 to 18 carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, and a carbon number A heteroaralkyloxy group having 3 to 18 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 30 carbon atoms, a heteroarylamino group having 2 to 30 carbon atoms, an acyl group having 1 to 20 carbon atoms, nitro Group, cyano group, ester group having 2 to 6 carbon atoms, halogen atom, hydroxyl group, carboxyl group and the like.

また、Ar7〜Ar9において、各々の環が有する上述のような置換基のうち、隣接する基同士が結合して環状構造を形成していてもよい。隣接する置換基同士が結合して環状構造を形成するものとしては、例えば、Ar7〜Ar9としてのベンゼン環基に、該ベンゼン環が有する置換基同士が結合して前述のフェノキサチン、フェノチアジン、フェノキサジン環を形成したものが挙げられる。 Moreover, in Ar < 7 > -Ar < 9 >, among the above substituents which each ring has, adjacent groups may couple | bond together and it may form the cyclic structure. Examples of those in which adjacent substituents are bonded to form a cyclic structure include, for example, the above-described phenoxatin, phenothiazine, and the like, wherein the substituents of the benzene ring are bonded to the benzene ring group as Ar 7 to Ar 9 . Those having a phenoxazine ring are exemplified.

Ar7〜Ar9は、ジ置換アミノ基、特にアルキル基、(ヘテロ)アリール基、とりわけ電子供与性の大きい(ヘテロ)アリール基で置換されたジ置換アミノ基を置換基として有するものが好ましく、Ar7〜Ar9のいずれもジ置換アミノ基で置換されているものが合成の容易さの面からより一層好ましい。 Ar 7 to Ar 9 preferably have a disubstituted amino group, particularly an alkyl group, a (hetero) aryl group, particularly a disubstituted amino group substituted with a (hetero) aryl group having a large electron donating property as a substituent, Ar 7 to Ar 9 are more preferably substituted with a disubstituted amino group from the viewpoint of ease of synthesis.

なお、前記一般式(I)で表される化合物は、蛍光を有し、通常水に不溶性であり、その分子量は通常5000以下、好ましくは3000以下である。   The compound represented by the general formula (I) has fluorescence and is usually insoluble in water, and its molecular weight is usually 5000 or less, preferably 3000 or less.

以下に、前記一般式(I)で表される化合物の具体例を挙げるが、本発明はこれらに何ら限定されるものではない。なお、Meはメチル基、Etはエチル基、Phはフェニル基である。   Specific examples of the compound represented by the general formula (I) are shown below, but the present invention is not limited to these. Me is a methyl group, Et is an ethyl group, and Ph is a phenyl group.

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

Figure 2006251350
Figure 2006251350

以下に、一般式(I)において、Ar1、Ar2及びAr3が芳香環Araであり、Ar4、Ar5及びAr6が一般式(III)で表され、Ar7、Ar8及びAr9が芳香環Arbであり、Tが一般式(II)で表される構造であり、一般式(II)中、Ar10、Ar11及びAr12が芳香環Arcであり、一般式(III)中、環Aと環Zは、炭素原子を2個共有して縮合した環で表される構造である化合物の一般的な合成法を説明する。 Hereinafter, in the general formula (I), Ar 1 , Ar 2 and Ar 3 are aromatic rings Ar a , Ar 4 , Ar 5 and Ar 6 are represented by the general formula (III), Ar 7 , Ar 8 and Ar 9 is an aromatic ring Ar b and T is a structure represented by the general formula (II). In the general formula (II), Ar 10 , Ar 11 and Ar 12 are aromatic rings Ar c , In (III), ring A and ring Z explain a general method for synthesizing a compound having a structure represented by a ring having two carbon atoms shared and condensed.

Figure 2006251350
Figure 2006251350

下記一般式(IV)で表される複素環化合物を臭化水素酸中で、過剰の臭素を用いて臭素化を行い、下記一般式(V)で表されるジブロモ体(V)を製造する。このジブロモ体(V)を下記一般式(VI)で表される化合物とパラジウム触媒を用いてモル比1:1で反応を行うと、下記一般式(VII)で表されるモノブロモ体が合成される。このモノブロモ体(VII)と下記一般式(VIII)で表される化合物とをパラジウム触媒を用いてモル比1:1でカップリング反応を行い、下記一般式(IX)で表されるアルデヒド体を製造する。このアルデヒド体(IX)を1.2倍モルの水素化硼素ナトリウムで還元して、下記一般式(X)で表されるアルコール体とした後、過剰の三臭化燐で臭素化を行うことで、下記一般式(XI)で表されるブロモメチル体を製造することができる。このブロモメチル体(XI)を過剰の亜リン酸トリエチルで処理することで下記一般式(XII)で表されるリン酸エステル体を製造し、このリン酸エステル体(XII)を下記一般式(XIII)で表される化合物と金属アルキルオキシドに代表される塩基存在下で反応させることにより目的化合物(XIV)を得ることができる。   Bromination of a heterocyclic compound represented by the following general formula (IV) in hydrobromic acid using excess bromine to produce a dibromo compound (V) represented by the following general formula (V) . When this dibromo compound (V) is reacted at a molar ratio of 1: 1 using a compound represented by the following general formula (VI) and a palladium catalyst, a monobromo compound represented by the following general formula (VII) is synthesized. The This monobromo compound (VII) and a compound represented by the following general formula (VIII) are subjected to a coupling reaction at a molar ratio of 1: 1 using a palladium catalyst to obtain an aldehyde compound represented by the following general formula (IX). To manufacture. The aldehyde (IX) is reduced with 1.2-fold moles of sodium borohydride to obtain an alcohol represented by the following general formula (X), followed by bromination with excess phosphorus tribromide. Thus, a bromomethyl compound represented by the following general formula (XI) can be produced. By treating this bromomethyl compound (XI) with an excess of triethyl phosphite, a phosphate ester compound represented by the following general formula (XII) is produced, and this phosphate ester compound (XII) is converted to the following general formula (XIII) The target compound (XIV) can be obtained by reacting the compound represented by (1) with a base typified by a metal alkyl oxide.

Figure 2006251350
Figure 2006251350

また、アルデヒド体(IX)と下記一般式(XV)で表されるトリリン酸エステル体を金属アルキルオキシドに代表される塩基存在下で反応させることにより目的化合物(XVI)を得ることができる。   In addition, the target compound (XVI) can be obtained by reacting the aldehyde (IX) with a triphosphate ester represented by the following general formula (XV) in the presence of a base typified by a metal alkyl oxide.

Figure 2006251350
Figure 2006251350

本発明の有機非線形光学材料は、前記一般式(I)で表される化合物の1種のみを含むものであっても良く、また、2種以上を任意の組み合せ及び任意の比率で含むものであっても良い。   The organic nonlinear optical material of the present invention may contain only one kind of the compound represented by the general formula (I), or may contain two or more kinds in any combination and in any ratio. There may be.

本発明の有機非線形光学材料は、前記一般式(I)で表される化合物、例えば、各種合成法で得られた前記一般式(I)で表される化合物の粉末状結晶をそのままの状態で、ブロックや粉末として、或いは、ヘキサン、トルエン、キシレン、塩化メチレン、クロロホルム、エーテル、テトラハイドロフラン、酢酸エチル、アセトン、2−ブタノン、メタノール、エタノール、トリフルオロメチルベンゼン、酢酸、トリエチルアミン等の溶媒、或いはポリマー、又はゲル中に溶解ないし分散させた液状物として、或いは、このような液状物を基板に塗布した後溶媒を除去して得られる薄膜状物として、各種用途に供することができる。   The organic nonlinear optical material of the present invention is a compound represented by the above general formula (I), for example, a powdery crystal of the compound represented by the above general formula (I) obtained by various synthesis methods as it is. , As a block or powder, or a solvent such as hexane, toluene, xylene, methylene chloride, chloroform, ether, tetrahydrofuran, ethyl acetate, acetone, 2-butanone, methanol, ethanol, trifluoromethylbenzene, acetic acid, triethylamine, Alternatively, it can be used for various applications as a liquid material dissolved or dispersed in a polymer or gel, or as a thin film obtained by applying such a liquid material to a substrate and then removing the solvent.

なお、有機非線形光学材料が、前記一般式(I)で表される化合物を含んでいることは、該材料を分解、抽出等の処理を施した後、例えば、液体クロマトグラフィー−質量分析法(LC−MS)や核磁気共鳴スペクトル法(NMR)などで分析することにより確認することができる。   In addition, the organic nonlinear optical material contains the compound represented by the general formula (I), for example, after subjecting the material to treatment such as decomposition and extraction, for example, liquid chromatography-mass spectrometry ( It can be confirmed by analyzing by LC-MS) or nuclear magnetic resonance spectroscopy (NMR).

前記一般式(I)で表される化合物を構成成分の少なくとも一部として含有する本発明の有機非線形光学材料、その中でも特に前記一般式(III)で表される構造を有する本発明の有機非線形光学材料、によれば、2光子吸収を起こし易く、ストークスシフトが大きく、AF50の2光子吸収断面積を45GMとしたときの2光子吸収断面積の下限が通常150GM、好ましくは250GM、特に好ましくは300GMで、上限は5000GM、好ましくは1000GMであるような発光効率に優れた有機非線形光学材料が提供される。なお、本発明の有機非線形光学材料のストークスシフトは下限が通常120nm、上限は300nmである。   The organic nonlinear optical material of the present invention containing the compound represented by the general formula (I) as at least a part of the constituent components, and particularly the organic nonlinear optical material of the present invention having a structure represented by the general formula (III) among them. According to the optical material, the two-photon absorption is likely to occur, the Stokes shift is large, and the lower limit of the two-photon absorption cross-section when the two-photon absorption cross-section of AF50 is 45 GM is usually 150 GM, preferably 250 GM, particularly preferably An organic nonlinear optical material having excellent light emission efficiency is provided such that the upper limit is 300 GM and the upper limit is 5000 GM, preferably 1000 GM. The lower limit of the Stokes shift of the organic nonlinear optical material of the present invention is usually 120 nm, and the upper limit is 300 nm.

前記一般式(I)で表される構造を有する本発明の有機非線形光学材料が高い2光子吸収断面積を示すのは高い極性を持ったパイ共役性分子の3量体であることにより、またストークスシフトが大きいのは、強い電子吸引性を有する一般式(III)で表される部位と電子供与効果を有する部位が分子内に存在しており、分子内電荷移動が生じる為であると推定される。   The organic nonlinear optical material of the present invention having the structure represented by the general formula (I) exhibits a high two-photon absorption cross section because it is a trimer of a pi-conjugated molecule having a high polarity. The large Stokes shift is presumed to be due to the presence of a site represented by the general formula (III) having a strong electron-withdrawing property and a site having an electron-donating effect in the molecule, resulting in intramolecular charge transfer. Is done.

以下に、合成例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples, and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

[合成例1]
[1]4-[(N,N-ジフェニルアミノ)フェニル]-7-(4-ヒドロキシメチル)-2,1,3-ベンゾチアジアゾール(b)の合成

Figure 2006251350
[Synthesis Example 1]
[1] Synthesis of 4-[(N, N-diphenylamino) phenyl] -7- (4-hydroxymethyl) -2,1,3-benzothiadiazole (b)
Figure 2006251350

エタノール(20mL)に4-[7-(4-ジフェニルアミノフェニル)-ベンゾ[1,2,5]チアジアゾール-4-イル]-ベンズアルデヒド(非特許文献6)(a)(150mg,0.31mmol)と水素化ホウ素ナトリウム(35mg,0.93mmol)を加え、80℃で1時間加熱攪拌した。放冷後、反応溶液を水(60mL)に注ぎ、析出した沈殿を濾別してヘキサンで洗浄し、クロロホルムとヘキサンで再結晶することにより、赤色粉末状の4-[(N,N-ジフェニルアミノ)フェニル]-7-(4-ヒドロキシメチル)-2,1,3-ベンゾチアジアゾール(b)を収率93%(140mg,0.29mmol)で得た。   4- [7- (4-Diphenylaminophenyl) -benzo [1,2,5] thiadiazol-4-yl] -benzaldehyde (Non-Patent Document 6) (a) (150 mg, 0.31 mmol) in ethanol (20 mL) Sodium borohydride (35 mg, 0.93 mmol) was added, and the mixture was stirred with heating at 80 ° C. for 1 hr. After allowing to cool, the reaction solution is poured into water (60 mL), the deposited precipitate is filtered off, washed with hexane, and recrystallized with chloroform and hexane to give red powdery 4-[(N, N-diphenylamino) Phenyl] -7- (4-hydroxymethyl) -2,1,3-benzothiadiazole (b) was obtained in 93% yield (140 mg, 0.29 mmol).

融点(融点測定機にて測定):203-204℃
赤外吸収スペクトル(KBr)νmax:3427(・OH),1590,1486,1324,1283,1195,1179,890,818cm-1
プロトン−核磁気共鳴スペクトル法1H NMR(CDCl3):δ1.69(t,J=5.6Hz,2H,OH),4.81(d,J=5.6Hz,2H,CH2),7.07(t,J=7.3Hz,2H,ArH),7.17-7.34(m,10H,ArH),7.56(d,J=8.1Hz,2H,ArH),7.76(d,J=7.6Hz,1H,ArH),7.79(d,J=7.6Hz,1H,ArH),7.88(d,J=8.7Hz,2H,ArH),7.97(d,J=8.1Hz,2H,ArH)
高速原子衝突イオン化質量分析法FAB-MS(NBA,positive):485(M+)
元素分析Anal.Calcd for C31H23N3OS・0.03CHCl3:C=76.18,H=4.75,N=8.59
Found:C=76.15,H=4.80,N=8.62
非特許文献6:A.S.D. Sandanayaka,K.Matsukawa,T.Ishi-i,S.Mataka,Y.Araki,O.Ito,J.Phys.Chem.A,2004,108,19995
Melting point (measured with a melting point analyzer): 203-204 ° C
Infrared absorption spectrum (KBr) νmax: 3427 (· OH), 1590, 1486, 1324, 1283, 1195, 1179, 890, 818cm -1
Proton-nuclear magnetic resonance spectroscopy 1 H NMR (CDCl 3 ): δ 1.69 (t, J = 5.6 Hz, 2H, OH), 4.81 (d, J = 5.6 Hz, 2H, CH 2), 7.07 (t, J = 7.3Hz, 2H, ArH), 7.17-7.34 (m, 10H, ArH), 7.56 (d, J = 8.1Hz, 2H, ArH), 7.76 (d, J = 7.6Hz, 1H, ArH), 7.79 ( d, J = 7.6Hz, 1H, ArH), 7.88 (d, J = 8.7Hz, 2H, ArH), 7.97 (d, J = 8.1Hz, 2H, ArH)
Fast atom collision ionization mass spectrometry FAB-MS (NBA, positive): 485 (M +)
Elemental Analysis Anal.Calcd for C 31 H 23 N 3 OS ・ 0.03CHCl 3 : C = 76.18, H = 4.75, N = 8.59
Found: C = 76.15, H = 4.80, N = 8.62
Non-Patent Document 6: ASD Sandanayaka, K. Matsukawa, T. Ishi-i, S. Mataka, Y. Araki, O. Ito, J. Phys. Chem. A, 2004, 108, 19995

[2]4-[4-(ブロモメチル)フェニル]-7-[4-(N,N-ジフェニルアミノ)フェニル]-2,1,3-ベンゾチアジアゾール(c)の合成

Figure 2006251350
[2] Synthesis of 4- [4- (bromomethyl) phenyl] -7- [4- (N, N-diphenylamino) phenyl] -2,1,3-benzothiadiazole (c)
Figure 2006251350

アルゴン雰囲気下、THF(テトラヒドロフラン)(20mL)に、化合物(b)(100mg, 0.21mmol)を溶解した後、0℃で三臭化リン(10μL, 0.10mmol)を滴下し、室温まで昇温して3時間攪拌した。反応溶液を氷浴に注いだ後にトルエンで抽出した(50mL×3回)。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(KANTO 60N)に付し、クロロホルムとヘキサン(=1:1体積比)で展開した。得られた固体をクロロホルムとヘキサンで再結晶することにより、赤色針状晶の4-[4-(ブロモメチル)フェニル]-7-[4-(N,N-ジフェニルアミノ)フェニル]-2,1,3-ベンゾチアジアゾール(c)を収率53%(62mg, 0.11mmol)で得た。   Compound (b) (100 mg, 0.21 mmol) was dissolved in THF (tetrahydrofuran) (20 mL) under an argon atmosphere, phosphorus tribromide (10 μL, 0.10 mmol) was added dropwise at 0 ° C., and the mixture was warmed to room temperature. And stirred for 3 hours. The reaction solution was poured into an ice bath and extracted with toluene (3 × 50 mL). The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography (KANTO 60N) and developed with chloroform and hexane (= 1: 1 volume ratio). The obtained solid was recrystallized from chloroform and hexane to give red needle-shaped 4- [4- (bromomethyl) phenyl] -7- [4- (N, N-diphenylamino) phenyl] -2,1 , 3-Benzothiadiazole (c) was obtained in 53% yield (62 mg, 0.11 mmol).

融点(融点測定機にて測定):186-188℃
赤外吸収スペクトル(KBr)νmax:1589,1481,1318,1279,887,823,752cm-1
プロトン−核磁気共鳴スペクトル法1H NMR(CDCl3):4.59(s,2H,CH2),7.07(t,J=7.3Hz,2H,ArH),7.18-7.34(m,10H,ArH),7.58(d,2H,J=8.3Hz,ArH),7.76(d,J=7.6Hz,1H,ArH),7.79(d,J=7.6Hz,1H,ArH),7.89(d,J=8.7Hz,2H,ArH),7.97(d,J=8.3Hz,2H,ArH)
高速原子衝突イオン化質量分析法FAB-MS(NBA,positive):547,549[(M+H)+]
元素分析Anal.Calcd for C31H22BrN3S:C=67.88,H=4.04,N=7.66
Found:C=67.99,H=4.02,N=7.62
Melting point (measured with a melting point analyzer): 186-188 ° C
Infrared absorption spectrum (KBr) νmax: 1589,1481,1318,1279,887,823,752cm -1
Proton-nuclear magnetic resonance spectroscopy 1 H NMR (CDCl 3 ): 4.59 (s, 2 H, CH 2), 7.07 (t, J = 7.3 Hz, 2 H, ArH), 7.18-7.34 (m, 10 H, ArH), 7.58 (d, 2H, J = 8.3Hz, ArH), 7.76 (d, J = 7.6Hz, 1H, ArH), 7.79 (d, J = 7.6Hz, 1H, ArH), 7.89 (d, J = 8.7Hz, 2H, ArH), 7.97 (d, J = 8.3Hz, 2H, ArH)
Fast atom collision ionization mass spectrometry FAB-MS (NBA, positive): 547,549 [(M + H) + ]
Elemental Analysis Anal.Calcd for C 31 H 22 BrN 3 S: C = 67.88, H = 4.04, N = 7.66
Found: C = 67.99, H = 4.02, N = 7.62

[3]4-[4-(ジメトキシホスフォリルメチル)フェニル]-7-[4-(N,N-ジフェニルアミノ)フェニル]-2,1,3-ベンゾチアジアゾール(d)の合成

Figure 2006251350
[3] Synthesis of 4- [4- (dimethoxyphosphorylmethyl) phenyl] -7- [4- (N, N-diphenylamino) phenyl] -2,1,3-benzothiadiazole (d)
Figure 2006251350

化合物(c)(130mg, 0.24mmol)と亜リン酸トリメチル(285mg, 2.35mmol)の混合物を150℃で12時間加熱攪拌し、放冷後、反応混合物をヘキサン(150mL)に注いだ。沈殿物を濾別してヘキサンで洗浄することにより、橙色プリズム晶の4-[4-(ジメトキシホスフォリルメチル)フェニル]-7-[4-(N,N-ジフェニルアミノ)フェニル]-2,1,3-ベンゾチアジアゾール(d)を収率83%(115mg, 0.20mmol)で得た。   A mixture of compound (c) (130 mg, 0.24 mmol) and trimethyl phosphite (285 mg, 2.35 mmol) was heated and stirred at 150 ° C. for 12 hours, allowed to cool, and then the reaction mixture was poured into hexane (150 mL). The precipitate was filtered off and washed with hexane to give orange prism crystal 4- [4- (dimethoxyphosphorylmethyl) phenyl] -7- [4- (N, N-diphenylamino) phenyl] -2,1 , 3-Benzothiadiazole (d) was obtained in 83% yield (115 mg, 0.20 mmol).

融点(融点測定機にて測定):198-201℃
赤外吸収スペクトルIR(KBr)νmax:1590,1483(・P=O),1329,1282,1248,1180,1055,1027,888,861,830cm-1
プロトン−核磁気共鳴スペクトル法1H NMR(CDCl3):3.27(d,J=21.8Hz,2H,CH2),3.74(d,J=10.9Hz,6H,OCH3),7.07(t,J=7.3Hz,2H,ArH),7.17-7.33(m,10H,ArH),7.48(dd,J=2.6,8.3Hz,2H,ArH),7.75(d,J=7.9 Hz,1H,ArH),7.78(d,J=7.9Hz,1H,ArH),7.88(d,J=8.3Hz,2H,ArH),7.95(d,J=7.6Hz,2H,CHO)
高速原子衝突イオン化質量分析法FAB-MS(NBA,positive):577(M+)
元素分析Anal.Calcd for C33H28N3O3PS:C=68.62,H=4.89,N=7.29
Found:C=68.68,H=4.91,N=7.27
Melting point (measured with a melting point analyzer): 198-201 ° C
Infrared absorption spectrum IR (KBr) νmax: 1590,1483 (• P = O), 1329,1282,1248,1180,1055,1027,888,861,830cm -1
Proton-nuclear magnetic resonance spectroscopy 1 H NMR (CDCl 3 ): 3.27 (d, J = 21.8 Hz, 2H, CH 2 ), 3.74 (d, J = 10.9 Hz, 6H, OCH3), 7.07 (t, J = 7.3Hz, 2H, ArH), 7.17-7.33 (m, 10H, ArH), 7.48 (dd, J = 2.6, 8.3Hz, 2H, ArH), 7.75 (d, J = 7.9 Hz, 1H, ArH), 7.78 (d, J = 7.9Hz, 1H, ArH), 7.88 (d, J = 8.3Hz, 2H, ArH), 7.95 (d, J = 7.6Hz, 2H, CHO)
Fast atom collision ionization mass spectrometry FAB-MS (NBA, positive): 577 (M + )
Elemental Analysis Anal.Calcd for C 33 H 28 N 3 O 3 PS: C = 68.62, H = 4.89, N = 7.29
Found: C = 68.68, H = 4.91, N = 7.27

[4]トリス{4-{2-{4-[7-(4-N,N-ジフェニルアミノ)フェニル]ベンゾチアジアゾールイル}フェニル}-(E)-エテニル}フェニル}アミン(前掲の化合物57)の合成

Figure 2006251350
[4] Tris {4- {2- {4- [7- (4-N, N-diphenylamino) phenyl] benzothiadiazolyl} phenyl}-(E) -ethenyl} phenyl} amine (Compound 57 above) Synthesis of
Figure 2006251350

アルゴン雰囲気下、室温で無水THF(20mL)に化合物(d)(110mg, 0.19mmol)とトリス(4-ホルミルフェニル)アミン(e)(19mg, 0.058mmol)を溶解し、カリウムt-ブトキシド(38mg, 0.34mmol)を加えた後に8時間攪拌した。反応溶液を1.2規定塩酸水溶液(50mL)に注いだ後にクロロホルムで抽出した(30mL×3回)。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(KANTO 60N)に付し、クロロホルムとヘキサン(5:2, 体積比)で展開した。得られた固体をクロロホルムとヘキサンで再結晶することにより、赤色粉末状のトリス{4-{2-{4-[7-(4-N,N-ジフェニルアミノ)フェニル]ベンゾチアジアゾールイル}フェニル}-(E)-エテニル}フェニル}アミン(化合物57)を収率59%(58mg, 0.034mmol)で得た。   Compound (d) (110 mg, 0.19 mmol) and tris (4-formylphenyl) amine (e) (19 mg, 0.058 mmol) were dissolved in anhydrous THF (20 mL) at room temperature under an argon atmosphere, and potassium t-butoxide (38 mg , 0.34 mmol) and stirred for 8 hours. The reaction solution was poured into a 1.2 N aqueous hydrochloric acid solution (50 mL) and extracted with chloroform (30 mL × 3 times). The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography (KANTO 60N) and developed with chloroform and hexane (5: 2, volume ratio). The resulting solid was recrystallized with chloroform and hexane to give red tris {4- {2- {4- [7- (4-N, N-diphenylamino) phenyl] benzothiadiazolyl} phenyl} -(E) -Ethenyl} phenyl} amine (Compound 57) was obtained in 59% yield (58 mg, 0.034 mmol).

融点(融点測定機にて測定):186-188℃
赤外吸収スペクトル(KBr)νmax:2924,1590,1480,1278,1073,888,824,753,697cm-1
プロトン−核磁気共鳴スペクトル法1H NMR(CDCl3):7.08(t,J=7.3Hz,6H,ArH),7.18-7.34(m,42H,olefinic H and ArH),7.50(d,J=8.6Hz,6H,ArH),7.69(d,J=8.6Hz,6H,ArH),7.77(d,J=7.4Hz,3H,ArH),7.82(d,J=7.4Hz,3H,ArH),7.89(d,J=8.9Hz,6H,ArH),8.01(d,J=8.6Hz,6H,ArH)
マトリクス支援レーザー脱離イオン化飛行時間型質量分析法MALDI-TOF MS(dithranol,positive):1683.81[(M+H)+,Calcd for C114H78N10S3: 1682.56]
元素分析Anal.Calcd for C114H78N10S3:C=81.30,H=4.67,N=8.32
Found:C=80.98,H=4.79,N=8.15
Melting point (measured with a melting point analyzer): 186-188 ° C
Infrared absorption spectrum (KBr) νmax: 2924,1590,1480,1278,1073,888,824,753,697cm -1
Proton-nuclear magnetic resonance spectroscopy 1 H NMR (CDCl 3 ): 7.08 (t, J = 7.3 Hz, 6H, ArH), 7.18-7.34 (m, 42H, olefinic H and ArH), 7.50 (d, J = 8.6 Hz, 6H, ArH), 7.69 (d, J = 8.6Hz, 6H, ArH), 7.77 (d, J = 7.4Hz, 3H, ArH), 7.82 (d, J = 7.4Hz, 3H, ArH), 7.89 (d, J = 8.9Hz, 6H, ArH), 8.01 (d, J = 8.6Hz, 6H, ArH)
Matrix-assisted laser desorption / ionization time-of-flight mass spectrometry MALDI-TOF MS (dithranol, positive): 1683.81 [(M + H) + , Calcd for C 114 H 78 N 10 S 3 : 1682.56]
Elemental Analysis Anal.Calcd for C 114 H 78 N 10 S 3 : C = 81.30, H = 4.67, N = 8.32
Found: C = 80.98, H = 4.79, N = 8.15

[合成例2]
1,3,5-トリス{2-{4-{7-[4-(N,N-ジフェニルアミノ)フェニル]ベンゾチアジアゾールイル}フェニル}-(E)-エテニル}ベンゼン(前掲の化合物1)の合成

Figure 2006251350
[Synthesis Example 2]
1,3,5-tris {2- {4- {7- [4- (N, N-diphenylamino) phenyl] benzothiadiazolyl} phenyl}-(E) -ethenyl} benzene (compound 1 above) Composition
Figure 2006251350

アルゴン雰囲気下、室温で無水THF(30mL)に1,3,5-トリス(ジメトキシホスフォリルメチル)ベンゼン(f)(61mg, 0.14mmol)とエタノール(20mL)に4-[7-(4-ジフェニルアミノフェニル)-ベンゾ[1,2,5]チアジアゾール-4-イル]-ベンズアルデヒド(非特許文献6)(a)(200mg, 0.41mmol)を溶解し、カリウムt-ブトキシド(71mg, 0.63mmol)を加えた後に40℃で12時間加熱攪拌した。反応溶液を1.2規定塩酸水溶液(100mL)に注いだ後にクロロホルムで抽出した(40mL×3回)。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(KANTO 60N)に付し、クロロホルムで展開した。得られた固体をクロロホルムとヘキサンで再結晶することにより、赤色粉末状の1,3,5-トリス{2-{4-{7-[4-(N,N-ジフェニルアミノ)フェニル]ベンゾチアジアゾールイル}フェニル}-(E)-エテニル}ベンゼン(化合物1)を収率63%(130mg, 0.088mmol)で得た。   Under argon atmosphere at room temperature in anhydrous THF (30 mL), 1,3,5-tris (dimethoxyphosphorylmethyl) benzene (f) (61 mg, 0.14 mmol) and ethanol (20 mL) in 4- [7- (4- Diphenylaminophenyl) -benzo [1,2,5] thiadiazol-4-yl] -benzaldehyde (Non-Patent Document 6) (a) (200 mg, 0.41 mmol) is dissolved, and potassium t-butoxide (71 mg, 0.63 mmol) is dissolved. The mixture was heated and stirred at 40 ° C. for 12 hours. The reaction solution was poured into a 1.2 N aqueous hydrochloric acid solution (100 mL) and extracted with chloroform (40 mL × 3 times). The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography (KANTO 60N) and developed with chloroform. The resulting solid was recrystallized from chloroform and hexane to obtain red powdery 1,3,5-tris {2- {4- {7- [4- (N, N-diphenylamino) phenyl] benzothiadiazole Ir} phenyl}-(E) -ethenyl} benzene (Compound 1) was obtained in a yield of 63% (130 mg, 0.088 mmol).

融点(融点測定機にて測定):176-178℃
赤外吸収スペクトル(KBr)νmax:1590,1481,1280,888,830,753cm-1
プロトン−核磁気共鳴スペクトル法1H NMR(CDCl3):7.08(t,J=7.3Hz,6H,ArH),7.19-7.34(m,30H,ArH),7.68(s,3H,ArH),7.77(d,J=8.6Hz,6H,ArH),7.79(d,J=7.3Hz,3H,ArH),7.80(d,J=15.8Hz,3H,olefinic H),7.83(d,J=15.8Hz,3H,olefinic H),7.85(d,J=7.3Hz,3H,ArH),7.90(d,J=8.6Hz,6H,ArH),8.06(d,J=8.3Hz,6H,ArH)
高速原子衝突イオン化質量分析法FAB-MS(NBA,positive):1517(M+)
元素分析Anal.Calcd for C102H69N9S3:C=80.76,H=4.58,N=8.31
Found:C=80.46,H=4.65,N=8.20
Melting point (measured with a melting point analyzer): 176-178 ° C
Infrared absorption spectrum (KBr) νmax: 1590,1481,1280,888,830,753cm -1
Proton-nuclear magnetic resonance spectroscopy 1 H NMR (CDC 13 ): 7.08 (t, J = 7.3 Hz, 6H, ArH), 7.19-7.34 (m, 30H, ArH), 7.68 (s, 3H, ArH), 7.77 (d, J = 8.6Hz, 6H, ArH), 7.79 (d, J = 7.3Hz, 3H, ArH), 7.80 (d, J = 15.8Hz, 3H, olefinic H), 7.83 (d, J = 15.8Hz , 3H, olefinic H), 7.85 (d, J = 7.3Hz, 3H, ArH), 7.90 (d, J = 8.6Hz, 6H, ArH), 8.06 (d, J = 8.3Hz, 6H, ArH)
Fast atom collision ionization mass spectrometry FAB-MS (NBA, positive): 1517 (M + )
Elemental Analysis Anal.Calcd for C 102 H 69 N 9 S 3 : C = 80.76, H = 4.58, N = 8.31
Found: C = 80.46, H = 4.65, N = 8.20

[実施例及び比較例]
合成例1,2で得られた各化合物57,1について、2光子吸収断面積、2光子励起蛍光ピーク波長、及び線形吸収ピーク波長を下記方法で測定し、結果を表12に示した(実施例1,2)。
また、各化合物のストークスシフトを2光子励起蛍光ピーク波長と線形吸収ピーク波長との差で算出し、結果を表23に示した。
[Examples and Comparative Examples]
For each of the compounds 57 and 1 obtained in Synthesis Examples 1 and 2, the two-photon absorption cross section, the two-photon excitation fluorescence peak wavelength, and the linear absorption peak wavelength were measured by the following methods, and the results are shown in Table 12 (implementation) Examples 1, 2).
Further, the Stokes shift of each compound was calculated by the difference between the two-photon excitation fluorescence peak wavelength and the linear absorption peak wavelength, and the results are shown in Table 23.

比較のため、下記化合物X−1についても同様に評価を行い、結果を表12に示した(比較例1)。   For comparison, the following compound X-1 was similarly evaluated, and the results are shown in Table 12 (Comparative Example 1).

Figure 2006251350
Figure 2006251350

〈2光子吸収断面積の評価方法〉
2光子吸収断面積評価は、Guang S.He,Lixiang Yuan,Ning Cheng,Jayant D.Bhawalkar,Paras N.Prasad,Lawrence L.Brott,Stephen J.Clarson,Bruce A.Reinhardt,J.Opt.Soc.Am.B Vol.14,No.5(1997)pp.1079-1087記載の方法を参考にして行った。測定光源には、フェムト秒チタンサファイアレーザ(波長:800nm、パルス幅:100fs、繰り返し:1kHz、平均出力:2W、ピークパワー:20GW)を用い、レーザからの出力を適当に減衰させて2光子吸収断面積を測定した。測定にはZ−scan法を用いて励起光密度1〜40GW/cm2の範囲で変化させた。測定試料には、下記表12に示す濃度で各化合物をトルエンに溶かした溶液を用い、この溶液を4面透明の1cm角石英セルに入れて測定に供した。
<Evaluation method of two-photon absorption cross section>
The two-photon absorption cross-sectional area was evaluated by Guang S. He, Lixiang Yuan, Ning Cheng, Jayant D. Bhawalkar, Paras N. Prasad, Lawrence L. Brott, Stephen J. Clarson, Bruce A. Reinhardt, J. Opt. Soc. Am.B Vol.14, No.5 (1997) pp.1079-1087 A femtosecond titanium sapphire laser (wavelength: 800 nm, pulse width: 100 fs, repetition rate: 1 kHz, average output: 2 W, peak power: 20 GW) is used as a measurement light source, and the output from the laser is appropriately attenuated to absorb two-photons. The cross-sectional area was measured. For measurement, the Z-scan method was used to change the excitation light density in the range of 1 to 40 GW / cm 2 . As a measurement sample, a solution in which each compound was dissolved in toluene at the concentration shown in Table 12 below was used, and this solution was put into a four-side transparent 1 cm square quartz cell for measurement.

また、それぞれの化合物の測定時に、標準サンプルとなるAF50を測定した。上記のシステムではAF50の数値は45GMから55GMの値で得られる。2光子吸収断面積を規格化するために、すべての2光子吸収断面積の値は、サンプルを測定した後にAF50を測定し、そのAF50の2光子吸収断面積を45として算出した。   Moreover, AF50 used as a standard sample was measured at the time of measuring each compound. In the above system, the numerical value of AF50 is obtained from 45 GM to 55 GM. In order to normalize the two-photon absorption cross-section, all the two-photon absorption cross-section values were calculated by measuring AF50 after measuring the sample and setting the two-photon absorption cross-section of the AF50 to 45.

〈2光子励起蛍光ピーク波長の評価方法〉
2光子励起蛍光波長評価は2光子吸収断面積の評価方法に準じた方法で実施した。光源からのレーザを試料に照射する部分までは2光子吸収断面積と同じ配置で行なった。試料及び試料セルは2光子吸収断面積測定と同じものを用いた。励起光強度10mW、励起光密度10GW/cm2の条件で試料を励起し、試料から発生した蛍光は入射レーザ光と直交する方向にレンズを置き集光した後、分光測定し蛍光スペクトルを測定した。得られた蛍光スペクトルは装置の波長依存性を補正した後、ピーク波長を読み取った。なお、ピーク波長は、±1nmの誤差を含むものとする。
<Method for evaluating two-photon excitation fluorescence peak wavelength>
Two-photon excitation fluorescence wavelength evaluation was carried out by a method according to the evaluation method of the two-photon absorption cross section. The same arrangement as the two-photon absorption cross-sectional area was performed up to the part where the sample was irradiated with the laser from the light source. The sample and the sample cell were the same as those used for the two-photon absorption cross section measurement. The sample was excited under the conditions of an excitation light intensity of 10 mW and an excitation light density of 10 GW / cm 2 , and the fluorescence generated from the sample was condensed by placing a lens in a direction perpendicular to the incident laser beam, and then the spectrum was measured to measure the fluorescence spectrum. . The obtained fluorescence spectrum was read for the peak wavelength after correcting the wavelength dependence of the apparatus. The peak wavelength includes an error of ± 1 nm.

〈線形吸収ピーク波長の評価方法〉
島津製作所製紫外可視分光光度計UV−3100Sを用いて実施した。測定試料には下記表12に示す濃度で各化合物をトルエンに溶かした溶液を用い、この溶液をセル長1cmの石英セルに入れ、トルエンのみを同じセルに入れたものを参照試料として測定に供した。なお、ピーク波長は、±1nmの誤差を含むものとする。
<Method for evaluating linear absorption peak wavelength>
This was carried out using an ultraviolet-visible spectrophotometer UV-3100S manufactured by Shimadzu Corporation. As a measurement sample, a solution in which each compound was dissolved in toluene at the concentration shown in Table 12 below was used. This solution was put in a quartz cell having a cell length of 1 cm, and only toluene was put in the same cell for measurement. did. The peak wavelength includes an error of ± 1 nm.

Figure 2006251350
Figure 2006251350

表23より、本発明の有機非線形光学材料は、二光子吸収断面積が大きく、またストークスシフトが大きく、発光効率に優れることが分かる。   From Table 23, it can be seen that the organic nonlinear optical material of the present invention has a large two-photon absorption cross section, a large Stokes shift, and excellent luminous efficiency.

本発明の有機非線形光学材料は、光メモリー、2光子造形、2光子フォトダイナミックセラピー等の分野で2光子吸収化合物としての応用が期待される。特に、本発明の有機非線形光学材料は2光子発光効率に優れることから、光変換材料、光増感剤としての応用も期待される。   The organic nonlinear optical material of the present invention is expected to be applied as a two-photon absorption compound in the fields of optical memory, two-photon modeling, two-photon photodynamic therapy and the like. In particular, since the organic nonlinear optical material of the present invention is excellent in two-photon emission efficiency, application as a light conversion material and a photosensitizer is also expected.

Claims (4)

下記一般式(I)で表される化合物を構成成分の少なくとも一部として含有することを特徴とする有機非線形光学材料。
Figure 2006251350
[式(I)中、Tは3価の芳香環基又は、下記一般式(II)の構造を表し、
Ar1〜Ar3は各々独立に置換基を有していてもよい2価の芳香環基を表し、
Ar4〜Ar6は各々独立に下記一般式(III)で表される2価の複素環基を表し、
Ar7〜Ar9は各々独立に置換基を有していてもよい1価の芳香環基を表す。
ただし、TとAr1〜Ar3は共役系が繋がる状態で結合している。
Figure 2006251350
(式(II)中、Nは窒素原子を表し、Ar10〜Ar12は各々独立に置換基を有していてもよい2価の芳香環基を表す。)
Figure 2006251350
(式(III)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。)]
An organic nonlinear optical material comprising a compound represented by the following general formula (I) as at least a part of a constituent component.
Figure 2006251350
[In the formula (I), T represents a trivalent aromatic ring group or a structure of the following general formula (II),
Ar 1 to Ar 3 each independently represents a divalent aromatic ring group which may have a substituent,
Ar 4 to Ar 6 each independently represents a divalent heterocyclic group represented by the following general formula (III),
Ar 7 to Ar 9 each independently represents a monovalent aromatic ring group which may have a substituent.
However, T and Ar 1 to Ar 3 are bonded in a state where the conjugated system is connected.
Figure 2006251350
(In formula (II), N represents a nitrogen atom, and Ar 10 to Ar 12 each independently represents a divalent aromatic ring group which may have a substituent.)
Figure 2006251350
(In Formula (III), Ring A and Ring Z represent a ring condensed by sharing two carbon atoms, and each may have a substituent.)]
一般式(III)において、環Zは置換基を有していてもよい6員環を表し、環Aは置換基を有していてもよい5員環を表していることを特徴とする請求項1に記載の有機非線形光学材料。   In the general formula (III), the ring Z represents a 6-membered ring which may have a substituent, and the ring A represents a 5-membered ring which may have a substituent. Item 2. The organic nonlinear optical material according to Item 1. 一般式(III)が下記一般式(IIIa)又は(IIIb)で表されることを特徴とする請求項1又は2に記載の有機非線形光学材料。
Figure 2006251350
[式(IIIa),(IIIb)において、環Zは一般式(III)における環Zと同義の環よりなる2価の基であり、一般式(IIIa)中、Yは16族元素を表し、一般式(IIIb)中、XはN又はSを表す。]
The organic nonlinear optical material according to claim 1 or 2, wherein the general formula (III) is represented by the following general formula (IIIa) or (IIIb).
Figure 2006251350
[In Formulas (IIIa) and (IIIb), Ring Z is a divalent group consisting of a ring having the same meaning as Ring Z in General Formula (III). In General Formula (IIIa), Y represents a Group 16 element; In general formula (IIIb), X represents N or S. ]
下記一般式(III)で表される構造を有し、AF50の2光子吸収断面積を45GMとしたときの2光子吸収断面積が250〜5000GMであり、ストークスシフトが120〜300nmであることを特徴とする有機非線形光学材料。
Figure 2006251350
[式(III)中、環Aと環Zは、炭素原子を2個共有して縮合した環を表し、各々置換基を有していてもよい。]
It has a structure represented by the following general formula (III), the two-photon absorption cross-section when the two-photon absorption cross-section of AF50 is 45 GM is 250 to 5000 GM, and the Stokes shift is 120 to 300 nm. Organic nonlinear optical material characterized.
Figure 2006251350
[In Formula (III), Ring A and Ring Z represent a ring condensed by sharing two carbon atoms, and each may have a substituent. ]
JP2005067580A 2005-03-10 2005-03-10 Organic nonlinear optical material Withdrawn JP2006251350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067580A JP2006251350A (en) 2005-03-10 2005-03-10 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067580A JP2006251350A (en) 2005-03-10 2005-03-10 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JP2006251350A true JP2006251350A (en) 2006-09-21

Family

ID=37091929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067580A Withdrawn JP2006251350A (en) 2005-03-10 2005-03-10 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JP2006251350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123137A1 (en) * 2006-04-18 2007-11-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
JP2019048908A (en) * 2017-09-07 2019-03-28 信一郎 礒部 Fluorescent dye

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123137A1 (en) * 2006-04-18 2007-11-01 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same
JPWO2007123137A1 (en) * 2006-04-18 2009-09-03 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
US8022253B2 (en) 2006-04-18 2011-09-20 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
JP5091854B2 (en) * 2006-04-18 2012-12-05 出光興産株式会社 Aromatic amine derivative and organic electroluminescence device using the same
US8367869B2 (en) 2006-04-18 2013-02-05 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
JP2019048908A (en) * 2017-09-07 2019-03-28 信一郎 礒部 Fluorescent dye
JP7014549B2 (en) 2017-09-07 2022-02-01 信一郎 礒部 Fluorescent dye

Similar Documents

Publication Publication Date Title
Chen et al. Geometry relaxation-induced large Stokes shift in red-emitting borondipyrromethenes (BODIPY) and applications in fluorescent thiol probes
Kato et al. Novel 2, 1, 3‐benzothiadiazole‐based red‐fluorescent dyes with enhanced two‐photon absorption cross‐sections
Kukhta et al. Structure–property relationships of star-shaped blue-emitting charge-transporting 1, 3, 5-triphenylbenzene derivatives
Wang et al. Influence of the terminal electron donor in D–D–π–A phenothiazine dyes for dye-sensitized solar cells
EP3533798B1 (en) Dibenzopyrromethene boron chelate compound, near infrared light absorbing material, thin film, and organic electronic device
Feng et al. Tetraphenylbenzosilole: an AIE building block for deep-blue emitters with high performance in nondoped spin-coating OLEDs
JP4501588B2 (en) Organic nonlinear optical material
Monçalves et al. Divinyl sulfides/sulfones-based D–π–A–π–D dyes as efficient non-aromatic bridges for π-conjugated compounds
Jia et al. Mechanofluorochromic properties of tert-butylcarbazole-based AIE-active D-π-A fluorescent dye
Jana et al. Pyridine-cored V-shaped π-conjugated oligomers: synthesis and optical properties
Xu et al. High-performance two-photon absorption luminophores: large action cross sections, free from fluorescence quenching and tunable emission of efficient non-doped organic light-emitting diodes
Zhang et al. Synthesis and properties of furan/thiophene substituted difluoroboron β-diketonate derivatives bearing a triphenylamine moiety
Grolleau et al. Rapid and green synthesis of complementary DA small molecules for organic photovoltaics
Manohara et al. Synthesis, optical and electrochemical properties of new cyanopyridine derivatives
Li et al. Synthesis, spectroscopic characterization and one and two-photon absorption properties of π-expanded thiophene and truxene BODIPYs dyes
Wen et al. Triphenylethylene-based fluorophores: Facile preparation and full-color emission in both solution and solid states
Jana et al. Synthesis of gem-tetraphenylethylene oligomers utilizing Suzuki reaction and their aggregation properties
Kumsampao et al. Solid‐State Fluorophores with Combined Excited‐State Intramolecular Proton Transfer‐Aggregation‐Induced Emission as Efficient Emitters for Electroluminescent Devices
JP2007119443A (en) Phorphyrin-azulene condensate and two-photon absorbing material
Fu et al. Excellent and reversible mechanofluorochromism in donor–acceptor π-systems based on bisarylic methanone derivatives
Barros et al. Synthesis, photophysical and electrochemical properties of π-conjugated pyrene based down-shifting molecules with fluorinated aryl groups
JP2005263692A (en) Fullerene derivative and photoelectric converting material
JP2006251350A (en) Organic nonlinear optical material
Zhang et al. Synthesis and luminescent properties of star-burst D-π-A compounds based on 1, 3, 5-triazine core and carbazole end-capped phenylene ethynylene arms
Cavazzini et al. Intimately bound coumarin and bis (alkylaminostyryl) benzene fragments: synthesis and energy transfer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513