JP2006250702A - Acceleration sensor - Google Patents

Acceleration sensor Download PDF

Info

Publication number
JP2006250702A
JP2006250702A JP2005067489A JP2005067489A JP2006250702A JP 2006250702 A JP2006250702 A JP 2006250702A JP 2005067489 A JP2005067489 A JP 2005067489A JP 2005067489 A JP2005067489 A JP 2005067489A JP 2006250702 A JP2006250702 A JP 2006250702A
Authority
JP
Japan
Prior art keywords
acceleration sensor
sensor
sensor chip
glass
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005067489A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ibara
伸行 茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005067489A priority Critical patent/JP2006250702A/en
Publication of JP2006250702A publication Critical patent/JP2006250702A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve high sensitivity and high accuracy of a capacitance-type acceleration sensor by reducing distortion of a sensor chip due to external stress such as package deformations etc. <P>SOLUTION: A movable electrode; a fixed electrode; and a beam making a movable electrode part movable are formed by machining a semiconductor substrate in a sensor chip 2. The sensor chip 2 is sealed between an upper glass 3 from above and a glass seating 4 from below, and the back surface of the glass seating 4 includes a counter bore 5 except at least part of an outer circumferential part. The chip 2 is joined to the bottom surface 11 of a recession-type package 10 at the remaining part of the outer circumferential part with an adhesive 7 to make the counter bore 5 to absorb stress to the censor chip 2 from the outside. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、物理的力学量を感知する物理量センサにおける加速度センサにおいて、特に、固定電極と可動電極間の静電容量から加速度を検出する静電容量式センサに関する。   The present invention relates to an acceleration sensor in a physical quantity sensor that senses a physical mechanical quantity, and more particularly to a capacitive sensor that detects acceleration from the electrostatic capacity between a fixed electrode and a movable electrode.

従来より、物理量センサとして自動車等に搭載され各種の車両の運動制御に利用される加速度センサがあり、一般に加速度センサとしては、重り部と重り部に対向して備えられた電極面との間で構成される静電容量の変化を検出する静電容量式や、撓み部に加えられた機械的な歪みをピエゾ抵抗などによって電気抵抗の変化として検出するピエゾ抵抗式の半導体センサ等が知られている。   2. Description of the Related Art Conventionally, there are acceleration sensors mounted on automobiles and the like as physical quantity sensors that are used for motion control of various vehicles. Generally, acceleration sensors include a weight portion and an electrode surface provided facing the weight portion. Capacitance type that detects the change of the configured capacitance, and piezoresistive type semiconductor sensor that detects mechanical distortion applied to the flexure as piezoresistance as a change in electrical resistance are known. Yes.

静電容量式として、従来、固定電極と、固定電極に対向する可動電極、及び可動電極を支持し物理量により変位する重り部と、各電極及び重り部などを囲む枠状に形成された撓み自在の動きを成し、一端が重り部と連結された1乃至複数のビーム部と、このビーム部の他端が連結されるフレーム部とが半導体基板に加工して形成される静電容量式センサが種々提案されている。   Conventionally, as a capacitance type, a fixed electrode, a movable electrode facing the fixed electrode, a weight portion that supports the movable electrode and is displaced by a physical quantity, and a flexible shape formed in a frame shape surrounding each electrode and the weight portion, etc. 1 or a plurality of beam parts, one end of which is connected to the weight part, and a frame part to which the other end of the beam part is connected are formed on a semiconductor substrate. Various proposals have been made.

従来の静電容量式加速度センサの構成について図7を参照して説明する。図7(a)は、静電容量式加速度センサ100の外観を示し、(b)はパッケージに装着された同加速度センサの断面を示し、(c)は同加速度センサのセンサチップの断面を示す。   A configuration of a conventional capacitive acceleration sensor will be described with reference to FIG. FIG. 7A shows the appearance of the capacitive acceleration sensor 100, FIG. 7B shows a cross section of the acceleration sensor mounted on the package, and FIG. 7C shows a cross section of the sensor chip of the acceleration sensor. .

これらの図において、加速度センサ100は、半導体基板からなる加速度センサチップ102と、加速度センサチップ102が装着されるガラス材からなる支持基板101と、加速度センサチップ102を覆うガラス部材からなる上部カバー103とを備え、それらが一体化されて加速度センサ100が形成される。そして、この加速度センサ100は、支持基板101の裏面全面でセラミック等のパッケージの底辺部104に接着材105で固定される。   In these drawings, the acceleration sensor 100 includes an acceleration sensor chip 102 made of a semiconductor substrate, a support substrate 101 made of a glass material on which the acceleration sensor chip 102 is mounted, and an upper cover 103 made of a glass member covering the acceleration sensor chip 102. And the acceleration sensor 100 is formed by integrating them. The acceleration sensor 100 is fixed to the bottom portion 104 of a package such as ceramic with an adhesive 105 over the entire back surface of the support substrate 101.

加速度センサチップ102は、加速度に対応して位置が変位する重り部121と、重り部121を変位可能とするバネ性を有するビーム部122と、ビーム部122を介して重り部121を支持する支持部と、複数の固定電極を有する櫛形状の固定電極部124と、重り部121の両端に設けられ隣り合う固定電極の間に櫛形状に交互に入り込む複数の可動電極を備えている。これらの固定電極と可動電極は互いに平行を成し、加速度を測定する方向に対して直交に配置されている(特許文献1参照)。   The acceleration sensor chip 102 supports a weight part 121 whose position is displaced in accordance with acceleration, a beam part 122 having a spring property that allows the weight part 121 to be displaced, and a support part that supports the weight part 121 via the beam part 122. And a comb-shaped fixed electrode portion 124 having a plurality of fixed electrodes, and a plurality of movable electrodes that are provided at both ends of the weight portion 121 and alternately enter in a comb shape between adjacent fixed electrodes. The fixed electrode and the movable electrode are parallel to each other and are disposed orthogonal to the direction in which acceleration is measured (see Patent Document 1).

この静電容量式センサは、物理量の印加により、ビームが変形することで固定電極と可動電極の間隔が変化し、この変化により2電極間に発生する静電容量の変化を半導体集積回路(IC)により電圧変化に変換することで加速度の大きさを測定している。   In this capacitance type sensor, the distance between the fixed electrode and the movable electrode changes due to the deformation of the beam due to the application of a physical quantity, and the change in the capacitance generated between the two electrodes due to this change is applied to the semiconductor integrated circuit (IC). ) To measure the magnitude of acceleration.

しかし、このような静電容量式センサでは、ビームは、数マイクロメートル〜数10マイクロメートルの厚みであるため、外部からセンサチップにわずかな歪が加わっても、加速度が加わったときと同様に、可動電極が変位し、容量が変化する。例えば、センサチップ単体を装着したセラミックやプラスチック製のパッケージを、プリント基板に半田付けして実装する場合、半田付けの熱により生じる歪によってセンサの出力が変化する。また、周囲温度の変化により、半田、プリント板、及びパッケージ材料間における熱膨張係数の違いからセンサの温度特性が劣化する。そこで、一般的には、センサチップの下部にガラス製の台座を接合し、外部からの歪をこのガラス台座で吸収する方法が取られてきた。   However, in such a capacitive sensor, the beam has a thickness of several micrometers to several tens of micrometers. Therefore, even if a slight distortion is applied to the sensor chip from the outside, it is the same as when acceleration is applied. The movable electrode is displaced and the capacitance changes. For example, when a ceramic or plastic package with a sensor chip alone is mounted on a printed circuit board by soldering, the output of the sensor changes due to distortion caused by soldering heat. In addition, due to the change in ambient temperature, the temperature characteristics of the sensor deteriorate due to differences in thermal expansion coefficients among the solder, the printed board, and the package material. Therefore, in general, a method has been adopted in which a glass pedestal is bonded to the lower part of the sensor chip and external strain is absorbed by the glass pedestal.

しかしながら、最近の自動方向制御技術などの高性能化に伴い、より高感度な加速度センサが求められてきており、これを実現するものとして、外部からの不要応力をできるだけ排除でき、より微小な加速度でも検出できる加速度センサが要求されてきている。このため、外部応力によるセンサへの影響を極力なくす必要があり、極めて微弱な外部応力をもセンサに伝わらないようにすることが必要とされている。   However, with the recent enhancement of performance such as automatic direction control technology, more sensitive acceleration sensors have been demanded. To achieve this, unnecessary stress from the outside can be eliminated as much as possible, and even smaller acceleration can be achieved. However, an acceleration sensor that can be detected has been demanded. For this reason, it is necessary to minimize the influence of external stress on the sensor, and it is necessary to prevent extremely weak external stress from being transmitted to the sensor.

一方、他の従来例として、ピエゾ抵抗型の加速度センサにおいて、図8に示すように、センサチップ220への実装基板250の熱歪の影響を少なくするために、センサチップ220をガラス製の上キャップ240と下キャップ230で上下から被い、下キャップ230を逆四角錘状に形成して、実装基板250との接合面を四角錐台とした下端面232を構成し、センサ底面の中心付近の一部分のみで実装基板250と接合するものが提案されている(特許文献2参照)。   On the other hand, as another conventional example, in a piezoresistive acceleration sensor, as shown in FIG. 8, in order to reduce the influence of thermal strain of the mounting substrate 250 on the sensor chip 220, the sensor chip 220 is made of glass. The cap 240 and the lower cap 230 are covered from above and below, the lower cap 230 is formed in an inverted quadrangular pyramid shape, and a lower end surface 232 having a quadrangular pyramid as a joint surface with the mounting substrate 250 is formed, and the vicinity of the center of the sensor bottom surface There has been proposed one that joins to the mounting substrate 250 only in a part (see Patent Document 2).

しかしながら、上記従来例では、加速度センサ200の裏面と実装基板250との接合が点状又は線状の下端面232で行われるため、接触部の面積が小さくて接合時に装着し難く、接合位置及び接合バランスが不安定になり、加速度センサ200の裏面と実装基板250の平行性が保たれ難くなるので、加速度センサ200が斜めに装着されて姿勢精度が低下し、実装傾きによるセンサ精度が劣化する虞があった。   However, in the above conventional example, the back surface of the acceleration sensor 200 and the mounting substrate 250 are joined by the dotted or linear lower end surface 232, so that the area of the contact portion is small and it is difficult to attach at the time of joining. Since the bonding balance becomes unstable and the parallelism between the back surface of the acceleration sensor 200 and the mounting substrate 250 is difficult to maintain, the acceleration sensor 200 is mounted obliquely, the posture accuracy is lowered, and the sensor accuracy due to the mounting tilt is deteriorated. There was a fear.

特開2004−28912号公報JP 2004-28912 A 特開2001−337107号公報JP 2001-337107 A

本発明は、上記の問題を解決するためになされたものであり、パッケージを通じてセンサチップに伝わろうとする外部からの歪を抑制し、不要な応力の検出を削減することにより、加速度センサの感度と精度を向上することができる静電容量式加速度センサを提供することを目的とする。   The present invention has been made in order to solve the above-described problem, and suppresses the external strain that is transmitted to the sensor chip through the package and reduces the detection of unnecessary stress, thereby improving the sensitivity of the acceleration sensor. It is an object of the present invention to provide a capacitance type acceleration sensor capable of improving accuracy.

上記目的を達成するために請求項1の発明は、加速度の変化を可動電極と固定電極の間に発生する静電容量の変化によって検出する静電容量式の加速度センサにおいて、前記可動電極、固定電極、及び可動電極部を可動とするビームが半導体基板を加工して形成されたセンサチップと、該センサチップの上下をそれぞれ封止するガラス基板と、一方のガラス基板が接着剤を用いて固定されるセラミック製の凹型パッケージと、を備え、前記接着剤が塗布される前記ガラス基板の面には、少なくとも外周部の一部を残して座グリが設けられているものである。   In order to achieve the above object, the invention according to claim 1 is directed to a capacitance type acceleration sensor that detects a change in acceleration by a change in capacitance generated between the movable electrode and the fixed electrode. A sensor chip formed by processing a semiconductor substrate with a beam that moves an electrode and a movable electrode part, a glass substrate that seals the upper and lower sides of the sensor chip, and one glass substrate is fixed using an adhesive A concave package made of ceramic, and a spot facing is provided on the surface of the glass substrate to which the adhesive is applied, leaving at least a part of the outer periphery.

請求項2の発明は、請求項1に記載の加速度センサにおいて、前記接着剤が塗布される前記ガラス基板の面の残す部位は、外周部の向かい合う2辺であるものである。   According to a second aspect of the present invention, in the acceleration sensor according to the first aspect, the portions of the surface of the glass substrate to which the adhesive is applied are two opposite sides of the outer peripheral portion.

請求項3の発明は、請求項1に記載の加速度センサにおいて、前記接着剤が塗布される前記ガラス基板の面の残す部位は、外周部の4隅であるものである。   According to a third aspect of the present invention, in the acceleration sensor according to the first aspect, the portions of the surface of the glass substrate to which the adhesive is applied are the four corners of the outer peripheral portion.

請求項4の発明は、請求項1乃至請求項3のいずれかに記載の加速度センサにおいて、前記ガラス基板の各々は、陽極接合によりセンサチップに接合され、センサチップを気密状態で封止しているものである。   According to a fourth aspect of the present invention, in the acceleration sensor according to any one of the first to third aspects, each of the glass substrates is bonded to the sensor chip by anodic bonding, and the sensor chip is sealed in an airtight state. It is what.

請求項1の発明によれば、パッケージとの接触面となるガラス台座に座グリを設けたことにより、パッケージを通じて、センサに伝わろうとする外部からの歪は、ガラス台座の座グリ部分が変形することで吸収され、センサチップには伝わり難くできる。これにより、不要な外部の応力の検出を抑制でき、センサの感度を向上することができると共に、斜め実装のない平行な姿勢精度を保ち、センサの精度を高めることができる。   According to the first aspect of the present invention, by providing the counterbore on the glass pedestal that is a contact surface with the package, the counterbore part of the glass pedestal is deformed from the external strain to be transmitted to the sensor through the package. Can be absorbed and difficult to be transmitted to the sensor chip. Thereby, detection of unnecessary external stress can be suppressed, the sensitivity of the sensor can be improved, parallel accuracy without oblique mounting can be maintained, and the accuracy of the sensor can be increased.

請求項2の発明によれば、パッケージを通じてセンサに伝わろうとする外部からの歪は、外周部の向かい合う2辺から成るガラス基板の座グリ部分が変形することで吸収されて、センサに伝わり難くなるので、高感度で高精度にしたセンサチップを実装することができ、感度と精度を向上することができる。   According to the second aspect of the present invention, the external strain to be transmitted to the sensor through the package is absorbed by deformation of the spot facing portion of the glass substrate composed of two opposite sides of the outer peripheral portion, and is not easily transmitted to the sensor. Therefore, a sensor chip with high sensitivity and high accuracy can be mounted, and sensitivity and accuracy can be improved.

請求項3の発明によれば、パッケージを通じてセンサに伝わろうとする外部からの歪は、外周部の4隅から成るガラス基板の座グリ部分が変形することで吸収されて、センサチップにはさらに伝わり難くなる。   According to the third aspect of the present invention, the external strain to be transmitted to the sensor through the package is absorbed by deformation of the spot facing portion of the glass substrate formed by the four corners of the outer peripheral portion, and further transmitted to the sensor chip. It becomes difficult.

請求項4の発明によれば、ガラス基板と半導体基板との接合は、陽極接合により固相で行われるので高精度の接合が得られ、上下からガラスで気密封止することにより、プラスチック成型材料を用いた低圧成型も可能な静電容量式加速度センサを実現することができる。   According to the invention of claim 4, since the bonding of the glass substrate and the semiconductor substrate is performed in a solid phase by anodic bonding, high-precision bonding is obtained, and the plastic molding material is obtained by hermetically sealing with glass from above and below. It is possible to realize a capacitance type acceleration sensor that can be molded at a low pressure.

以下、本発明の第1の実施形態に係る静電容量式加速度センサについて図1乃至図4を参照して説明する。図1は本実施形態による加速度センサ1の外観を示し、図2は同加速度センサ1が、凹型パッケージ10(以下、パッケージと略す)に装着された状態を示し、図3は上記加速度センサ1におけるセンサチップ2を示し、図3(b)は(a)における実線で囲んだA部を拡大して示し、図4は加速度センサ1の断面を示す。なお、各図の対応する部材と同等部材には同一符号を付している(以下同様)。   Hereinafter, a capacitive acceleration sensor according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an appearance of the acceleration sensor 1 according to the present embodiment, FIG. 2 shows a state in which the acceleration sensor 1 is mounted on a concave package 10 (hereinafter abbreviated as a package), and FIG. The sensor chip 2 is shown, FIG. 3B is an enlarged view of a portion A surrounded by a solid line in FIG. 4A, and FIG. 4 is a cross section of the acceleration sensor 1. In addition, the same code | symbol is attached | subjected to the member equivalent to the corresponding member of each figure (same below).

図1、図2において、加速度センサ1は、半導体基板23を加工して形成されたセンサチップ2と、このセンサチップ2を上下より封止する上ガラス3(ガラス基板)及びガラス台座4(ガラス基板)により構成される。そして、ガラス台座4の裏面には、少なくとも外周部の一部を残して座グリ5が設けられ、この残された外周部の一部は、接着剤7を用いてセラミック製のパッケージ10の底面11に接合されている。   1 and 2, an acceleration sensor 1 includes a sensor chip 2 formed by processing a semiconductor substrate 23, an upper glass 3 (glass substrate) and a glass pedestal 4 (glass) that seal the sensor chip 2 from above and below. Substrate). The back surface of the glass pedestal 4 is provided with spot facings 5 leaving at least a part of the outer periphery, and the remaining part of the outer periphery is formed on the bottom surface of the ceramic package 10 using the adhesive 7. 11 is joined.

このように、座グリ5を設けたことにより、パッケージ10とガラス台座4との接合面積が大幅に削減される。従って、従来のようにセンサチップ2の底面の全面でパッケージ10と接触する場合に比べ、パッケージ10の温度変化等による歪が直接にセンサチップ2に伝わリ難くなる。これに加え、ガラス台座4の座グリ5が変形することにより、さらに歪が吸収されるので、この歪は、さらにセンサチップ2に伝わり難くなる。これにより、不要な応力の検出を抑制できるので、高感度で高精度にしたセンサチップ2を実装することができて、加速度センサ1の感度と精度を高めることができる。さらに、センサチップ2の上下から上ガラス3とガラス台座4で気密封止することにより、プラスチック成型材料を用いた低圧成型も可能な静電容量式加速度センサ1を実現することができる。   Thus, by providing the spot facing 5, the bonding area between the package 10 and the glass pedestal 4 is greatly reduced. Therefore, as compared with the conventional case where the entire bottom surface of the sensor chip 2 is in contact with the package 10, the distortion due to the temperature change of the package 10 is not directly transmitted to the sensor chip 2. In addition to this, distortion is further absorbed by the counterbore 5 of the glass pedestal 4 being deformed, so that the distortion is more difficult to be transmitted to the sensor chip 2. Thereby, since detection of unnecessary stress can be suppressed, the sensor chip 2 having high sensitivity and high accuracy can be mounted, and the sensitivity and accuracy of the acceleration sensor 1 can be increased. Furthermore, the capacitive acceleration sensor 1 capable of low-pressure molding using a plastic molding material can be realized by hermetically sealing the sensor chip 2 from above and below with the upper glass 3 and the glass pedestal 4.

図3、図4において、センサチップ2は、ガラス台座4の上部側にガラス台座4から離間して配置された可動電極部21と、可動電極部21を変位可能とするバネ性を有するビーム部22と、ビーム部22を介して可動電極部21を支持する支持部25と、複数の固定電極24bを有する櫛形状の固定電極部24と、可動電極部21の両端に櫛形状に設けられた複数の可動電極21aとを備えている。これらの固定電極24bと可動電極21aは、平行を成し、ともに加速度を検出する方向に直交して配置されている。   3 and 4, the sensor chip 2 includes a movable electrode portion 21 arranged on the upper side of the glass pedestal 4 and spaced apart from the glass pedestal 4, and a beam portion having a spring property that can displace the movable electrode portion 21. 22, a support portion 25 that supports the movable electrode portion 21 via the beam portion 22, a comb-shaped fixed electrode portion 24 having a plurality of fixed electrodes 24 b, and a comb shape provided at both ends of the movable electrode portion 21. And a plurality of movable electrodes 21a. The fixed electrode 24b and the movable electrode 21a are parallel to each other and are arranged orthogonal to the direction in which acceleration is detected.

そして、可動電極部21の両側では、加速度を検出する方向に沿って固定電極24bと可動電極21aとが交互に並んでおり、隣り合う固定電極24b間の櫛溝24cに1つの可動電極21aが入り込み、かつ隣り合う可動電極21a間の櫛溝21b間に1つの固定電極24bが入り込んでいる。各固定電極24bは、これらを連結する連結部24aにより繋がって固定電極部24を形成している。   On both sides of the movable electrode portion 21, the fixed electrodes 24b and the movable electrodes 21a are alternately arranged along the direction in which the acceleration is detected, and one movable electrode 21a is placed in the comb groove 24c between the adjacent fixed electrodes 24b. One fixed electrode 24b enters between the comb grooves 21b between the adjacent movable electrodes 21a. Each fixed electrode 24b is connected by the connection part 24a which connects these, and forms the fixed electrode part 24. FIG.

上記構成の加速度センサ1においては、加速度が印加されると、可動電極部21がX方向において変位し、X軸方向の変化量に応じて固定電極部24の固定電極24bと可動電極21aとのギャップdが変化して両者間の静電容量が変化し、この静電容量の変化の大きさを測定することで印加された加速度の方向とその大きさが検出される。これを半導体集積回路(IC)により電圧変化に変換することにより、検出電気信号が取り出される。   In the acceleration sensor 1 configured as described above, when acceleration is applied, the movable electrode portion 21 is displaced in the X direction, and the fixed electrode 24b and the movable electrode 21a of the fixed electrode portion 24 are displaced according to the amount of change in the X-axis direction. The gap d changes to change the capacitance between the two, and the magnitude of the change in capacitance is measured to detect the direction and magnitude of the applied acceleration. By converting this into a voltage change by a semiconductor integrated circuit (IC), a detection electric signal is taken out.

そして、ガラス台座4の底面には、座グリ5が底面内にほぼ対称に設けられ、かつセンサチップ2とガラス台座4の底面は平行に配設されている。このことにより、センサチップ2とガラス台座4の各平面間に傾きがないため、特に、静電容量の変化の検出を半導体基板23の平面内に構成された固定電極24bと可動電極21a間で検出する静電容量式加速度センサにおいては、実装基板に対し平行性を確保でき、実装傾きによる他軸感度の発生を抑制することができる。なお、ガラス台座4の表面側に設けられた可動電極部21、ビーム部22、固定電極24b、固定電極部24、可動電極21aは、半導体基板23である単結晶のシリコン基板をエッチング加工することによりシリコン基板の一部により形成されている。   And the counterbore 5 is provided in the bottom face of the glass base 4 substantially symmetrically in the bottom face, and the bottom face of the sensor chip 2 and the glass base 4 is arranged in parallel. As a result, there is no inclination between the planes of the sensor chip 2 and the glass pedestal 4, and in particular, detection of a change in capacitance is detected between the fixed electrode 24 b and the movable electrode 21 a configured in the plane of the semiconductor substrate 23. In the capacitance type acceleration sensor to be detected, the parallelism with respect to the mounting substrate can be ensured, and the occurrence of other-axis sensitivity due to the mounting tilt can be suppressed. Note that the movable electrode portion 21, the beam portion 22, the fixed electrode 24 b, the fixed electrode portion 24, and the movable electrode 21 a provided on the surface side of the glass pedestal 4 are formed by etching a single crystal silicon substrate that is the semiconductor substrate 23. Is formed by a part of the silicon substrate.

次に、本発明の第2の実施形態に係る静電容量式加速度センサについて、図5を参照して説明する。図5は、本実施形態による加速度センサ1の外観を示す。この加速度センサ1は、上記第1の実施形態のそれと基本的に同じ機能を持ち、接着剤が塗布されるガラス台座4(ガラス基板)の面の残す部位が、外周部の向かい合う2辺である点で前記実施形態と異なっている。   Next, a capacitive acceleration sensor according to a second embodiment of the present invention will be described with reference to FIG. FIG. 5 shows the appearance of the acceleration sensor 1 according to the present embodiment. This acceleration sensor 1 has basically the same function as that of the first embodiment, and the portions of the surface of the glass pedestal 4 (glass substrate) to which the adhesive is applied are the two sides facing the outer peripheral portion. This is different from the embodiment described above.

加速度センサ1のガラス台座4(ガラス基板)は、その底面に長方形型の溝を成す座グリ5aを設けて、底面の残す部位を低減すると共に、残された平行な外部周辺の2辺8でバランスよくパッケージ10と接合されるので、高感度で精度の高い静電容量式加速度センサが得られる。また、接合時に接合面内の空気を座グリ5aから逃がすことができ、接着をやり易くすることができる。   The glass pedestal 4 (glass substrate) of the acceleration sensor 1 is provided with a counterbore 5a that forms a rectangular groove on the bottom surface thereof to reduce the portion left on the bottom surface, and at the remaining two sides 8 around the parallel outer periphery. Since it is bonded to the package 10 in a well-balanced manner, a highly sensitive and accurate capacitive acceleration sensor can be obtained. Moreover, the air in a joint surface can be escaped from the spot facing 5a at the time of joining, and it can make adhesion easy.

次に、本発明の第3の実施形態に係る静電容量式加速度センサについて、図6を参照して説明する。図6(a)は、本実施形態による加速度センサ1の外観を示し、同図(b)は同センサ1がパッケージ10の底面11に実装された状態を示す。この加速度センサ1は、上記第1の実施形態のそれと基本的に同じ機能を持ち、接着剤7が塗布されるガラス台座4の面の残す部位が、外周部の4箇所の隅部9である点で前記実施形態と異なっている。   Next, a capacitive acceleration sensor according to a third embodiment of the present invention will be described with reference to FIG. FIG. 6A shows the appearance of the acceleration sensor 1 according to the present embodiment, and FIG. 6B shows the state where the sensor 1 is mounted on the bottom surface 11 of the package 10. This acceleration sensor 1 has basically the same function as that of the first embodiment, and the portions left on the surface of the glass pedestal 4 to which the adhesive 7 is applied are the four corners 9 of the outer peripheral portion. This is different from the embodiment described above.

加速度センサ1のガラス台座4は、その底面に十字型の座グリ5bを設け、底面の残す部位を低減すると共に、残された外部周辺の対称な4箇所の隅部9でバランスよくパッケージ10と接合されるので、高感度で精度の高い静電容量式加速度センサが得られる。また、接合時に接合面内の空気を座グリ5bから逃がすことができ、接着をやり易くすることができる。   The glass pedestal 4 of the acceleration sensor 1 is provided with a cross-shaped counterbore 5b on the bottom surface to reduce the portion left on the bottom surface, and the package 10 and the package 10 in a well-balanced manner at the four symmetric corner portions 9 around the remaining outer periphery. Since they are joined, a capacitive acceleration sensor with high sensitivity and high accuracy can be obtained. Moreover, the air in a joint surface can be escaped from the spot facing 5b at the time of joining, and it can make it easy to adhere | attach.

以上述べたように、本実施形態による加速度センサ1によれば、パッケージ10に接合するガラス台座4の底面に座グリ5を、残存される外周部6をガラス台座4の底面において対称に広く設けることにより、パッケージ10とガラス台座4の接合面積を平行に保ちながら低減できる。これにより、パッケージ10を通じてセンサチップ2に伝わろうとする外部からの歪を座グリ5部分で吸収でき、センサチップ2における不要な応力の検出を抑制し、実装の姿勢精度を低下させることなく高感度で高精度の加速度センサを得ることができる。   As described above, according to the acceleration sensor 1 according to the present embodiment, the counterbore 5 is provided on the bottom surface of the glass pedestal 4 to be bonded to the package 10, and the remaining outer peripheral portion 6 is provided symmetrically widely on the bottom surface of the glass pedestal 4. Thereby, it can reduce, keeping the junction area of the package 10 and the glass base 4 in parallel. As a result, external strain that is transmitted to the sensor chip 2 through the package 10 can be absorbed by the spot facing 5 portion, detection of unnecessary stress in the sensor chip 2 is suppressed, and high sensitivity without reducing the mounting posture accuracy. Thus, a highly accurate acceleration sensor can be obtained.

また、陽極接合によりガラス基板と半導体基板の高精度の接合が得られ、センサチップを上下からガラスで気密封止することにより、プラスチック成型材料を用いた低圧成型も可能な静電容量式加速度センサを実現することができる。   Capacitive acceleration sensor that enables high-precision bonding between a glass substrate and a semiconductor substrate by anodic bonding, and enables low-pressure molding using plastic molding material by hermetically sealing the sensor chip with glass from above and below. Can be realized.

本発明の第1の実施形態に係る静電容量式加速度センサの外観図。1 is an external view of a capacitive acceleration sensor according to a first embodiment of the present invention. 上記加速度センサをパッケージに実装した状態を示す図。The figure which shows the state which mounted the said acceleration sensor in the package. (a)は上記加速度センサのセンサチップの平面図、(b)は(a)におけるA部の拡大図。(A) is a top view of the sensor chip of the said acceleration sensor, (b) is an enlarged view of the A section in (a). 上記加速度センサの断面図。Sectional drawing of the said acceleration sensor. 本発明の第2の実施形態に係る静電容量式加速度センサの外観図。The external view of the capacitive acceleration sensor which concerns on the 2nd Embodiment of this invention. (a)本発明の第3の実施形態に係る静電容量式加速度センサの外観図、(b)は同加速度センサのパッケージに実装した状態を示す図。(A) The external view of the capacitive acceleration sensor which concerns on the 3rd Embodiment of this invention, (b) is the figure which shows the state mounted in the package of the acceleration sensor. (a)従来の静電容量式加速度センサの外観図、(b)は同加速度センサの断面図、(c)は同加速度センサのセンサチップの断面図。(A) The external view of the conventional capacitive acceleration sensor, (b) is a sectional view of the acceleration sensor, (c) is a sectional view of a sensor chip of the acceleration sensor. 他の従来の静電容量式加速度センサの断面図。Sectional drawing of the other conventional electrostatic capacitance type acceleration sensor.

符号の説明Explanation of symbols

1 静電容量式加速度センサ
2 センサチップ
3 上ガラス(ガラス基板)
4 ガラス台座(ガラス基板)
5、5a、5b 座グリ
7 接着剤
8 二辺
9 隅部(隅)
10 凹型パッケージ
21 可動電極部
21a 可動電極
22 ビーム
23 半導体基板
24、24a、24b 固定電極
DESCRIPTION OF SYMBOLS 1 Capacitance type acceleration sensor 2 Sensor chip 3 Upper glass (glass substrate)
4 Glass base (glass substrate)
5, 5a, 5b Spot facing 7 Adhesive 8 Two sides 9 Corner (corner)
DESCRIPTION OF SYMBOLS 10 Recessed package 21 Movable electrode part 21a Movable electrode 22 Beam 23 Semiconductor substrate 24, 24a, 24b Fixed electrode

Claims (4)

加速度の変化を可動電極と固定電極の間に発生する静電容量の変化によって検出する静電容量式の加速度センサにおいて、
前記可動電極、固定電極、及び可動電極部を可動とするビームが半導体基板を加工して形成されたセンサチップと、
該センサチップの上下をそれぞれ封止するガラス基板と、
一方のガラス基板が接着剤を用いて固定されるセラミック製の凹型パッケージと、を備え、
前記接着剤が塗布される前記ガラス基板の面には、少なくとも外周部の一部を残して座グリが設けられていることを特徴とする加速度センサ。
In a capacitance type acceleration sensor that detects a change in acceleration by a change in capacitance generated between a movable electrode and a fixed electrode,
A sensor chip formed by processing a movable substrate, a fixed electrode, and a beam that moves the movable electrode portion by processing a semiconductor substrate;
Glass substrates for sealing the upper and lower sides of the sensor chip,
A ceramic concave package to which one glass substrate is fixed using an adhesive,
An acceleration sensor, characterized in that a counterbore is provided on the surface of the glass substrate to which the adhesive is applied, leaving at least a part of the outer periphery.
前記接着剤が塗布される前記ガラス基板の面の残す部位は、外周部の向かい合う2辺であることを特徴とする請求項1に記載の加速度センサ。   The acceleration sensor according to claim 1, wherein the portions of the surface of the glass substrate to which the adhesive is applied are two opposite sides of the outer peripheral portion. 前記接着剤が塗布される前記ガラス基板の面の残す部位は、外周部の4隅であることを特徴とする請求項1に記載の加速度センサ。   The acceleration sensor according to claim 1, wherein the portions of the glass substrate surface to which the adhesive is applied are four corners of the outer peripheral portion. 前記ガラス基板の各々は、陽極接合によりセンサチップに接合され、センサチップを気密状態で封止していることを特徴とする請求項1乃至請求項3のいずれかに記載の加速度センサ。   4. The acceleration sensor according to claim 1, wherein each of the glass substrates is bonded to a sensor chip by anodic bonding, and the sensor chip is sealed in an airtight state.
JP2005067489A 2005-03-10 2005-03-10 Acceleration sensor Withdrawn JP2006250702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067489A JP2006250702A (en) 2005-03-10 2005-03-10 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067489A JP2006250702A (en) 2005-03-10 2005-03-10 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2006250702A true JP2006250702A (en) 2006-09-21

Family

ID=37091374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067489A Withdrawn JP2006250702A (en) 2005-03-10 2005-03-10 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP2006250702A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049036A3 (en) * 2007-10-11 2009-07-23 Honeywell Int Inc Sensor geometry for improved package stress isolation
JP2011257141A (en) * 2010-06-04 2011-12-22 Denso Corp Flow sensor
US20170199217A1 (en) * 2016-01-13 2017-07-13 Seiko Epson Corporation Electronic device, method for manufacturing electronic device, and physical-quantity sensor
US10732195B2 (en) 2018-01-26 2020-08-04 Honeywell International Inc. Vibrating beam accelerometer
US10900985B2 (en) 2017-09-29 2021-01-26 Seiko Epson Corporation Physical quantity sensor, inertia measurement device, vehicle positioning device, electronic apparatus, and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009049036A3 (en) * 2007-10-11 2009-07-23 Honeywell Int Inc Sensor geometry for improved package stress isolation
US7798010B2 (en) 2007-10-11 2010-09-21 Honeywell International Inc. Sensor geometry for improved package stress isolation
US8082798B2 (en) 2007-10-11 2011-12-27 Honeywell International Inc. Sensor geometry for improved package stress isolation
JP2011257141A (en) * 2010-06-04 2011-12-22 Denso Corp Flow sensor
US20170199217A1 (en) * 2016-01-13 2017-07-13 Seiko Epson Corporation Electronic device, method for manufacturing electronic device, and physical-quantity sensor
CN106970243A (en) * 2016-01-13 2017-07-21 精工爱普生株式会社 Electronic installation, the manufacture method of electronic installation and physical quantity transducer
US10900985B2 (en) 2017-09-29 2021-01-26 Seiko Epson Corporation Physical quantity sensor, inertia measurement device, vehicle positioning device, electronic apparatus, and vehicle
US10732195B2 (en) 2018-01-26 2020-08-04 Honeywell International Inc. Vibrating beam accelerometer

Similar Documents

Publication Publication Date Title
US7615835B2 (en) Package for semiconductor acceleration sensor
EP3252449B1 (en) Miniaturized load sensor device having low sensitivity to thermo-mechanical packaging stress, in particular force and pressure sensor
JP6024481B2 (en) Semiconductor pressure sensor
US20080034867A1 (en) Multi-range three-axis acceleration sensor device
JP2007127607A (en) Sensor block
JP2006250702A (en) Acceleration sensor
JP6258977B2 (en) Sensor and manufacturing method thereof
JP2004333133A (en) Inertial force sensor
US20130283914A1 (en) Acceleration sensor
US20060086185A1 (en) Acceleration sensor
JP2006302943A (en) Microstructure
JP2016070670A (en) Sensor device
JP2010085143A (en) Acceleration sensor
JP2007322191A (en) Semiconductor acceleration sensor
CN110546516B (en) Decoupling structure for accelerometer
JP4353117B2 (en) Microelectromechanical device and processing method thereof
JP5821158B1 (en) Compound sensor device
JP5541208B2 (en) Mechanical quantity sensor
JP4665733B2 (en) Sensor element
JP5391880B2 (en) Mechanical quantity sensor
WO2007020700A1 (en) Acceleration sensor and sensor device
JP2011075482A (en) Semiconductor physical quantity sensor
JP6424780B2 (en) Dynamic quantity sensor
JP2006153516A (en) Acceleration sensor
JP3025468B2 (en) Sensor utilizing change in capacitance and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513