JP2006249999A - Translational vane machine - Google Patents

Translational vane machine Download PDF

Info

Publication number
JP2006249999A
JP2006249999A JP2005066045A JP2005066045A JP2006249999A JP 2006249999 A JP2006249999 A JP 2006249999A JP 2005066045 A JP2005066045 A JP 2005066045A JP 2005066045 A JP2005066045 A JP 2005066045A JP 2006249999 A JP2006249999 A JP 2006249999A
Authority
JP
Japan
Prior art keywords
blade
wind
pitch angle
windmill
translational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005066045A
Other languages
Japanese (ja)
Inventor
Takashi Uchida
内田隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005066045A priority Critical patent/JP2006249999A/en
Publication of JP2006249999A publication Critical patent/JP2006249999A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for rotating and returning without using external power even if a pitch angle of a blade of a translational vane windmill becomes 0 degree once, a method for increasing quantity of air flowing into a rotor without changing a windmill rotor part of an existing windmill, and a method for making gyroscopic moment of the windmill substantially zero. <P>SOLUTION: The method for rotating and returning from the pitch angle of 0 degree by utilizing restoring force of an elastic body such as a spring is provided. The method for increasing quantity of air flowing into the rotor by reducing pressure on a rear flow side of the rotor and increasing pressure gradient in the front and the rear of the rotor is provided. The method for canceling gyroscopic moment and making gyroscopic moment on the whole zero by installing a pair of windmills side by side and reversing the direction of rotation of rotors for each other is provided. A method for changing wind receiving area by an expansible blade is adopted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

風車が無風時から強風時まであらゆる風況に対し確実に機能し、また発電量を増やすための工夫を施した風車に関する。また、同様メカニズムを具備した水車に関する。双方のメカニズムは共通するので以下では風車を例として記述する。 The present invention relates to a wind turbine that functions reliably for all wind conditions from when there is no wind to when it is strong and has been devised to increase the amount of power generation. Moreover, it is related with the water turbine which comprised the same mechanism. Since both mechanisms are common, a windmill is described below as an example.

並進翼風車のピッチ角は風向とブレード翼弦が平行の時を0度と定義する。風力が強まるに従い、過回転の防止あるいは回転数を一定にする等のために並進翼風車のピッチ角は小さくなるように制御される。特願2002−071270の構造では、ピッチ角が0度に近づくとピッチガイド溝とピッチアームとのクリアランスにより角度設定誤差が大きくなる。ピッチ角0度の時はピッチアームとガイド溝は90度の配置となり、この状態からピッチ角を変えようとしてもピッチアームがガイド溝に直角になっているためガイド溝を動かす事ができないかあるいはピッチ角がプラス側マイナス側いづれに動くか定まらない。従って、ピッチ角が0度近くまで小さくなりその後風力が弱まりピッチ角をプラス側に大きくしようとしても、一部ブレードのピッチ角がマイナス側に設定されてしまうことも起こり得るので、その防止方法が必要である。また、ピッチ角が0度付近に至った状態で風が止まった後、風が再度吹き始めた時風車が起動するためには、ブレードピッチ角は起動に必要なトルクを発生できる角度になっている必要がある。そのために、モーター等の外部動力によりピッチ角を強制設定する方法もあるが、それはエネルギー消費となるので起動・停止・再起動を外部動力を用いずに実現する方法が必要である。 The pitch angle of a translation blade wind turbine is defined as 0 degrees when the wind direction and blade chord are parallel. As the wind force becomes stronger, the pitch angle of the translational blade wind turbine is controlled to become smaller in order to prevent over-rotation or to keep the rotation speed constant. In the structure of Japanese Patent Application No. 2002-071270, when the pitch angle approaches 0 degrees, the angle setting error increases due to the clearance between the pitch guide groove and the pitch arm. When the pitch angle is 0 degree, the pitch arm and the guide groove are 90 degrees, and even if you try to change the pitch angle from this state, the pitch arm is perpendicular to the guide groove, so the guide groove can not be moved or It is not determined whether the pitch angle moves on the plus side or the minus side. Therefore, even if the pitch angle is reduced to near 0 degrees and the wind force is weakened and the pitch angle is increased to the plus side, the pitch angle of some blades may be set to the minus side. is necessary. In addition, when the wind stops after the pitch angle has reached around 0 degrees and the wind starts to blow again, the blade pitch angle is an angle that can generate the torque required for startup. Need to be. For this purpose, there is a method of forcibly setting the pitch angle by external power such as a motor. However, since this consumes energy, a method for realizing start / stop / restart without using external power is necessary.

ブレードのピッチ角はピッチアームをアームガイド溝に沿って動かすことにより制御する方法と、風力あるいは水力とバネ等の弾性力との釣合いで設定する方法があるが、後者の場合は弾性力を可変としなければ最適ピッチ角が設定できない。 The pitch angle of the blade can be controlled by moving the pitch arm along the arm guide groove, or can be set by the balance between wind power or hydraulic power and elastic force such as springs. In the latter case, the elastic force can be varied. Otherwise, the optimum pitch angle cannot be set.

受風面積が決められた場合、発電量を増やすには風車効率を上げる方法と、風車に流れ込む風量を増やす方法とがある。風車効率向上には多くは期待できないので、風量増加の方法が必要である。 When the wind receiving area is determined, there are a method of increasing the wind turbine efficiency and a method of increasing the amount of wind flowing into the wind turbine in order to increase the power generation amount. Since much cannot be expected to improve wind turbine efficiency, a method for increasing the air flow is necessary.

特願2002−071270ではブレード駆動索の撓みをブレードあるいは駆動索にベアリング等を付加する方法で防いでいるが、装置躯体に取り付けたローラーで受けることにより装置構造が簡略になる。 In Japanese Patent Application No. 2002-071270, the blade drive cable is prevented from being bent by a method of adding a bearing or the like to the blade or the drive cable. However, the structure of the device is simplified by receiving it with a roller attached to the device housing.

特願2002−071270ではブレード駆動索を主スプロケットに掛け回し、スプロケット軸を出力軸としているが、大型装置では大型スプロケットが必要となり製造が難しくなる。 In Japanese Patent Application No. 2002-071270, the blade drive cord is wound around the main sprocket and the sprocket shaft is used as the output shaft. However, a large-sized device requires a large sprocket and is difficult to manufacture.

受風面積を任意に変更できれば、弱風時には面積を広げ、強風時には面積を狭めることにより安定的に電力を得ることができる。 If the wind receiving area can be arbitrarily changed, the power can be stably obtained by widening the area when the wind is weak and narrowing the area when the wind is strong.

国内の風況は、概して風向変化が激しいと言われ、風向変化への追従性の良い風車が必要であり、そのためにはジャイロモーメントの小さい風車が必要である。
牛山泉、他著 「小型風車ハンドブック」 パワー社 1980年
The wind conditions in Japan are generally said to have a rapid change in wind direction, and a windmill with good followability to the change in wind direction is required. To that end, a windmill with a small gyro moment is required.
Ushiyama Izumi, et al. “Small windmill handbook” Power Company 1980

a.並進翼風車のブレードのピッチ角が一旦0度になっても外部動力を用いないで回転復帰できる方法
b.風力あるいは水力とバネ等弾性力の釣合いでピッチ角を決める場合に弾性力を可変とする方法
c.並進翼風車の風車ロータ部を変更せずにローターに流れ込む風量を増す方法
d.ブレード駆動索の撓みを防ぐ特願2002−071270とは別の方法
e大径主スプロケットを必要としない方法
f.受風面積を可変とする方法
g.風車のタワー周りのジャイロモーメントをゼロにする方法
h.並進翼風車をタワーに取り付ける際、タワー周りに回転自由とするために使用するベアリングに風車の自重を負荷させないでタワーに取り付ける方法
を考案することにある。
a. Method for returning to rotation without using external power even if the pitch angle of the blade of a translation blade wind turbine once becomes 0 degrees
b. Method of making the elastic force variable when the pitch angle is determined by the balance of elastic force such as wind power or hydraulic power and spring
c. Method of increasing the amount of air flowing into the rotor without changing the wind turbine rotor of the translation blade wind turbine
d. A method different from Japanese Patent Application No. 2002-071270 for preventing the bending of the blade drive cord
eMethods that do not require large-diameter main sprockets
f. Method to make the wind receiving area variable
g. How to zero the gyro moment around the tower of the windmill
h. When a translational blade wind turbine is attached to the tower, it is intended to devise a method of attaching the wind turbine to the tower without applying the weight of the wind turbine to the bearing used to freely rotate around the tower.

本発明は、バネ等の弾性体の復元力を利用することによりピッチ角0度からの回転復帰を行う方法、ブレードピッチ角設定に弾性力を使う場合に弾性体取り付け部を可動とする方法およびローター後流側の圧力を低くしローター前後での圧力勾配を大きくすることでローターに流れ込む風量を増す方法および躯体側にローラーを取り付けブレード駆動索の撓みを防ぐ方法、主スプロケットをアイドラーとし大径のプーリー等を用いる方法、ブレードを入れ子構造として受風面積を可変とする方法、一対の風車を併置し互いのローター回転方向を逆転することでジャイロモーメントをキャンセルし全体としてのジャイロモーメントをゼロにする方法、風車の自重を磁気反発力で支えベアリングに加わる重量負荷を軽減することによりタワー周りの回転し易さを向上させる方法を採る。 The present invention relates to a method of performing rotational recovery from a pitch angle of 0 degrees by utilizing a restoring force of an elastic body such as a spring, a method of moving an elastic body mounting portion when using an elastic force for setting a blade pitch angle, and A method of increasing the airflow flowing into the rotor by lowering the pressure on the wake side of the rotor and increasing the pressure gradient before and after the rotor, a method of installing a roller on the housing side to prevent bending of the blade drive cable, and a main sprocket with an idler for large diameter The method using a pulley, etc., the method of making the wind receiving area variable by nesting the blades, canceling the gyro moment by placing a pair of wind turbines in parallel and reversing the rotation direction of the rotors, and reducing the gyro moment as a whole The wind turbine's own weight is supported by magnetic repulsion and the weight load on the bearing is reduced to reduce the weight around the tower. Use a method to improve the ease of rotation.

ピッチ角0度からの復帰が確実に行えることにより、風のエネルギー豊富な強風時にも風車を稼働させる事ができ、かつその後の風力弱まりへも連続的に風車が機能できるため風のエネルギーを無駄なく吸収できる。ブレードのピッチ角制御により風車あるいは水車の最良な性能を利用できる。また、風車の大きさを変えることなく風車に流れ込む風量を増すことができ、発電量を増やす事ができる。垂直軸並進翼機形態(ブレードが垂直)の場合、ブレード駆動索の撓み防止は主スプロケットと駆動索との滑らかな掛け回しには不可欠であり、また駆動索がスプロケットから外れてしまい風車あるいは水車として機能しなくなる原因の除去となる。並進翼風車あるいは並進翼水車が大型化した場合、大型の主スプロケットの製造は容易ではない。スプロケットの代わりにプーリー等のアイドラーを用いブレード駆動索を掛け回し別の小径スプロケットを駆動索に作用させて回転力を引き出すことにより大型の並進翼風車、並進翼水車が技術的のみならず製造コストの点からも現実的なものと成る。さらに、小径スプロケットは増速器としても働き高い回転数を引き出すことができる。日本国内の風は風向偏向が頻繁であることから風向偏向への追従性の良い風車は、風に正対できるので効率よくエネルギー吸収ができ、また従来諦められていた場所での風力利用を可能とする。 By reliably returning from a pitch angle of 0 degrees, the wind turbine can be operated even in strong winds with abundant wind energy, and wind energy is wasted because the wind turbine can continuously function even after the wind is weakened. Can be absorbed. By controlling the pitch angle of the blade, the best performance of the windmill or water turbine can be used. Further, the amount of air flowing into the windmill can be increased without changing the size of the windmill, and the amount of power generation can be increased. In the case of a vertical-axis translation wing (blade is vertical), prevention of blade drive cable deflection is essential for smooth laying of the main sprocket and drive cable, and the drive cable comes off the sprocket and wind turbine or water turbine. As a result, the cause of failure will be removed. When the translation blade wind turbine or the translation blade turbine is enlarged, it is not easy to manufacture a large main sprocket. Large translation blade wind turbines and translation blade turbines are not only technically manufactured but also costly by using idlers such as pulleys instead of sprockets and wrapping the blade drive cable to make another small-diameter sprocket act on the drive cable to extract the rotational force. From this point, it becomes realistic. Furthermore, the small-diameter sprocket also works as a speed increaser and can extract a high rotational speed. Since wind in Japan is frequently deflected, wind turbines with good follow-up to wind direction can be directly opposed to the wind, so they can absorb energy efficiently and can be used in places that have been praised in the past. And

図1は請求項1あるいは2の実施例である。並進翼風車ブレードのピッチ角はピッチアーム3とピッチコントロールガイド溝4の位置関係により設定される。図1はピッチ角0度ないし0度に近い状態である。リミッター板1はピッチ角が0度に近づくと4に接触し、さらに角度が小さくなるに従い1の弾性反発力が増すので、ピッチ角が0度になってもブレード2がマイナスのピッチ角を取ることはない。ピッチコントロールガイド溝4はピッチコントロール棒5とラック/ピニオン等で連接され5の回転により4は駆動されるが、5に取り付けられたコイルバネ6は、中立状態(無風時の所期ピッチ角状態=捩りエネルギー0の状態)のピッチ角からの捩れ角の大きさに応じ6の回転を中立状態に復帰させる復元力を発生する。中立状態は風車の起動トルクが得られるピッチ角度が選定される。風車回転開始後のピッチ角制御は発電シーケンスに応じ選定されるが、本発明では、特に強風時からその後の常用風速時への風車の自動的作動を実現することに重点を置く。過回転状態にならないようにするピッチ角制御はたとえば回転遠心力を利用した機械的調速機を使用し5を駆動してピッチ角を小さくする。図2はブレードがピッチ角0度に近づいてもピッチ角を保持できる別の機構例である。コイルバネ13をブレード軸15をバネ中心にしてバネの一端をブレード2あるいはピッチアーム3に他端をブレード駆動索14に固定する。 FIG. 1 shows an embodiment of the first or second aspect. The pitch angle of the translation blade windmill blade is set by the positional relationship between the pitch arm 3 and the pitch control guide groove 4. FIG. 1 shows a state in which the pitch angle is 0 ° to close to 0 °. The limiter plate 1 comes into contact with 4 when the pitch angle approaches 0 degrees, and the elastic repulsion force of 1 increases as the angle becomes smaller, so the blade 2 takes a negative pitch angle even when the pitch angle becomes 0 degrees. There is nothing. The pitch control guide groove 4 is connected to the pitch control rod 5 by a rack / pinion or the like, and 4 is driven by the rotation of 5, but the coil spring 6 attached to 5 is in a neutral state (the desired pitch angle state without wind = A restoring force for returning the rotation of 6 to the neutral state is generated according to the magnitude of the torsion angle from the pitch angle of the torsional energy 0 state. In the neutral state, a pitch angle at which the wind turbine starting torque is obtained is selected. The pitch angle control after the start of the windmill rotation is selected according to the power generation sequence. In the present invention, however, an emphasis is placed on realizing the automatic operation of the windmill from the time of strong wind to the subsequent normal wind speed. For controlling the pitch angle so as not to be in an over-rotation state, for example, a mechanical speed governor using a rotating centrifugal force is used to drive 5 to reduce the pitch angle. FIG. 2 shows another example of the mechanism that can maintain the pitch angle even when the blade approaches the pitch angle of 0 degrees. The coil spring 13 is fixed at one end of the spring to the blade 2 or the pitch arm 3 and the other end to the blade drive cable 14 with the blade shaft 15 as the spring center.

図2を請求項3の実施例の説明に流用する。この場合は、コイルバネ13の一端はブレード2に他の一端はピッチアーム3に固定される。また、15と3とは回転自由に嵌合している。従って、ブレードのピッチ角はコイルバネ13の弾性力と風力あるいは水力との釣合いで決まる。その状態から、ピッチコントロールガイド溝4を左右に移動すると13の弾性力が変わりそれに応じピッチ角も変わる。 FIG. 2 is used for explaining the embodiment of claim 3. In this case, one end of the coil spring 13 is fixed to the blade 2 and the other end is fixed to the pitch arm 3. Further, 15 and 3 are fitted in a freely rotating manner. Therefore, the pitch angle of the blade is determined by the balance between the elastic force of the coil spring 13 and the wind force or hydraulic force. From this state, when the pitch control guide groove 4 is moved left and right, the elastic force 13 changes and the pitch angle changes accordingly.

図3は請求項4の実施例である。風車を通過する風量を増すために風車前後での圧力差を大きくする。エジェクター8は風を風車背後に誘導し背後の流速を高め静圧を下げる働きをし風車前後の圧力差を大きくする。また、スポイラー9は、スポイラー背後に圧力の低い剥離領域を作るため風車背後の圧力が低下する。
図4は請求項4の別の実施例である。風と並行に動くブレード(Bc,Bd)のピッチ角を風を風車内に取り込むように設定することで風量を増やす事ができる。
FIG. 3 shows an embodiment of claim 4. In order to increase the amount of air passing through the windmill, the pressure difference before and after the windmill is increased. The ejector 8 guides the wind behind the windmill to increase the flow velocity behind it and lower the static pressure, thereby increasing the pressure difference between the windmill and the windmill. Moreover, since the spoiler 9 makes the peeling area | region with a low pressure behind a spoiler, the pressure behind a windmill falls.
FIG. 4 shows another embodiment of the present invention. The air volume can be increased by setting the pitch angle of the blades (Bc, Bd) moving in parallel with the wind so that the wind is taken into the windmill.

図5は請求項5の実施例である。ブレード駆動索14をローラー16で受けることにより14の撓みを防ぐ事ができる。 FIG. 5 shows an embodiment of claim 5. By receiving the blade drive cord 14 with the roller 16, the bending of the 14 can be prevented.

図6は請求項6の実施例である。風車あるいは水車が大型の場合、大型スプロケットの製作は容易ではないので、スプロケットの代わりにプーリーのような円盤体をアイドラー18として使用する。18と軸19は回転自由である。なお、18は全体が回転するか、あるいは大口径ベアリングを18外周に設置すれば18全体は回転させなくてもよい。14の力は小径のスプロケット20により軸21の回転に伝達・変換する。この場合、20は増速器としての機能も持つ。 FIG. 6 shows an embodiment of claim 6. When the windmill or the water turbine is large, it is not easy to manufacture a large sprocket. Therefore, a disk body such as a pulley is used as the idler 18 instead of the sprocket. 18 and shaft 19 are freely rotatable. In addition, 18 does not need to rotate if the whole 18 rotates or if a large diameter bearing is installed in 18 outer periphery. The force 14 is transmitted and converted to the rotation of the shaft 21 by the small-diameter sprocket 20. In this case, 20 also has a function as a speed increaser.

図7は請求項7の実施例である。ブレード24はサイズの異なる翼が入れ子になっており伸縮任意と成っている。また、風車躯体の軸支柱25も入れ子になっているので、24,25を伸縮することにより受風面積を増減できる。 FIG. 7 shows an embodiment of claim 7. The blades 24 are nested in wings of different sizes and are arbitrarily stretchable. Moreover, since the shaft support | pillar 25 of a windmill housing is also nested, it can increase / decrease a wind receiving area by expanding / contracting 24,25.

図8は請求項8の実施例である。並進翼風車は風向に対しブレード2のピッチ角をそれぞれプラスおよびマイナスに設定することにより回転方向を逆にする事ができる。回転方向が互いに逆である一対の並進翼風車のジャイロモーメントは0となる。 FIG. 8 shows an embodiment of claim 8. The translation blade wind turbine can reverse the rotation direction by setting the pitch angle of the blade 2 to plus and minus with respect to the wind direction. The gyro moment of a pair of translation blade wind turbines whose rotation directions are opposite to each other is zero.

図9は請求項9の実施例である。請求項9を備えた並進翼風車を一モジュールとして使用し、モジュールを多段にタワー12に回転自由に取り付ける。 FIG. 9 shows an embodiment of claim 9. The translation blade wind turbine provided with claim 9 is used as one module, and the modules are attached to the tower 12 in a freely rotating manner in multiple stages.

図10は請求項10の実施例である。風車モジュールをタワー12に取り付ける場合、回転自由にするためには12と10、11との間にベアリング22等を介して滑動が容易な方法で取り付ける必要がある。しかしながら、22で10、11の自重を受ける場合には滑動し易さは若干ながらも阻害されるので、自重を非接触な磁気軸受け23で受けることによりモジュールのタワー周りの滑動が一層容易になる。磁気軸受けは磁石の反発力を利用する。 FIG. 10 shows an embodiment of claim 10. When the wind turbine module is attached to the tower 12, it is necessary to attach the wind turbine module between 12, 10, and 11 via a bearing 22 or the like in a manner that allows easy sliding. However, since the ease of sliding is somewhat obstructed when receiving the own weight of 10, 11 at 22, the sliding around the tower of the module becomes easier by receiving the own weight with the non-contact magnetic bearing 23. . Magnetic bearings use the repulsive force of magnets.

本発明の利用により、並進翼風車の機能性およびエネルギー吸収効率が高まり、従来以上に風力利用の価値が高まる。また風力発電可能な場所が大幅に増えるため、自然エネルギーの活用を促進できる。 By utilizing the present invention, the functionality and energy absorption efficiency of the translational blade wind turbine are increased, and the value of wind power utilization is increased more than before. In addition, since the number of places where wind power can be generated is greatly increased, the use of natural energy can be promoted.

請求項1,2に関する説明図である。It is explanatory drawing regarding Claim 1,2. 請求項1、3に関する説明図である。It is explanatory drawing regarding Claims 1 and 3. FIG. 請求項4に関する説明図である。It is explanatory drawing regarding Claim 4. 請求項4に関する説明図である。It is explanatory drawing regarding Claim 4. 請求項5に関する説明図である。It is explanatory drawing regarding Claim 5. 請求項6に関する説明図である。It is explanatory drawing regarding Claim 6. 請求項7に関する説明図である。It is explanatory drawing regarding Claim 7. 請求項8に関する説明図である。It is explanatory drawing regarding Claim 8. 請求項9に関する説明図である。It is explanatory drawing regarding Claim 9. 請求項10に関する説明図である。It is explanatory drawing regarding Claim 10.

符号の説明Explanation of symbols

1 板バネ等弾性体
2 ブレード
3 ピッチアーム
4 ピッチコントロールガイド溝
5 ピッチコントロール棒
6 コイルバネ等弾性体
7 並進翼風車
8 ベーン
9 スポイラー
10 順方向回転並進翼風車
11 逆方向回転並進翼風車
12 タワー
13 コイルバネ
14 ブレード駆動索
15 ブレード軸(ブレード回転中心)
16 ローラー
17 水車フレーム(躯体)
18 アイドラー
19 アイドラー軸
20 小径スプロケット
21 スプロケット軸
22 ベアリング
23 磁気軸受け
24 伸縮ブレード
25 伸縮軸支柱
DESCRIPTION OF SYMBOLS 1 Elastic body, such as leaf spring 2 Blade 3 Pitch arm 4 Pitch control guide groove 5 Pitch control rod 6 Elastic body, such as coil spring 7 Translation blade windmill 8 Vane 9 Spoiler 10 Forward rotation translation blade windmill 11 Reverse rotation translation blade windmill 12 Tower 13 Coil spring 14 Blade drive cable 15 Blade axis (blade rotation center)
16 Roller 17 Turbine frame (frame)
18 idler 19 idler shaft 20 small diameter sprocket 21 sprocket shaft 22 bearing 23 magnetic bearing 24 telescopic blade 25 telescopic shaft support

Claims (10)

特願2002−071270の風車あるいは水車を以下で並進翼風車あるいは並進翼水車、両者を総称して並進翼機と呼ぶ。
ブレードがピッチ角0度に近づいてもピッチ角を保持できる機構を備えた並進翼機
The wind turbine or turbine of Japanese Patent Application No. 2002-071270 will be hereinafter collectively referred to as a translation blade wind turbine or a translation blade turbine.
Translational wing machine equipped with a mechanism that can maintain the pitch angle even when the blade approaches 0 degree pitch angle
無風時にブレードピッチ角を所要角度に自動的に設定する機構を備えた並進翼機 Translational wing machine equipped with a mechanism that automatically sets the blade pitch angle to the required angle when there is no wind ブレードのピッチ角を風力あるいは水力とバネ等の弾性力とでバランスし設定する場合に弾性力を変えてピッチ角を制御する並進翼機 A translation wing machine that controls the pitch angle by changing the elastic force when the blade pitch angle is balanced and set by wind power or hydraulic power and elastic force such as a spring. 風車あるいは水車背後の圧力を低くする装置を備えた、あるいは正面から入る以外の風や水流を風車あるいは水車内に取り込むようにブレードを配置した並進翼機 Translation wing machine equipped with a device to reduce the pressure behind the windmill or water turbine, or with blades arranged to take in wind or water flow other than entering from the front into the windmill or water turbine ブレード駆動索の撓みをローラーで受ける並進翼機 Translational wing machine that receives the deflection of blade drive cable with rollers 特願2002−071270の主スプロケットをアイドラーとした並進翼機 Translational wing machine using idler as main sprocket of Japanese Patent Application No. 2002-071270 請求項1から6を個々にあるいは複数組み合わせて備え、かつ、ブレード幅が任意に伸縮可能な並進翼機 A translational wing machine comprising the blades according to any one of claims 1 to 6 individually or in combination, wherein the blade width can be arbitrarily expanded and contracted. 請求項1から7を個々にあるいは複数組み合わせて備えた特願2004- 35699の風車で左右一対の並進翼風車の回転方向を互いに逆方向とした風車 A wind turbine according to Japanese Patent Application No. 2004-35699, which is provided with claims 1 to 7 individually or in combination, wherein the rotational directions of a pair of left and right translation blade wind turbines are opposite to each other. 請求項1から8を個々にあるいは複数組み合わせて備えた並進翼機で構成される特願2004-35699の風車 The wind turbine of Japanese Patent Application No. 2004-35699 comprising a translational wing machine provided with one or more of claims 1 to 8 並進翼風車のタワー取り付けに磁気力を利用して重量を支える請求項9の風車 The wind turbine according to claim 9, wherein the weight is supported by using magnetic force for mounting the tower of the translational blade wind turbine.
JP2005066045A 2005-03-09 2005-03-09 Translational vane machine Pending JP2006249999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066045A JP2006249999A (en) 2005-03-09 2005-03-09 Translational vane machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066045A JP2006249999A (en) 2005-03-09 2005-03-09 Translational vane machine

Publications (1)

Publication Number Publication Date
JP2006249999A true JP2006249999A (en) 2006-09-21

Family

ID=37090757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066045A Pending JP2006249999A (en) 2005-03-09 2005-03-09 Translational vane machine

Country Status (1)

Country Link
JP (1) JP2006249999A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150406A1 (en) * 2009-06-26 2010-12-29 株式会社竹内製作所 Power generating device using flowing water
WO2012090821A1 (en) * 2010-12-26 2012-07-05 Kubomura Kenji Translational blade drive device for windmill or the like
CN111324928A (en) * 2018-12-14 2020-06-23 西北工业大学 Method and system for calculating explosion risk of non-inclusive rotor of aircraft engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735169A (en) * 1980-08-12 1982-02-25 Akihiro Okabe Blade pitch automatic control type windmill
US4358687A (en) * 1980-11-03 1982-11-09 Wladimir Nyc Wind powered generator
GB2131490A (en) * 1982-08-04 1984-06-20 Roger William Bentley Device for extracting energy from wind or water
JPS62265473A (en) * 1986-05-12 1987-11-18 Naomi Kikuchi Wind power generator
JPH0338364U (en) * 1989-08-25 1991-04-12
JPH11159438A (en) * 1997-11-27 1999-06-15 Kyodo Kumiai Puroodo Outdoor installation having generator
JP2002155849A (en) * 2000-11-24 2002-05-31 Mitsubishi Electric Corp Rotary power generating equipment
JP2003269318A (en) * 2002-03-15 2003-09-25 Takashi Uchida Energy absorbing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735169A (en) * 1980-08-12 1982-02-25 Akihiro Okabe Blade pitch automatic control type windmill
US4358687A (en) * 1980-11-03 1982-11-09 Wladimir Nyc Wind powered generator
GB2131490A (en) * 1982-08-04 1984-06-20 Roger William Bentley Device for extracting energy from wind or water
JPS62265473A (en) * 1986-05-12 1987-11-18 Naomi Kikuchi Wind power generator
JPH0338364U (en) * 1989-08-25 1991-04-12
JPH11159438A (en) * 1997-11-27 1999-06-15 Kyodo Kumiai Puroodo Outdoor installation having generator
JP2002155849A (en) * 2000-11-24 2002-05-31 Mitsubishi Electric Corp Rotary power generating equipment
JP2003269318A (en) * 2002-03-15 2003-09-25 Takashi Uchida Energy absorbing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150406A1 (en) * 2009-06-26 2010-12-29 株式会社竹内製作所 Power generating device using flowing water
WO2012090821A1 (en) * 2010-12-26 2012-07-05 Kubomura Kenji Translational blade drive device for windmill or the like
JP5926690B2 (en) * 2010-12-26 2016-05-25 健二 久保村 Translation blade drive device for windmills, etc.
CN111324928A (en) * 2018-12-14 2020-06-23 西北工业大学 Method and system for calculating explosion risk of non-inclusive rotor of aircraft engine
CN111324928B (en) * 2018-12-14 2022-08-02 西北工业大学 Method and system for calculating explosion risk of non-inclusive rotor of aircraft engine

Similar Documents

Publication Publication Date Title
FI82853B (en) REGLERSYSTEM FOER VINDTURBIN.
US8480363B2 (en) Self-starting turbine with dual position vanes
JP2006336505A (en) Horizontal shaft windmill
WO2009106923A2 (en) Wind deflector for wind turbine and wind turbine incorporating same
DK2769089T3 (en) WIND TURBLE WITH AXIAL AXLE AND VARIABLE RISK MECHANISM
US10218246B2 (en) Variable diameter and angle vertical axis turbine
WO2010109238A2 (en) Automatic pitch control for hawt wind turbines
JP2006152922A (en) Windmill
WO2011142286A1 (en) Horizontal axis type wind power generator equipped with air channel
DK2840256T3 (en) Wind turbine blade
JP2006249999A (en) Translational vane machine
PT2949920T (en) Turbine for harnessing wave energy
CN201696216U (en) Lateral deviation regulating device of wind power generator
JP2010520414A (en) Hubless windmill
JP2009085090A (en) Wind turbine device
US9062657B2 (en) Horizontally oriented wind turbine
KR101597466B1 (en) Wind and hydro hybrid power plant
JP2011058470A (en) Translational blade machine
WO2019111674A1 (en) Vertical axis-type wind turbine
KR101936154B1 (en) Vertical axis wind power generato with lift-drag hybrid type blade
CN104088754A (en) Vertical-axis wind turbine
WO2011131792A2 (en) Wind turbine direction control
WO2018235220A1 (en) Sail device
RU2543905C2 (en) Wind-driven power plant
CN102926926A (en) Setover-type vertical-shaft wind machine capable of limiting rotating of blades

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420