JP2006247548A - System for treating dirty water - Google Patents

System for treating dirty water Download PDF

Info

Publication number
JP2006247548A
JP2006247548A JP2005068832A JP2005068832A JP2006247548A JP 2006247548 A JP2006247548 A JP 2006247548A JP 2005068832 A JP2005068832 A JP 2005068832A JP 2005068832 A JP2005068832 A JP 2005068832A JP 2006247548 A JP2006247548 A JP 2006247548A
Authority
JP
Japan
Prior art keywords
liquid
tank
storage tank
filter
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005068832A
Other languages
Japanese (ja)
Other versions
JP3983770B2 (en
Inventor
Koichi Ishizaka
浩一 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GP ONE CORP
Original Assignee
GP ONE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GP ONE CORP filed Critical GP ONE CORP
Priority to JP2005068832A priority Critical patent/JP3983770B2/en
Publication of JP2006247548A publication Critical patent/JP2006247548A/en
Application granted granted Critical
Publication of JP3983770B2 publication Critical patent/JP3983770B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for treating dirty water, in which dirty water such as industrial effluents can efficiently be cleaned excellently. <P>SOLUTION: The system for treating dirty water is provided with: a water receiving tank 1 for receiving dirty water containing suspended solids; a flocculation tank 2 in which a flocculant is added to the dirty water to be discharged/sent from the water receiving tank to flocculate suspended solids; a solid-liquid separation apparatus 10 for subjecting the suspended solids flocculated by the flocculant to centrifugal separation; a storage tank 16 for recovering a separated liquid separated in the solid-liquid separation apparatus; and a filtration apparatus 20 for removing a suspended fine particle remaining in the separated liquid in the storage tank. The filtration apparatus 20 is composed of three filter units 20A, 20B, 20C the filtration degrees of which are set smaller in the passage order of the separated liquid. A metal collection filter 21 is arranged on the downstream side of the filtration apparatus 20 for selectively collecting dissolved metals contained in the filtrate passing through the final filter unit 20C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、工場廃液、汚染された地下水(井戸水)、又は汚染土壌から流出する水などを対象に、その浄化を行うための汚水処理システムに関する。   The present invention relates to a sewage treatment system for purifying a factory waste liquid, contaminated ground water (well water), water flowing out from contaminated soil, or the like.

従来、工場廃液や生活排水を浄化する処理方法として、沈殿槽などを用いる固液分離処理法、濾過装置などを用いる物理化学的処理法、曝気槽などを用いる生物化学処理法、ならびにそれらを組み合わせた処理法が知られる。   Conventionally, as a treatment method for purifying factory waste liquid and domestic wastewater, solid-liquid separation treatment method using a precipitation tank, physicochemical treatment method using a filtration device, biochemical treatment method using an aeration tank, etc., and combinations thereof Processing methods are known.

それらの処理を行うシステムは、各種装置類を配管接続して、その各装置類に汚水を順次通して処理を段階的に行うようにしたものが一般的である。   A system for performing these treatments is generally a system in which various devices are connected by piping, and wastewater is sequentially passed through each of the devices to perform the treatment step by step.

例えば、係る汚水処理システムとして、流入原水を受け入れる初沈用の固液分離槽と、この固液分離槽から上澄分離液を導入して好気性処理を行う曝気槽とを備え、初沈用の固液分離槽内に流入水中の浮遊性固形物を除去するための中空濾材が充填されると共に、曝気槽内に生物膜を付着させるための微生物担体を充填したものが知られている(例えば、特許文献1)。   For example, as such a sewage treatment system, it is provided with a solid-liquid separation tank for initial precipitation that receives inflow raw water, and an aeration tank that introduces a supernatant separation liquid from this solid-liquid separation tank and performs aerobic treatment. The solid-liquid separation tank is filled with a hollow filter medium for removing suspended solids in the inflowing water, and the aeration tank is filled with a microbial carrier for attaching a biofilm ( For example, Patent Document 1).

特開平7−171586号公報JP 7-171586 A

然し乍ら、特許文献1の汚水処理システムによれば、汚水が連続的に流される状態において初沈用の固液分離槽では浮遊性固形物の多くを沈降分離することはできず、その大部分が中空濾材の充填部分に供給され、これによって中空濾材による濾別能力が早期に失われてしまうので、粒径の小さい固形物のみならず比較的粒径の大きい固形物も中空濾材に吸着されることなく下流の曝気槽内に供給され、これにより曝気槽の処理負荷を増大させてしまうために曝気槽での生物的処理が行えなくなるという問題がある。   However, according to the sewage treatment system of Patent Document 1, most of the floating solids cannot be separated and settled in the solid-liquid separation tank for initial settling in a state where sewage is continuously flowed, most of which Since it is supplied to the filled portion of the hollow filter medium and the filtering ability by the hollow filter medium is lost early, not only solid particles with a small particle size but also solid particles with a relatively large particle size are adsorbed by the hollow filter medium. Without being supplied into the downstream aeration tank, this increases the processing load of the aeration tank, so that there is a problem that biological treatment cannot be performed in the aeration tank.

又、曝気槽内でも固液分離槽から送られる汚水(分離液)が連続的に流されるので、微生物による有機物の分解が不十分となり、しかも曝気槽の下流に終沈用の固液分離槽を設けても微粒子や溶存物質を沈降分離することはできない。   In addition, since the sewage (separated liquid) sent from the solid-liquid separation tank is continuously flowed in the aeration tank, the decomposition of organic substances by microorganisms is insufficient, and the solid-liquid separation tank for final settling downstream of the aeration tank. Even if provided, fine particles and dissolved substances cannot be separated by settling.

本発明は以上のような事情に鑑みて成されたものであり、その目的は工場廃液などの汚水を効率よく良好に浄化することのできる汚水処理システムを提供することにある。   The present invention has been made in view of the circumstances as described above, and an object thereof is to provide a sewage treatment system capable of efficiently and well purifying sewage such as factory waste liquid.

本発明は上記目的を達成するため、懸濁物質を含む汚水を受け入れる受水槽と、この受水槽から排送される汚水に凝集剤を加えて懸濁物質の凝集を行う凝集槽と、この凝集槽に連なって凝集剤によって凝集された懸濁物質の遠心分離を行う固液分離装置と、この固液分離装置により懸濁物質の凝集物が分離除去されて成る分離液を回収する貯留槽と、この貯留槽内の分離液に残存する懸濁微粒子を除去する濾過装置とを有する汚水処理システムであって、前記濾過装置は、ケーシング内に濾材を収容した少なくとも3つのフィルタユニットから成り、その各フィルタユニットは、前記貯留槽と管路により順次連結されて貯留槽から排送される分離液の通過順に濾過度が小さく設定されていることを特徴とする。   In order to achieve the above object, the present invention provides a water receiving tank for receiving waste water containing suspended substances, a coagulating tank for adding a flocculant to the waste water discharged from the water receiving tank and aggregating the suspended substances, and the aggregation A solid-liquid separation device for centrifuging suspended solids aggregated by a flocculant connected to a tank, and a storage tank for collecting a separation liquid obtained by separating and removing aggregates of suspended solids by the solid-liquid separation device; And a sewage treatment system having a filtration device for removing suspended fine particles remaining in the separation liquid in the storage tank, wherein the filtration device comprises at least three filter units containing a filter medium in a casing. Each filter unit is sequentially connected by the storage tank and a pipe line, and the filtration degree is set to be small in order of passage of the separation liquid discharged from the storage tank.

又、以上のような汚水処理システムにおいて、濾過装置を構成する最終のフィルタユニットを通過した濾液に含まれる溶存金属類を選択的に捕捉するための金属捕集フィルタを備えることを特徴とする。   Further, the sewage treatment system as described above is characterized by including a metal collection filter for selectively capturing dissolved metals contained in the filtrate that has passed through the final filter unit constituting the filtration device.

更に、貯留槽と濾過装置との間に、分離液に含まれる磁性物質を除去するための磁選装置が設けられることを特徴とする。   Furthermore, a magnetic separator for removing magnetic substances contained in the separation liquid is provided between the storage tank and the filtration device.

又、貯留槽と濾過装置の各フィルタユニットとを順次連結する管路を本流管として、その本流管から方向切換弁を介して分岐するバイパス管を有し、該バイパス管の下流側に逆浸透装置が設けられることを特徴とする。   In addition, the main pipe is a pipe line that sequentially connects the storage tank and each filter unit of the filtration device, and there is a bypass pipe that branches from the main pipe through a direction switching valve, and reverse osmosis is downstream of the bypass pipe. A device is provided.

本発明に係る汚水処理システムによれば、凝集槽内で凝集された懸濁物質を沈降分離するのでなく、その凝集物を固液分離装置に送って遠心分離する構成としていることから、汚水を連続的に流しながら懸濁物質の大部分を効率的に除去することができる。   According to the sewage treatment system according to the present invention, the suspended solids aggregated in the coagulation tank are not settled and separated, but the aggregates are sent to a solid-liquid separation device and subjected to centrifugal separation. Most of the suspended solids can be efficiently removed while flowing continuously.

更に、凝集物が分離除去されて成る分離液を、固液分離装置から貯留槽を経て濾過装置に送り、その濾過装置で分離液に残存する懸濁微粒子を除去(濾別)する構成としていることから、濾過装置にかかる負荷が少なく、このため濾過装置の濾別能力を長期に亘って維持することができる。   Further, the separation liquid from which the aggregates are separated and removed is sent from the solid-liquid separation device to the filtration device through the storage tank, and the suspended fine particles remaining in the separation solution are removed (filtered) by the filtration device. For this reason, the load applied to the filtration device is small, and therefore the filtration ability of the filtration device can be maintained over a long period of time.

又、濾過装置が少なくとも3つのフィルタユニットから構成され、その各フィルタユニットの濾過度が分離液の通過順に小さく設定されることから、各フィルタユニットにより懸濁微粒子を粒径の大きいものから順に良好に吸着分離することができる。   In addition, the filtration device is composed of at least three filter units, and the filtration degree of each filter unit is set to be small in the order of passage of the separation liquid. Can be separated by adsorption.

加えて、濾過装置の下流に金属捕集フィルタが設けられることから、濾過装置を通過した濾液に鉛やカドミウムといった溶存金属類が含まれていた場合にも、それらを捕捉して自然環境への排出を防止することができる。   In addition, since a metal collection filter is provided downstream of the filtration device, even when dissolved metals such as lead and cadmium are contained in the filtrate that has passed through the filtration device, they are captured and returned to the natural environment. Emission can be prevented.

又、貯留槽と濾過装置との間に、分離液に含まれる磁性物質を除去するための磁選装置が設けられることから、鉄やニッケルなどの微粒子による濾材の目詰まりを防止することができる。   In addition, since a magnetic separator for removing magnetic substances contained in the separation liquid is provided between the storage tank and the filtration device, it is possible to prevent clogging of the filter medium due to fine particles such as iron and nickel.

更に、貯留槽と濾過装置の各フィルタユニットとを順次連結する管路を本流管として、その本流管から方向切換弁を介して分岐するバイパス管を有し、該バイパス管の下流側に逆浸透装置が設けられることから、貯留槽にフィルタユニットで吸着できないような細菌類が含まれていた場合でも、分離液の流路を切り換えて逆浸透装置により細菌類やコロイド粒子を除去することができる。   Further, the main pipe is a pipe line that sequentially connects the storage tank and each filter unit of the filtration device, and there is a bypass pipe that branches from the main pipe through a direction switching valve, and reverse osmosis downstream of the bypass pipe Since the device is provided, even if bacteria that cannot be adsorbed by the filter unit are contained in the storage tank, the bacteria and colloid particles can be removed by the reverse osmosis device by switching the flow path of the separation liquid .

以下、図面に基づき本発明を詳しく説明する。図1は本発明に係る汚水処理システムの系統図である。図1において、1は所定の容積を有する受水槽であり、この受水槽1には汚水として工場廃液や井戸水が汚水源(工場や井戸)から取り込まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram of a sewage treatment system according to the present invention. In FIG. 1, reference numeral 1 denotes a water receiving tank having a predetermined volume, and factory waste liquid and well water are taken into the water receiving tank 1 from a sewage source (a factory and a well) as sewage.

2は受水槽から排送される汚水を受け入れる凝集槽であり、この凝集槽2は撹拌室2Aと水位調整室2Bとを連ねた二槽構造であり、撹拌室2Aにはモータにより回転駆動される撹拌翼3と、外部の送風機に接続する散気管4とが設けられる。又、水位調整室2Bは、受水槽1内に配される水中ポンプ5と管路6で連結され、その管路6を通じて受水槽1から水位調整室2Bに供給された汚水が撹拌室2Aに流入する構成としてある。尚、凝集槽2内で一定の水位を超えた汚水は戻し管7により受水槽1に返送され、撹拌室2Aに溜まった汚水には凝集剤供給装置8から凝集剤が定量ずつ添加されるようになっている。   Reference numeral 2 denotes a coagulation tank for receiving sewage discharged from the water receiving tank. The coagulation tank 2 has a two-tank structure in which a stirring chamber 2A and a water level adjusting chamber 2B are connected. The stirring chamber 2A is rotationally driven by a motor. A stirring blade 3 and an air diffuser 4 connected to an external blower are provided. Further, the water level adjustment chamber 2B is connected to the submersible pump 5 disposed in the water receiving tank 1 by a pipe 6 and the sewage supplied from the water receiving tank 1 to the water level adjusting chamber 2B through the pipe 6 to the stirring chamber 2A. It is configured to flow in. The sewage exceeding a certain water level in the flocculating tank 2 is returned to the water receiving tank 1 by the return pipe 7, and the flocculating agent is added to the sewage accumulated in the stirring chamber 2A from the flocculant supply device 8 in a fixed amount. It has become.

このため、汚水に含まれる懸濁物質(浮遊固形粒子)は、凝集槽2(撹拌室2A)内における撹拌乃至は曝気と凝集剤の添加とによって凝集が急速に進行してその粒径が大型化される。ここに、粒径が大型化された凝集物の一部は自重によって撹拌室2Aの底部に沈降するが、その多くは撹拌翼3により撹拌されつつ撹拌室2Aから管路9を通じて下流の固液分離装置10に送られる。   For this reason, the suspended solids (floating solid particles) contained in the sewage rapidly agglomerate by stirring or aeration and addition of a flocculant in the agglomeration tank 2 (stirring chamber 2A), and the particle size is large. It becomes. Here, a part of the agglomerated particles having a larger particle size settles to the bottom of the stirring chamber 2A due to its own weight, but most of the aggregate is stirred by the stirring blade 3 and is downstream from the stirring chamber 2A through the conduit 9. It is sent to the separation device 10.

本例において、固液分離装置10は液体サイクロンであり、その内部には凝集槽2内の汚水が管路9を通じて円筒部の接線方向から送入される。このため、かかる固液分離装置10内では汚水の旋回流が発生し、粒子が大型化された凝集物は旋回流による遠心力を受けて徐々に円錐状の底部に集積される。   In this example, the solid-liquid separator 10 is a liquid cyclone, and the sewage in the coagulation tank 2 is fed into the inside thereof from the tangential direction of the cylindrical portion through the pipe 9. For this reason, a swirl flow of sewage is generated in the solid-liquid separation device 10, and the aggregates whose particles have been enlarged are gradually accumulated at the bottom of the conical shape under the centrifugal force due to the swirl flow.

尚、凝集槽2と固液分離装置10の底部に堆積した凝集物は、濃厚スラリーとして脱水機11に送られて回収される。ここに、脱水機11は容器内に濾布12を配したもので、濾布12を透過した液分は戻し管13を通じて前段の受水槽1内に返送される構成としてある。   The agglomerates accumulated at the bottom of the agglomeration tank 2 and the solid-liquid separator 10 are sent to the dehydrator 11 as a thick slurry and collected. Here, the dehydrator 11 has a filter cloth 12 disposed in a container, and the liquid that has permeated through the filter cloth 12 is returned to the preceding water receiving tank 1 through a return pipe 13.

一方、固液分離装置10によって懸濁物質の凝集物が除去された分離液は、固液分離装置10の中心部分における上昇流によって該固液分離装置の上方中心部に通される管路14を通じて外部に排出され、これが沈殿槽15を介して貯留槽16に回収されるようになっている。   On the other hand, the separation liquid from which the aggregates of suspended substances have been removed by the solid-liquid separation device 10 is passed through the upper central portion of the solid-liquid separation device by the upward flow in the central portion of the solid-liquid separation device 10. Through the settling tank 15 and collected in the storage tank 16.

沈殿槽15は、下部開放型の仕切板15Aと越流堰15Bとを交互に配して蛇行した流路を形成するもので、その上澄みが貯留槽16に供給される構成とされる。尚、図には沈殿槽15を一つのみ示しているが、これを複数連ねた多連式構造としてもよいし、かかる沈殿槽15を省略しても良い。   The sedimentation tank 15 forms a meandering flow path by alternately arranging lower open-type partition plates 15A and overflow weirs 15B, and the supernatant is supplied to the storage tank 16. In the figure, only one settling tank 15 is shown, but a multiple structure in which a plurality of settling tanks 15 are connected may be used, or the settling tank 15 may be omitted.

次に、貯留槽以降の後工程について説明すると、17は貯留槽16内に回収された分離液(懸濁微粒子などが残存する汚水)を取り出すポンプであり、そのポンプ17から吐出される分離液が、磁選装置18、セパレータ19、濾過装置20、並びに金属捕集フィルタ21の順に通され、金属捕集フィルタ21の透過液が処理水として放流源に送られるようになっている。尚、放流源とは河川や湖沼ほか、工場内などの貯水池を含み、貯水池に放流された処理水は工業用水などとして再利用することができる。   Next, the post-process after the storage tank will be described. 17 is a pump for taking out the separated liquid collected in the storage tank 16 (sewage in which suspended fine particles remain), and the separated liquid discharged from the pump 17. However, the magnetic separator 18, the separator 19, the filtering device 20, and the metal collection filter 21 are passed in this order, and the permeate of the metal collection filter 21 is sent to the discharge source as treated water. The discharge source includes rivers, lakes, and other reservoirs in factories, and the treated water discharged into the reservoir can be reused as industrial water.

ここに、磁選装置18は分離液に含まれる鉄やニッケルといった磁性物質(磁性体から成る金属微粒子)を除去するためもので、これは図示せぬマグネットをケーシング内に収容して構成される。   Here, the magnetic separator 18 is for removing a magnetic substance (metal fine particles made of a magnetic material) such as iron or nickel contained in the separation liquid, and is configured by accommodating a magnet (not shown) in a casing.

又、濾過装置20は、貯留槽16からの分離液に残存する懸濁微粒子を除去するためのものであり、これは本例において3つのフィルタユニット20A,20B,20Cから構成され、その各フィルタユニット20A〜20Cは円筒形のケーシング内に多孔質物質のフィルタ(濾材)を収容して成る。   Further, the filtration device 20 is for removing suspended fine particles remaining in the separation liquid from the storage tank 16, and in this example, is constituted by three filter units 20A, 20B, and 20C, and each of the filters. The units 20A to 20C are configured by accommodating a porous material filter (filter medium) in a cylindrical casing.

それらの濾材は懸濁微粒子を物理吸着するもので、最上流のフィルタユニット20Aにおける濾材は糸巻きフィルタ(中空糸などを芯材に巻きつけた円筒形のもの)、中間のフィルタユニット20Bにおける濾材はプリーツフィルタ(中空糸などから成る濾布を波形に折畳んで芯材に巻き付けた円筒形のもの)、及び最下流のフィルタユニット20Cにおける濾材は活性炭とされる。   These filter media physically adsorb suspended fine particles. The filter media in the most upstream filter unit 20A is a thread wound filter (cylindrical one in which a hollow fiber is wound around a core material), and the filter media in the intermediate filter unit 20B is The pleated filter (cylindrical one in which a filter cloth made of hollow fiber or the like is folded into a corrugated shape and wound around a core material) and the filter material in the most downstream filter unit 20C are activated carbon.

特に、各フィルタユニット20A〜20Cは、分離液が通過される順に濾過度(濾材により捕集される粒子の大きさで表される)が小さく設定される。本例では、フィルタユニット20Aにおける濾材の孔径が10μ、フィルタユニット20Bにおける濾材の孔径が1.5μ、フィルタユニット20Cにおける濾材の孔径が1μとされるが、本発明は濾材の孔径を要件とするものでなく、各フィルタユニット20A〜20Cの濾過度が順次小さく設定されていればよい。又、濾材の種類も上記したもののほか、グラスウール、金属フィルタ、又は濾紙など公知のものの中から適宜選択することができる。   In particular, each of the filter units 20A to 20C is set such that the degree of filtration (represented by the size of the particles collected by the filter medium) is reduced in the order in which the separation liquid is passed. In this example, the pore diameter of the filter medium in the filter unit 20A is 10 μ, the pore diameter of the filter medium in the filter unit 20B is 1.5 μ, and the pore diameter of the filter medium in the filter unit 20C is 1 μ, but the present invention requires the pore diameter of the filter medium. The filter degree of each filter unit 20A-20C should just be set small gradually. In addition to the above, the type of the filter medium can be appropriately selected from known materials such as glass wool, metal filter, and filter paper.

一方、金属捕集フィルタ21は、濾過装置20を構成する最終のフィルタユニット20Cを通過した濾液に含まれる溶存金属類(主として重金属)を選択的に捕捉するためのもので、これは溶存重金属を化学的に吸着する機能をもつ金属捕集材をケーシング内に収容して構成される。   On the other hand, the metal collection filter 21 is for selectively capturing dissolved metals (mainly heavy metals) contained in the filtrate that has passed through the final filter unit 20C constituting the filtration device 20, and this is used to remove dissolved heavy metals. A metal collecting material having a chemically adsorbing function is accommodated in a casing.

係る金属捕集材は、透水性を有する高分子基材の表面に金属イオン(重金属イオン)と結合する官能基を固定化したものであり、高分子基材にはポリエチレン、ポリプロピレン、ポリスルホン、ポリテトラフルオロエチレン、エチレン、プロピレン、ブテン、ヘキセン、テトラフルオロエチレン、又はクロロトリフルオロエチレンなどの単独もしくは共重合体から成る部材、好ましくは不織布が用いられる。   Such a metal trapping material is obtained by immobilizing a functional group that binds to metal ions (heavy metal ions) on the surface of a water-permeable polymer substrate. The polymer substrate includes polyethylene, polypropylene, polysulfone, poly A member made of a homo- or copolymer such as tetrafluoroethylene, ethylene, propylene, butene, hexene, tetrafluoroethylene, or chlorotrifluoroethylene, preferably a non-woven fabric is used.

又、重金属イオンと結合する官能基は、電子供与原子として酸素、窒素、硫黄をもつアミノ基(−NH2)、アミド基(−CONH2)、カルボキシル基(−COOH)、カルボニル基(−C=O)、水酸基(−OH)、スルホン基(−SO3H)、ニトリル基(−CN)などの配位基(キレート生成基)、イオン交換基(スルホン酸などの陽イオン交換基又は両性イオン交換基)であり、その固定化は高分子基材に重合性単量体をグラフト重合し、そのグラフト共重合体の側鎖に上記のような官能基をもつ化合物を化学反応により導入するか、又は上記のような官能基をもつ重合性単量体を高分子基材にグラフト重合することにより行われる。 In addition, functional groups that bind to heavy metal ions include amino groups (—NH 2 ), amide groups (—CONH 2 ), carboxyl groups (—COOH), and carbonyl groups (—C) having oxygen, nitrogen, and sulfur as electron donor atoms. = O), a hydroxyl group (—OH), a sulfone group (—SO 3 H), a coordinating group (chelate-forming group) such as a nitrile group (—CN), an ion exchange group (a cation exchange group such as sulfonic acid or amphoteric) The ion-exchange group is immobilized by graft polymerization of a polymerizable monomer onto a polymer substrate, and a compound having a functional group as described above is introduced into the side chain of the graft copolymer by a chemical reaction. Alternatively, it is carried out by graft polymerization of a polymerizable monomer having the above functional group onto a polymer substrate.

尚、その種の金属捕集材は公知のものの中から適宜選択することができるが、重金属イオンの吸着速度の点では、放射線グラフト重合法によって高分子基材(PE不織布など)にアクリロニトリル(CH2=CHCN)とメタクリル酸(CH2=C(CH3)COOH)を重合した後、係る不織布をヒドロキシルアミン(NH2OH)の溶液に浸し、シアノ基(−CN)との反応によりグラフト共重合体の側鎖にアミドキシム基(−C=N(OH)NH2)を導入したものが好適に用いられる。因に、アミドキシム基は、Cu2+、Ru6+、Au3+、Rh3+、V4+、Pd2+、U6+、Pt2+、Fe3+、Mo6+、Ni2+、Co2+、Zn2+、Mn2+などを選択的に吸着することができる。 In addition, although the kind of metal collection material can be suitably selected from well-known materials, in terms of the adsorption rate of heavy metal ions, acrylonitrile (CH 2 = CHCN) and methacrylic acid (CH 2 = C (CH 3 ) COOH) are polymerized, and then the nonwoven fabric is immersed in a solution of hydroxylamine (NH 2 OH) and reacted with a cyano group (-CN) to graft. What introduced the amidoxime group (-C = N (OH) NH2) into the side chain of the polymer is preferably used. Incidentally, amidoxime groups are Cu 2+ , Ru 6+ , Au 3+ , Rh 3+ , V 4+ , Pd 2+ , U 6+ , Pt 2+ , Fe 3+ , Mo 6+ , Ni 2+. , Co 2+ , Zn 2+ , Mn 2+ and the like can be selectively adsorbed.

参考例として、上記のようなアミドキシム基をPE不織布の表面に固定化した金属捕集材の性能を調べた結果を図2に示す。尚、係る性能測定では内径7mmのカラム内に上記の金属捕集材を9mmの高さに充填し、鉛とカドミウムの100ppb混合溶液(pH6)を6ml/minで通液し、通液後の鉛/カドミウム濃度を測定した。   As a reference example, the results of examining the performance of a metal trapping material in which the amidoxime group as described above is immobilized on the surface of a PE nonwoven fabric are shown in FIG. In this performance measurement, the above-mentioned metal trapping material is packed in a height of 9 mm in a column with an inner diameter of 7 mm, and a 100 ppb mixed solution of lead and cadmium (pH 6) is passed at 6 ml / min. Lead / cadmium concentration was measured.

図2から明らかなように、1200BVの通液後、カドミウムは検出されたが、鉛については殆ど検出されなかった。因に、カドミウムに対しては高分子基材に官能基としてイミノジ酢酸基を固定化したものが有効である。尚、鉛については図3のように200倍高い濃度で160BV吸着が可能である。その他、シアン化合物についても同様の吸着試験を行ったが、これについては鉛と同様に通液後の試験水からシアン化合物は検出されなかった(シアン化合物<0.01mg/リットル)。   As is apparent from FIG. 2, cadmium was detected after passing through 1200 BV, but lead was hardly detected. For cadmium, an iminodiacetate group immobilized as a functional group on a polymer base material is effective. Incidentally, 160 BV can be adsorbed at a concentration 200 times higher for lead as shown in FIG. In addition, the same adsorption test was conducted for cyanide, but no cyanide was detected in the test water after passing through in the same manner as lead (cyanide compound <0.01 mg / liter).

ここで、貯留槽16と濾過装置を構成する各フィルタユニット20A〜20C、並びに濾過装置20の下流に配される金属捕集フィルタ21とを順次連結する管路は本流管22とされ、その本流管22から方向切換弁23,24を介してバイパス管25,26が分岐する構成としてある。   Here, a main pipe 22 is connected to the storage tank 16, the filter units 20 </ b> A to 20 </ b> C constituting the filtration device, and the metal collection filter 21 arranged downstream of the filtration device 20. The bypass pipes 25 and 26 are branched from the pipe 22 via the direction switching valves 23 and 24.

本例において、一方のバイパス管25は濾過装置の中途(フィルタユニット20A,20Bの間)から分岐され、かかるバイパス管25にはフィルタユニット20Aと同様のフィルタ装置27が介在されると共に、そのフィルタ装置27の上流部分にはバイパス管25の内部を流れる汚水(分離液)に次亜塩素酸塩などの殺菌剤を添加するための滅菌装置28が接続される。   In this example, one bypass pipe 25 is branched from the middle of the filtering device (between the filter units 20A and 20B), and a filter device 27 similar to the filter unit 20A is interposed in the bypass pipe 25, and the filter A sterilizer 28 for adding a bactericide such as hypochlorite to sewage (separated liquid) flowing inside the bypass pipe 25 is connected to an upstream portion of the device 27.

そして、バイパス管25,26はタンク29を介して合流され、それらバイパス管25,26の下流側には圧送ポンプ30を介在させた合流管31により上記タンク29と連通する逆浸透装置32が設けられる。   The bypass pipes 25 and 26 are joined via a tank 29, and a reverse osmosis device 32 communicating with the tank 29 is provided on the downstream side of the bypass pipes 25 and 26 by a joining pipe 31 with a pressure pump 30 interposed. It is done.

逆浸透装置32は、酢酸セルロース系やポリアクリロニトリル系などの逆浸透膜33をケーシング内に収容して成るものであり、逆浸透膜33を透過した溶媒成分は処理水として工場内などの貯水池や河川といった放流源に送られる一方、逆浸透膜33を透過しない溶質を含んだ溶液は濃縮水として戻し管34によりタンク29に返送され、そのタンク29と逆浸透装置32との間で循環されるようにしてある。   The reverse osmosis device 32 is formed by housing a reverse osmosis membrane 33 such as cellulose acetate or polyacrylonitrile in a casing, and the solvent component that has permeated through the reverse osmosis membrane 33 is treated as a reservoir in a factory or the like. A solution containing a solute that does not permeate the reverse osmosis membrane 33 while being sent to a discharge source such as a river is returned as concentrated water to the tank 29 by the return pipe 34 and circulated between the tank 29 and the reverse osmosis device 32. It is like that.

以上のように構成される汚水処理システムの作用を説明すると、工場廃液や汚染水としての井戸水などはポンプにより受水槽1に送られ、受水槽1内に溜まった汚水は水中ポンプ5により凝集槽2に送られる。   The operation of the sewage treatment system configured as described above will be described. Factory waste liquid or well water as contaminated water is sent to the water receiving tank 1 by a pump, and sewage collected in the water receiving tank 1 is condensed by an underwater pump 5. Sent to 2.

凝集槽2では、受水槽1から排送される汚水を撹拌翼3により撹拌するか、又は散気管4から放出されるエアと接触させ、更に凝集剤を加えて懸濁物質の凝集が行われる。そして、その凝集物を含んだ汚水は、固液分離装置10に送られて凝集物の遠心分離が行われる。つまり、粒径が大型化された凝集物は固液分離装置10内での旋回流による遠心力により固液分離装置10の内壁に沿ってその下部に集められ、これが濃厚スラリーとして排出される。   In the agglomeration tank 2, the sewage discharged from the water receiving tank 1 is agitated by the agitating blade 3 or brought into contact with the air discharged from the air diffuser 4, and a coagulant is further added to agglomerate the suspended substance. . And the sewage containing the aggregate is sent to the solid-liquid separator 10, and the aggregate is centrifuged. That is, the agglomerated particles having a large particle size are collected along the inner wall of the solid-liquid separation device 10 by centrifugal force due to the swirling flow in the solid-liquid separation device 10 and discharged as a thick slurry.

一方、凝集物が除去された分離液は、固液分離装置10の上方中心部より溢流し、これが管路14を通じて沈殿槽15に送られ、この沈殿槽15にて固液分離装置10を通過した若干の凝集物が沈降分離された後、かかる分離液が貯留槽16に回収される。   On the other hand, the separation liquid from which the aggregates have been removed overflows from the upper central portion of the solid-liquid separation device 10, and is sent to the precipitation tank 15 through the conduit 14, and passes through the solid-liquid separation apparatus 10 in the precipitation tank 15. The separated liquid is recovered in the storage tank 16 after some of the agglomerates are settled and separated.

貯留槽16に回収された分離液は、ポンプ17により吸い出され、磁選装置18およびセパレータ19を介して濾過装置20に送られ、その各フィルタユニット20A〜20Cに順に通されることにより、分離液に残存する懸濁微粒子が各フィルタユニット20A〜20Cの濾材による物理的吸着作用によって分離除去される。   The separation liquid collected in the storage tank 16 is sucked out by the pump 17, sent to the filtration device 20 through the magnetic separator 18 and the separator 19, and sequentially passed through the filter units 20 </ b> A to 20 </ b> C to be separated. The suspended fine particles remaining in the liquid are separated and removed by the physical adsorption action by the filter media of the filter units 20A to 20C.

そして、最終のフィルタユニット20Cを通過した濾液は、金属捕集フィルタ21に送られた後、処理水として放流源に送られ、工業用水などとして再利用される。このため、鉛、クロム、水銀、カドミウム、セレン、銅、亜鉛といった重金属をはじめとする溶存金属類が濾液に含まれていた場合でも、それらを金属捕集材による化学的吸着作用により選択的に捕捉して環境への流出を防止することができる。   Then, the filtrate that has passed through the final filter unit 20C is sent to the metal collection filter 21, and then sent to the discharge source as treated water and reused as industrial water or the like. For this reason, even if dissolved metals such as heavy metals such as lead, chromium, mercury, cadmium, selenium, copper, and zinc are contained in the filtrate, they are selectively removed by the chemical adsorption action of the metal collector. Capturing and preventing outflow to the environment.

尚、貯留槽16内の分離液に大腸菌などの細菌類が含まれている場合であって、有害な溶存金属類の濃度が基準値以下である場合には、方向切換弁23により分離液の流路を本流管22からバイパス管25に切り換え、分離液に殺菌剤を加えた後、これを逆浸透装置32を介して放流源に送る。このため、細菌類を死滅させることができるだけでなく、放流源に送られる処理水を溶存物質が殆ど存在しない純水状態とすることができる。   In the case where bacteria such as Escherichia coli are contained in the separation liquid in the storage tank 16 and the concentration of harmful dissolved metals is below the reference value, the direction switching valve 23 causes the separation liquid to The flow path is switched from the main flow pipe 22 to the bypass pipe 25, and after adding a sterilizing agent to the separated liquid, it is sent to the discharge source via the reverse osmosis device 32. For this reason, not only can bacteria be killed, but the treated water sent to the discharge source can be in a pure water state in which almost no dissolved substances are present.

又、金属捕集フィルタ21を通過した処理水も、方向切換弁24の切り換えにより逆浸透装置32に送って金属類以外の溶存物質を除去することができる。   The treated water that has passed through the metal collection filter 21 can also be sent to the reverse osmosis device 32 by switching the direction switching valve 24 to remove dissolved substances other than metals.

以上、本発明に係る汚水処理システムについて説明したが、固液分離装置10は液体サイクロンに限らず、円筒形遠心沈降分離機、分離板形遠心沈降分離機、又は遠心濾過機などを用いることができる。   Although the sewage treatment system according to the present invention has been described above, the solid-liquid separation device 10 is not limited to a liquid cyclone, and a cylindrical centrifugal sedimentation separator, a separation plate centrifugal sedimentation separator, or a centrifugal filter may be used. it can.

本発明に係る汚水処理システムを示す系統図System diagram showing a sewage treatment system according to the present invention 金属捕集フィルタの性能を示すグラフGraph showing the performance of the metal collection filter 金属捕集フィルタの性能を示すグラフGraph showing the performance of the metal collection filter

符号の説明Explanation of symbols

1 受水槽
2 凝集槽
8 凝集剤供給装置
10 固液分離装置
16 貯留槽
18 磁選装置
20 濾過装置
20A〜20C フィルタユニット
21 金属捕集フィルタ
22 本流管
23,24 方向切換弁
25,26 バイパス管
32 逆浸透装置
DESCRIPTION OF SYMBOLS 1 Water receiving tank 2 Coagulation tank 8 Coagulant supply apparatus 10 Solid-liquid separator 16 Storage tank 18 Magnetic separator 20 Filtration apparatus 20A-20C Filter unit 21 Metal collection filter 22 Main flow pipe 23, 24 Directional switching valve 25, 26 Bypass pipe 32 Reverse osmosis equipment

Claims (4)

懸濁物質を含む汚水を受け入れる受水槽と、この受水槽から排送される汚水に凝集剤を加えて懸濁物質の凝集を行う凝集槽と、この凝集槽に連なって凝集剤によって凝集された懸濁物質の遠心分離を行う固液分離装置と、この固液分離装置により懸濁物質の凝集物が分離除去されて成る分離液を回収する貯留槽と、この貯留槽内の分離液に残存する懸濁微粒子を除去する濾過装置とを有する汚水処理システムであって、前記濾過装置は、ケーシング内に濾材を収容した少なくとも3つのフィルタユニットから成り、その各フィルタユニットは、前記貯留槽と管路により順次連結されて貯留槽から排送される分離液の通過順に濾過度が小さく設定されていることを特徴とする汚水処理システム。   A water receiving tank that receives sewage containing suspended solids, a coagulation tank that adds coagulant to the sewage discharged from the water receiving tank to coagulate the suspended solids, and the coagulant coagulated by the coagulant. A solid-liquid separation device for centrifuging suspended solids, a storage tank for collecting a separated liquid from which aggregates of suspended solids are separated and removed by the solid-liquid separation apparatus, and a residual liquid in the separation liquid in the storage tank A sewage treatment system having a filtration device for removing suspended fine particles, wherein the filtration device comprises at least three filter units each containing a filter medium in a casing, and each of the filter units includes the storage tank and a pipe. A sewage treatment system, wherein the degree of filtration is set to be small in the order of passage of separation liquid sequentially connected by a path and discharged from a storage tank. 濾過装置を構成する最終のフィルタユニットを通過した濾液に含まれる溶存金属類を選択的に捕捉するための金属捕集フィルタを備えた請求項1記載の汚水処理システム。   The sewage treatment system according to claim 1, further comprising a metal collection filter for selectively capturing dissolved metals contained in the filtrate that has passed through the final filter unit constituting the filtration apparatus. 貯留槽と濾過装置との間に、分離液に含まれる磁性物質を除去するための磁選装置が設けられる請求項1〜2記載の汚水処理システム。   The sewage treatment system according to claim 1 or 2, wherein a magnetic separator for removing a magnetic substance contained in the separation liquid is provided between the storage tank and the filtration device. 貯留槽と濾過装置の各フィルタユニットとを順次連結する管路を本流管として、その本流管から方向切換弁を介して分岐するバイパス管を有し、該バイパス管の下流側に逆浸透装置が設けられることを特徴とする請求項1〜3記載の汚水処理システム。
The main line is a pipe line that sequentially connects the storage tank and each filter unit of the filtration device, and has a bypass pipe that branches from the main flow pipe through a direction switching valve, and a reverse osmosis device is located downstream of the bypass pipe. The sewage treatment system according to claim 1, wherein the sewage treatment system is provided.
JP2005068832A 2005-03-11 2005-03-11 Sewage treatment system Expired - Fee Related JP3983770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068832A JP3983770B2 (en) 2005-03-11 2005-03-11 Sewage treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068832A JP3983770B2 (en) 2005-03-11 2005-03-11 Sewage treatment system

Publications (2)

Publication Number Publication Date
JP2006247548A true JP2006247548A (en) 2006-09-21
JP3983770B2 JP3983770B2 (en) 2007-09-26

Family

ID=37088580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068832A Expired - Fee Related JP3983770B2 (en) 2005-03-11 2005-03-11 Sewage treatment system

Country Status (1)

Country Link
JP (1) JP3983770B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130813A1 (en) * 2008-04-24 2009-10-29 東電環境エンジニアリング株式会社 System for reusing waste animal/vegetable oil liquid
JP2010046627A (en) * 2008-08-22 2010-03-04 Toshiba Corp Water-purifying pretreatment system
JP2011000565A (en) * 2009-06-22 2011-01-06 Fuso Kensetsu Kogyo Kk Pretreatment method of groundwater
JP2011031244A (en) * 2010-11-08 2011-02-17 Toshiba Corp Water-cleaning pretreatment system
WO2011113110A1 (en) * 2010-03-18 2011-09-22 Envirostream Solutions Pty Ltd Mobile water filtration unit
JP2012192325A (en) * 2011-03-15 2012-10-11 Toshiba Corp Membrane filtering device
JP2015120110A (en) * 2013-12-24 2015-07-02 株式会社バイオメルト Contaminated water purification system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130813A1 (en) * 2008-04-24 2009-10-29 東電環境エンジニアリング株式会社 System for reusing waste animal/vegetable oil liquid
JP4577911B2 (en) * 2008-04-24 2010-11-10 東電環境エンジニアリング株式会社 Animal and vegetable oil waste liquid recycling system
JPWO2009130813A1 (en) * 2008-04-24 2011-08-11 東電環境エンジニアリング株式会社 Animal and vegetable oil waste liquid recycling system
JP2010046627A (en) * 2008-08-22 2010-03-04 Toshiba Corp Water-purifying pretreatment system
JP2011000565A (en) * 2009-06-22 2011-01-06 Fuso Kensetsu Kogyo Kk Pretreatment method of groundwater
WO2011113110A1 (en) * 2010-03-18 2011-09-22 Envirostream Solutions Pty Ltd Mobile water filtration unit
CN102869620A (en) * 2010-03-18 2013-01-09 恩威罗斯特里姆解决方案有限公司 Mobile water filtration unit
CN102869620B (en) * 2010-03-18 2015-07-29 恩威罗斯特里姆解决方案有限公司 Moveable water filter unit
JP2011031244A (en) * 2010-11-08 2011-02-17 Toshiba Corp Water-cleaning pretreatment system
JP2012192325A (en) * 2011-03-15 2012-10-11 Toshiba Corp Membrane filtering device
JP2015120110A (en) * 2013-12-24 2015-07-02 株式会社バイオメルト Contaminated water purification system

Also Published As

Publication number Publication date
JP3983770B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
Ng et al. Arsenic removal technologies for drinking water treatment
JP3983770B2 (en) Sewage treatment system
KR100386908B1 (en) Water treatment method
Ghernaout et al. Water reuse: Extenuating membrane fouling in membrane processes
TWI458543B (en) Method of improving performance of ultrafiltration or microfiltration membrane processes in landfill leachate treatment
Farahbakhsh et al. A review of the impact of chemical pretreatment on low-pressure water treatment membranes
US7686960B2 (en) Multistage process for treating water utilizing in one stage magnetic seed to sorb dissolved contaminants, and in another stage utilizing magnetic seed to clarify the water
JP2006508791A (en) Reaction filtration
KR101322610B1 (en) Biological filtration system for water treatment
KR100611171B1 (en) Advanced water treatment using membrane Filtration
JP2006320847A (en) Organic arsenic-containing water treatment method, and its apparatus
US5304309A (en) Cyclic process for selective coagulant recovery from clarifier sludge
WO2010053051A1 (en) Filtration apparatus and water treatment equipment
JP4958384B2 (en) Biological treatment water treatment method for organic carbon-containing water discharged from semiconductor manufacturing process
KR200383096Y1 (en) Advanced water treatment using membrane Filtration
KR20070122269A (en) Method and apparatus for water treatment using dynamic membrane
CN211688580U (en) Ultrafiltration membrane system and ultrafiltration membrane extension system
JP2018008186A (en) Water insoluble metal scavenger, noble metal recovery method, and noble metal recovery facility
JP3356928B2 (en) Operating method of water treatment equipment using immersion type membrane filtration device
JP2008279339A (en) Solid/liquid separation apparatus
KR100483694B1 (en) Adsorption Reaction Unit Using Power Active Corbon and Method Thereof
JP5349288B2 (en) Filtration device and waste water treatment system
JP3667154B2 (en) Biological contact filtration method and apparatus
JP2016093789A (en) Water treatment method and water treatment system
JP4066348B2 (en) Virus removal method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees