JP2006244820A - Fuel for fuel cell - Google Patents

Fuel for fuel cell Download PDF

Info

Publication number
JP2006244820A
JP2006244820A JP2005057816A JP2005057816A JP2006244820A JP 2006244820 A JP2006244820 A JP 2006244820A JP 2005057816 A JP2005057816 A JP 2005057816A JP 2005057816 A JP2005057816 A JP 2005057816A JP 2006244820 A JP2006244820 A JP 2006244820A
Authority
JP
Japan
Prior art keywords
fuel
cell
methanol
fuel cell
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005057816A
Other languages
Japanese (ja)
Inventor
Tomoaki Arimura
智朗 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005057816A priority Critical patent/JP2006244820A/en
Publication of JP2006244820A publication Critical patent/JP2006244820A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide fuel for a fuel cell avoiding poisoning of a catalyst layer in a fuel electrode or clogging of a passage by preventing breeding of moss or various germs in a fuel electrode circulation process of a mixed solution of methanol and water, and operating in high output for a long time. <P>SOLUTION: The fuel supplied to the fuel electrode of the fuel cell by circulation is prepared by dissolving a specific organic compound such as benzyldimethyldecyl ammonium chloride in the mixed solution of methanol and water as antiseptic. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用燃料に関する。   The present invention relates to a fuel for a fuel cell.

直接メタノール型燃料電池(DMFC)は、メタノールと水の混合液が燃料として供給される燃料極、酸化性ガスが供給される空気極およびこれらの極間に介在される高分子電解質膜を含む膜状電極ユニットと、この膜状電極ユニットの両面に配置される燃料用流路板および酸化性ガス用流路板とを含む単セルを備えた構造を有する。
このような燃料電池において、例えば混合器から水で希釈したメタノール水溶液(燃料)を燃料極に供給し、未反応のメタノール水溶液を混合タンクに戻して循環させることが行われている。
A direct methanol fuel cell (DMFC) includes a fuel electrode supplied with a mixed liquid of methanol and water as a fuel, an air electrode supplied with an oxidizing gas, and a polymer electrolyte membrane interposed between these electrodes. And a single cell including a fuel flow channel plate and an oxidizing gas flow channel plate disposed on both surfaces of the membrane electrode unit.
In such a fuel cell, for example, an aqueous methanol solution (fuel) diluted with water from a mixer is supplied to the fuel electrode, and an unreacted aqueous methanol solution is returned to the mixing tank and circulated.

しかしながら、メタノール水溶液からなる燃料の循環を所定期間続行すると、燃料電池の出力が低下する問題があった。   However, if the circulation of the fuel composed of the methanol aqueous solution is continued for a predetermined period, there is a problem that the output of the fuel cell is lowered.

本発明者は、燃料電池の燃料極にメタノールと水との混合液を燃料として循環して供給する際、その循環を所定期間続行することによる燃料電池の出力低下について種々検討した結果、前記燃料の循環過程で苔や雑菌が繁殖し、燃料極の触媒層(白金−ルテニウム触媒層)が被毒されたり、その流路が詰まったりしてその触媒作用が低下し、燃料電池の出力が低下することを究明した。   The present inventor conducted various studies on the decrease in the output of the fuel cell by continuing the circulation for a predetermined period when supplying a mixture of methanol and water as fuel to the fuel electrode of the fuel cell. During the circulation process, moss and other germs propagate, the catalyst layer (platinum-ruthenium catalyst layer) of the fuel electrode is poisoned, and the flow path is clogged, so that the catalytic action is reduced and the output of the fuel cell is reduced. Investigated what to do.

本発明者は、前記知見に基づいて後述する一般式(I)で表される有機化合物を防腐剤としてメタノールと水との混合液に溶解することによって、循環過程で苔や雑菌が繁殖するのを防止することが可能な燃料電池用燃料を見出した。その結果、この燃料を燃料極に循環させる過程で燃料極の触媒層の被毒、流路の詰まりの発生を防止し、長期間に亘って高い出力特性を維持することが可能な燃料電池を得ることができる。   Based on the above knowledge, the present inventor dissolves an organic compound represented by the general formula (I) described later in a mixed solution of methanol and water as a preservative, so that moss and various germs propagate in the circulation process. The present inventors have found a fuel for a fuel cell that can prevent the above-described problem. As a result, a fuel cell capable of preventing poisoning of the catalyst layer of the fuel electrode and occurrence of clogging of the flow path in the process of circulating this fuel to the fuel electrode, and maintaining high output characteristics over a long period of time. Obtainable.

本発明によると、燃料電池の燃料極に循環して供給される燃料であって、
メタノールと水との混合液に下記化2に示す一般式(I)で表される有機化合物を防腐剤として溶解したことを特徴とする燃料電池用燃料が提供される。

Figure 2006244820
According to the present invention, the fuel is circulated and supplied to the fuel electrode of the fuel cell,
A fuel for a fuel cell is provided in which an organic compound represented by the general formula (I) shown in the following chemical formula 2 is dissolved in a mixed solution of methanol and water as a preservative.
Figure 2006244820

ただし、式中のR1は炭素数1〜16のアルキル基、R2は炭素数1〜32のアルキル基、Xはハロゲン元素を示す。 In the formula, R 1 represents an alkyl group having 1 to 16 carbon atoms, R 2 represents an alkyl group having 1 to 32 carbon atoms, and X represents a halogen element.

本発明によれば、燃料電池を長期間に亘って高い出力で作動させることが可能な燃料電池用燃料を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel for fuel cells which can operate a fuel cell with a high output over a long period of time can be provided.

以下、本発明に係る燃料電池用燃料を詳細に説明する。   Hereinafter, the fuel for a fuel cell according to the present invention will be described in detail.

図1は、この実施形態に係る燃料を循環させる直接メタノール型燃料電池燃料電池のユニットセル周りを示す概略図、図2は図1のユニットセルに組み込まれる単セルを示す概略分解斜視図、図3は図2の単セルに組み込まれた膜状電極ユニットを示す断面図、図4は図2の単セルに組み込まれた燃料用流路板および酸化性ガス用流路板を示す平面図である。   FIG. 1 is a schematic view showing the periphery of a unit cell of a direct methanol fuel cell fuel cell that circulates fuel according to this embodiment. FIG. 2 is a schematic exploded perspective view showing a single cell incorporated in the unit cell of FIG. 3 is a cross-sectional view showing the membrane electrode unit incorporated in the single cell of FIG. 2, and FIG. 4 is a plan view showing the fuel flow channel plate and the oxidizing gas flow channel plate incorporated in the single cell of FIG. is there.

図中の1は、単セルを例えば10〜40数積層したユニットセルである。混合器2は、往路管3および復路管4を通して前記ユニットセル1に接続され、燃料が混合器2とユニットセル1の間で循環される。複数の放熱フィン5は、前記往路管3および復路管4の両方に亘って取り付けられている。送液ポンプ6は、前記往路管3に介装されている。気液分離器7は、前記復路管4に介装されている。ガス排気管8は、前記気液分離器7から前記ユニットセル1のガス流通管9の途中に接続されている。酸化性ガス、例えば空気を供給するための供給管10は、前記ユニットセル1に接続されている。   In the figure, 1 is a unit cell in which, for example, 10 to 40 single cells are stacked. The mixer 2 is connected to the unit cell 1 through the forward pipe 3 and the backward pipe 4, and fuel is circulated between the mixer 2 and the unit cell 1. The plurality of radiating fins 5 are attached over both the forward path pipe 3 and the return path pipe 4. The liquid feed pump 6 is interposed in the outward pipe 3. The gas-liquid separator 7 is interposed in the return pipe 4. The gas exhaust pipe 8 is connected from the gas-liquid separator 7 in the middle of the gas flow pipe 9 of the unit cell 1. A supply pipe 10 for supplying an oxidizing gas such as air is connected to the unit cell 1.

前記ユニットセル1に組み込まれる単セル11は、図2に示すように膜状電極ユニット21を備えている。枠状のシール材31a、燃料用流路板41aおよび集電板51aは、前記膜状電極ユニット21の一方の面にこの順序で配列、積層されている。枠状のシール材31b、酸化性ガス用流路板41bおよび集電板51bは、前記膜状電極ユニット21の他方の面にこの順序で配列、積層されている。   The single cell 11 incorporated in the unit cell 1 includes a membrane electrode unit 21 as shown in FIG. The frame-shaped sealing material 31a, the fuel flow path plate 41a, and the current collecting plate 51a are arranged and laminated in this order on one surface of the membrane electrode unit 21. The frame-shaped sealing material 31b, the oxidizing gas channel plate 41b, and the current collecting plate 51b are arranged and stacked in this order on the other surface of the membrane electrode unit 21.

前記膜状電極ユニット21は、図3に示すように前記混合器2から燃料が循環して供給される燃料極22と、酸化性ガスが前記供給管10を通して供給される空気極23と、これらの極22,23間に介在される電解質膜24とを備えている。前記燃料極22は、前記電解質膜24に接する触媒層22aと、この触媒層22aに積層されたカーボンペーパを有する拡散層22bとから構成されている。前記空気極23は、前記電解質膜24に接する触媒層23aと、この触媒層23aに積層されたカーボンペーパを有する拡散層23bとから構成されている。   As shown in FIG. 3, the membrane electrode unit 21 includes a fuel electrode 22 to which fuel is circulated and supplied from the mixer 2, an air electrode 23 to which an oxidizing gas is supplied through the supply pipe 10, and these And an electrolyte membrane 24 interposed between the electrodes 22 and 23. The fuel electrode 22 includes a catalyst layer 22a in contact with the electrolyte membrane 24 and a diffusion layer 22b having carbon paper laminated on the catalyst layer 22a. The air electrode 23 includes a catalyst layer 23a in contact with the electrolyte membrane 24, and a diffusion layer 23b having carbon paper laminated on the catalyst layer 23a.

前記各流路板41a,41bは、図4に示すように例えばカーボンからなる流路板本体42と、この流路板本体42の前記枠状のシール材31a(31b)の枠内に対向する部分に蛇行して形成された燃料(または酸化性ガス)の溝状流路43と、この流路43の一端に前記本体42を貫通して形成された燃料(または酸化性ガス)の供給口44と、前記流路43の他端に前記本体42を貫通して形成された燃料(または酸化性ガス)の排出口45とを備えている。なお、前記流路板本体42の4隅には単セルを組み立てるためのボルトが挿通される穴46が開口されている。
前記混合器2では、メタノールと水の混合液に下記化3に示す一般式(I)有機化合物を防腐剤として溶解した燃料が調製される。

Figure 2006244820
As shown in FIG. 4, the flow path plates 41 a and 41 b face the flow path plate main body 42 made of, for example, carbon, and the frame of the frame-shaped sealing material 31 a (31 b) of the flow path plate main body 42. A groove-like flow path 43 of fuel (or oxidizing gas) formed meandering in the portion, and a fuel (or oxidizing gas) supply port formed at one end of the flow path 43 through the main body 42 44 and a fuel (or oxidizing gas) outlet 45 formed through the main body 42 at the other end of the flow path 43. In addition, holes 46 through which bolts for assembling single cells are opened at the four corners of the flow path plate main body 42.
In the mixer 2, a fuel is prepared by dissolving an organic compound of the general formula (I) shown in the following chemical formula 3 as a preservative in a mixed solution of methanol and water.
Figure 2006244820

ただし、式中のR1は炭素数1〜16のアルキル基、R2は炭素数1〜32のアルキル基、Xはハロゲン元素を示す。 In the formula, R 1 represents an alkyl group having 1 to 16 carbon atoms, R 2 represents an alkyl group having 1 to 32 carbon atoms, and X represents a halogen element.

前記混合液は、メタノールの濃度が0.1〜99.5重量%、より好ましくは0.5〜90重量%、最も好ましくは1〜30重量%であることが望ましい。   The mixed solution has a methanol concentration of 0.1 to 99.5% by weight, more preferably 0.5 to 90% by weight, and most preferably 1 to 30% by weight.

前記一般式(I)のR1のアルキル基は、直鎖状、分岐状のいずれでもよいが、直鎖状であることが好ましい。このアルキル基は、炭素数が1〜6であることが好ましい。 The alkyl group represented by R 1 in the general formula (I) may be either linear or branched, but is preferably linear. This alkyl group preferably has 1 to 6 carbon atoms.

前記一般式(I)のR2のアルキル基は、直鎖状、分岐状のいずれでもよいが、直鎖状であることが好ましい。このアルキル基は、炭素数が6〜20であることが好ましい。 The alkyl group of R 2 in the general formula (I) may be either linear or branched, but is preferably linear. The alkyl group preferably has 6 to 20 carbon atoms.

前記一般式(I)のXであるハロゲン元素は、塩素、フッ素、臭素、ヨウ素が挙げられるが、特に塩素であることが好ましい。
前記一般式(I)で表される有機化合物は、単独のみならず2種以上の混合物の形態で前記メタノールと水の混合液に防腐剤として溶解して燃料を調製することを許容する。この有機化合物は、前記混合液に0.001〜20重量%、より好ましくは0.01〜3重量%の量で溶解することが望ましい。前記有機化合物を前記混合液に0.001重量%未満の量で溶解して燃料を調製すると、燃料の循環過程で苔や雑菌の繁殖を防ぐことが困難になる。一方、前記有機化合物を前記混合液に20重量%を超える量で溶解して燃料を調製すると、燃料の粘度が増大し過ぎて燃料循環経路内部での目詰まりを引き起こし、燃料電池の出力が低下する虞がある。
以下、本発明の実施例を詳細に説明する。
Examples of the halogen element represented by X in the general formula (I) include chlorine, fluorine, bromine and iodine, with chlorine being particularly preferred.
The organic compound represented by the general formula (I) permits preparation of a fuel by dissolving it as a preservative in the mixed solution of methanol and water not only alone but also in the form of a mixture of two or more. The organic compound is desirably dissolved in the mixed solution in an amount of 0.001 to 20% by weight, more preferably 0.01 to 3% by weight. When a fuel is prepared by dissolving the organic compound in the mixed solution in an amount of less than 0.001% by weight, it becomes difficult to prevent the growth of moss and bacteria in the fuel circulation process. On the other hand, when the fuel is prepared by dissolving the organic compound in the mixed solution in an amount exceeding 20% by weight, the viscosity of the fuel increases excessively, causing clogging in the fuel circulation path, and the output of the fuel cell decreases. There is a risk of doing.
Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
10重量%のメタノール水溶液に下記化4に示す構造式(A)の有機化合物(ベンジルジメチルデシルアンモニウムクロリド)を0.1重量%溶解させて燃料電池用燃料を調製した。

Figure 2006244820
Example 1
A fuel cell fuel was prepared by dissolving 0.1% by weight of an organic compound (benzyldimethyldecylammonium chloride) represented by the structural formula (A) shown in Chemical Formula 4 below in a 10% by weight aqueous methanol solution.
Figure 2006244820

(実施例2)
10重量%のメタノール水溶液に下記化5に示す構造式(B)の有機化合物(ベンジルジエチルデシルアンモニウムクロリド)を0.1重量%溶解させて燃料電池用燃料を調製した。

Figure 2006244820
(Example 2)
A fuel cell fuel was prepared by dissolving 0.1% by weight of an organic compound (benzyldiethyldecylammonium chloride) represented by the following structural formula (B) in 10% by weight methanol aqueous solution.
Figure 2006244820

(実施例3)
10重量%のメタノール水溶液に下記化6に示す構造式(C)の有機化合物(ベンジルジプロピルドデシルアンモニウムクロリド)を0.1重量%溶解させて燃料電池用燃料を調製した。

Figure 2006244820
(Example 3)
A fuel for a fuel cell was prepared by dissolving 0.1% by weight of an organic compound (benzyldipropyldodecylammonium chloride) represented by the structural formula (C) shown in Chemical Formula 6 below in a 10% by weight aqueous methanol solution.
Figure 2006244820

(実施例4)
10重量%のメタノール水溶液に下記化7に示す構造式(D)の有機化合物(ベンジルジブチルテトラデシルアンモニウムクロリド)を0.1重量%溶解させて燃料電池用燃料を調製した。

Figure 2006244820
Example 4
A fuel for a fuel cell was prepared by dissolving 0.1% by weight of an organic compound (benzyldibutyltetradecylammonium chloride) represented by the following structural formula (D) in a 10% by weight aqueous methanol solution.
Figure 2006244820

実施例1〜4の燃料200mLおよび10重量%のメタノール水溶液からなる燃料(比較例1)200mLをそれぞれ透明なポリカーボネート製容器に密封して収容し、屋外に静置して3ヶ月間保存させた。このような3ヶ月間の保存は、燃料を循環させる時よりも過酷な条件に曝される加速試験条件である。
<単セルの組み立て>
パーフルオロアルキルスルホン膜(デュポン社製商標名;ナフィオン112膜)の一方の面に白金−ルテニウム触媒層および炭素粉末−カーボンペーパからなる拡散層をこの順序で熱圧着してアノード(燃料極)を形成し、さらに前記パーフルオロアルキルスルホン膜の他方の面に白金触媒層および炭素粉末−カーボンペーパからなる拡散層をこの順序で熱圧着してカソード(空気極)を形成して電極面積5cm2の膜状電極ユニットを作製した。つづいて、この膜状電極ユニットの両面にコラムフロー流路を有するカーボン製セパレータおよび集電体をこの順序でそれぞれ積層し、ボルト締めすることにより評価用単セルを組み立てた。
200 mL of the fuel of Examples 1 to 4 and 200 mL of a fuel consisting of a 10 wt% aqueous methanol solution (Comparative Example 1) were each sealed and accommodated in a transparent polycarbonate container, and allowed to stand outdoors and stored for 3 months. . Such storage for three months is an accelerated test condition that is exposed to harsher conditions than when the fuel is circulated.
<Assembly of single cell>
A diffusion layer composed of a platinum-ruthenium catalyst layer and a carbon powder-carbon paper was thermocompression bonded in this order on one surface of a perfluoroalkylsulfone membrane (trade name manufactured by DuPont; Nafion 112 membrane) to form an anode (fuel electrode). Further, a platinum catalyst layer and a diffusion layer composed of carbon powder-carbon paper are thermocompression-bonded in this order on the other surface of the perfluoroalkylsulfone membrane to form a cathode (air electrode) with an electrode area of 5 cm 2 . A membrane electrode unit was produced. Subsequently, a carbon separator having a column flow channel on both sides of the membrane electrode unit and a current collector were laminated in this order, and bolted to assemble an evaluation unit cell.

<単セル評価>
前記単セルを燃料電池評価装置に組み込んだ。前記保存後の実施例1〜4の燃料および10重量%のメタノール水溶液からなる燃料(比較例1)を単セルのアノード側に8mL/分の流速でそれぞれ送液し、空気を単セルのカソード側に10mL/分の流速で供給し、温度70℃にて電流−電圧曲線を観察した。その結果を図5に示す。
<Single cell evaluation>
The single cell was incorporated into a fuel cell evaluation apparatus. The fuels of Examples 1 to 4 after storage and the fuel (Comparative Example 1) consisting of a 10 wt% aqueous methanol solution were respectively sent to the anode side of the single cell at a flow rate of 8 mL / min, and air was supplied to the cathode of the single cell. A current-voltage curve was observed at a temperature of 70 ° C. at a flow rate of 10 mL / min. The result is shown in FIG.

図5から明らかなように燃料電池の発電にあたり、実施例1〜4の前記構造式(A)〜(D)に示す有機化合物を水−メタノール混合液に防腐剤として溶解し、長期保存後の燃料を使用した場合には、比較例1の長期保存後の水−メタノール混合液からなる燃料を使用した場合に比べて高い電流−電圧特性を示すことがわかる。すなわち、実施例1〜4の燃料は苔や雑菌が繁殖し易い長期保存状態に曝した後に直接メタノール型燃料電池(DMFC)に供給しても、高い出力特性を示し、優れた燃料品質保持効果を発揮できる。   As is clear from FIG. 5, in the power generation of the fuel cell, the organic compounds represented by the structural formulas (A) to (D) of Examples 1 to 4 were dissolved in a water-methanol mixed solution as a preservative, and after long-term storage. It can be seen that when the fuel is used, a higher current-voltage characteristic is exhibited as compared with the case where the fuel made of the water-methanol mixture after the long-term storage of Comparative Example 1 is used. That is, the fuels of Examples 1 to 4 show high output characteristics even when directly supplied to a methanol fuel cell (DMFC) after being exposed to a long-term storage state in which moss and germs are easy to propagate, and an excellent fuel quality maintaining effect. Can be demonstrated.

(実施例5〜8および比較例2)
実施例1〜4および比較例1と同様な燃料を前述した単セルのアノード側に5mL/分の流速でそれぞれ循環して送液し、空気を単セルのカソード側に10mL/分の流速で供給し、温度70℃にて電流密度を200mA/cm2に一定に保持しながら5時間/日の稼動時間で500時間稼動させるときの電位変化を観察した。その結果を図6に示す。
(Examples 5 to 8 and Comparative Example 2)
Fuels similar to those in Examples 1 to 4 and Comparative Example 1 were circulated at a flow rate of 5 mL / min to the anode side of the aforementioned single cell, respectively, and air was supplied to the cathode side of the single cell at a flow rate of 10 mL / min. The change in potential was observed when the battery was operated at 500 ° C. for 5 hours / day while keeping the current density constant at 200 mA / cm 2 at a temperature of 70 ° C. The result is shown in FIG.

図6から明らかなように実施例1〜4の前記構造式(A)〜(D)に示す有機化合物を水−メタノール混合液に防腐剤として溶解した燃料を循環させた実施例5〜8では、比較例1の水−メタノール混合液からなる燃料を循環させた比較例2に比べて長時間稼動後にも高い電位保持率を示し、信頼性の高い発電を遂行できることがわかる。   As is clear from FIG. 6, in Examples 5 to 8 in which fuels in which organic compounds represented by the structural formulas (A) to (D) of Examples 1 to 4 were dissolved as a preservative in a water-methanol mixture were circulated. It can be seen that, compared to Comparative Example 2 in which the fuel comprising the water-methanol mixed liquid of Comparative Example 1 was circulated, a high potential holding ratio was exhibited even after operation for a long time, and highly reliable power generation could be performed.

実施形態に係る燃料を循環させる直接メタノール型燃料電池燃料電池のユニットセル周りを示す概略図。Schematic which shows the unit cell periphery of the direct methanol type fuel cell fuel cell which circulates the fuel which concerns on embodiment. 図1のユニットセルに組み込まれる単セルを示す概略分解斜視図。The schematic exploded perspective view which shows the single cell integrated in the unit cell of FIG. 図2の単セルに組み込まれた膜状電極ユニットを示す断面図。Sectional drawing which shows the membrane electrode unit integrated in the single cell of FIG. 図2の単セルに組み込まれた燃料用流路板および酸化性ガス用流路板を示す平面図。The top view which shows the flow-path board for fuel integrated in the single cell of FIG. 2, and the flow-path board for oxidizing gas. 実施例1〜4および比較例1の燃料を長期保存後に単セルのアノード(燃料極)に供給させた時の電流−電圧曲線を示す図。The figure which shows the electric current-voltage curve when supplying the fuel of Examples 1-4 and the comparative example 1 to the anode (fuel electrode) of a single cell after long-term storage. 実施例5〜8および比較例2において実施例1〜4および比較例1と同様な燃料を単セルのアノード(燃料極)に循環させて供給する条件で一定電流密度に保持しながら、長時間稼動させた時の電圧変化を示す図。In Examples 5 to 8 and Comparative Example 2, the same fuel as in Examples 1 to 4 and Comparative Example 1 was maintained for a long time while maintaining a constant current density under the condition of circulating and supplying the fuel to the anode (fuel electrode) of the single cell. The figure which shows the voltage change when it is made to operate.

符号の説明Explanation of symbols

1…ユニットセル、2…混合器、3…往路管、4…復路管、11…単セル、21…膜状電極ユニット、22…燃料極、23…空気極、22a,23a…触媒層、22b、23b…拡散層、41a…燃料用流路板、41b…酸化性ガス用流路板、51a,51b…集電板。   DESCRIPTION OF SYMBOLS 1 ... Unit cell, 2 ... Mixer, 3 ... Outward pipe | tube, 4 ... Return pipe | tube, 11 ... Single cell, 21 ... Membrane electrode unit, 22 ... Fuel electrode, 23 ... Air electrode, 22a, 23a ... Catalyst layer, 22b , 23b ... diffusion layer, 41a ... fuel flow channel plate, 41b ... oxidizing gas flow channel plate, 51a, 51b ... current collector plate.

Claims (3)

燃料電池の燃料極に循環して供給される燃料であって、
メタノールと水との混合液に下記化1に示す一般式(I)で表される有機化合物を防腐剤として溶解したことを特徴とする燃料電池用燃料。
Figure 2006244820
ただし、式中のR1は炭素数1〜16のアルキル基、R2は炭素数1〜32のアルキル基、Xはハロゲン元素を示す。
A fuel that is circulated and supplied to the fuel electrode of the fuel cell,
A fuel for a fuel cell, wherein an organic compound represented by the general formula (I) represented by the following chemical formula 1 is dissolved in a mixed solution of methanol and water as a preservative.
Figure 2006244820
In the formula, R 1 represents an alkyl group having 1 to 16 carbon atoms, R 2 represents an alkyl group having 1 to 32 carbon atoms, and X represents a halogen element.
前記混合液は、メタノールの濃度が0.1〜99.5重量%であることを特徴とする請求項1記載の燃料電池用燃料   2. The fuel for a fuel cell according to claim 1, wherein the mixed solution has a methanol concentration of 0.1 to 99.5% by weight. 前記有機化合物は、前記混合液に0.001〜20重量%の量で溶解することを特徴とする請求項1記載の燃料電池用燃料。   The fuel for a fuel cell according to claim 1, wherein the organic compound is dissolved in the mixed solution in an amount of 0.001 to 20 wt%.
JP2005057816A 2005-03-02 2005-03-02 Fuel for fuel cell Pending JP2006244820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057816A JP2006244820A (en) 2005-03-02 2005-03-02 Fuel for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057816A JP2006244820A (en) 2005-03-02 2005-03-02 Fuel for fuel cell

Publications (1)

Publication Number Publication Date
JP2006244820A true JP2006244820A (en) 2006-09-14

Family

ID=37051034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057816A Pending JP2006244820A (en) 2005-03-02 2005-03-02 Fuel for fuel cell

Country Status (1)

Country Link
JP (1) JP2006244820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994179A1 (en) * 2012-08-02 2014-02-07 Univ Lorraine New amine compounds, useful as an antibacterial agent, bacteriostatic agent or biocide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2994179A1 (en) * 2012-08-02 2014-02-07 Univ Lorraine New amine compounds, useful as an antibacterial agent, bacteriostatic agent or biocide

Similar Documents

Publication Publication Date Title
Scott et al. Material aspects of the liquid feed direct methanol fuel cell
US8142955B2 (en) Fuel cell system, fuel cell vehicle, and operating method for fuel cell system
Galvan et al. An improved alkaline direct formate paper microfluidic fuel cell
US20040166389A1 (en) Fuel cell system
JP4121491B2 (en) Liquid fuel mixing apparatus and direct liquid fuel cell using the same
JP2003297401A (en) Direct liquid fuel type fuel cell power generating device and its controlling method
Wang et al. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency
Wang et al. A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel
JP5449644B2 (en) Dual pump anode system with circulating fluid for direct oxidation fuel cells
JP2007073428A (en) Fuel cell and fuel cell system
CN101217201A (en) A monolayer bipolar plate fuel battery with functions of gas humidification, film hydration, dewatering and cooling
CN103035937B (en) Self-breathing methanol fuel cell stack and system thereof
US20070042234A1 (en) Liquid fuel type fuel cell and fuel therefor
JP2007299726A (en) Separator for fuel cell
Perry et al. Rechargeable-Liquid Fuel Cells with a Novel Recharging Method: Exploratory Results with IPA and VII/VIII Solutions
CN114134521A (en) For electrocatalysis of CO2Reduced through flow field membrane reactor
JP2006244820A (en) Fuel for fuel cell
US7585335B2 (en) Fuel for fuel cell
JP4718828B2 (en) Fuel for fuel cell
JP2005100886A (en) Fuel cell system and fuel supply method to fuel cell
JP2005129261A (en) Direct liquid supply type fuel cell
JP2002056856A (en) Fuel cell using liquid fuel
JP2009231195A (en) Fuel cell and electronic device
JP2008243697A (en) Direct alcohol type fuel cell, and anode catalyst
KR20180137944A (en) Polymer electrolyte membrane, electrochemical cell and fuel cell comprising the polymer electrolyte membrane, composition for polymer electrolyte membrane, and method of manufacturing polymer electrolyte membrane