JP2006242682A - Analysis method on printing paper or printed matter - Google Patents

Analysis method on printing paper or printed matter Download PDF

Info

Publication number
JP2006242682A
JP2006242682A JP2005057137A JP2005057137A JP2006242682A JP 2006242682 A JP2006242682 A JP 2006242682A JP 2005057137 A JP2005057137 A JP 2005057137A JP 2005057137 A JP2005057137 A JP 2005057137A JP 2006242682 A JP2006242682 A JP 2006242682A
Authority
JP
Japan
Prior art keywords
printing paper
printed matter
ink
stable isotope
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005057137A
Other languages
Japanese (ja)
Inventor
Masaya Shibatani
正也 柴谷
Tsutomu Asakawa
勉 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005057137A priority Critical patent/JP2006242682A/en
Publication of JP2006242682A publication Critical patent/JP2006242682A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analysis method on printing paper or printed matter for simply and accurately analyzing the internal structure of printing papers or printed matters of various kinds, the state of a distributed forming materials, the state of ink infiltrating into printed matters, etc. <P>SOLUTION: This analysis method on printing paper or printed matter for analyzing the internal structure of printing paper or printed matter, the state of a distributed forming material, the state of ink infiltrating into printed matter, etc., is characterized, by being equipped with: a process of replacing at least one kind of constituent atoms of the ink forming material used for preparing printing paper and/or printed matter with a stable isotope; and a process of grinding printing paper, with the stable isotope introduced thereinto, or printed matter prepared by using the ink, with the stable isotope introduced thereinto, along its thickness direction to measure the concentration of the stable isotope at a prescribed grinding depth. Preferably, this grinding is performed by SIMS or GDMS. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、印刷用紙又は印刷物における特定の有機物の分布状態、例えば、印刷用紙におけるバインダー成分の分布状態や印刷物におけるインクの浸透状態等を解析するための印刷用紙又は印刷物の分析方法に関する。   The present invention relates to a method for analyzing a printing paper or printed material for analyzing a distribution state of a specific organic substance in the printing paper or printed material, for example, a distribution state of a binder component in the printing paper or an ink penetration state in the printed material.

非塗工紙又は塗工紙等の各種印刷用紙及び該印刷用紙を用いて作製された印刷物の内部構造、これら印刷用紙や印刷物における添加薬品の厚さ方向の分布状態、塗工層の顔料やバインダーの分布状態、印刷物に浸透したインクの分布状態等に関する情報、特に有機系材料に関する情報は、印刷用紙やインクの印刷適性を解析する上で欠かせないものである。従来、このような情報の取得は、印刷用紙又は印刷物を厚さ方向に沿って物理的に切断して断面試料を作製し、その断面を光学顕微鏡や走査型電子顕微鏡(SEM:Scanning Electron Microscope)等を用いて観察する方法によってなされていた。断面試料の作製法としては、印刷用紙等をカミソリなどの刃物で直接切断する方法が簡便であるが、この方法は、切り出した断面の微細部分での構造破壊が著しく、高倍率の観察には不向きなため、試料を樹脂で包埋してから切断する方法(樹脂包埋法)が一般に用いられている。しかし、樹脂包埋法は、例えば写真用基材等に使用される樹脂被覆紙のように包埋樹脂の浸透性が低い試料に対しては適用することができず、また、印刷物に対して適用すると、インク成分の溶出若しくは移動又は変質、あるいは塗工材料の溶出等が起こるおそれがある。   Various types of printing paper such as non-coated paper or coated paper and the internal structure of printed matter produced using the printing paper, the distribution state in the thickness direction of additive chemicals in these printing paper and printed matter, the pigment of the coating layer, Information regarding the distribution state of the binder, the distribution state of the ink that has penetrated into the printed matter, and particularly the information regarding the organic material is indispensable for analyzing the printability of the printing paper and ink. Conventionally, such information is acquired by physically cutting a printing paper or printed material along the thickness direction to produce a cross-sectional sample, and then observing the cross-section with an optical microscope or a scanning electron microscope (SEM). It was made by the method of observing using etc. As a method for preparing a cross-sectional sample, a method of directly cutting a printing paper or the like with a blade such as a razor is simple. Since it is unsuitable, a method of embedding a sample with a resin and then cutting it (resin embedding method) is generally used. However, the resin embedding method cannot be applied to a sample having a low permeability of the embedding resin, such as a resin-coated paper used for a photographic base material, etc. When applied, there is a possibility that elution, movement, or alteration of the ink component, or elution of the coating material may occur.

上記のような問題を解決するために、集束イオンビーム(FIB:Focused Ion Beam)装置を用いて印刷用紙等の断面試料を作製し、その断面を上記SEM、エネルギー分散型X線分析装置(EDX:Energy Dispersive X-ray Spectroscopy)又は波長分散型X線分析装置(EPMA:Electron Probe Micro Analyzer)を用いて観察する方法が開示されている(例えば、特許文献1及び2参照)。この観察方法によれば、紙層、塗工層及び用紙に転移した印刷インキ層などを破壊することなく、従来技術とは比較にならない程の高い精度で印刷用紙等の断面を切り出すことができるため、断面作製作業や断面観察に要していた時間や労力を大幅に軽減させることが可能となり、印刷用紙の内部構造や印刷物におけるインクの浸透状態等を正確に解析することができるとされている。   In order to solve the above-mentioned problems, a cross-section sample such as printing paper is prepared using a focused ion beam (FIB) apparatus, and the cross-section thereof is the SEM, energy dispersive X-ray analyzer (EDX). : Energy Dispersive X-ray Spectroscopy) or a wavelength dispersive X-ray analyzer (EPMA: Electron Probe Micro Analyzer) is disclosed (for example, see Patent Documents 1 and 2). According to this observation method, it is possible to cut out a cross section of a printing paper or the like with a high accuracy that cannot be compared with the prior art without destroying the paper layer, the coating layer, and the printing ink layer transferred to the paper. Therefore, it is possible to greatly reduce the time and labor required for cross-section preparation work and cross-section observation, and to accurately analyze the internal structure of printing paper and the state of ink penetration in printed matter. Yes.

しかしながら、上記観察方法を適用するためには、SEM、EDX又はEPMAによる観察対象物質(例えば、印刷物に浸透したインクの分布状態を解析する場合における該インク)中に、該観察対象物質の周囲(例えば、印刷物に浸透したインクの分布状態を解析する場合における該印刷物自体を構成するパルプや各種添加剤)にはほとんど存在しない元素(金属等)が含まれていなければならず、該観察方法が適用可能な分析対象は、実質的に限定されていた。このような問題を解決するため、観察対象物質をオスミウム金属(染色剤)により予め染色しておき、該染色剤をSEM等で検出する方法が提案されているが、該染色剤により染色可能な物質は、二重結合を有する有機物に限定されており、このような染色法を利用しても、上記観察方法が抱える問題は依然として解決できない。   However, in order to apply the above observation method, the observation target substance by SEM, EDX, or EPMA (for example, the ink in the case of analyzing the distribution state of the ink that has permeated the printed matter) For example, when analyzing the distribution state of ink that has penetrated into a printed material, the printed material itself must contain elements (metals, etc.) that are hardly present in the pulp and various additives. The applicable analytical targets were substantially limited. In order to solve such problems, a method has been proposed in which an observation target substance is pre-stained with osmium metal (staining agent) and the staining agent is detected by SEM or the like. Substances are limited to organic substances having a double bond, and even if such a staining method is used, the problems of the above observation method still cannot be solved.

また、印刷用紙等の分析方法に関しては、上述した断面試料の観察方法とは別の方法も種々提案されている。例えば、非特許文献1には、印刷物に浸透したインクの分布状態の解析に二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を用い、その際、ターゲット物質であるインク中に含まれるCa元素を標識元素として厚さ方向の分析を行う方法が提案されている。SIMSは、試料表面に1次イオンを照射し、試料表面からスパッタリングされた2次イオンを検出して、質量分析することにより固体の試料中の元素情報を取得する分析法であり、断面試料の作製が不要という特長を有する。しかし、この分析方法は、分析が可能な物質がCa元素のような標識金属元素を含む有機物に限られるため、適用範囲が限定的で汎用性に欠けるという問題がある。   Various methods other than the above-described method for observing a cross-sectional sample have been proposed as analysis methods for printing paper and the like. For example, Non-Patent Document 1 uses Secondary Ion Mass Spectrometry (SIMS) to analyze the distribution state of ink that has penetrated into a printed material, and at that time, Ca contained in the ink that is the target material. A method for analyzing in the thickness direction using an element as a labeling element has been proposed. SIMS is an analysis method for obtaining element information in a solid sample by irradiating a sample surface with primary ions, detecting secondary ions sputtered from the sample surface, and performing mass spectrometry. It has the feature that production is unnecessary. However, this analysis method has a problem that the applicable range is limited and lacks versatility because the substance that can be analyzed is limited to an organic substance containing a labeled metal element such as Ca element.

また、非特許文献2には、印刷用紙等の表面を定量的に切削し、該切削により発生した紙粉や切削された用紙をクロマトグラフィーによって分析する方法が開示されている。この方法は、非特許文献1に記載の方法のように、分析対象物質が標識金属元素を含む有機物に限定されることはないものの、定量的な切削を可能とする特別な装置を必要とする点で問題があり、また、クロマトグラフィー分析による定性定量化が非常に煩雑である。   Non-Patent Document 2 discloses a method of quantitatively cutting the surface of a printing paper or the like and analyzing the paper dust generated by the cutting or the cut paper by chromatography. Although this method is not limited to the organic substance containing the labeled metal element as in the method described in Non-Patent Document 1, it requires a special device that enables quantitative cutting. There is a problem in this respect, and qualitative quantification by chromatographic analysis is very complicated.

特許第3044298号公報Japanese Patent No. 3044298 特開2002−310956号公報JP 2002-310956 A 「Colloids and surfaces」,2002年,第205号,p.199−213“Colloids and surfaces”, 2002, 205, p. 199-213 「Nordic pulp and paper reserch」,2003年,第18号,p.413−420“Nordic pull and paper research”, 2003, No. 18, p. 413-420

本発明は、上述した従来の印刷用紙等の分析方法の問題点に鑑みてなされたものであり、各種印刷用紙又は印刷物の内部構造や形成材の分布状態、印刷物におけるインクの浸透状態等を、簡便且つ正確に解析し得る印刷用紙又は印刷物の分析方法の提供を目的とする。   The present invention has been made in view of the problems of the above-described conventional analysis methods for printing papers, etc., and the internal structure of various printing papers or printed materials, the distribution state of forming materials, the state of ink permeation in printed materials, etc. It is an object of the present invention to provide a method for analyzing printing paper or printed matter that can be easily and accurately analyzed.

本発明は、印刷用紙又は印刷物の内部構造や形成材の分布状態、印刷物におけるインクの浸透状態等を解析するための印刷用紙又は印刷物の分析方法であって、印刷用紙及び/又は印刷物の作製に用いられるインクの形成材の構成原子の少なくとも1種を安定同位体に置換する工程、及び上記安定同位体が導入された印刷用紙又は上記安定同位体が導入されたインクを用いて作製された印刷物をその厚さ方向に沿って研削し、所定の研削深度における該安定同位体の濃度を測定する工程を備えることを特徴とする印刷用紙又は印刷物の分析方法を提供することにより上記目的を達成したものである。   The present invention relates to a printing paper or printed material analysis method for analyzing the internal structure of a printing paper or printed material, the distribution state of a forming material, the penetration state of ink in the printed material, and the like, for producing the printing paper and / or printed material. A step of substituting at least one of the constituent atoms of the ink forming material to be used with a stable isotope, and a printed paper in which the stable isotope is introduced or a printed matter produced using the ink into which the stable isotope is introduced; Is achieved by providing a method for analyzing printing paper or printed matter, comprising the step of measuring the stable isotope concentration at a predetermined grinding depth. Is.

また、本発明は、1種以上の形成材から形成された印刷用紙であって、該形成材の構成原子の少なくとも1種が安定同位体で置換されたことを特徴とする印刷用紙、又は、1種以上の形成材から形成されたインクであって、該形成材の構成原子の少なくとも1種が安定同位体で置換されたことを特徴とするインク、を提供することにより上記目的を達成したものである。   Further, the present invention is a printing paper formed from one or more forming materials, wherein at least one of the constituent atoms of the forming material is replaced with a stable isotope, or The object is achieved by providing an ink formed from one or more forming materials, wherein at least one of the constituent atoms of the forming material is substituted with a stable isotope. Is.

本発明の分析方法によれば、印刷用紙又は印刷物の内部構造や、これらの形成材(パルプ、バインダー、インク色材等)の分布状態、印刷物におけるインクの浸透状態等を、簡便且つ正確に分析することができる。また、本発明の分析方法は、従来のこの種の分析方法のように、分析対象物質が、二重結合を有する有機物や標識金属元素を含む有機物などに限定されず、種々の有機物に対して適用可能であるため、印刷用紙又は印刷物に関するより高度な情報を提供し得る。   According to the analysis method of the present invention, the internal structure of printing paper or printed matter, the distribution state of these forming materials (pulp, binder, ink color material, etc.), the ink penetration state in the printed matter, and the like are simply and accurately analyzed. can do. In addition, the analysis method of the present invention is not limited to organic substances having a double bond or an organic substance containing a labeled metal element as in the conventional analysis method of this type, and is applicable to various organic substances. Being applicable, it can provide more advanced information about the printing paper or printed matter.

また、本発明の印刷用紙又はインクは、形成材(例えば、印刷用紙におけるバインダー樹脂、インクにおける有機溶剤など)の構成原子の少なくとも1種が安定同位体で置換されているので、SIMSやGDMS等の各種分析方法に用いることができ、印刷用紙や印刷物の解析用サンプル等として好適である。   In the printing paper or ink of the present invention, since at least one constituent atom of the forming material (for example, binder resin in printing paper, organic solvent in ink, etc.) is substituted with a stable isotope, SIMS, GDMS, etc. It can be used for various analysis methods, and is suitable as a sample for analysis of printing paper or printed matter.

以下、本発明の印刷用紙又は印刷物の分析方法について詳細に説明する。
本発明の分析方法は、印刷用紙及び/又は印刷物の作製に用いられるインクの形成材の構成原子の少なくとも1種を安定同位体に置換する第1工程と、上記安定同位体が導入された印刷用紙又は上記安定同位体が導入されたインクを用いて作製された印刷物をその厚さ方向に沿って研削し、所定の研削深度における該安定同位体の濃度を測定する第2工程とを備える。
Hereinafter, the method for analyzing printing paper or printed matter of the present invention will be described in detail.
The analysis method of the present invention includes a first step of substituting at least one constituent atom of an ink forming material used for production of printing paper and / or printed matter with a stable isotope, and printing in which the stable isotope is introduced. And a second step of grinding the printed matter produced using the paper or the ink into which the stable isotope is introduced along the thickness direction thereof and measuring the concentration of the stable isotope at a predetermined grinding depth.

上記第1工程において、安定同位体による置換(ラベル)の対象となる形成材、即ち、本発明の分析対象物質は、印刷用紙あるいはインクを形成する材料物質であり、具体的には、例えば、印刷用紙中に含まれている填料、バインダー、紙力増強剤等の各種抄紙薬剤、あるいはインク中に含まれている染料や顔料等の色材、各種有機溶剤、界面活性剤等の各種添加剤である。印刷用紙は、塗工紙でも非塗工紙(塗工層を有しない紙)でもよい。本発明の分析対象物(印刷用紙、インクの形成材)は、特定構造を有する有機物や標識金属元素を含む有機物などに限定されず、様々な有機物(一酸化炭素や二酸化炭素のような非生物由来の単純な化合物を除く炭素化合物)を分析対象とすることができる。但し、後述するように、上記第2工程における印刷用紙又は印刷物の研削を好ましくはSIMS又はGDMSにより行うようにする観点から、本発明の分析対象物(印刷用紙、インクの形成材)は、常温、真空度10-9Torrの環境下で揮発しない低揮発性有機物であることが好ましい。 In the first step, the forming material to be substituted (labeled) with a stable isotope, that is, the substance to be analyzed of the present invention is a material that forms printing paper or ink. Specifically, for example, Various paper making agents such as fillers, binders, and paper strength agents contained in printing paper, or coloring materials such as dyes and pigments contained in ink, various organic solvents, various additives such as surfactants, etc. It is. The printing paper may be coated paper or non-coated paper (paper having no coating layer). The analysis object (printing paper, ink forming material) of the present invention is not limited to an organic substance having a specific structure or an organic substance containing a labeled metal element, but various organic substances (non-living substances such as carbon monoxide and carbon dioxide). Carbon compounds excluding simple compounds derived from them can be analyzed. However, as will be described later, from the viewpoint of grinding the printing paper or printed matter in the second step, preferably by SIMS or GDMS, the analysis object (printing paper, ink forming material) of the present invention has a normal temperature. It is preferably a low-volatile organic substance that does not volatilize in an environment with a degree of vacuum of 10 −9 Torr.

本発明は、標識金属元素を含まない有機物の分析が可能であり、水素(H)、炭素(C)、窒素(N)、酸素(O)の4元素以外の元素を含まない純有機物の分析に特に有効である。即ち、上記ラベルの対象となる、印刷用紙あるいはインクの形成材としては、このような純有機物が好ましく、特に、上記の低揮発性を有する純有機物が好ましい。尚、印刷用紙やインクの形成材をラベルしても、そのラベル前後で印刷用紙やインクの物性(例えば、インクについての粘度、沸点、表面張力など)は大きく変化しないので、ラベルによって印字性能、画質、画像保存性等に影響がでることは実質的にはないと言える。   The present invention can analyze an organic substance that does not contain a labeled metal element, and an analysis of a pure organic substance that does not contain elements other than the four elements of hydrogen (H), carbon (C), nitrogen (N), and oxygen (O). Is particularly effective. That is, such a pure organic material is preferable as a printing paper or ink forming material to be labeled, and particularly, the above-mentioned pure organic material having low volatility is preferable. Even if the printing paper or ink forming material is labeled, the physical properties of the printing paper or ink (for example, viscosity, boiling point, surface tension, etc. for the ink) do not change significantly before and after the labeling. It can be said that there is substantially no influence on image quality, image storage stability, and the like.

また、上記第1工程で用いる安定同位体は、安定な同位体であればよく、特に制限されない。即ち、周知の通り、同位体とは、原子番号(陽子数)が同じで、質量数(陽子と中性子の数の和)が異なる物質をいい、該同位体には、放射線を発して崩壊する放射性同位体と放射線を発しない安定同位体とがあるが、第1工程で用いるものは後者の同位体である。本発明で使用可能な安定同位体としては、例えば、重水素〔2H(D)〕、炭素13(13C)、窒素15(15N)、酸素17(17O)、酸素18(18O)、ケイ素30(30Si)等が挙げられる。印刷用紙及び/又はインクに導入される安定同位体は1種類でも良く、2種類以上を同時に導入してもよい。 The stable isotope used in the first step is not particularly limited as long as it is a stable isotope. That is, as is well known, an isotope is a substance having the same atomic number (number of protons) and a different mass number (sum of the number of protons and neutrons). There are radioactive isotopes and stable isotopes that do not emit radiation, but the latter isotope is used in the first step. Examples of stable isotopes that can be used in the present invention include deuterium [ 2 H (D)], carbon 13 ( 13 C), nitrogen 15 ( 15 N), oxygen 17 ( 17 O), oxygen 18 ( 18 O ), Silicon 30 ( 30 Si), and the like. One type of stable isotope may be introduced into the printing paper and / or ink, or two or more types may be introduced simultaneously.

上記安定同位体としては、天然存在比が低く、検出し易い(SIMS等の分析装置でピークを確認し易い)ものが好ましい。具体的には、酸素17(天然存在比0.00375%)、酸素18(同0.1995%)、重水素(同0.015%)が挙げられる。これらの中でも、特に、重水素は、比較的低廉なコストで入手でき、分析精度とコストとのバランスに優れるため、安定同位体として本発明で好ましく用いられる。コストの点で見れば、安定同位体として炭素13を用いても悪くはないが、炭素13の天然存在比は1.108%と比較的大きいため、分析精度の点では上記3種の安定同位体を用いた場合に劣るおそれがある。   As the above-mentioned stable isotope, those having a low natural abundance ratio and easy to detect (a peak can be easily confirmed with an analyzer such as SIMS) are preferable. Specifically, oxygen 17 (natural abundance ratio: 0.00375%), oxygen 18 (0.1995%), deuterium (0.015%). Among these, in particular, deuterium is preferably used as a stable isotope in the present invention because it can be obtained at a relatively low cost and has a good balance between analysis accuracy and cost. From the viewpoint of cost, it is not bad to use carbon 13 as a stable isotope, but the natural abundance ratio of carbon 13 is relatively large at 1.108%. May be inferior when using the body.

上記第1工程では、印刷用紙やインクの形成材の構成原子の少なくとも1種を安定同位体に置換すればよく、当該形成材が2種以上の原子から構成される場合は、構成原子の2種以上を安定同位体に置換しても構わない。また、当該形成材中に、安定同位体で置換する予定の構成原子(例えば、1H)が複数存在する場合は、その複数の構成原子の全てを安定同位体(例えば、D)で置換してもよく、複数のうちの一部を置換してもよい。但し、構造解析や定量に十分な感度を得る観点から、複数の構成原子全てを安定同位体で置換することが好ましい。 In the first step, at least one of the constituent atoms of the printing material or ink forming material may be replaced with a stable isotope. When the forming material is composed of two or more atoms, 2 of the constituent atoms More than one species may be substituted with stable isotopes. In addition, when there are a plurality of constituent atoms (for example, 1 H) to be substituted with stable isotopes in the forming material, all of the plurality of constituent atoms are replaced with stable isotopes (for example, D). Alternatively, a part of the plurality may be replaced. However, from the viewpoint of obtaining sufficient sensitivity for structural analysis and quantification, it is preferable to substitute all of the plurality of constituent atoms with stable isotopes.

上記第1工程、即ち、印刷用紙やインクの形成材の構成原子の少なくとも1種を安定同位体に置換する工程は、具体的には、例えば、市販の安定同位体標識化合物を用いて印刷用紙やインクを製造することにより行うことができる。また、このようにして得られた、安定同位体置換された印刷用紙及び/又はインクを用いて、常法通りに印刷を行うことにより、安定同位体置換された印刷物が得られる。   The first step, ie, the step of substituting at least one of the constituent atoms of the printing paper or ink forming material with a stable isotope, specifically, for example, a printing paper using a commercially available stable isotope labeled compound. Or by producing ink. In addition, by using the printing paper and / or ink obtained in this manner and subjected to stable isotope substitution, printing is performed in the usual manner, whereby a printed matter having a stable isotope substituted is obtained.

上記第2工程では、先ず、上記第1工程で得られた安定同位体置換された印刷用紙又は印刷物をその厚さ方向に沿って研削する。この研削は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)又はグロー放電質量分析法(GDMS:Glow Discharge Mass Spectrometry)により行なうことが好ましい。SIMSは、一次イオンビームにより試料表面をスパッタし、そのスパッタ面から放出される二次イオンを質量分離する公知の分析法であり、二次イオンの質量分離法の違いにより、二重収束型(Sector−SIMS)、飛行時間型 (TOF−SIMS )、Qpole−SIMSなどに分類される。本発明では何れのタイプのSIMSでも適用することができる。また、GDMSは、放電室内で試料を陰極とし、周囲の金属を陽極とし、その間の空間に希ガスを流しグロー放電を起こさせ、生じたプラズマにより試料のスパッタ・イオン化を行ない、生成したイオンを質量分析機により分離・検出して元素濃度を測定する公知の分析法である。   In the second step, first, the stable isotope-substituted printing paper or printed matter obtained in the first step is ground along its thickness direction. This grinding is preferably performed by secondary ion mass spectrometry (SIMS) or glow discharge mass spectrometry (GDMS). SIMS is a well-known analysis method in which a sample surface is sputtered by a primary ion beam and secondary ions emitted from the sputter surface are mass-separated. Sector-SIMS), time of flight (TOF-SIMS), Qpole-SIMS, etc. In the present invention, any type of SIMS can be applied. In the GDMS, a sample is used as a cathode in the discharge chamber, a surrounding metal is used as an anode, a rare gas is caused to flow in the space between them, a glow discharge is caused, and the generated plasma is sputtered and ionized to generate ions. This is a known analysis method in which the element concentration is measured by separation and detection with a mass spectrometer.

次に、上記研削によって試料から脱離した上記安定同位体の濃度を測定し、この安定同位体濃度と研削深度との関係を求める。安定同位体濃度の測定は、上記SIMS又は上記GDMSによって測定することができる。また、研削深度は、研削時間から逆算した到達研削深さでSIMS又はGDMSを終了することにより制御可能である。このために、前もってSIMS又はGDMSの研削時間を確認しておくとよい。   Next, the concentration of the stable isotope detached from the sample by the grinding is measured, and the relationship between the stable isotope concentration and the grinding depth is obtained. The stable isotope concentration can be measured by the SIMS or the GDMS. The grinding depth can be controlled by terminating SIMS or GDMS at the ultimate grinding depth calculated backward from the grinding time. For this purpose, it is preferable to confirm the grinding time of SIMS or GDMS in advance.

以下に、実施例を挙げて、本発明をより具体的に説明するが、本発明は斯かる実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to such examples.

〔実施例〕
下記組成のインクを調製し、市販のインクジェットプリンタ(セイコーエプソン製PM-4000PX)を用いてインクジェットコート紙(コニカミノルタ製Photo like QP)に該インクを付与することにより、安定同位体置換(重水素置換)された印刷物を作製した。尚、該インクジェットコート紙は、塗工層の顔料としてシリカを用いた、いわゆる空隙タイプのインクジェットコート紙であり、塗工層の構成原子はC、H、Si、Oの4種類である。
〔Example〕
An ink having the following composition was prepared, and stable isotope substitution (deuterium) was performed by applying the ink to inkjet-coated paper (Photo like QP manufactured by Konica Minolta) using a commercially available inkjet printer (PM-4000PX manufactured by Seiko Epson). Substituted printed material was produced. The ink jet coated paper is a so-called void type ink jet coated paper using silica as a pigment of the coating layer, and the constituent atoms of the coating layer are four kinds of C, H, Si, and O.

(インクの組成)
・キナクリドン顔料(構成原子C、H、O);5重量%
・グリセリン(安定同位体標識化合物、構成原子C、O、D);15重量%
・界面活性剤(構成原子C、H、O);1重量%
・イオン交換水(構成原子H,O);バランス
(Ink composition)
Quinacridone pigment (constituent atoms C, H, O); 5% by weight
Glycerin (stable isotope labeled compound, constituent atoms C, O, D); 15% by weight
・ Surfactant (constituent atoms C, H, O); 1% by weight
・ Ion exchange water (constituent atoms H, O); balance

SIMS測定装置を用いて、上記の安定同位体置換された印刷物に対し、その印刷表面から厚さ方向に沿って研削を行い、該研削により発生する上記安定同位体(重水素D)を含む数種の原子の二次イオンについて質量分離を行った。そして、研削時間を横軸に、当該研削時間における二次イオンの検出強度を縦軸にとって測定値をプロットし、研削時間と二次イオン強度との関係をグラフ化した。本実施例におけるSIMS測定条件は次の通りである。
SIMS測定条件:カメカ社製二重収束型(セクター型)SIMS「ims−4F」を用い、1次イオン種Cs+、14.5keVを100μm□でラスタースキャンし、その中心33μmφから負の2次イオンを検出した。質量分解能M/ΔM>5000の高質量
分解モードで測定することで、D−H230Si−28Si+D、18O−16O+Dを分離して測定した。尚、測定中のチャージアップを防止するために、電荷中和用の電子銃を使用した。また、サンプルの導電性を確保し、適正な深度方向分析を行うために、SIMS測定前に予めサンプル面(印刷表面)にスパッタリングによる金コートを施した。
Using the SIMS measurement device, the above-mentioned stable isotope substituted printed material is ground along the thickness direction from the printed surface, and the number containing the stable isotope (deuterium D) generated by the grinding Mass separation was performed on secondary ions of seed atoms. The measured values were plotted with the grinding time as the horizontal axis and the secondary ion detection intensity at the grinding time as the vertical axis, and the relationship between the grinding time and the secondary ion intensity was graphed. The SIMS measurement conditions in this example are as follows.
SIMS measurement conditions: using a double-convergence type (sector type) SIMS “ims-4F” manufactured by Kameka Corporation, the primary ion species Cs + , 14.5 keV is raster scanned at 100 μm □, and a negative secondary from its center 33 μmφ Ions were detected. By measuring with high mass resolution mode mass resolution M / ΔM> 5000, it was measured separately D-H 2, 30 Si- 28 Si + D, 18 O- 16 O + D. In order to prevent charge-up during measurement, an electron gun for charge neutralization was used. Further, in order to ensure the conductivity of the sample and perform an appropriate depth direction analysis, a gold coating by sputtering was applied to the sample surface (printed surface) in advance before the SIMS measurement.

図1は、上記SIMS測定によって得られた分析結果の図である。図1の横軸(研削時間)は、印刷物の印刷表面からの深度を表し、縦軸(検出強度)は、各イオン(13C、D、30Si、18O、H)の濃度を表す。インクの形成材であるグリセリンの構成原子重水素Dに着目することで、印刷物におけるインクの浸透状態を把握することができる。   FIG. 1 is a diagram of an analysis result obtained by the SIMS measurement. The horizontal axis (grinding time) in FIG. 1 represents the depth of the printed material from the printed surface, and the vertical axis (detected intensity) represents the concentration of each ion (13C, D, 30Si, 18O, H). By paying attention to the constituent atomic deuterium D of glycerin which is an ink forming material, it is possible to grasp the state of ink penetration in the printed matter.

SIMSを用いた本発明の分析方法による分析結果の図である。It is a figure of the analysis result by the analysis method of the present invention using SIMS.

Claims (5)

印刷用紙又は印刷物の内部構造や形成材の分布状態、印刷物におけるインクの浸透状態等を解析するための印刷用紙又は印刷物の分析方法であって、
印刷用紙及び/又は印刷物の作製に用いられるインクの形成材の構成原子の少なくとも1種を安定同位体に置換する工程、及び
上記安定同位体が導入された印刷用紙又は上記安定同位体が導入されたインクを用いて作製された印刷物をその厚さ方向に沿って研削し、所定の研削深度における該安定同位体の濃度を測定する工程を備えることを特徴とする印刷用紙又は印刷物の分析方法。
A method for analyzing a printing paper or printed matter for analyzing the internal structure of the printing paper or printed matter, the distribution state of the forming material, the state of ink penetration in the printed matter, etc.
A step of substituting at least one of the constituent atoms of the ink forming material used for producing the printing paper and / or printed matter with a stable isotope, and the printing paper with the stable isotope introduced or the stable isotope introduced. A method for analyzing a printing paper or printed matter, comprising the step of grinding a printed matter produced using the ink along the thickness direction and measuring the concentration of the stable isotope at a predetermined grinding depth.
印刷用紙又は印刷物の上記研削は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)又はグロー放電質量分析法(GDMS:Glow Discharge Mass Spectrometry)により行なうことを特徴とする請求項1記載の印刷用紙又は印刷物の分析方法。   2. The printing according to claim 1, wherein the grinding of the printing paper or the printed material is performed by secondary ion mass spectrometry (SIMS) or glow discharge mass spectrometry (GDMS). Analysis method of paper or printed matter. 上記安定同位体が重水素であることを特徴とする請求項1又は2記載の印刷用紙又は印刷物の分析方法。   The method for analyzing printing paper or printed matter according to claim 1 or 2, wherein the stable isotope is deuterium. 1種以上の形成材から形成された印刷用紙であって、該形成材の構成原子の少なくとも1種が安定同位体で置換されたことを特徴とする印刷用紙。   A printing paper formed from one or more forming materials, wherein at least one of the constituent atoms of the forming material is replaced with a stable isotope. 1種以上の形成材から形成されたインクであって、該形成材の構成原子の少なくとも1種が安定同位体で置換されたことを特徴とするインク。

An ink formed from one or more kinds of forming materials, wherein at least one of the constituent atoms of the forming material is substituted with a stable isotope.

JP2005057137A 2005-03-02 2005-03-02 Analysis method on printing paper or printed matter Withdrawn JP2006242682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057137A JP2006242682A (en) 2005-03-02 2005-03-02 Analysis method on printing paper or printed matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057137A JP2006242682A (en) 2005-03-02 2005-03-02 Analysis method on printing paper or printed matter

Publications (1)

Publication Number Publication Date
JP2006242682A true JP2006242682A (en) 2006-09-14

Family

ID=37049258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057137A Withdrawn JP2006242682A (en) 2005-03-02 2005-03-02 Analysis method on printing paper or printed matter

Country Status (1)

Country Link
JP (1) JP2006242682A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068237A (en) * 2010-08-27 2012-04-05 Semiconductor Energy Lab Co Ltd Method for evaluating oxygen diffusion of oxide film multilayer structure
CN103424464A (en) * 2013-07-18 2013-12-04 中国科学院地质与地球物理研究所 Automatic measurement method for micron and submicron-grade particle sample in-situ isotope element composition
CN109030130A (en) * 2017-06-08 2018-12-18 宁波江丰电子材料股份有限公司 Titanium crystalline substance sample preparation methods and titanium crystalline substance sample for GDMS detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068237A (en) * 2010-08-27 2012-04-05 Semiconductor Energy Lab Co Ltd Method for evaluating oxygen diffusion of oxide film multilayer structure
JP2016034033A (en) * 2010-08-27 2016-03-10 株式会社半導体エネルギー研究所 Evaluation method of oxide semiconductor film
JP2017096959A (en) * 2010-08-27 2017-06-01 株式会社半導体エネルギー研究所 Evaluation method of oxide semiconductor film
CN103424464A (en) * 2013-07-18 2013-12-04 中国科学院地质与地球物理研究所 Automatic measurement method for micron and submicron-grade particle sample in-situ isotope element composition
CN109030130A (en) * 2017-06-08 2018-12-18 宁波江丰电子材料股份有限公司 Titanium crystalline substance sample preparation methods and titanium crystalline substance sample for GDMS detection

Similar Documents

Publication Publication Date Title
Ickert et al. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites
Evans Jr Surface and thin film compositional analysis. Description and comparison of techniques
Satoh et al. Quantitative analysis by submicron secondary ion mass spectrometry
JP5030166B2 (en) Test method of sample support substrate used for laser desorption ionization mass spectrometry
JP2006242682A (en) Analysis method on printing paper or printed matter
Mayer et al. Comparison of surface layer analysis techniques
Southon et al. Laser-microprobe mass-analysis of surface layers and bulk solids
Thieleke et al. A calibration strategy for LA-ICP-MS using isotope dilution for solid reference materials
Tulej et al. Isotope abundance ratio measurements using femtosecond laser ablation ionization mass spectrometry
DeVries Surface characterization methods—XPS, TOF-SIMS, and SAM a complimentary ensemble of tools
Stingeder Optimization of secondary ion mass spectrometry for quantitative trace analysis
Milota et al. PIXE measurements of Renaissance silverpoint drawings at VERA
Denker et al. High-energy PIXE using 68 MeV protons
Southworth Scanning electron microscopy and microanalysis
Kellner et al. Quantitative analysis of Mo–Si–B alloy phases with wavelength dispersive spectroscopy (WDS–SEM)
Bartoll et al. Micro-X-ray absorption near edge structure spectroscopy investigations of baroque tin-amalgam mirrors at BESSY using a capillary focusing system
Llabador et al. Light-element analysis with the CENBG nuclear microprobe
Ball et al. Helium ion microscope–secondary ion mass spectrometry for geological materials
Hofmann Surface and thin-film analysis: Concepts, capabilities and limitations
Bergsåker et al. Nuclear reaction analysis with ion microbeam of cross sections of surface layers deposited in a tokamak divertor
Heinrich et al. Electron probe X-ray microanalysis
Haschke et al. Micro‐XRF excitation in an SEM
Suzumura et al. A new method for quantitative analysis of total water contents and estimating molecular water and hydroxyl contents in rhyolitic glasses by SIMS
Bhushan et al. Fusion method for sample preparation for isotopic composition determination of boron in refractory materials by thermal ionization mass spectrometry with validation using dissolved and purified samples
Bhavyasri et al. Auger Electron Spectroscopy-A Review

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513