JP2006240938A - Fluorine-modified double-walled carbon nanotube - Google Patents

Fluorine-modified double-walled carbon nanotube Download PDF

Info

Publication number
JP2006240938A
JP2006240938A JP2005060958A JP2005060958A JP2006240938A JP 2006240938 A JP2006240938 A JP 2006240938A JP 2005060958 A JP2005060958 A JP 2005060958A JP 2005060958 A JP2005060958 A JP 2005060958A JP 2006240938 A JP2006240938 A JP 2006240938A
Authority
JP
Japan
Prior art keywords
fluorine
dwcnt
walled carbon
double
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005060958A
Other languages
Japanese (ja)
Inventor
Morinobu Endo
守信 遠藤
Ryugan Kin
隆岩 金
Takuya Hayashi
卓哉 林
Hidekazu Higashihara
秀和 東原
Fujio Okino
不二雄 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2005060958A priority Critical patent/JP2006240938A/en
Publication of JP2006240938A publication Critical patent/JP2006240938A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide fluorine-modified double-walled carbon nanotubes having both functions by fluorination and excellent functions of single-wall (SW) CNT. <P>SOLUTION: The fluorine-modified double-walled carbon nanotubes are obtained by modifying the outer tubes of double-walled carbon nanotubes with fluorine. Since the surface layers are fluorinated, the fluorine-modified double-walled carbon nanotubes are compatible with a material such as a resin and can be made into an excellent composite material. The nanotubes are excellent also in electrical conductivity, heat conductivity and strength and can be applied to various electronic and electric devices such as an electrode material of an electric double layer capacitor, a positive electrode material of a lithium primary battery and nanowires. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フッ素修飾2層カーボンナノチューブに関する。 The present invention relates to a fluorine-modified double-walled carbon nanotube.

カーボンナノチューブ(CNT)をフッ素で修飾したフッ素化カーボンナノチューブは知られている(特開2003−306320等)。
特開2003−306320
Fluorinated carbon nanotubes obtained by modifying carbon nanotubes (CNT) with fluorine are known (Japanese Patent Application Laid-Open No. 2003-306320).
JP 2003-306320 A

フッ素化カーボンナノチューブは、潤滑性が良好で、摺動材の原料等として好適に利用でき、あるいはリチウム一次電池の正極材に用いて優れた性質を発揮する。
ところで、一般的に、CNT等の炭素繊維をフッ素化するには、上記特許文献1に記載されているように、500℃程度の高温条件下で反応を起こさせる必要があるとされている。
しかしながら、例えば単層CNT(SWCNT)の場合、500℃程度の高温化でフッ素化を行うと、白っぽい粉状となってしまい、強度、導電性、熱伝導性などのCNT本来もつ機能が失われてしまうという課題がある。
本発明の目的は、フッ素化による機能と、単層(SW)CNTの優れた機能とを併せもつフッ素修飾2層カーボンナノチューブを提供するにある。
Fluorinated carbon nanotubes have good lubricity and can be suitably used as a raw material for a sliding material, or exhibit excellent properties when used as a positive electrode material for a lithium primary battery.
By the way, in general, in order to fluorinate carbon fibers such as CNTs, as described in Patent Document 1, it is necessary to cause a reaction under a high temperature condition of about 500 ° C.
However, for example, in the case of single-walled CNT (SWCNT), if fluorination is performed at a high temperature of about 500 ° C., it becomes a whitish powder and the original functions of CNT such as strength, conductivity, and thermal conductivity are lost. There is a problem that it ends up.
An object of the present invention is to provide a fluorine-modified double-walled carbon nanotube having both a function by fluorination and an excellent function of single-walled (SW) CNT.

本発明に係るフッ素修飾2層カーボンナノチューブは、2層カーボンナノチューブの外側チューブがフッ素によって修飾されていることを特徴とする。
発明者等は、フッ素化を200℃程度の低温でも行えることを見出した。このような低温でフッ素化を行うことにより、中部形態を維持するとともに、外側チューブのみフッ素修飾され、内側チューブはほとんど影響を受けず、単層CNTの優れた機能を維持していることがわかった。
すなわち、内側チューブがフッ素によって修飾されていないことを特徴とする。
また、外側チューブのフッ素化比:F/Cが0.1〜0.5であることを特徴とする。
また、内側チューブが単層カーボンナノチューブの機能を維持していることを特徴とする。
The fluorine-modified double-walled carbon nanotube according to the present invention is characterized in that the outer tube of the double-walled carbon nanotube is modified with fluorine.
The inventors have found that fluorination can be performed at a low temperature of about 200 ° C. By performing fluorination at such a low temperature, it is understood that while maintaining the middle shape, only the outer tube is modified with fluorine, the inner tube is hardly affected, and the excellent function of the single-walled CNT is maintained. It was.
That is, the inner tube is not modified with fluorine.
Further, the fluorination ratio of the outer tube: F / C is 0.1 to 0.5.
The inner tube maintains the function of the single-walled carbon nanotube.

本発明によれば、フッ素化による機能と、単層(SW)CNTの優れた機能とを併せもつフッ素修飾2層カーボンナノチューブを提供できる。したがって、表層がフッ素化されていることにより樹脂等の材料とのなじみがよく、優れた複合材料とすることができる。また、内側チューブが単層CNTの機能を維持していることにより、導電性、熱伝導性、強度にも優れ、電気二重層キャパシタの電極材料、リチウム一次電池の正極材料、ナノワイヤ等、種々の電子、電気デバイスに適用することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fluorine modification double-walled carbon nanotube which has the function by fluorination and the outstanding function of single-walled (SW) CNT can be provided. Therefore, since the surface layer is fluorinated, it is compatible with a material such as a resin, and an excellent composite material can be obtained. In addition, since the inner tube maintains the function of the single-walled CNT, it is excellent in conductivity, thermal conductivity, and strength, and various materials such as an electrode material for an electric double layer capacitor, a positive electrode material for a lithium primary battery, and a nanowire. It can be applied to electronic and electrical devices.

以下本発明における最良の実施の形態を詳細に説明する。
本発明は、2層カーボンナノチューブ(double-walled carbon nanotube : DWCNT)のフッ素修飾に関するものであり、フッ素原子はDWCNTの2層構造を破壊することなく、選択的にその外側チューブを修飾する。そこでのフッ素修飾DWCNTの化学量論的組成はCF0.30である。
The best mode of the present invention will be described in detail below.
The present invention relates to fluorine modification of double-walled carbon nanotube (DWCNT), and fluorine atoms selectively modify the outer tube without destroying the two-layer structure of DWCNT. The stoichiometric composition of fluorine-modified DWCNT there is CF 0.30 .

2層カーボンナノチューブ:Double-walled carbon nanotubes(DWCNT)は2本の同心円筒で構成しており、非常に多くの科学者から注目されている。なぜならSWCNT(single-walled carbon nanotubes)と比較した場合、熱的に化学的に、そして機械的にも優れているからである。さらにはSWCNTのように、DWCNTも細い直径(2nm以下)を有することから量子細線としての振る舞いが起こると期待されている。   Double-walled carbon nanotubes (DWCNT) are composed of two concentric cylinders, and are attracting attention from a great number of scientists. This is because when compared with SWCNT (single-walled carbon nanotubes), it is superior in terms of heat, chemical and mechanical properties. Furthermore, like SWCNT, DWCNT also has a thin diameter (2 nm or less), so that it is expected to behave as a quantum wire.

しかしカーボンナノチューブの応用を制限している技術的要因は、気相成長法によって製造した場合、典型的なSWCNTの場合と同様に、多数本が束となったバンドル状をなしていることであり、その機能を発揮させるためには、この束状となっているDWCNTを1本づつにほぐす必要がある。   However, the technical factor that limits the application of carbon nanotubes is that when they are produced by vapor phase growth, they are in the form of bundles in which many are bundled, as is the case with typical SWCNTs. In order to exert the function, it is necessary to loosen the bundled DWCNTs one by one.

それらのことから、最近ではカーボンナノチューブを化学修飾して、束状となっているカーボンナノチューブを1本づつにほぐす研究が活発に行われている。数々の手法の中でカーボンナノチューブの化学修飾法の強力なツールとしてフッ素化がある。SWCNTのフッ素化はその分散性、電子状態、チューブ長の制御などを可能としている。   For these reasons, recently, active research has been conducted on chemically modifying carbon nanotubes to loosen the bundled carbon nanotubes one by one. Among many methods, fluorination is a powerful tool for chemical modification of carbon nanotubes. Fluorination of SWCNT enables control of its dispersibility, electronic state, tube length, and the like.

本実施の形態では、DWCNTをフッ素原子により200℃程度の低温でフッ素化した。もちろん、フッ素化は200℃に限定されるものではない。このフッ素化したDWCNTをX線光電子分光分析(XPS)、高分解能透過型電子顕微鏡(HR-TEM)、ラマン分光分析により構造解析を行ったところ、フッ素原子が選択的にDWCNTの外側チューブをフッ素修飾し、DWCNTの内側チューブは影響を受けずに残っていることが判明した。   In this embodiment, DWCNT was fluorinated with fluorine atoms at a low temperature of about 200 ° C. Of course, fluorination is not limited to 200 ° C. When this fluorinated DWCNT was subjected to structural analysis by X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscope (HR-TEM), and Raman spectroscopy, fluorine atoms selectively fluorinated the outer tube of DWCNT. After modification, it was found that the inner tube of DWCNT remained unaffected.

外側チューブがフッ素によって修飾されることから、樹脂等との複合材にした場合、樹脂とのなじみ、密着性に優れるというフッ素化による機能が発揮される。また、内側チューブがフッ素化の影響をほとんど受けず、したがってSWCNTがそのまま残存しているような状況となり、SWCNTの優れた性質、すなわち、導電性、熱伝導性、高強度の特性が維持される。すなわち、フッ素化による機能と、単層(SW)CNTの優れた機能とを併せもつフッ素修飾2層カーボンナノチューブが得られる。   Since the outer tube is modified with fluorine, when it is made into a composite material with a resin or the like, a function by fluorination that is compatible with the resin and excellent in adhesion is exhibited. In addition, the inner tube is hardly affected by fluorination, so that the SWCNT remains as it is, and the excellent properties of the SWCNT, that is, conductivity, thermal conductivity, and high strength characteristics are maintained. . That is, a fluorine-modified double-walled carbon nanotube having both the function of fluorination and the excellent function of single-walled (SW) CNT can be obtained.

DWCNTの製法は種々報告されている。一般的には、DWCNTは、CCVD(Catalytic Chemical Vapor Deposition)法により生成することができる。
本実施の形態では、DWCNTの作製は、横型反応炉を使用し、炉心中央部にFe/MgO、炉心入り口側にはMo/Al2O3を配置した。Ar雰囲気中で875℃まで昇温し、後に炭素源(CH4+Ar : 1:1)を200cc/minで10分間流した。そこで生成されたサンプルを2段階の精製処理を施した。すなわち、酸(HCl)処理をして、サポート触媒(MgO)を除去し、次いで500℃の空気酸化により化学的に活性であるSWCNT(僅かに生成している)やアモルファスカーボンを除去し、DWCNTを作製した。
Various methods for producing DWCNT have been reported. Generally, DWCNT can be produced by a CCVD (Catalytic Chemical Vapor Deposition) method.
In the present embodiment, the production of DWCNT was performed using a horizontal reactor, and Fe / MgO was arranged at the center of the core, and Mo / Al 2 O 3 was arranged at the core entrance side. The temperature was raised to 875 ° C. in an Ar atmosphere, and then a carbon source (CH 4 + Ar: 1: 1) was allowed to flow at 200 cc / min for 10 minutes. The sample thus produced was subjected to a two-stage purification process. That is, it is treated with acid (HCl) to remove the support catalyst (MgO), and then SWCNT (which is slightly produced) and amorphous carbon are removed by air oxidation at 500 ° C., and DWCNT Was made.

注意深いHR-TEM観察によりDWCNTの純度(割合)が95%でバンドル状態であることを確認した。高純度DWCNTのフッ素化条件は以下の通りである。前処理として、DWCNTに含まれる残存酸素ガスや水蒸気を除去するために200℃で数時間真空処理を行った。その処理されたDWCNTを1気圧(atm)のフッ素ガスが挿入された反応チャンバーで200℃、5時間フッ素修飾(F−DWCNT)を施すことを基本操作とする。   It was confirmed by careful HR-TEM observation that the purity (ratio) of DWCNT was 95% and in a bundle state. The fluorination conditions for high-purity DWCNT are as follows. As pretreatment, vacuum treatment was performed at 200 ° C. for several hours in order to remove residual oxygen gas and water vapor contained in DWCNT. The basic operation is to subject the treated DWCNT to fluorine modification (F-DWCNT) at 200 ° C. for 5 hours in a reaction chamber in which fluorine gas at 1 atm (atm) is inserted.

熱電対を備えた内容積約360 mLのNi金属反応容器に、DWCNTを19.6mgのせたNi金属製ボートを設置した。反応容器内を密閉し0.01-0.030torrに減圧し、その後外部ヒーターを取り付け200℃まで加熱し一晩真空乾燥を行った。ヒーターを調整し反応温度を200℃とし、フッ素ガスをゆっくり導入した。1気圧に達するまで15分を要した。このとき反応による反応容器内の温度上昇は16℃であった。この状態で5時間反応を行った。反応終了後容器内を室温付近まで冷却した後、アルゴンガスで内部を十分に置換し、反応容器を開放しボート上の黒色粉末:フッ素修飾2層カーボンナノチューブ(F−DWCNT)約20 mgを回収した。   A Ni metal boat with 19.6 mg of DWCNT was installed in a Ni metal reaction vessel having an internal volume of about 360 mL equipped with a thermocouple. The inside of the reaction vessel was sealed and the pressure was reduced to 0.01-0.030 torr, and then an external heater was attached and heated to 200 ° C. and vacuum dried overnight. The heater was adjusted to a reaction temperature of 200 ° C., and fluorine gas was slowly introduced. It took 15 minutes to reach 1 atmosphere. At this time, the temperature rise in the reaction vessel due to the reaction was 16 ° C. In this state, the reaction was carried out for 5 hours. After completion of the reaction, the inside of the container was cooled to near room temperature, and then the inside was sufficiently replaced with argon gas. The reaction container was opened and black powder on the boat: about 20 mg of fluorine-modified double-walled carbon nanotubes (F-DWCNT) was recovered. did.

得られたF−DWCNTのXPS測定(Ulvac-phi社製 model 5600, non-monochoromatized Mg Kα:1253.6eV)、Arイオンレーザー線を用いたラマン分光分析(Kaiser Hololab 5000system)、加速電圧200kVによるHR-TEM観察(JEOL JEM-2010FEF)によりフッ素修飾したDWCNTの構造解析を行った。   XPS measurement of the obtained F-DWCNT (Ulvac-phi model 5600, non-monochoromatized Mg Kα: 1253.6 eV), Raman spectroscopic analysis using Ar ion laser beam (Kaiser Hololab 5000system), HR- with acceleration voltage 200 kV Structural analysis of fluorine-modified DWCNT was performed by TEM observation (JEOL JEM-2010FEF).

図1に未処理及びF−DWCNTのC1sスペクトルを示した。284.9eVの強いC1sピークは炭素sp2結合に起因し、弱いピークである288.9eVは炭素がフッ素原子と共有結合したことを示す炭素sp3結合に起因する。図2では、フッ素化により共有C-F結合(687.75eV)によるピークが出ることを示している。F−DWCNT(CF0.30)の化学論的組成はC1sピークの積算強度をF1sピークの積算強度の割り算により決定した。
図1のF200の二つのC1sの積算強度(C1s288.9/C1sall=0.32)の比とF1sピーク(F/Cの比:0.30)の一致はフッ素がDWCNTの外側チューブをフッ素修飾し、内側チューブは影響を受けていないこと間接的に示す。一般的にフッ素修飾ナノチューブは低導電性を示すことが知られており、その結合エネルギーの決定はXPS測定中に帯電効果による補正をしなければならない。しかし今回のF−DWCNTはそのような帯電効果がなかった。このことは大きな導電性低下がなかったことを指し、DWCNTの内側チューブが影響をうけなかったと予想できる。
FIG. 1 shows the C1s spectra of untreated and F-DWCNT. The strong C1s peak at 284.9 eV is attributed to the carbon sp2 bond, and the weak peak 288.9 eV is attributed to the carbon sp3 bond indicating that the carbon is covalently bonded to the fluorine atom. FIG. 2 shows that a peak due to a covalent CF bond (687.75 eV) appears due to fluorination. The chemical composition of F-DWCNT (CF0.30) was determined by dividing the integrated intensity of the C1s peak by the integrated intensity of the F1s peak.
The coincidence of the ratio of the integrated strength of two C1s (C1s288.9 / C1sall = 0.32) and F1s peak (F / C ratio: 0.30) of F200 in Fig. 1 indicates that the outer tube of fluorine is modified with fluorine and the inner tube Indicates indirectly that it is not affected. In general, fluorine-modified nanotubes are known to exhibit low conductivity, and the determination of their binding energy must be corrected by the charging effect during XPS measurement. However, the current F-DWCNT did not have such a charging effect. This indicates that there was no significant decrease in conductivity, and it can be expected that the inner tube of DWCNT was not affected.

低倍TEM観察による図3によると、上記DWCNTは主にバンドル状態で存在し、そのバンドルサイズは10-50nmであり、典型的なその断面は6角形にパッキングされた構造をしている(図4参照)。フッ素修飾による独特な構造変化は見られなかった(図5)。注目すべき点はHR-TEMによる高倍観察で2層円筒構造がはっきり見える点である(図6)。さらには6角形にパックされたチューブが乱されており、これはDWCNTの外層にフッ素原子が化学的に導入されたからである。   According to FIG. 3 by low-magnification TEM observation, the DWCNT mainly exists in a bundle state, the bundle size is 10-50 nm, and the typical cross section has a structure packed in a hexagon (see FIG. 3). 4). No unique structural change due to fluorine modification was observed (FIG. 5). What should be noted is that the two-layered cylindrical structure can be clearly seen by high magnification observation with HR-TEM (Fig. 6). Furthermore, the hexagonal packed tube is disturbed because fluorine atoms are chemically introduced into the outer layer of DWCNT.

ラマン分光分析はカーボンナノチューブの解析に広く使用されている。なぜならラマン散乱はチューブの構造やその直径に敏感だからである。低周波数領域における未処理のDWNTとF-DWNTのラマンスペクトルを図7に示した。その低周波数領域はRBMと呼ばれ、チューブの直径に反比例することが知られている。約250cm-1以上に現れるラマン線(DWCNTの内側チューブと一致する)と250cm-1以下のラマン線(DWCNTの外側チューブ)が未処理のDWCNTでは得られる。チューブ径(図7)に数値を挿入した)はRBM周波数をもとに計算した。そこで用いた計算式はωrbm=234/dt+10, dt=tube diameter(nm),ωrbm=RBM frequency(cm-1)である。 Raman spectroscopy is widely used for the analysis of carbon nanotubes. This is because Raman scattering is sensitive to the structure of the tube and its diameter. FIG. 7 shows Raman spectra of untreated DWNT and F-DWNT in the low frequency region. The low frequency region is called RBM and is known to be inversely proportional to the tube diameter. An untreated DWCNT has a Raman line appearing at about 250 cm -1 or more (corresponding to the inner tube of DWCNT) and a Raman line of 250 cm -1 or less (outer tube of DWCNT). The tube diameter (Figure 9) was calculated based on the RBM frequency. The calculation formula used there is ωrbm = 234 / dt + 10, dt = tube diameter (nm), and ωrbm = RBM frequency (cm −1 ).

未処理のDWCNTは2つの径の組み合わせがあることが分かる;(内側のチューブ:外側のチューブ)=(0.7nm:1.3nm)、(0.9nm:1.58nm)である。F−DWCNTでは内側チューブである270cm-1と324cm-1は変化しないが、外側チューブによるRBMが明らかに減少している点と、HR-TEM観察によるF−DWCNTが2層構造をしていることがはっきりと分かっていることを考慮すると、内層は構造的に変化していないことが納得できる。外側チューブは内側チューブへのフッ素ガスによる化学的攻撃からの保護層の役割を果たし、内側チューブは影響を受けずに残ることを示している。 It can be seen that the untreated DWCNT has a combination of two diameters; (inner tube: outer tube) = (0.7 nm: 1.3 nm), (0.9 nm: 1.58 nm). F-DWCNT 270 cm -1 and 324cm -1 in a inner tube does not change, and that the RBM by outer tube is clearly reduced, F-DWCNT by HR-TEM observation is a two-layer structure Considering that this is clearly known, it can be convinced that the inner layer has not changed structurally. The outer tube serves as a protective layer from chemical attack by fluorine gas on the inner tube, indicating that the inner tube remains unaffected.

図8は未処理のDWCNTとフッ素修飾したものの高周波数領域におけるラマンスペクトルである。フッ素修飾を通し、1590cm-1のGバンド(E2g2モード)の少しの減少と、1346cm-1のDバンド(欠陥モード)の高強度化といった変化が見られた。そこでのR値(Dバンドの強度をGバンドの強度で割ったもの)の大幅な増強はDWCNTへのフッ素の化学修飾がフッ素修飾SWCNTのようなsp3混成軌道によるDWCNT外側チューブの構造歪を引き起こしたといえる。F−DWCNTのR値(R=0.45)がフッ素化SWCNT(R=0.85,DWCNTと同じ条件でフッ素化したもの)より低R値であることは、DWCNTの内側チューブがフッ素修飾されていないことを改めて指し示している。 FIG. 8 shows a Raman spectrum in a high frequency region of untreated DWCNT and fluorine-modified one. Through fluorine modification, changes such as a slight decrease in the 1590 cm -1 G band (E2g2 mode) and an increase in the 1346 cm -1 D band (defect mode) were observed. The significant increase in the R value (D band intensity divided by G band intensity) caused the chemical modification of fluorine to DWCNT to cause structural distortion of the DWCNT outer tube due to sp3 hybrid orbit like fluorine-modified SWCNT. It can be said that. The R value (R = 0.45) of F-DWCNT is lower than that of fluorinated SWCNT (R = 0.85, fluorinated under the same conditions as DWCNT). This means that the inner tube of DWCNT is not fluorinated. Is pointing again.

要約すると、フッ素ガスを200℃で5時間、DWCNTと直接反応させることによりDWCNTの外層だけをフッ素修飾することに成功した。XPS解析をもとにF−DWCNTの化学量論的組成はCF0.30であるが、HR-TEM観察によるとフッ素修飾した後も2層構造を保っている。一部のRBMの減少とDバンドの高強度化はDWCNTの外側チューブから起因しており、それはsp3混成軌道の導入により、チューブ断面が幾何学的変化を受けたからである。これらのことから、フッ素修飾はSWCNTからDWCNTを区別する重要なツールとなることがわかる。更にDWCNTはSWCNTよりも構造が安定であることから、200℃のフッ素修飾温度の条件においてもその形状を維持していることが分かった。フッ素修飾を通して2層同心円構造を壊すことなくDWCNTの外側チューブだけの電子特性を調整したり、分散性の制御をすることにより、機能的センサーやナノコンポジット、電子デバイスなどへの応用が期待できる。   In summary, we succeeded in fluorine-modifying only the outer layer of DWCNT by reacting fluorine gas directly with DWCNT at 200 ° C. for 5 hours. Based on XPS analysis, the stoichiometric composition of F-DWCNT is CF0.30. According to HR-TEM observation, the two-layer structure is maintained even after fluorine modification. Some reductions in RBM and higher D-band strength are attributed to the outer tube of DWCNT because the tube cross-section has undergone a geometric change due to the introduction of sp3 hybrid orbits. From these, it can be seen that fluorine modification is an important tool for distinguishing DWCNT from SWCNT. Furthermore, since the structure of DWCNT is more stable than that of SWCNT, it was found that the shape was maintained even under the condition of a fluorine modification temperature of 200 ° C. Application to functional sensors, nanocomposites, electronic devices, etc. can be expected by adjusting the electronic properties of only the outer tube of DWCNT without breaking the two-layer concentric structure through fluorine modification, or by controlling the dispersibility.

未処理およびF−DWCNTのC1sスペクトルを示す。C1s spectra of untreated and F-DWCNT are shown. F−DWCNTのC1sスペクトルを示す。The C1s spectrum of F-DWCNT is shown. DWCNTの低倍TEM写真である。It is a low magnification TEM photograph of DWCNT. DWCNTの高倍TEM写真である。It is a high magnification TEM photograph of DWCNT. F−DWCNTの低倍TEM写真である。It is a low magnification TEM photograph of F-DWCNT. F−DWCNTの高倍TEM写真である。It is a high magnification TEM photograph of F-DWCNT. 低周波領域における、未処理のDWCNTとF−DWCNTのラマンスペクトル図である。It is a Raman spectrum figure of unprocessed DWCNT and F-DWCNT in a low frequency region. 高周波領域における、未処理のDWCNTとF−DWCNTのラマンスペクトル図である。It is a Raman spectrum figure of untreated DWCNT and F-DWCNT in a high frequency field.

Claims (4)

2層カーボンナノチューブの外側チューブがフッ素によって修飾されていることを特徴とするフッ素修飾2層カーボンナノチューブ。   A fluorine-modified double-walled carbon nanotube, wherein an outer tube of the double-walled carbon nanotube is modified with fluorine. 内側チューブがフッ素によって修飾されていないことを特徴とする請求項1記載のフッ素修飾2層カーボンナノチューブ。   2. The fluorine-modified double-walled carbon nanotube according to claim 1, wherein the inner tube is not modified with fluorine. 外側チューブのフッ素化比:F/Cが0.1〜0.5であることを特徴とする請求項1または2記載のフッ素修飾2層カーボンナノチューブ。   The fluorine-modified double-walled carbon nanotube according to claim 1 or 2, wherein the fluorination ratio of the outer tube: F / C is 0.1 to 0.5. 内側チューブが単層カーボンナノチューブの機能を維持していることを特徴とする請求項1〜3いずれか1項記載のフッ素修飾2層カーボンナノチューブ。
The fluorine-modified double-walled carbon nanotube according to any one of claims 1 to 3, wherein the inner tube maintains the function of the single-walled carbon nanotube.
JP2005060958A 2005-03-04 2005-03-04 Fluorine-modified double-walled carbon nanotube Pending JP2006240938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060958A JP2006240938A (en) 2005-03-04 2005-03-04 Fluorine-modified double-walled carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060958A JP2006240938A (en) 2005-03-04 2005-03-04 Fluorine-modified double-walled carbon nanotube

Publications (1)

Publication Number Publication Date
JP2006240938A true JP2006240938A (en) 2006-09-14

Family

ID=37047717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060958A Pending JP2006240938A (en) 2005-03-04 2005-03-04 Fluorine-modified double-walled carbon nanotube

Country Status (1)

Country Link
JP (1) JP2006240938A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794104A (en) * 2009-01-21 2010-08-04 施乐公司 Printing apparatuses containing fluorinated nanometer composite material coatings and preparation method thereof
CN103241724A (en) * 2013-05-09 2013-08-14 上海应用技术学院 Fluorine-containing polymer functionalized carbon nanotube and preparation method thereof
WO2016171239A1 (en) * 2015-04-22 2016-10-27 ステラケミファ株式会社 Cross-linked structure of carbon material and method for producing same
KR20190063869A (en) * 2017-11-30 2019-06-10 재단법인 한국탄소융합기술원 Preparation of porous carbon materials by kenaf and manufacturing methode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306320A (en) * 2002-04-11 2003-10-28 Univ Shinshu Fluorinated carbon tube and sliding material using it
WO2004048263A1 (en) * 2002-11-26 2004-06-10 Carbon Nanotechnologies, Inc. Carbon nanotube particulates, compositions and use thereof
WO2005012171A2 (en) * 2003-07-28 2005-02-10 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306320A (en) * 2002-04-11 2003-10-28 Univ Shinshu Fluorinated carbon tube and sliding material using it
WO2004048263A1 (en) * 2002-11-26 2004-06-10 Carbon Nanotechnologies, Inc. Carbon nanotube particulates, compositions and use thereof
WO2005012171A2 (en) * 2003-07-28 2005-02-10 William Marsh Rice University Sidewall functionalization of carbon nanotubes with organosilanes for polymer composites

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794104A (en) * 2009-01-21 2010-08-04 施乐公司 Printing apparatuses containing fluorinated nanometer composite material coatings and preparation method thereof
US8285184B2 (en) * 2009-01-21 2012-10-09 Xerox Corporation Nanocomposites with fluoropolymers and fluorinated carbon nanotubes
CN103241724A (en) * 2013-05-09 2013-08-14 上海应用技术学院 Fluorine-containing polymer functionalized carbon nanotube and preparation method thereof
CN103241724B (en) * 2013-05-09 2015-06-10 上海应用技术学院 Fluorine-containing polymer functionalized carbon nanotube and preparation method thereof
KR20170140285A (en) * 2015-04-22 2017-12-20 스텔라 케미파 코포레이션 Crosslinked Structure of Carbon Material and Manufacturing Method Thereof
JP2016204254A (en) * 2015-04-22 2016-12-08 ステラケミファ株式会社 Crosslinked structure of carbon material and method for manufacturing the same
WO2016171239A1 (en) * 2015-04-22 2016-10-27 ステラケミファ株式会社 Cross-linked structure of carbon material and method for producing same
CN107531486A (en) * 2015-04-22 2018-01-02 斯泰拉化工公司 Carbon material crosslinking structural body and its manufacture method
RU2676287C1 (en) * 2015-04-22 2018-12-27 Стелла Кемифа Корпорейшн Net structure of carbon material and method for production thereof
KR102028380B1 (en) * 2015-04-22 2019-10-04 스텔라 케미파 코포레이션 Crosslinked Structure of Carbon Material and Manufacturing Method Thereof
US11155465B2 (en) 2015-04-22 2021-10-26 Stella Chemifa Corporation Cross-linked structure of carbon material and method for producing same
KR20190063869A (en) * 2017-11-30 2019-06-10 재단법인 한국탄소융합기술원 Preparation of porous carbon materials by kenaf and manufacturing methode
KR102082155B1 (en) 2017-11-30 2020-04-28 재단법인 한국탄소융합기술원 Preparation of porous carbon materials by kenaf and manufacturing methode

Similar Documents

Publication Publication Date Title
US7537682B2 (en) Methods for purifying carbon materials
JP5424481B2 (en) Method for purifying carbon material containing carbon nanotubes
Hou et al. Multi-step purification of carbon nanotubes
Gomez et al. Enhanced purification of carbon nanotubes by microwave and chlorine cleaning procedures
Mathur et al. Co-synthesis, purification and characterization of single-and multi-walled carbon nanotubes using the electric arc method
CN107792846B (en) Method for purifying carbon nanotubes
US20040022719A1 (en) Process for the mass production of multiwalled carbon nanotubes
WO2002064868A1 (en) Gas-phase process for purifying single-wall carbon nanotubes and compositions thereof
Kim et al. Double-walled carbon nanotubes: synthesis, structural characterization, and application
Zhao et al. Study on purification and tip-opening of CNTs fabricated by CVD
JP2005263607A (en) Cnt surface modification method and cnt
JP4761346B2 (en) Double-walled carbon nanotube-containing composition
Yamagiwa et al. Liquid-phase synthesis of highly aligned carbon nanotubes on preheated stainless steel substrates
Hussain et al. Growth and plasma functionalization of carbon nanotubes
JP2006240938A (en) Fluorine-modified double-walled carbon nanotube
An et al. Transformation of singlewalled carbon nanotubes to multiwalled carbon nanotubes and onion-like structures by nitric acid treatment
Muramatsu et al. Fluorination of double-walled carbon nanotubes
JP2004290793A (en) Hydrogen occluding material and its manufacturing method, hydrogen occluding body, hydrogen storage apparatus and fuel cell vehicle
Rouf et al. Synthesis and purification of carbon nanotubes
García-Betancourt et al. Holey nitrogen-doped multiwalled carbon nanotubes from extended air oxidation at low-temperature
Yuca et al. Thermal and electrical properties of carbon nanotubes purified by acid digestion
Tran et al. Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique
Tseng et al. Nondestructive purification of single-walled carbon nanotube rope through a battery-induced ignition and chemical solution approach
WO2007066780A1 (en) Process for producing single-layer carbon nanotube with increased diameter
Matlhoko et al. A comparison of purification procedures for multi-walled carbon nanotubes produced by chemical vapour deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101