JP2006239729A - Twin-screw extruder - Google Patents

Twin-screw extruder Download PDF

Info

Publication number
JP2006239729A
JP2006239729A JP2005058092A JP2005058092A JP2006239729A JP 2006239729 A JP2006239729 A JP 2006239729A JP 2005058092 A JP2005058092 A JP 2005058092A JP 2005058092 A JP2005058092 A JP 2005058092A JP 2006239729 A JP2006239729 A JP 2006239729A
Authority
JP
Japan
Prior art keywords
compression
screw
discharge port
plant
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005058092A
Other languages
Japanese (ja)
Inventor
Lehmann Thilo
チロ・レーマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mori Machinery Corp
Original Assignee
Mori Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mori Machinery Corp filed Critical Mori Machinery Corp
Priority to JP2005058092A priority Critical patent/JP2006239729A/en
Publication of JP2006239729A publication Critical patent/JP2006239729A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a twin-screw extruder which enables both blasting treatment and volume reduction solidification treatment of the vegetable-based raw materials. <P>SOLUTION: An extruder screw 4 successively comprises a lead-in section 41 and a compression section 42 consisting of helical blades 413, 412, 421 wound around screw shafts 411, 412, 421 and a high-compression section 43 consisting of reverse helical blades 432 likewise wound around a screw shaft 431 from a feeding port 2 toward a discharging hole 3. The two extruder screws 4, 4 are mirror-symmetrical in a rotational direction and are disposed in a positional relation to intermesh each other's helical blades 413, 422 and reverse helical blades 432. The feeding port 2 of a cylinder 1 opens in an extension orthogonal direction of both the screws 4, 4 within the intermeshing range of the helical blades 413, 413 constituting the lead-in sections 41, 41 of both the screws 4, 4 and the discharging port 3 of the cylinder 1 opens in the extension orthogonal direction of both the screws 4, 4 within the intermeshing range of the reverse helical blades 432, 432 constituting the high-compression section 43, 43 of both the screws 4, 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、植物系原料を水蒸気爆発により爆砕処理する2軸スクリュー押出し機に関する。   The present invention relates to a twin-screw extruder that explodes plant materials by steam explosion.

例えば廃木材、藁、剪定枝、サトウキビの搾りかす等の植物系原料は、過剰に圧縮することで水蒸気爆発を誘引して、爆砕処理を施すことで解繊し、成分の抽出や発酵を促進させる。また、植物系原料は、圧縮の程度を抑えることで押し固めるに留め、減容固化処理を図ることができる。   For example, plant materials such as waste wood, straw, pruned branches, sugarcane pomace, etc. are compressed excessively to induce a steam explosion and defibrated by explosive treatment to promote component extraction and fermentation Let In addition, the plant-based raw material can be pressed and hardened by suppressing the degree of compression, and volume reduction solidification treatment can be achieved.

植物系原料の爆砕処理は、例えば特許文献1に見られるように、耐圧容器中で飽和水蒸気又は加熱水蒸気により加圧下で加熱処理し、急激に低圧雰囲気中に解放することで実現する、いわゆるバッチ処理方式である。また、植物系原料の減容固化処理は、押出しスクリューによる連続処理方式が用いられていた。   For example, as seen in Patent Document 1, plant-based raw material explosion treatment is a so-called batch that is realized by heat treatment under pressure with saturated steam or heated steam in a pressure-resistant vessel and abruptly releasing it in a low-pressure atmosphere. Processing method. Moreover, the continuous processing system by the extrusion screw was used for the volume reduction solidification process of a plant-type raw material.

特開昭61-053331号公報JP 61-053331 A

上述したところから分かるように、植物系原料の爆砕処理はバッチ処理が通例であり、植物系原料の処理量が増加すると処理が間に合わなくなる問題がある。また、植物系原料の爆砕処理と減容固化処理とは、圧縮程度に差があるだけにもかかわらず、従来は別の装置構成を用いていたため、両者を必要とする場合、それぞれ別の装置を設置しなければならない問題がある。   As can be seen from the above, the blasting treatment of plant-based raw materials is usually batch processing, and there is a problem that the processing is not in time when the processing amount of plant-based raw materials increases. In addition, the plant material blasting process and the volume-reducing solidification process are different from each other only in the degree of compression. There is a problem that must be installed.

理屈的には、長尺な押出しスクリューを用意し、水分を含ませた植物系原料を順次圧縮していく途中で排出して減容固化処理を図り、最後まで圧縮して大気中に解放することで水蒸気爆発を招いて爆砕処理を図ることも考えられる。しかし、こうした押出しスクリューは、植物系原料の圧縮を図る螺旋羽根の設定が難しいばかりでなく、爆砕処理を実現するためには非常に長い押出しスクリューが必要になり、装置単体としても大型化を招く問題があり、現実的ではない。   Theoretically, a long extrusion screw is prepared, and moisture-containing plant-based raw materials are discharged in the middle of sequential compression to reduce the volume and solidify, and are compressed to the end and released to the atmosphere. In this way, it is also conceivable to cause a steam explosion and attempt a blasting treatment. However, such an extrusion screw not only makes it difficult to set a spiral blade for compressing plant-based raw materials, but also requires a very long extrusion screw to realize a blasting treatment, which leads to an increase in the size of the apparatus alone. There is a problem and it is not realistic.

そこで、第1に押出しスクリューを利用して水蒸気爆発による植物系原料の爆砕処理を実現しながら、第2に必要に応じて前記押出しスクリューを用いて植物系原料の減容固化処理をも実現できる装置構成について検討することにした。   Therefore, firstly, an extruding screw can be used to realize a plant material raw material explosion process by steam explosion, and secondly, if necessary, the extruding screw can also be used to reduce the volume of the plant raw material. I decided to study the system configuration.

検討の結果開発したものが、投入口及び放出口を設けたシリンダ内に、前記投入口及び放出口を結ぶ方向に延びる一対の押出しスクリューを収めた2軸スクリュー押出し機であって、各押出しスクリューはスクリュー軸に巻回した螺旋羽根からなる送り込み部及び圧縮部と、同じくスクリュー軸に巻回した逆螺旋羽根からなる高圧縮部とを投入口から放出口に向けて順に有してなり、両押出しスクリューは回転方向が鏡面対称で、互いの螺旋羽根及び逆螺旋羽根を噛み合う位置関係に配し、シリンダの投入口は両押出しスクリューの送り込み部を構成する螺旋羽根の噛み合い範囲で両押出しスクリューの延在直交方向に開口し、シリンダの放出口は両押出しスクリューの高圧縮部を構成する逆螺旋羽根の噛み合い範囲で両押出しスクリューの延在方向に開口した2軸スクリュー押出し機である。   What has been developed as a result of the study is a twin screw extruder in which a pair of extrusion screws extending in a direction connecting the input port and the discharge port are housed in a cylinder provided with the input port and the discharge port. Has a feeding part and a compression part consisting of spiral blades wound around a screw shaft and a high compression part consisting of a reverse spiral blade wound around the screw shaft in order from the inlet to the outlet. The direction of rotation of the extrusion screw is mirror-symmetrical, and is arranged in a positional relationship where the spiral blades and the reverse spiral blades mesh with each other, and the cylinder inlet is within the meshing range of the spiral blades constituting the feed section of both extrusion screws. The cylinder outlet is open in the direction perpendicular to the extension, and the discharge port of the cylinder is at the meshing range of the reverse spiral blades constituting the high compression part of the screw. The extension direction is the opened twin-screw extruder.

本発明の2軸スクリュー押出し機は、一対の押出しスクリューの各螺旋羽根からなる送り込み部及び圧縮部の噛み合いにより、連続的かつ円滑に植物系原料を擂り潰しながら圧縮し、この圧縮に伴って昇温させながら減容する。そして、こうして減容された植物系原料を、更に高圧縮部により擂り潰し、水蒸気爆発が可能な程度に圧縮して放出口から放出することで、水蒸気爆発による植物系原料の爆砕処理を実現する。高圧縮部は、圧縮部から移送されてきた植物系原料を押し戻すことにより、順次移送されてくる植物系原料と押し合わせ、長尺の圧縮部で実現できる高圧縮を短い距離で可能にする。ここで、「移送」とは、押出しスクリューの回転に従って投入口から放出口へと向かう植物原料の移動を意味する。   The twin-screw extruder according to the present invention compresses a plant-based raw material continuously and smoothly while being crushed by the meshing of the feeding portion and the compression portion, each consisting of a spiral blade of a pair of extrusion screws. Reduce volume while warming. Then, the plant-based material reduced in volume is further crushed by a high compression section, compressed to a level where steam explosion is possible, and released from the discharge port, thereby realizing a plant material explosion process by steam explosion. . The high compression unit pushes back the plant-based material transferred from the compression unit, thereby pressing the plant-based material sequentially transferred, and enables high compression that can be realized by a long compression unit at a short distance. Here, “transfer” means the movement of the plant raw material from the inlet to the outlet according to the rotation of the extrusion screw.

短い高圧縮部による植物系原料の高圧縮を実現するには、この高圧縮部に繋がる圧縮部、更には圧縮部に繋がる送り込み部での連続的かつ円滑に植物系原料をある程度圧縮しておくことが好ましい。これから、押出しスクリューは、送り込み部のスクリュー軸に対して圧縮部のスクリュー軸を大径にすることにより、送り込み部で相対的低圧縮の移送、圧縮部で相対的高圧縮の移送を実現するとよい。このほか、送り込み部の螺旋羽根に対して圧縮部の螺旋羽根の枚数を増やすことにより、送り込み部で相対的低圧縮の移送、圧縮部で相対的高圧縮の移送を実現する押出しスクリューや、送り込み部の螺旋羽根に対して圧縮部の螺旋羽根のピッチを狭くすることにより、送り込み部で相対的低圧縮の移送、圧縮部で相対的高圧縮の移送を実現する押出しスクリューでもよく、これらを組み合わせた押出しスクリューにしてもよい。   In order to achieve high compression of the plant raw material by the short high compression portion, the plant raw material is compressed to some extent continuously and smoothly at the compression portion connected to the high compression portion, and further at the feeding portion connected to the compression portion. It is preferable. From this, the extrusion screw may realize a relatively low compression transfer at the feed portion and a relatively high compression transfer at the compression portion by increasing the diameter of the screw shaft of the compression portion relative to the screw shaft of the feed portion. . In addition, by increasing the number of spiral blades of the compression unit relative to the spiral blades of the feed unit, an extrusion screw that achieves a relatively low compression transfer at the feed unit and a relatively high compression transfer at the compression unit, or a feed It may be an extrusion screw that realizes a relatively low compression transfer at the feed section and a relatively high compression transfer at the compression section by narrowing the pitch of the spiral blade of the compression section with respect to the spiral blade of the section, and these are combined An extrusion screw may be used.

既述したように、本発明の押出しスクリューは、送り込み部から圧縮部に至る過程で、植物系原料を圧縮して減容している。これから、例えば高圧縮部を取り外して圧縮部を経て直接放出口から植物系原料を排出すると、植物系原料の減容固化処理が実現できる。しかし、装置構成として、シリンダは各押出しスクリューの高圧縮部を含めた大きさで構成されている。そこで、押出しスクリューは、高圧縮部を交換自在にし、この高圧縮部に代えて圧縮部の螺旋羽根に連続する補助螺旋羽根を巻回した延長部を取り付ける構成とし、高圧縮部のない押出しスクリューを構成するとよい。高圧縮部に代わる延長部は、実質圧縮部の延長となるから、植物系原料はなお圧縮を受けるが、圧縮部の螺旋羽根に連続する補助螺旋羽根により移送され、減容固化処理された植物原料を排出させる。ここで、植物原料の減容固化処理では前記植物原料を特定形状に減容固化処理されることが望まれるため、爆砕処理に際して用いた排出口を、減容固化処理に適した排出口にするとよい。例えば植物原料を円柱形ペレットに減容固化処理する場合、元の排出口に円筒を付加したり、元の排出口を別途円筒付き排出口に交換することが考えられる。   As described above, the extrusion screw of the present invention compresses and reduces the volume of plant-based raw materials in the process from the feeding section to the compression section. From this, for example, when the high-compression part is removed and the plant-based raw material is discharged directly from the discharge port through the compression part, the volume-reduction solidification treatment of the plant-based raw material can be realized. However, as a device configuration, the cylinder is configured with a size including the high compression portion of each extrusion screw. Therefore, the extrusion screw has a configuration in which the high compression portion is replaceable and an extension portion around which the auxiliary spiral blade is wound is attached instead of the high compression portion, and the extrusion screw without the high compression portion is attached. It is good to configure. Since the extension part instead of the high compression part is an extension of the substantial compression part, the plant-based raw material is still subjected to compression, but is transferred by the auxiliary spiral blade continuous with the spiral blade of the compression part, and is subjected to volume reduction solidification treatment. Drain the raw material. Here, in the volume reduction solidification treatment of the plant raw material, it is desired that the plant raw material is volume reduction solidification treatment into a specific shape. Therefore, when the discharge port used for the explosion treatment is made a discharge port suitable for the volume reduction solidification treatment. Good. For example, when volume reduction solidification processing of a plant raw material to a columnar pellet, it is possible to add a cylinder to the original discharge port, or to replace the original discharge port with a separate discharge port with a cylinder.

高圧縮部による植物系原料の圧縮は、シリンダの放出口の位置、開口形状又は開口面積によっても左右される。まず、前記放出口は、両押出しスクリューのスクリュー軸の中心を結ぶ線より高圧縮部を構成する逆螺旋羽根が噛み合う側に開口させるとよい。ここで、「高圧縮部を構成する逆螺旋羽根が噛み合う側」とは、例えば放出口から見て左側の押出しスクリューが時計回り、右側の押出しスクリューが反時計回りの場合、両押出しスクリューのスクリュー軸の中心を結ぶ線より上側となる。つまり、高圧縮部により最も圧縮された植物系原料が放出される位置に、放出口を設けるわけである。   The compression of the plant-based raw material by the high compression part depends on the position of the cylinder outlet, the opening shape or the opening area. First, the discharge port may be opened to the side where the reverse spiral blades constituting the high compression portion are engaged with each other from the line connecting the centers of the screw shafts of the two extrusion screws. Here, “the side where the reverse spiral blades constituting the high compression portion mesh with each other” means, for example, when the left extrusion screw is clockwise when viewed from the discharge port and the right extrusion screw is counterclockwise, the screw of both extrusion screws Above the line connecting the centers of the axes. That is, a discharge port is provided at a position where the plant-based material most compressed by the high compression portion is discharged.

植物系原料は、放出口から放出しにくいほど高圧縮できるが、植物系原料の種類によって要求される圧縮程度は異なる。そこで、この放出口は、開閉自在な遮蔽板により開口面積が増減自在にするとよい。これから、放出口は、要求される圧縮程度の低い植物系原料に合わせた開口形状又は開口面積とし、必要に応じて遮蔽板を閉じていくことで、放出口の開口形状を変えたり、開口面積を小さくすることで、圧縮程度を高めていくとよい。   The plant-based raw material can be highly compressed so as not to be released from the discharge port, but the required degree of compression differs depending on the type of plant-based raw material. Therefore, it is preferable that the opening area of the discharge port can be increased or decreased by an openable / closable shielding plate. From now on, the outlet has an opening shape or opening area that matches the required plant-based raw material with a low degree of compression, and the opening shape of the outlet is changed or closed by closing the shielding plate as necessary. It is better to increase the degree of compression by reducing.

遮蔽板は複数枚とし、放出口に対して多方向から閉じていくことも考えられるが、この場合、放出口の開口形状が複雑になり、圧縮程度の加減調整に必ずしも適さない。これから、遮蔽板は、放出口に対して一方向に変位してこの放出口を開閉する構成にするとよい。ここで、遮蔽板は高圧縮部から移送されてくる植物系原料の負荷を受けるため、開閉機構が前記負荷を受けてがたつかないことが望まれる。これから、放出口に対して一方向に変位してこの放出口を開閉する遮蔽板では、ボールネジによる開閉機構が望ましい。ボールネジによる開閉機構は、ボールネジの自転量に比べて遮蔽板の開閉量が小さくでき、放出口の開閉を細かく調整できる利点がある。   Although it is conceivable that a plurality of shielding plates are used and they are closed from multiple directions with respect to the discharge port, in this case, the opening shape of the discharge port becomes complicated and is not necessarily suitable for adjustment adjustment of the degree of compression. From this, it is preferable that the shielding plate be displaced in one direction with respect to the discharge port to open and close the discharge port. Here, since a shielding board receives the load of the plant-type raw material transferred from a high compression part, it is desirable for an opening-and-closing mechanism not to receive the said load and to rattle. Accordingly, an opening / closing mechanism using a ball screw is desirable for a shielding plate that is displaced in one direction with respect to the outlet and opens and closes the outlet. The opening / closing mechanism using the ball screw has the advantage that the opening / closing amount of the shielding plate can be made smaller than the rotation amount of the ball screw, and the opening / closing of the discharge port can be finely adjusted.

また、放出口に対して可動部位となる遮蔽板は、構造強度を高くする必要があるが、固定部位である放出口ほどに構造強度を高めることは難しい。そこで、移送されてくる植物系原料による負荷の集中を避けるため、遮蔽板は放出口の閉鎖方向に凸な周縁を有する構造にするとよい。遮蔽板の凸な周縁に加わる植物系原料の負荷は、この凸な周縁に沿って両脇に分散され、遮蔽板と放出口とが交わる付近で放出口により受け止められる。これにより、遮蔽板が植物系原料による負荷の集中を受けずに済む。   In addition, the shielding plate that is a movable part with respect to the discharge port needs to have a high structural strength, but it is difficult to increase the structural strength as the discharge port is a fixed part. Therefore, in order to avoid the concentration of the load due to the transferred plant-based raw material, the shielding plate may have a structure having a convex peripheral edge in the closing direction of the discharge port. The load of the plant-based material applied to the convex peripheral edge of the shielding plate is dispersed on both sides along the convex peripheral edge, and is received by the discharge port in the vicinity where the shielding plate and the discharge port intersect. As a result, the shielding plate is not subjected to load concentration due to plant-based materials.

本発明は、螺旋羽根からなる送り込み部及び圧縮部と、逆螺旋羽根からなる高圧縮部とを有する押出しスクリューを一対備えた装置構成により、植物系原料の圧縮を容易にし、そして植物系原料の爆砕処理を実現している。具体的には、各押出しスクリューの送り込み部に対して圧縮部のスクリュー軸を大径にしたり、螺旋羽根の枚数を増やしたり、又は螺旋羽根のピッチを狭めることで、続く高圧縮部で植物系原料の高圧縮が可能な程度に、連続的かつ円滑に植物系原料を圧縮する。そして、逆螺旋羽根からなる高圧縮部と位置、開口形状又は開口面積を特定した排出口との組み合わせにより、植物系原料を水蒸気爆発可能な程度に圧縮する。このように、本発明は押出しスクリューを利用して水蒸気爆発による植物系原料の爆砕処理を実現する第1の課題を解決する効果を有する。   The present invention facilitates the compression of plant-based raw materials by an apparatus configuration including a pair of extrusion screws each having a feeding portion and a compression portion made of spiral blades and a high compression portion made of reverse spiral blades. Blasting treatment is realized. Specifically, by increasing the diameter of the screw shaft of the compression section relative to the feed section of each extrusion screw, increasing the number of spiral blades, or narrowing the pitch of the spiral blades, The plant-based material is compressed continuously and smoothly to such an extent that the material can be highly compressed. And a plant-type raw material is compressed to the extent which can be steam-exploded by the combination of the high compression part which consists of a reverse spiral blade, and the discharge port which specified the position, opening shape, or opening area. As described above, the present invention has an effect of solving the first problem of realizing the plant material raw material explosion process by the steam explosion using the extrusion screw.

植物系原料の爆砕処理が可能な程度の圧縮は、上述した通り、高圧縮部と位置、開口形状又は開口面積を特定した排出口との組み合わせに負うところが大きく、高圧縮部を延長部に交換すれば植物系原料を減容固化処理でき、更に排出口に円筒又は角筒等の所定断面形状の筒を付加すれば、前記所定断面形状にペレット化した植物系原料を取り出すことができる。すなわち、高圧縮部と延長部との交換可能にすることで、本発明は必要に応じて植物系原料の減容固化処理をも実現できる装置構成を得る第2の課題を解決する効果を有する。   As described above, the compression to the extent that the plant-based raw material can be crushed is greatly dependent on the combination of the high compression portion and the discharge port whose position, opening shape or opening area is specified, and the high compression portion is replaced with an extension portion. If this is done, the plant-based material can be reduced in volume and solidified, and if a tube having a predetermined cross-sectional shape such as a cylinder or a rectangular tube is added to the outlet, the plant-based material pelletized in the predetermined cross-sectional shape can be taken out. That is, by making the high compression part and the extension part interchangeable, the present invention has an effect of solving the second problem of obtaining an apparatus configuration capable of realizing a volume reduction solidification treatment of a plant-based raw material as necessary. .

以下、本発明の実施形態について図を参照しながら説明する。図1は本発明を適用した2軸スクリュー押出し機の一例を側方から見た軸方向断面図、図2は2軸スクリュー押出し機を放出口3側から見た正面図、図3は2軸スクリュー押出し機を上方から見た軸方向断面図、図4は2軸スクリュー押出し機の軸直行方向断面図であり、図5は高圧縮部43に代えて延長部44を取り付けた2軸スクリュー押出し機を表す図1相当軸方向断面図である。本例は、スクリュー軸411,412,421,431の外径が約140〜150mm、螺旋羽根413,422又は逆螺旋羽根432の外径が約200mm、そしてスクリュー軸411,412,421,431全体の長さが1m強である押出しスクリュー4,4を一対用いた中型の2軸スクリュー押出し機の例である。この中型の2軸スクリュー押出し機の場合、植物系原料の爆砕処理は2〜8m3/h、廃棄プラスチックの減容固化処理は0.5〜1.5m3/hの処理能力が見込まれる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an axial sectional view of an example of a twin screw extruder to which the present invention is applied as viewed from the side, FIG. 2 is a front view of the twin screw extruder as viewed from the discharge port 3, and FIG. 4 is a cross-sectional view in the axial direction of the twin-screw extruder, and FIG. 5 is a twin-screw extruder in which an extension portion 44 is attached instead of the high compression portion 43. FIG. 2 is an axial sectional view corresponding to FIG. In this example, the screw shafts 411, 412, 421, 431 have an outer diameter of about 140 to 150 mm, the spiral blades 413, 422 or the reverse spiral blade 432 have an outer diameter of about 200 mm, and the entire length of the screw shafts 411, 412, 421, 431 is slightly over 1 m. It is an example of a medium-sized twin screw extruder used as a pair. In the case of this medium-sized twin screw extruder, a processing capacity of 2 to 8 m 3 / h is expected for the plant-based raw material explosion treatment, and 0.5 to 1.5 m 3 / h is expected for the volume reduction and solidification processing of the waste plastic.

本例の2軸スクリュー押出し機は、図1〜図4に見られるように、投入口2及び放出口3を設けたシリンダ1内に、前記投入口2及び放出口3を結ぶ方向に延びる一対の押出しスクリュー4,4を収めた構成である。本例のシリンダ1は、各押出しスクリュー4に同心の断面円形を一部重ね合わせ、前記円形を接線で結んだ断面まゆ形である。このシリンダ1は、各押出しスクリュー4との間に各押出しスクリュー4の螺旋羽根413,422又は逆螺旋羽根432に倣うライナー11,11を左右一対で介装している。各ライナー11は、両押出しスクリュー4,4の噛みあい部分の上下で接合フランジ111,111を突き合わせ、両接合フランジ111,111を内ブロック12及び外ブロック13で挟持してボルト締めにより一体化する。内ブロック12は、押出しスクリュー4の螺旋羽根413,422又は逆螺旋羽根432に倣うライナー11に連続する断面略三角形のブロックである。外ブロック13は、接合フランジ111とシリンダ1との隙間を満たす断面略四角形のブロックである。   As shown in FIGS. 1 to 4, the twin-screw extruder of this example is a pair extending in a direction connecting the input port 2 and the discharge port 3 in a cylinder 1 provided with the input port 2 and the discharge port 3. The extrusion screws 4 and 4 are housed. The cylinder 1 of this example has a cross-sectional eyebrow shape in which concentric cross-sectional circles are partially overlapped with each extrusion screw 4 and the circles are connected by tangent lines. The cylinder 1 has a pair of right and left liners 11 and 11 that follow the spiral blades 413 and 422 or the reverse spiral blades 432 of the extrusion screws 4 between the extrusion screws 4. Each liner 11 abuts the joining flanges 111 and 111 above and below the meshing portions of the two extrusion screws 4 and 4, and both joining flanges 111 and 111 are sandwiched between the inner block 12 and the outer block 13 and integrated by bolting. The inner block 12 is a block having a substantially triangular cross section continuous to the liner 11 following the spiral blades 413 and 422 or the reverse spiral blade 432 of the extrusion screw 4. The outer block 13 is a block having a substantially square cross section that fills the gap between the joining flange 111 and the cylinder 1.

シリンダ1の投入口2は、両押出しスクリュー4,4の送り込み部41,41を構成する螺旋羽根413の噛み合い範囲で両押出しスクリュー4,4の延在直交方向、本例では上方に向けて、押出しスクリュー4の約半分の長さ、かつ両押出しスクリュー4,4の送り込み部41,41のスクリュー軸411,411を含む幅で開口している。本例では、この投入口2に、平面視長方形状、かつ正面視扇状のホッパ21を接続している。このホッパ21は植物系原料又は廃棄プラスチックを一時的に堆積させておく機能を有し、ホッパ21に堆積させた大量の植物系原料を少しずつ投入口2からシリンダ1内へと送り込めるようにしている。本例のホッパ21は、対向して傾斜する側面を利用し、一対の押出しスクリュー4,4間へうまく植物系原料を送り込む働きを有している。   The inlet 2 of the cylinder 1 is directed in the extending orthogonal direction of the two extrusion screws 4, 4 in the meshing range of the spiral blades 413 constituting the feeding portions 41, 41 of the two extrusion screws 4, 4, upward in this example, The opening is about half the length of the extrusion screw 4 and a width including the screw shafts 411 and 411 of the feeding portions 41 and 41 of the extrusion screws 4 and 4. In this example, a hopper 21 having a rectangular shape in plan view and a fan shape in front view is connected to the insertion port 2. This hopper 21 has a function of temporarily depositing plant-based materials or waste plastics, so that a large amount of plant-based materials deposited on the hopper 21 can be gradually fed into the cylinder 1 from the inlet 2. ing. The hopper 21 of this example has a function of feeding the plant-based raw material between the pair of extrusion screws 4 and 4 using the side surfaces that are inclined to face each other.

シリンダ1の放出口3は、両押出しスクリュー4,4の高圧縮部43,43を構成する逆螺旋羽根432,432の噛み合い範囲で、シリンダ端面を塞ぐ閉塞板31に、両押出しスクリュー4,4の延在方向に開口している。本例の放出口3は、両押出しスクリュー4,4のスクリュー軸431,431の中心を結ぶ線より高圧縮部43を構成する逆螺旋羽根432,432が噛み合う側、すなわち両押出しスクリュー4,4のスクリュー軸431,431の中心を結ぶ線とライナー11,11の接合フランジ111,111との間に、下方に向けて凸な円弧周縁を有する長孔として開口している。また、本例の放出口3は、シリンダ1上部で旋回する昇降ハンドル32で操作されるボールネジ33により昇降する遮蔽板34により、開口面積を増減できる。前記遮蔽板34は、放出口3を閉鎖する方向、すなわち下方に向けて凸な円弧周縁を有する、放出口3に相似な長方形板である。本例では、放出口3における抵抗を避けるため、遮蔽板34の側縁と噛みあう凸条又は凹溝を放出口3内周に設けていない。遮蔽板34は、閉塞板31に固着して架け渡した規制板341により放出口3からの脱落が規制され、内部からの圧力によって前記規制板341に押し付けられることにより、放出口3に沿って遮蔽板34は昇降する。このように、放出口3及び遮蔽板34を噛みあい関係もなく、全くの同一形状にすることで、遮蔽板34により放出口3を全閉できる。   The discharge port 3 of the cylinder 1 extends to the closing plate 31 that closes the cylinder end surface in the meshing range of the reverse spiral blades 432 and 432 constituting the high compression portions 43 and 43 of the both extrusion screws 4 and 4. Open in the present direction. The discharge port 3 of this example is on the side where the reverse spiral blades 432, 432 constituting the high compression portion 43 are engaged with each other, that is, the screw shafts 431, 431 of both the extrusion screws 4, 4 from the line connecting the centers of the screw shafts 431, 431 of the both extrusion screws 4, 4. Is opened as a long hole having a circular arc periphery convex downward. Further, the opening area of the discharge port 3 of this example can be increased or decreased by a shielding plate 34 that is moved up and down by a ball screw 33 that is operated by a lifting handle 32 that rotates at the top of the cylinder 1. The shielding plate 34 is a rectangular plate similar to the discharge port 3, which has a circular arc periphery convex toward the closing direction of the discharge port 3, that is, downward. In this example, in order to avoid resistance at the discharge port 3, no protrusions or grooves that engage with the side edges of the shielding plate 34 are provided on the inner periphery of the discharge port 3. The shielding plate 34 is prevented from dropping from the discharge port 3 by the restriction plate 341 that is fixedly attached to the closing plate 31 and is pressed against the restriction plate 341 by the pressure from the inside. The shielding plate 34 moves up and down. In this way, the discharge port 3 can be fully closed by the shielding plate 34 by making the discharge port 3 and the shielding plate 34 have exactly the same shape without any meshing relationship.

本例の2軸スクリュー押出し機は、上記放出口3のほか、シリンダ端面を塞ぐ閉塞板31に排出孔35,35を開口している。この排出孔35は、シリンダ1内に蓄積する水、その他廃液の排出口であり、必要に応じてシリンダ1内の圧力を逃がすもので、通常は閉鎖しておく。本例の排出孔35,35は、両押出しスクリュー4,4のスクリュー軸431,431の中心を結ぶ線より高圧縮部43を構成する逆螺旋羽根432が離れる側、すなわち両押出しスクリュー4,4のスクリュー軸431,431の中心を結ぶ線より下方に、左右一対開口している。この排出孔35,35は、シリンダ側部で旋回する進退ハンドル36で操作されるボールネジ37により閉鎖板38が後退(右へ移動)すると、この閉鎖板38の連通孔39,39と一致して内外に連通し、前記閉鎖板38が進出(左へ移動)すると、この閉鎖板38の連通孔39,39からずれて閉鎖される。   In the twin screw extruder of this example, in addition to the discharge port 3, discharge holes 35 and 35 are opened in a closing plate 31 that closes the cylinder end surface. The discharge hole 35 is a discharge port for water and other waste liquid accumulated in the cylinder 1, and relieves the pressure in the cylinder 1 as necessary, and is normally closed. The discharge holes 35, 35 in this example are on the side where the reverse spiral blade 432 constituting the high compression portion 43 is separated from the line connecting the centers of the screw shafts 431, 431 of both the extrusion screws 4, 4, that is, the screws of both the extrusion screws 4, 4. A pair of left and right openings are opened below a line connecting the centers of the shafts 431 and 431. The discharge holes 35, 35 coincide with the communication holes 39, 39 of the closing plate 38 when the closing plate 38 is retracted (moved to the right) by the ball screw 37 operated by the advancing / retracting handle 36 that rotates on the side of the cylinder. When the closing plate 38 advances (moves to the left) in communication with the inside and outside, the closing plate 38 is displaced from the communication holes 39 and 39 and closed.

各押出しスクリュー4は、スクリュー軸411,412,421に巻回した螺旋羽根413,422からなる送り込み部41及び圧縮部42と、同じくスクリュー軸431に巻回した逆螺旋羽根432からなる高圧縮部43とを投入口2から放出口3に向けて順に有する。本例の押出しスクリュー4,4は鏡面対称な回転方向を有し、放出口3から見て左側の押出しスクリュー4が時計回り、右側の押出しスクリュー4が反時計回りに同期して回転する。このとき、両押出しスクリュー4,4は、螺旋羽根413,422及び逆螺旋羽根432の位相を45度ずらしているので、互いに相手の螺旋羽根413,422及び逆螺旋羽根432を自身の螺旋羽根413,422又は逆螺旋羽根432の間に入り込ませる噛み合い関係になっている。これにより、本発明の2軸スクリュー押出し機は、両押出しスクリュー4,4間で交錯する螺旋羽根413,422又は逆螺旋羽根432により、植物系原料を粉砕し、擂り潰すことができる。   Each extrusion screw 4 has an inlet 2 and a compression part 42 composed of spiral blades 413, 422 wound around screw shafts 411, 412, 421, and a high compression part 43 composed of a reverse spiral blade 432 wound around a screw shaft 431. To the discharge port 3 in order. The extrusion screws 4 and 4 of this example have a mirror-symmetric rotational direction, and the left extrusion screw 4 rotates clockwise while the right extrusion screw 4 rotates counterclockwise when viewed from the discharge port 3. At this time, the extrusion screws 4 and 4 have the spiral blades 413 and 422 and the reverse spiral blade 432 shifted in phase by 45 degrees. There is a meshing relationship between 432. Thereby, the twin-screw extruder of this invention can grind | pulverize and crush a plant-type raw material with the spiral blade 413,422 or the reverse spiral blade 432 which crosses between both the extrusion screws 4 and 4. FIG.

ここで、上記両押出しスクリュー4,4の噛み合い関係を保つには、両押出しスクリュー4,4の回転が同期していることが必要となる。これから、各押出しスクリュー4別に設けた一対の駆動源を厳密に制御することも考えられるが、例えば同一駆動源(電動機又はディーゼルエンジン等)からの1軸入力を、減速するギアボックスで2軸出力に変えて、鏡面対称の回転方向で同期した回転動力を各押出しスクリュー4に伝達する構成が、簡易かつ確実である。本例では、前記ギアボックスからの回転動力を送り込み部41側から受けて、各押出しスクリュー4を回転させる。   Here, in order to maintain the meshing relationship between the two extrusion screws 4, 4, it is necessary that the rotations of the two extrusion screws 4, 4 are synchronized. From this, it is conceivable to strictly control a pair of drive sources provided for each of the extrusion screws 4. For example, a single-axis input from the same drive source (such as an electric motor or a diesel engine) is output by a gearbox that decelerates two axes. Instead, the configuration in which the rotational power synchronized in the mirror-symmetric rotational direction is transmitted to each extrusion screw 4 is simple and reliable. In this example, the rotational power from the gear box is received from the feeding portion 41 side, and each extrusion screw 4 is rotated.

本例の送り込み部41は、押出しスクリュー4全体に対して約60%を占める長さである。これは、送り込み部41がスクリュー軸411,412の約50%に相当する範囲で開口する投入口2に繋がっているためであり、押出しスクリュー4全体に対して大半を占める送り込み部41が、大量に投入された植物系原料を円滑に圧縮部42へ送り込む。本例の送り込み部41は、2枚の螺旋羽根413それぞれを350mmピッチで、また2枚の螺旋羽根413相互を約180mmピッチでスクリュー軸411,412に巻回している。   The feeding portion 41 of this example has a length that occupies about 60% of the entire extrusion screw 4. This is because the feed section 41 is connected to the feed opening 2 that opens in a range corresponding to about 50% of the screw shafts 411 and 412. The feed section 41 that occupies most of the entire extrusion screw 4 is loaded in large quantities. The plant-based material thus produced is smoothly fed into the compression unit 42. In the feeding portion 41 of this example, the two spiral blades 413 are wound around the screw shafts 411 and 412 at a pitch of 350 mm, and the two spiral blades 413 are mutually wound at a pitch of about 180 mm.

また、本例の送り込み部41は、製造及び組立を簡便にするため、スクリュー軸411,412の延在方向に3分割された送り込み単位414,415から構成している。そして、圧縮部42に繋がる送り込み単位415はスクリュー軸412を徐変に拡径しており、投入口2付近における送り込み単位414のスクリュー軸411が約140mm径であるのに対して圧縮部42のスクリュー軸421を約150mm径と大径にしている。これにより、送り込み部41は、植物系原料を円滑に圧縮部42に送り込みながら、徐々に圧縮、減容していくことができる。   Further, the feeding portion 41 of this example is composed of feeding units 414 and 415 that are divided into three in the extending direction of the screw shafts 411 and 412 in order to simplify the manufacture and assembly. The feed unit 415 connected to the compression unit 42 gradually increases the diameter of the screw shaft 412. The screw shaft 411 of the feed unit 414 in the vicinity of the inlet 2 has a diameter of about 140 mm, whereas the compression unit 42 The screw shaft 421 has a large diameter of about 150 mm. Thereby, the feeding part 41 can gradually compress and reduce the volume while feeding the plant-based raw material smoothly to the compressing part 42.

本例の圧縮部42は、押出しスクリュー4全体に対して約20%を占める長さである。この圧縮部42が、植物系原料を擂り潰しながら圧縮し、この圧縮に伴って昇温させながら、減容する。このため、本例の圧縮部42は、上述したようにスクリュー軸421を送り込み部41より大径にしてスクリュー軸421とライナー11との空間を狭くしているほか、螺旋羽根422を4枚に増やし、各螺旋羽根422のピッチを約180mm、各螺旋羽根422相互のピッチを約90mmにしている。ここで、送り込み部41から圧縮部42へ円滑に植物系原料を送り込むため、圧縮部42で増数した螺旋羽根422のうち、1つおきの2枚の螺旋羽根422の始端を送り込み部41の螺旋羽根413の終端に一致させ、両螺旋羽根413,422を連続させている。   The compression part 42 of this example is the length which occupies about 20% with respect to the extrusion screw 4 whole. The compression unit 42 compresses the plant-based raw material while crushing, and reduces the volume while raising the temperature along with the compression. For this reason, the compression part 42 of the present example has a screw shaft 421 larger in diameter than the feeding part 41 as described above, and narrows the space between the screw shaft 421 and the liner 11, and four spiral blades 422. The pitch of each spiral blade 422 is about 180 mm, and the pitch between the spiral blades 422 is about 90 mm. Here, in order to smoothly feed the plant-based material from the feeding unit 41 to the compressing unit 42, among the spiral blades 422 increased by the compressing unit 42, the start ends of every other two spiral blades 422 of the feeding unit 41 Both spiral blades 413 and 422 are made to coincide with the end of the spiral blade 413.

上記圧縮部42の構成、すなわちスクリュー軸421の大径化、螺旋羽根422の増数、そして螺旋羽根422の狭ピッチ化は、それぞれが個別に植物系原料の擂り潰し、圧縮、そして減容の働きを強める要素である。本例は、前記3種類の要素を兼ね備えることで、それぞれの働きを相乗させ、押出しスクリュー4全体に占める割合が短い圧縮部42でも、効率よく植物系原料を擂り潰しながら圧縮し、減容できるようにしている。また、本発明の2軸スクリュー押出し機では、圧縮部42に続く高圧縮部43によって、植物系原料を更に擂り潰しながら圧縮するため、圧縮部42を本例のように短くできる。   The configuration of the compression part 42, that is, the increase in the diameter of the screw shaft 421, the increase in the number of spiral blades 422, and the narrowing of the pitch of the spiral blades 422 are individually crushed, compressed, and reduced in volume. It is an element that strengthens work. In this example, by combining the above three types of elements, the respective functions can be synergized, and even in the compression part 42 occupying a short ratio to the entire extrusion screw 4, the plant-based raw material can be efficiently compressed while being crushed to reduce the volume. I am doing so. Further, in the twin screw extruder of the present invention, the plant material is further compressed while being crushed by the high compression unit 43 following the compression unit 42, so that the compression unit 42 can be shortened as in this example.

本例の高圧縮部43は、押出しスクリュー4全体に対して約10%を占める長さである。この高圧縮部43は、圧縮部42に向けて植物系原料を押し返す逆螺旋羽根432をスクリュー軸431に巻回しており、圧縮部42同様、植物系原料を擂り潰しながら圧縮し、減容するが、特に圧縮の働きが強い。これは、圧縮部42から移送されてくる植物系原料を逆螺旋羽根432で押し返すことによる効果である。これから、高圧縮部43での植物系原料の移送、そして放出口3からの放出は、圧縮部42から移送されてくる植物系原料が押す力(以下、移送力と呼ぶ)のみによって実現される。   The high compression part 43 of this example is the length which occupies about 10% with respect to the extrusion screw 4 whole. The high compression unit 43 is wound around the screw shaft 431 with a reverse spiral blade 432 that pushes back the plant-based material toward the compression unit 42, and, like the compression unit 42, compresses the plant-based material while crushing and reducing the volume. However, the compression function is particularly strong. This is an effect obtained by pushing back the plant-based material transferred from the compression unit 42 by the reverse spiral blade 432. From this, the transfer of the plant raw material in the high compression part 43 and the release from the discharge port 3 are realized only by the force (hereinafter referred to as transfer force) pushed by the plant raw material transferred from the compression part 42. .

ここで、本例の高圧縮部43は、スクリュー軸431とライナー11との空間の大きさや逆螺旋羽根432の枚数を圧縮部42と同じにしながら、各逆螺旋羽根432のピッチを約350mmに、各逆螺旋羽根432相互のピッチを約180mmとし、圧縮部42の螺旋羽根422に比べて逆螺旋羽根432のピッチを緩やかにしている。上述のように、高圧縮部43は逆螺旋羽根432により植物系原料を押し返すため、放出口3に向けて植物系原料を移送するには、圧縮部42による植物系原料の移送力のみに頼ることになる。圧縮部42の螺旋羽根422に比べて高圧縮部43の逆螺旋羽根432のピッチを緩やかにした理由は、逆螺旋羽根432により植物系原料が押し戻す力(以下、戻し力と呼ぶ)より、圧縮部42による植物系原料の移送力を強くして、前記移送力及び戻し力の対抗により植物系原料を圧縮しながらも、前記移送力及び戻し力の差分により植物系原料を放出口3に向けて移送するためである。これから、高圧縮部43の逆螺旋羽根432の枚数は圧縮部42の螺旋羽根422以下、また前記逆螺旋羽根432のピッチは螺旋羽根422のピッチ以下にすることが好ましいとわかる。   Here, the high compression portion 43 of this example has the same size of the space between the screw shaft 431 and the liner 11 and the number of the reverse spiral blades 432 as the compression portion 42, and the pitch of each reverse spiral blade 432 is about 350 mm. The pitch of the reverse spiral blades 432 is set to about 180 mm, and the pitch of the reverse spiral blades 432 is made gentler than that of the spiral blades 422 of the compression unit. As described above, since the high compression unit 43 pushes back the plant raw material by the reverse spiral blade 432, the plant raw material is transferred toward the discharge port 3 only by the transfer force of the plant raw material by the compression unit 42. It will be. The reason why the pitch of the reverse spiral blade 432 of the high compression portion 43 is made gentler than that of the spiral blade 422 of the compression portion 42 is that the plant material is compressed by the force of pushing back the plant material by the reverse spiral blade 432 (hereinafter referred to as return force). The plant raw material is directed to the discharge port 3 by the difference between the transfer force and the return force while the plant raw material is compressed by the force of the transfer force and the return force while the transfer force of the plant raw material by the part 42 is increased. It is for transporting. From this, it can be seen that the number of the reverse spiral blades 432 of the high compression unit 43 is preferably equal to or less than the spiral blades 422 of the compression unit 42, and the pitch of the reverse spiral blades 432 is preferably equal to or less than the pitch of the spiral blades 422.

これから、高圧縮部43において上記戻し力以外に植物系原料の移送を妨げる要因があると、植物系原料の擂り潰し、圧縮及び減容は促進されるが、放出口3から植物系原料が放出されにくくなる問題が生ずる。このため、本例の高圧縮部43は、逆螺旋羽根432の始端を圧縮部42の螺旋羽根422の終端に一致させ、螺旋羽根422と逆螺旋羽根432とを連続させて、圧縮部42から高圧縮部43への植物系原料の受け渡しを円滑にすると共に、戻し力以外に植物系原料の移送を妨げないようにしている。   From this, if there is a factor that hinders the transfer of the plant-based raw material in addition to the above-described return force in the high compression section 43, the plant-based raw material is crushed, compressed, and reduced in volume, but the plant-based raw material is released from the discharge port 3. The problem becomes difficult to be done. For this reason, the high compression part 43 of this example makes the start end of the reverse spiral blade 432 coincide with the end of the spiral blade 422 of the compression part 42, and the spiral blade 422 and the reverse spiral blade 432 are made continuous from the compression part 42. The plant raw material is smoothly delivered to the high compression section 43, and the transfer of the plant raw material other than the return force is not hindered.

本例の2軸スクリュー押出し機は、次のように植物系原料を爆砕処理する。まず、投入口2から投入された植物系原料は、回転する押出しスクリュー4における送り込み部41のスクリュー軸411,412又は螺旋羽根413に巻き込まれ、左右の押出しスクリュー4,4の両送り込み部41,41間に引き込まれる。これにより、植物系原料が粉砕又は擂り潰しされる。そして、植物系原料は、送り込み部41の螺旋羽根413、ライナー11、そして前後のスクリュー軸411,412に囲まれた空間に閉じこめられた状態で、回転する螺旋羽根413に従って圧縮部42に向けて移送される。   The twin screw extruder of the present example pulverizes plant raw materials as follows. First, the plant-based raw material charged from the charging port 2 is wound around the screw shafts 411, 412 or the spiral blade 413 of the feeding portion 41 of the rotating extrusion screw 4 and between the feeding portions 41, 41 of the left and right extrusion screws 4, 4. Be drawn into. Thereby, a plant-type raw material is grind | pulverized or ground. Then, the plant-based material is transferred toward the compression unit 42 according to the rotating spiral blade 413 in a state of being confined in a space surrounded by the spiral blade 413, the liner 11, and the front and rear screw shafts 411 and 412 of the feeding portion 41. The

上記送り込み部41による植物系原料の移送は間断なく続けられるため、送り込み部41においても、少なからず植物系原料は圧縮される。そして、送り込み部41の最終段を構成する送り込み単位415では、スクリュー軸412が徐変に拡径しているため、スクリュー軸411、ライナー11、そして前後の螺旋羽根413に囲まれた空間も徐々に狭くなっており、前記空間に閉じこめられて移送される植物系原料を更に圧縮して、圧縮部42へ受け渡す。   Since the transfer of the plant raw material by the feeding part 41 is continued without interruption, the plant raw material is compressed in the feeding part 41 as well. In the feeding unit 415 constituting the final stage of the feeding part 41, since the screw shaft 412 is gradually increased in diameter, the space surrounded by the screw shaft 411, the liner 11, and the front and rear spiral blades 413 is gradually increased. The plant-based raw material that is confined in the space and transferred is further compressed and delivered to the compression unit 42.

圧縮部42における植物系原料も、圧縮部42のスクリュー軸421、ライナー11、そして前後の螺旋羽根422に囲まれた空間に閉じこめられた状態で、回転する螺旋羽根422に従って移送される。ここで、圧縮部42の前記空間は小さく、また既に植物系原料は圧縮を受けているため、植物系原料は左右の押出しスクリュー4,4の両圧縮部42,42間で粉砕及び圧縮が進められるほか、擂り潰される。そして、更にライナー11と螺旋羽根422との間に植物系原料が潜り込み、擂り潰される。   The plant-based raw material in the compression unit 42 is also transferred according to the rotating spiral blade 422 while confined in a space surrounded by the screw shaft 421, the liner 11 and the front and rear spiral blades 422 of the compression unit 42. Here, since the space of the compression part 42 is small and the plant-based material has already been compressed, the plant-based material is crushed and compressed between the compression parts 42, 42 of the left and right extrusion screws 4, 4. In addition to being crushed. Further, the plant-based raw material sinks between the liner 11 and the spiral blade 422 and is crushed.

上記ライナー11と螺旋羽根422との間での植物系原料の擂り潰しは、圧縮部42だけでなく、前段の送り込み部41又は後段の高圧縮部43でも生じる。また、前記擂り潰しが、植物系原料の微細化をもたらし、減容の促進、そして水蒸気爆発に必要な高圧縮を実現する。このため、本例では、ライナー11と螺旋羽根422との間での植物系原料の擂り潰しがより効率的に発揮されるように、螺旋羽根413,422及び逆螺旋羽根432のライナー11に対する各周面に、植物系原料の擂り潰しを促進し、摩耗を防止する硬化肉盛り溶接部位416,423,433を形成している。   The crushing of the plant-based raw material between the liner 11 and the spiral blade 422 occurs not only in the compression part 42 but also in the upstream feeding part 41 or the subsequent high compression part 43. In addition, the crushing brings about refinement of plant-based raw materials, promotes volume reduction, and realizes high compression necessary for steam explosion. Therefore, in this example, each peripheral surface of the spiral blades 413 and 422 and the reverse spiral blade 432 with respect to the liner 11 is more efficiently exhibited so that the plant material is crushed between the liner 11 and the spiral blade 422. Furthermore, hardened welded portions 416, 423, and 433 are formed to promote the pulverization of plant-based raw materials and prevent wear.

こうして圧縮部42で圧縮、減容された植物系原料は、高圧縮部43へ送り込まれる。ここで、既述したように、高圧縮部43は逆螺旋羽根432により植物系原料を押し戻すため、高圧縮部43における植物系原料の移送は、この高圧縮部43の戻し力と圧縮部42の移送力との差分に応じてゆっくりとした移送となる。このため、短い高圧縮部43であっても、植物系原料は左右の押出しスクリュー4,4の両高圧縮部43,43間での粉砕又は擂り潰しや、ライナー11と逆螺旋羽根432との間での擂り潰しが繰り返され、そして圧縮部42の移送力と高圧縮部43の戻し力との押しつぶしにより、水蒸気爆発が可能な程度に圧縮される。そして、こうして高圧縮された植物系原料が放出口3から放出されることで、水蒸気爆発を起こし、爆砕処理される。   The plant raw material compressed and reduced in this way by the compression unit 42 is sent to the high compression unit 43. Here, as described above, since the high compression unit 43 pushes back the plant raw material by the reverse spiral blade 432, the transfer of the plant raw material in the high compression unit 43 is performed by the return force of the high compression unit 43 and the compression unit 42. The transfer is slow according to the difference with the transfer force. For this reason, even if it is the short high compression part 43, a plant-type raw material is pulverized or crushed between both the high compression parts 43 and 43 of the right and left extrusion screws 4 and 4 and the liner 11 and the reverse spiral blade 432. The crushing in between is repeated, and the crushing of the transfer force of the compression unit 42 and the return force of the high compression unit 43 compresses the steam explosion to the extent possible. And when the plant-type raw material highly compressed in this way is discharged | emitted from the discharge port 3, it causes a steam explosion and is crushed.

爆砕処理した植物系原料の粉砕程度(粉砕された植物系原料の細やかさ程度)は、圧縮部42による移送力と高圧縮部43による戻し力との差分を、放出口3の開口面積で割った圧力(以下、放出圧力)によって決定される。これから、放出口3の開口面積を遮蔽板34により増減すれば、前記放出圧力が加減でき、結果として爆砕処理した植物系原料の粉砕程度を調整できる。例えば、圧縮部42による移送力と高圧縮部43による戻し力との差分は植物系原料によって異なるため、前記放出口3の開口面積の増減は、異なる植物系原料を用いた場合における各粉砕程度を均一化する働きも有する。   The degree of pulverization of the crushed plant material (the degree of fineness of the pulverized plant material) is obtained by dividing the difference between the transfer force by the compression part 42 and the return force by the high compression part 43 by the opening area of the discharge port 3. Pressure (hereinafter referred to as discharge pressure). From this, if the opening area of the discharge port 3 is increased / decreased by the shielding plate 34, the discharge pressure can be adjusted, and as a result, the degree of pulverization of the crushed plant-based raw material can be adjusted. For example, since the difference between the transfer force by the compression unit 42 and the return force by the high compression unit 43 differs depending on the plant material, the increase / decrease in the opening area of the discharge port 3 is about each pulverization when different plant materials are used. It also has the function of making the uniform.

また、図5に見られるように、本例では高圧縮部を延長部44に交換することにより、圧縮部42に続く延長部44での植物系原料の圧縮の程度を抑えて、減容固化処理ができるようにしている。実際には、減容固化処理される植物系原料は、所定断面形状にペレット化することが望まれるため、図示を省略するが、更に放出口に所定断面形状の筒(円筒、角筒等)を付加したり、所定断面形状の筒付き放出口に交換したりする。こうして、本例の2軸スクリュー押出し機は、高圧縮部43を用いれば爆砕処理、逆に延長部44を用いれば減容固化処理と、目的に応じた使い分けができるようになる。   In addition, as shown in FIG. 5, in this example, by replacing the high compression portion with the extension portion 44, the degree of compression of the plant raw material in the extension portion 44 following the compression portion 42 is suppressed, and the volume reduction and solidification is achieved. It can be processed. Actually, since the plant-based raw material to be volume-reduced and solidified is desired to be pelletized to have a predetermined cross-sectional shape, illustration is omitted, but a tube (cylindrical, square tube, etc.) having a predetermined cross-sectional shape is further provided at the outlet. Or replacing the outlet with a cylinder having a predetermined cross-sectional shape. In this way, the twin screw extruder of this example can be used in accordance with the purpose, such as a blasting process when the high compression part 43 is used, and a volume reduction and solidification process when the extension part 44 is used.

延長部44は、高圧縮部に代えて押出しスクリュー4を構成する要素なので高圧縮部と同長にしており、圧縮部42の螺旋羽根422に連続する補助螺旋羽根442をスクリュー軸441に巻回している。前記補助螺旋羽根442は、圧縮部42同様4枚あり、各補助螺旋羽根442のピッチを約180mm、各螺旋羽根442相互のピッチを約90mmと、圧縮部42に同じにしている。つまり、延長部44はあくまで圧縮部42の延長に過ぎず、戻し力を発生させないので、植物系原料は移送に伴う圧縮しかされない。裏返せば、爆砕処理を実現する高圧縮部は、圧縮部42の最終段における螺旋羽根を逆螺旋羽根に交換するものと言える。   The extension portion 44 is an element constituting the extrusion screw 4 instead of the high compression portion, and thus has the same length as the high compression portion, and the auxiliary spiral blade 442 continuing to the spiral blade 422 of the compression portion 42 is wound around the screw shaft 441. ing. There are four auxiliary spiral blades 442 similar to the compression unit 42, and the pitch of each auxiliary spiral blade 442 is about 180 mm, and the pitch between the spiral blades 442 is about 90 mm, which is the same as that of the compression unit 42. That is, the extension part 44 is merely an extension of the compression part 42 and does not generate a return force, so that the plant-based raw material is only compressed along with the transfer. In other words, it can be said that the high compression unit that realizes the explosion process replaces the spiral blade in the final stage of the compression unit 42 with the reverse spiral blade.

本発明を適用した2軸スクリュー押出し機の一例を側方から見た軸方向断面図である。It is the axial direction sectional view which looked at an example of the twin screw extruder to which the present invention was applied from the side. 2軸スクリュー押出し機を放出口側から見た正面図である。It is the front view which looked at the twin screw extruder from the discharge port side. 2軸スクリュー押出し機を上方から見た軸方向断面図である。It is the axial direction sectional view which looked at the twin screw extruder from the upper part. 2軸スクリュー押出し機の軸直行方向断面図である。It is a cross-sectional view in the direction perpendicular to the axis of the twin screw extruder. 高圧縮部に代えて延長部を取り付けた2軸スクリュー押出し機を表す図1相当軸方向断面図である。FIG. 2 is an axial cross-sectional view corresponding to FIG. 1 showing a twin-screw extruder having an extension attached instead of a high compression part.

符号の説明Explanation of symbols

1 シリンダ
11 ライナー
2 投入口
21 ホッパ
3 放出口
31 閉塞板
34 遮蔽板
341 規制板
4 押出しスクリュー
41 送り込み部
411 スクリュー軸
412 徐変に拡径したスクリュー軸
413 螺旋羽根
42 圧縮部
421 スクリュー軸
422 螺旋羽根
43 高圧縮部
431 スクリュー軸
432 逆螺旋羽根
44 延長部
441 スクリュー軸
442 補助螺旋羽根
1 cylinder
11 Liner 2 inlet
21 Hopper 3 outlet
31 Blocking plate
34 Shield plate
341 Regulating plate 4 Extruding screw
41 Feeding section
411 screw shaft
412 Screw shaft with gradually increasing diameter
413 Spiral feather
42 Compression section
421 Screw shaft
422 Spiral feather
43 High compression section
431 Screw shaft
432 Reverse spiral blade
44 Extension
441 Screw shaft
442 Auxiliary spiral blade

Claims (9)

投入口及び放出口を設けたシリンダ内に、前記投入口及び放出口を結ぶ方向に延びる一対の押出しスクリューを収めた2軸スクリュー押出し機であって、各押出しスクリューはスクリュー軸に巻回した螺旋羽根からなる送り込み部及び圧縮部と、同じくスクリュー軸に巻回した逆螺旋羽根からなる高圧縮部とを投入口から放出口に向けて順に有してなり、両押出しスクリューは回転方向が鏡面対称で、互いの螺旋羽根及び逆螺旋羽根を噛み合う位置関係に配し、シリンダの投入口は両押出しスクリューの送り込み部を構成する螺旋羽根の噛み合い範囲で両押出しスクリューの延在直交方向に開口し、シリンダの放出口は両押出しスクリューの高圧縮部を構成する逆螺旋羽根の噛み合い範囲で両押出しスクリューの延在方向に開口してなる2軸スクリュー押出し機。 A twin-screw extruder in which a pair of extrusion screws extending in a direction connecting the input port and the discharge port are housed in a cylinder provided with an input port and a discharge port, each extrusion screw being a spiral wound around a screw shaft It has a feeding part and a compression part consisting of blades, and a high compression part consisting of a reverse spiral blade wound around a screw shaft in order from the inlet to the outlet, and both extrusion screws have mirror symmetry in the rotational direction. Then, it is arranged in a positional relationship where the spiral blades and the reverse spiral blades mesh with each other, and the inlet of the cylinder opens in the extending orthogonal direction of the two extrusion screws in the meshing range of the spiral blades constituting the feeding portion of the two extrusion screws, The discharge port of the cylinder is a biaxial shaft that opens in the extending direction of both extrusion screws within the meshing range of the reverse spiral blades constituting the high compression part of both extrusion screws. Clew extruder. 押出しスクリューは、送り込み部のスクリュー軸に対して圧縮部のスクリュー軸を大径にすることにより、送り込み部で相対的低圧縮の移送、圧縮部で相対的高圧縮の移送を実現してなる請求項1記載の2軸スクリュー押出し機。 The extrusion screw has a diameter of the screw shaft of the compression portion larger than that of the screw portion of the feeding portion, thereby realizing a transfer of relatively low compression at the feeding portion and a transfer of relatively high compression at the compression portion. Item 2. A twin screw extruder according to item 1. 押出しスクリューは、送り込み部の螺旋羽根に対して圧縮部の螺旋羽根の枚数を増やすことにより、送り込み部で相対的低圧縮の移送、圧縮部で相対的高圧縮の移送を実現してなる請求項1記載の2軸スクリュー押出し機。 The extrusion screw realizes a transfer of relatively low compression at the feed portion and a transfer of relatively high compression at the compression portion by increasing the number of spiral blades of the compression portion relative to the spiral blade of the feed portion. 2. A twin screw extruder according to 1. 押出しスクリューは、送り込み部の螺旋羽根に対して圧縮部の螺旋羽根のピッチを狭くすることにより、送り込み部で相対的低圧縮の移送、圧縮部で相対的高圧縮の移送を実現してなる請求項1記載の2軸スクリュー押出し機。 The extrusion screw is configured to realize a relatively low-compression transfer at the feed portion and a relatively high-compression transfer at the compression portion by narrowing the pitch of the spiral blades of the compression portion with respect to the spiral blades of the feed portion. Item 2. A twin screw extruder according to item 1. 押出しスクリューは、高圧縮部を交換自在にしてなり、該高圧縮部に代えて圧縮部の螺旋羽根に連続する補助螺旋羽根を巻回した延長部を取り付けてなる請求項1〜4いずれか記載の2軸スクリュー押出し機。 The extrusion screw is configured such that a high compression portion can be exchanged, and an extension portion around which an auxiliary spiral blade is wound is attached instead of the high compression portion. A twin screw extruder. シリンダの放出口は、両押出しスクリューのスクリュー軸の中心を結ぶ線より高圧縮部を構成する逆螺旋羽根が噛み合う側に開口してなる請求項1記載の2軸スクリュー押出し機。 2. The twin screw extruder according to claim 1, wherein the cylinder outlet is opened to a side where the reverse spiral blade constituting the high compression portion is engaged with a line connecting the centers of the screw shafts of the two extrusion screws. シリンダの放出口は、開閉自在な遮蔽板により開口面積が増減自在にしてなる請求項1又は6いずれか記載の2軸スクリュー押出し機。 The twin-screw extruder according to claim 1 or 6, wherein an opening area of the discharge port of the cylinder can be increased and decreased by an openable / closable shielding plate. 遮蔽板は、放出口に対して一方向に変位して該放出口を開閉してなる請求項7記載の2軸スクリュー押出し機。 The twin screw extruder according to claim 7, wherein the shielding plate is displaced in one direction with respect to the discharge port to open and close the discharge port. 遮蔽板は、放出口の閉鎖方向に凸な周縁を有してなる請求項8記載の2軸スクリュー押出し機。 The twin screw extruder according to claim 8, wherein the shielding plate has a peripheral edge convex in the closing direction of the discharge port.
JP2005058092A 2005-03-02 2005-03-02 Twin-screw extruder Pending JP2006239729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058092A JP2006239729A (en) 2005-03-02 2005-03-02 Twin-screw extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058092A JP2006239729A (en) 2005-03-02 2005-03-02 Twin-screw extruder

Publications (1)

Publication Number Publication Date
JP2006239729A true JP2006239729A (en) 2006-09-14

Family

ID=37046634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058092A Pending JP2006239729A (en) 2005-03-02 2005-03-02 Twin-screw extruder

Country Status (1)

Country Link
JP (1) JP2006239729A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205664A (en) * 2011-02-01 2011-10-05 常熟市华技锅炉制造有限公司 Biomass fuel moulding machine
US9523056B2 (en) 2012-12-05 2016-12-20 Ube Industries, Ltd. Biomass solid fuel
EP2371525B2 (en) 2010-04-01 2018-01-03 Börner, Frank Twin screw extruder and method for the thermo-mechanical pulping of organic raw and residual materials
CN110452752A (en) * 2019-09-11 2019-11-15 兖矿集团有限公司 Coal powder conveyer and molded coal production facility with the coal powder conveyer
JP7388669B2 (en) 2021-07-02 2023-11-29 株式会社Ihi Solid fuel production system and solid fuel production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371525B2 (en) 2010-04-01 2018-01-03 Börner, Frank Twin screw extruder and method for the thermo-mechanical pulping of organic raw and residual materials
CN102205664A (en) * 2011-02-01 2011-10-05 常熟市华技锅炉制造有限公司 Biomass fuel moulding machine
US9523056B2 (en) 2012-12-05 2016-12-20 Ube Industries, Ltd. Biomass solid fuel
CN110452752A (en) * 2019-09-11 2019-11-15 兖矿集团有限公司 Coal powder conveyer and molded coal production facility with the coal powder conveyer
CN110452752B (en) * 2019-09-11 2024-05-28 山东能源集团有限公司 Pulverized coal conveyor and molded coal production equipment with same
JP7388669B2 (en) 2021-07-02 2023-11-29 株式会社Ihi Solid fuel production system and solid fuel production method

Similar Documents

Publication Publication Date Title
KR101456074B1 (en) The food garbage compactor and The food garbage processing apparatus
CN101757968B (en) Smashing and separating machine for kitchen rubbish
JP2006239729A (en) Twin-screw extruder
CN202356391U (en) Kitchen garbage crashing and separating device
DE202012012587U1 (en) Device for processing plastic material
DE202012012569U1 (en) Device for processing plastic material
JP2013078752A (en) Granulator for crushed pieces
US8714468B2 (en) Plastic scrap crushing apparatus
JP2011206638A (en) Apparatus for manufacturing biomass ground material, and method for manufacturing biomass ground material using the same
CN211801045U (en) Traditional Chinese medicine grinding device capable of preventing loss
CN105903531A (en) Cutting and crushing mechanism
EP3825007A1 (en) Grinder
DE102009058507B4 (en) extruder means
CN213669500U (en) Corncob crusher
KR101013132B1 (en) The solid fuel extrusion molding device using combustibility waste
CN111420601A (en) Clean and environment-friendly biomass heating particle preparation equipment
JPH0390313A (en) Crushing and compressing device
CN214811560U (en) Can prevent rubbing crusher of jam
JPS5918096B2 (en) Single screw extruder dispersion kneading device
CN218190097U (en) A kind of comminutor
CN215696703U (en) Be used for chemical plant waste treatment device
AT523082B1 (en) Device for processing material, in particular plastic material
CN108990562A (en) Single lead screw ex truding briquetting machine is crushed in a kind of bioelectrogenesis
CN215611904U (en) Food crushing and processing device
CN211586912U (en) Building rubbish is with retrieving reducing mechanism