JP2006239542A - Catalyst for water gas shift reaction and method for manufacturing the same - Google Patents

Catalyst for water gas shift reaction and method for manufacturing the same Download PDF

Info

Publication number
JP2006239542A
JP2006239542A JP2005057421A JP2005057421A JP2006239542A JP 2006239542 A JP2006239542 A JP 2006239542A JP 2005057421 A JP2005057421 A JP 2005057421A JP 2005057421 A JP2005057421 A JP 2005057421A JP 2006239542 A JP2006239542 A JP 2006239542A
Authority
JP
Japan
Prior art keywords
catalyst
iron
gas shift
shift reaction
water gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005057421A
Other languages
Japanese (ja)
Other versions
JP4715999B2 (en
Inventor
Gakubu Yamamoto
学武 山本
Nariya Kobayashi
斉也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2005057421A priority Critical patent/JP4715999B2/en
Publication of JP2006239542A publication Critical patent/JP2006239542A/en
Application granted granted Critical
Publication of JP4715999B2 publication Critical patent/JP4715999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for the water gas shift reaction, which has high catalytic activity and high activity even when the catalyst contains a small amount of a noble metal. <P>SOLUTION: The catalyst for the water gas shift reaction is characterized in that one or two or more active metallic elements selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os and Ru are incorporated in solid solution of oxides of iron and one or two or more elements selected from manganese, cobalt, titanium, nickel and zinc. This catalyst can be obtained by mixing an alkaline solution with a solution containing iron, one or two or more elements selected from manganese, cobalt, titanium, nickel and zinc and one or two or more active metallic elements and aging, and filtering the obtained particles and washing the obtained particles with water, and firing the washed particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水性ガスシフト反応に好適に用いることができる触媒及びその製造方法に関するものである。   The present invention relates to a catalyst that can be suitably used for a water gas shift reaction and a method for producing the same.

水性ガスシフト反応(CO+HO→CO+H)は、コークスや天然ガスなどの炭化水素及び水蒸気から得られる水性ガスに含まれるCOとHOの比率を変える、あるいはHの製造等のため、化学工業プロセスにおいて利用されている大変重要な反応である。 The water gas shift reaction (CO + H 2 O → CO 2 + H 2 ) changes the ratio of CO and H 2 O contained in water gas obtained from hydrocarbons and steam such as coke and natural gas, or production of H 2 , etc. Therefore, it is a very important reaction used in the chemical industry process.

また、近年注目を浴びている燃料電池の燃料となる水素を、都市ガス等を改質して得る場合、副生したCOが燃料電池電極を被毒して発電効率が低下するため、この副生したCOを低減させる反応としてより高活性な水性ガスシフト反応に注目が集まっている。こうした水性ガスシフト反応の触媒は、一般に、150〜230℃程度の低温においては銅−亜鉛系や白金/アルミナ系が、350〜450℃程度の高温においては鉄−クロム系が使用される。   In addition, when hydrogen, which is the fuel of fuel cells that has been attracting attention in recent years, is obtained by reforming city gas or the like, the by-produced CO poisons the fuel cell electrode, reducing power generation efficiency. Attention has been focused on a highly active water gas shift reaction as a reaction for reducing the generated CO. As a catalyst for such a water gas shift reaction, a copper-zinc system or a platinum / alumina system is generally used at a low temperature of about 150 to 230 ° C., and an iron-chromium system is used at a high temperature of about 350 to 450 ° C.

しかし、銅−亜鉛系触媒は、酸化やシンタリングによって短時間で失活してしまう問題点がある。またビーズ形状の場合には爆裂することもあり、使用に際して細心を払わなくてはならない。白金/アルミナ系触媒の耐熱性は高いが、高い活性を発現させるためには白金の担持量を多くする必要があるため触媒自体が非常に高価になってしまう問題点がある。さらには稀少な元素を大量に使用することによって枯渇問題やさらなる値段の高騰などの問題が懸念される。   However, the copper-zinc catalyst has a problem that it deactivates in a short time due to oxidation or sintering. In the case of a bead shape, it may explode and must be used with great care. Although the heat resistance of the platinum / alumina catalyst is high, there is a problem that the catalyst itself becomes very expensive because it is necessary to increase the amount of platinum supported in order to exhibit high activity. Furthermore, there are concerns about problems such as depletion and higher prices due to the use of rare elements in large quantities.

また、鉄−クロム系触媒の耐熱性は高いが反応温度が高温であるため、平衡ガス組成のCO濃度がある一定基準より下がらないという問題点がある。また、これらの触媒を成形した触媒体は、高温で焼結させられないために、圧縮成型されることが多いが、この方法では摩擦や衝撃によって表面から徐々に粉体が脱落する粉化現象が起こりやすく、その粉による触媒反応管の閉塞や反応場圧の上昇が起こりやすくなってしまう。   Further, although the heat resistance of the iron-chromium catalyst is high, the reaction temperature is high, so that there is a problem that the CO concentration of the equilibrium gas composition does not fall below a certain standard. In addition, the catalyst bodies that are molded from these catalysts are often compression molded because they cannot be sintered at high temperatures, but in this method, the powdering phenomenon in which the powder gradually falls off the surface due to friction and impact. The catalyst reaction tube is blocked by the powder and the reaction field pressure is likely to increase.

上記問題点を克服した、大量の貴金属を使用しない高活性な触媒が得られれば、一定条件下の化学工業プロセスのみならず、特に変動条件下における種々の利用が期待され、燃料電池に使用される燃料の改質、即ち、電極触媒の触媒毒となるCOを燃料電池に有用な燃料の水素に転化させる利用が期待される。   If a highly active catalyst that does not use a large amount of precious metals and that overcomes the above problems is obtained, it can be used not only in chemical industry processes under certain conditions but also in various variable conditions, and is used in fuel cells. Therefore, it is expected that CO, which is a catalyst poison of an electrode catalyst, is converted to hydrogen, a fuel useful for fuel cells.

また、通常触媒を使用するときは成型体として使用するので何らかの方法で成型体を作成する必要があり、触媒粉体を型に詰め、圧力をかける方法が広く用いられている。   In addition, since a catalyst is usually used as a molded body, it is necessary to prepare the molded body by some method, and a method in which catalyst powder is packed in a mold and pressure is applied is widely used.

鉄系触媒について記された特許文献を以下に示す。
特開平7−289900号公報 特開平9−57104号公報 特開2004−160433号公報
Patent documents describing iron-based catalysts are shown below.
JP 7-289900 A JP-A-9-57104 JP 2004-160433 A

少量の貴金属でも高い活性を有する触媒は、現在最も要求されているところであるが、この要求を満たすような水性ガスシフト反応用の触媒は未だ提供されていない。   A catalyst having high activity even with a small amount of noble metal is currently most demanded, but a catalyst for a water gas shift reaction that satisfies this requirement has not yet been provided.

即ち、前記特許文献1〜3記載の技術は、活性金属成分を担持していない為、低温では活性が高いとは言い難いものである。また、前記特許文献1〜2記載の技術は、鉄と他の金属が固溶体を成していないので、より低活性である。よって水性ガスシフト反応に用いる触媒として優れた特性を有するとは言い難いものである。   That is, since the techniques described in Patent Documents 1 to 3 do not carry an active metal component, it is difficult to say that the activity is high at low temperatures. Moreover, since the technique of the said patent documents 1-2 is not forming the solid solution with iron and another metal, it is lower activity. Therefore, it cannot be said that it has excellent characteristics as a catalyst used in the water gas shift reaction.

本発明は、上記した特許文献1〜3に記載された従来技術の現状に鑑みてなされたものであり、水性ガスシフト反応において、より活性の高い触媒及びその成型体を提供することを技術的課題とする。   The present invention has been made in view of the current state of the prior art described in Patent Documents 1 to 3 above, and it is a technical problem to provide a more active catalyst and a molded body thereof in a water gas shift reaction. And

本発明者らは、この点について鋭意検討を重ねたところ、特定の酸化物を使用し、成型体を作成することにより前記課題を解消できるとの知見を得て発明を完成するに至った。   The inventors of the present invention have made extensive studies on this point. As a result, the inventors have obtained knowledge that the above problems can be solved by using a specific oxide and forming a molded body, and have completed the invention.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、少なくとも鉄、m及び活性金属元素nからなる触媒で、鉄及びmが酸化物固溶体をなしており、mはMn,Co,Ti,Ni,Znの中から選ばれる1種または2種以上の元素であり、活性金属元素nはAu,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の活性金属元素である水性ガスシフト反応用の触媒である(本発明1)。   That is, the present invention is a catalyst comprising at least iron, m, and an active metal element n, wherein iron and m form an oxide solid solution, and m is one selected from Mn, Co, Ti, Ni, and Zn. Or two or more elements, and the active metal element n is one or more selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru. It is a catalyst for water gas shift reaction which is a metal element (Invention 1).

また、本発明は、本発明1の触媒中のm元素の含有量が、触媒中の元素の比で0.01〜20mol%であることを特徴とする水性ガスシフト反応用の触媒である(本発明2)。   Further, the present invention is a catalyst for water gas shift reaction, wherein the content of element m in the catalyst of the present invention 1 is 0.01 to 20 mol% in terms of the ratio of elements in the catalyst (this book) Invention 2).

また、本発明は、本発明1又は2の触媒を構成する活性金属元素の存在量が0.001〜2mol%であることを特徴とする水性ガスシフト反応用の触媒である(本発明3)。   Further, the present invention is a catalyst for water gas shift reaction, wherein the abundance of active metal elements constituting the catalyst of the present invention 1 or 2 is 0.001 to 2 mol% (Invention 3).

また、本発明は、本発明1乃至3のいずれかに記載の触媒において、アルミニウム、ジルコニウム、珪素、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、亜鉛、ランタン及びネオジウムの中から選ばれる1種または2種以上の異種金属元素の酸化物を、触媒に対して1〜900重量%含有させたことを特徴とする水性ガスシフト反応用の触媒である(本発明4)。   Further, the present invention provides the catalyst according to any one of the first to third aspects of the present invention, wherein one or two selected from aluminum, zirconium, silicon, magnesium, calcium, strontium, barium, titanium, zinc, lanthanum, and neodymium. It is a catalyst for water gas shift reaction characterized by containing 1 to 900% by weight of oxides of different kinds of different metal elements with respect to the catalyst (Invention 4).

また、本発明は、本発明1乃至3のいずれかに記載の触媒において、アルミニウム、ジルコニウム、珪素、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、亜鉛、ランタン及びネオジウムの中から選ばれる1種又は2種以上の異種金属元素の酸化物を、触媒に対して1〜900重量%含有し、さらに、活性金属元素を0.0001〜2mol%担持させたことを特徴とする水性ガスシフト反応用の触媒である(本発明5)。   Further, the present invention provides the catalyst according to any one of the first to third aspects, wherein one or two selected from aluminum, zirconium, silicon, magnesium, calcium, strontium, barium, titanium, zinc, lanthanum and neodymium. A catalyst for a water gas shift reaction, characterized in that it contains 1 to 900% by weight of an oxide of different kinds of different metal elements with respect to the catalyst, and further supports 0.0001 to 2 mol% of an active metal element. There is (Invention 5).

また、本発明は、サポート材に、本発明1乃至5のいずれかに記載の触媒を存在させたことを特徴とする水性ガスシフト反応用の触媒体である(本発明6)。   Further, the present invention is a catalyst body for water gas shift reaction, characterized in that the catalyst according to any one of the present invention 1 to 5 is present in a support material (Invention 6).

また、本発明は、サポート材に、本発明1乃至5のいずれかに記載の触媒を存在させ、更に、活性金属元素を0.0001〜2mol%担持させたことを特徴とする水性ガスシフト反応用の触媒体である(本発明7)。   Further, the present invention provides a water gas shift reaction characterized in that the catalyst according to any one of the present invention 1 to 5 is present in a support material and 0.0001 to 2 mol% of an active metal element is further supported. (Invention 7).

また、本発明は、アルカリ性溶液と、鉄、m及びnを含む溶液とを混合、熟成して得られる粒子を濾別、水洗した後、焼成することを特徴とする本発明1記載の水性ガスシフト反応用の触媒の製造方法である(本発明8)。   Further, the present invention provides the water gas shift according to the present invention 1, wherein particles obtained by mixing and aging an alkaline solution and a solution containing iron, m and n are filtered, washed with water, and then fired. It is a manufacturing method of the catalyst for reaction (this invention 8).

また、本発明は、アルカリ性溶液と、鉄、m及びnを含む溶液とを混合、熟成して得られる粒子を濾別、水洗した後、活性金属元素nを担持させ、焼成することを特徴とする前記請求項1記載の水性ガスシフト反応用の触媒の製造方法である(本発明9)。   Further, the present invention is characterized in that particles obtained by mixing and aging an alkaline solution and a solution containing iron, m, and n are separated by filtration, washed with water, supported with an active metal element n, and fired. The method for producing a catalyst for a water gas shift reaction according to claim 1 (Invention 9).

また、本発明は、サポート材の表面にセラミックスを含むスラリーを塗布して焼成した後、請求項1乃至5のいずれかに記載の触媒を担持し、更に、活性金属元素を担持させることを特徴とする本発明6又は7記載の水性ガスシフト反応用の触媒体の製造方法である(本発明10)。   Further, the present invention is characterized in that after the slurry containing ceramics is applied to the surface of the support material and fired, the catalyst according to any one of claims 1 to 5 is supported, and an active metal element is further supported. This is a method for producing a catalyst body for water gas shift reaction according to the present invention 6 or 7 (present invention 10).

本発明に係る触媒は、少なくとも鉄及びmを含む酸化物固溶体を形成し、且つ、活性金属元素nを担持することで、水性ガスシフト反応をより効率よく行えるという優れた効果を奏する。   The catalyst according to the present invention has an excellent effect that a water gas shift reaction can be performed more efficiently by forming an oxide solid solution containing at least iron and m and supporting an active metal element n.

また、本発明4又は5に係るアルミニウム酸化物などを含有させた触媒は、水性ガスシフト反応時の粒子成長を抑制することができるので、より効率よく水性ガスシフト反応を行うことができる。   Moreover, since the catalyst containing the aluminum oxide according to the present invention 4 or 5 can suppress the particle growth during the water gas shift reaction, the water gas shift reaction can be performed more efficiently.

また、本発明6又は7に係るサポート材に触媒を存在させた場合には、触媒のほぼ全量が水性ガスシフト反応に寄与することができるので、触媒の機能を十分に発揮することができる。   In addition, when the catalyst is present in the support material according to the sixth or seventh aspect of the invention, almost the entire amount of the catalyst can contribute to the water gas shift reaction, so that the function of the catalyst can be sufficiently exhibited.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係る触媒は、鉄と、Mn,Co,Ti,Ni,Znの中から選ばれる1種または2種以上の元素(以下、「m」という。)とを必須成分とした固溶体酸化物に、Au,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の活性金属元素nが存在する触媒からなる。   The catalyst according to the present invention is a solid solution oxide containing iron and one or more elements selected from Mn, Co, Ti, Ni and Zn (hereinafter referred to as “m”) as essential components. And a catalyst containing one or more active metal elements n selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru.

本発明に係る触媒は、鉄及びmを含む固溶体酸化物からなる担体に、活性金属元素nを担持させた触媒からなる水性ガスシフト反応用の触媒である。担体が固溶体を形成しなければ水性ガスシフト反応用の触媒として機能が十分ではない。   The catalyst according to the present invention is a water gas shift reaction catalyst comprising a catalyst in which an active metal element n is supported on a carrier comprising a solid solution oxide containing iron and m. If the support does not form a solid solution, the function as a catalyst for the water gas shift reaction is not sufficient.

一般に、鉄とクロムの固溶体は高温水性ガスシフト用触媒として古くから用いられており、鉄とクロムが固溶体を成すことで酸素の貯蔵放出能が向上し、効率よく触媒反応が達成されるものであるが、水性ガスシフト反応において、その作用機構については充分解明されていない。本発明では、触媒として鉄及びmからなる酸化物固溶体とすることで、酸素の貯蔵放出能が向上し効率よく水性ガスシフト反応が行えると推察される。また、鉄及びmからなる酸化物固溶体とすることで、鉄酸化物単独の場合よりも高い比表面積をもつ担体を得ることができる。   In general, solid solutions of iron and chromium have long been used as catalysts for high-temperature water gas shift, and the ability to store and release oxygen is improved when iron and chromium form a solid solution, so that a catalytic reaction can be achieved efficiently. However, the mechanism of action in the water gas shift reaction has not been fully elucidated. In the present invention, it is presumed that by using an oxide solid solution composed of iron and m as a catalyst, the ability to store and release oxygen is improved and water gas shift reaction can be performed efficiently. Moreover, the support | carrier which has a higher specific surface area than the case of an iron oxide alone can be obtained by setting it as the oxide solid solution which consists of iron and m.

本発明に係る触媒の結晶構造はスピネル型であることが好ましく、Feに基づくマグネタイト、γ−Feに基づくマグヘマイト、又は両者の混合体からなることが好ましい。 The crystal structure of the catalyst according to the present invention is preferably a spinel type, and is preferably composed of magnetite based on Fe 3 O 4 , maghemite based on γ-Fe 2 O 3 , or a mixture of both.

本発明に係る触媒の鉄元素のうち、価数が2価であるものの割合は、0〜40mol%の範囲内であることが好ましい。   Of the iron elements of the catalyst according to the present invention, the ratio of those having a valence of 2 is preferably in the range of 0 to 40 mol%.

なお、比表面積が増大すると担持した金属が高分散し、活性点が増加しやすくなり、活性が向上しやすくなることは知られており、酸素の貯蔵放出能の向上は、酸素原子の移動によって達成されるとされる水性ガスシフト反応活性の向上の要因となり得ると推察される。   In addition, it is known that when the specific surface area is increased, the supported metal is highly dispersed, the active sites are likely to increase, and the activity is likely to be improved. It is surmised that it can be a factor for improving the water gas shift reaction activity that is supposed to be achieved.

本発明1〜3の触媒を構成するmの含有量は、触媒中の元素の比で0.01〜20mol%の範囲内であることが好ましい。mが前記範囲外の場合には、本発明の目的とする効果が得られない。より好ましくは0.5〜10mol%の範囲内である。   The content of m constituting the catalysts of the present invention 1 to 3 is preferably in the range of 0.01 to 20 mol% in terms of the ratio of elements in the catalyst. When m is outside the above range, the intended effect of the present invention cannot be obtained. More preferably, it exists in the range of 0.5-10 mol%.

本発明に係る触媒の活性金属元素は、前記触媒の表面に担持させる形態又は、触媒中に含有させる形態のいずれの形態でもよく、好ましくは、触媒の表面に担持させる形態である。活性金属元素の存在量は、触媒中の元素の比で0.001〜5.0mol%が好ましく、より好ましくは0.01〜1.5mol%である。活性金属元素の存在量が前記範囲外の場合には、十分な活性を得ることができない。   The active metal element of the catalyst according to the present invention may be in the form of being supported on the surface of the catalyst or in the form of being contained in the catalyst, preferably in the form of being supported on the surface of the catalyst. The abundance of the active metal element is preferably 0.001 to 5.0 mol%, more preferably 0.01 to 1.5 mol% in terms of the ratio of elements in the catalyst. If the amount of the active metal element is outside the above range, sufficient activity cannot be obtained.

本発明1〜3に係る触媒のBET比表面積は30m/g以上が好ましく、より好ましくは50m/g以上である。上限は300m/g程度である。 The BET specific surface area of the catalysts according to the present invention 1 to 3 is preferably 30 m 2 / g or more, more preferably 50 m 2 / g or more. The upper limit is about 300 m 2 / g.

本発明1〜3に係る触媒のCO転化率は、後述する評価法において、30%以上が好ましく、より好ましくは50%以上である。   The CO conversion rate of the catalysts according to the present invention 1 to 3 is preferably 30% or more, more preferably 50% or more, in the evaluation method described later.

本発明4に係る触媒は、前記本発明1乃至3の触媒に、アルミニウム、ジルコニウム、珪素、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、亜鉛、ランタン及びネオジウムの中から選ばれる1種または2種以上の異種金属元素から成る酸化物(以下、「異種金属元素の酸化物」という。)を含有するものである。異種金属元素の酸化物が存在することによって、これらが障壁となり、水性ガスシフト反応時に本発明1乃至3の触媒を構成する粒子の成長を抑制し、触媒活性を高く保持することができる。   The catalyst according to the present invention 4 is the catalyst according to the present invention 1 to 3, wherein one or more selected from aluminum, zirconium, silicon, magnesium, calcium, strontium, barium, titanium, zinc, lanthanum and neodymium. And an oxide composed of a different metal element (hereinafter referred to as “oxide of a different metal element”). By the presence of oxides of different metal elements, these serve as barriers, and during the water gas shift reaction, the growth of particles constituting the catalysts of the present inventions 1 to 3 can be suppressed and the catalytic activity can be kept high.

本発明4に係る触媒において、異種金属元素の酸化物の含有量は、本発明1〜3の触媒に対して、1〜900重量%含有することが好ましい。異種金属元素の酸化物の含有量が1重量%未満の場合には、障壁としての効果が得られず、900重量%を越える場合には、本発明1乃至3の触媒成分が少なくなるので、活性が低下してしまうため好ましくない。より好ましくは20〜800重量%である。   In the catalyst according to the present invention 4, the content of the oxide of the different metal element is preferably 1 to 900% by weight with respect to the catalyst of the present invention 1 to 3. When the content of the oxide of the dissimilar metal element is less than 1% by weight, the effect as a barrier cannot be obtained, and when it exceeds 900% by weight, the catalyst components of the present invention 1 to 3 are reduced. Since activity falls, it is not preferable. More preferably, it is 20 to 800% by weight.

本発明4に係る触媒のBET比表面積は、前記本発明1〜3に係る触媒と同程度である。   The BET specific surface area of the catalyst according to the present invention 4 is approximately the same as that of the catalyst according to the present inventions 1 to 3.

本発明4に係る触媒のCO転化率は、後述する評価法において、40%以上が好ましく、より好ましくは60%以上である。   The CO conversion rate of the catalyst according to the present invention 4 is preferably 40% or more, more preferably 60% or more, in the evaluation method described later.

本発明5に係る触媒は、前記本発明4に係る触媒に対して、更に、Au,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の活性金属元素を触媒に対し0.0001〜2mol%担持させた触媒であり、担持量はより好ましくは、0.01〜1mol%である。なお、触媒中の活性金属元素の全含有量は0.1〜1.5mol%が好ましい。   The catalyst according to the present invention 5 is further selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru with respect to the catalyst according to the present invention 1 The catalyst is a catalyst in which 0.0001 to 2 mol% of a seed or two or more active metal elements are supported on the catalyst, and the supported amount is more preferably 0.01 to 1 mol%. In addition, the total content of active metal elements in the catalyst is preferably 0.1 to 1.5 mol%.

本発明5に係る触媒のCO転化率は、後述する評価法において、40%以上が好ましく、より好ましくは60%以上である。   The CO conversion rate of the catalyst according to the present invention 5 is preferably 40% or more, more preferably 60% or more, in the evaluation method described later.

本発明1乃至5に係る触媒は、使用する各用途に合わせて成形しても良い。形状やサイズは特に限定しないが、例えば、球状、円柱状、管状や、ハニカム体への塗布などでもよい。通常、球状や円柱状、管状の形状を持つ触媒体の場合のサイズは0.1〜30mm程度が好適である。条件によっては有機物や無機物などの各種バインダーを添加することで成形体の強度や細孔分布密度を調整しても良い。   You may shape | mold the catalyst which concerns on this invention 1 thru | or 5 according to each use to be used. The shape and size are not particularly limited, but may be, for example, spherical, cylindrical, tubular, or applied to a honeycomb body. In general, the size of a catalyst body having a spherical, cylindrical, or tubular shape is preferably about 0.1 to 30 mm. Depending on conditions, the strength and pore distribution density of the molded body may be adjusted by adding various binders such as organic substances and inorganic substances.

本発明6に係る触媒体は、サポート材に本発明1乃至5に係るいずれかの触媒を付着・被覆したものである。   The catalyst body according to the present invention 6 is obtained by adhering / coating any of the catalysts according to the present invention 1 to 5 to a support material.

本発明におけるサポート材としては、鉄板、SUS管、ムライト、アルミナ、シリカ、コージェライト等から成る成型体であり、好ましくはシリカ、アルミナ、コージェライト等である。   The support material in the present invention is a molded body made of iron plate, SUS tube, mullite, alumina, silica, cordierite or the like, preferably silica, alumina, cordierite or the like.

なお、本発明においては、前記サポート材の表面をケイ素、アルミニウム、ジルコニウム等の酸化物又は水酸化物などであらかじめ被覆してもよい。   In the present invention, the surface of the support material may be coated in advance with an oxide or hydroxide of silicon, aluminum, zirconium or the like.

サポート材と本発明に係る触媒の線膨張係数の相違は少ないほど理想であり、好ましくは±1%以下、より好ましくは±0.5%以下が良い。   The smaller the difference in linear expansion coefficient between the support material and the catalyst according to the present invention, the more ideal it is, and preferably ± 1% or less, more preferably ± 0.5% or less.

また、前記サポート材に本発明1乃至5の触媒を存在させることによって、触媒の使用量を減らすことができ、より安価な触媒を作成できる。   In addition, by using the catalyst of the present invention 1 to 5 in the support material, the amount of the catalyst used can be reduced, and a cheaper catalyst can be produced.

本発明7に係る触媒体は、サポート材に本発明1乃至5に係るいずれかの触媒を被覆し、且つ、Au,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の活性金属元素を触媒に対し0.0001〜5.0重量%担持したものである。より好ましくは、0.01〜3重量%担持させた触媒である。なお、触媒体中の活性金属元素の全含有量は0.1〜4.0重量%が好ましい。   The catalyst body according to the present invention 7 covers the support material with any one of the catalysts according to the present invention 1 to 5, and Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os. , One or more active metal elements selected from Ru are supported on the catalyst in an amount of 0.0001 to 5.0% by weight. More preferably, the catalyst is supported by 0.01 to 3% by weight. The total content of active metal elements in the catalyst body is preferably 0.1 to 4.0% by weight.

次に、本発明に係る触媒の製造法について述べる。   Next, a method for producing the catalyst according to the present invention will be described.

まず、本発明1乃至3に係る触媒は、アルカリ性溶液と、鉄及びmを含む溶液とを混合、熟成した後、濾別、水洗、乾燥し、次いで、200〜1300℃の温度範囲で加熱して触媒とする製造方法において、Au,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruから選ばれる1種又は2種以上からなる活性金属元素の溶液を鉄などと同様に添加・混合する方法、又は、加熱後の酸化物固溶体に前記活性金属元素を担持する方法のいずれかによっても得ることができる。   First, the catalysts according to the first to third aspects of the present invention are mixed and aged with an alkaline solution and a solution containing iron and m, then filtered, washed with water, dried, and then heated in a temperature range of 200 to 1300 ° C. In the production method using a catalyst, a solution of one or more active metal elements selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru is used as iron or the like. It can be obtained by either the method of adding and mixing in the same manner as described above, or the method of supporting the active metal element on the heated oxide solid solution.

鉄を含む溶液としては、第一硫酸鉄水溶液、第二硫酸鉄水溶液、第一塩化鉄水溶液、第二塩化鉄水溶液、硝酸鉄水溶液等であり、2価又は3価の鉄塩水溶液を用いればよい。また、2価又は3価の鉄塩水溶液を併用してもよく、併用する場合には2価鉄と3価鉄との割合が10:90〜90:10が好ましい。   Examples of the iron-containing solution include a ferrous sulfate aqueous solution, a ferric sulfate aqueous solution, a ferrous chloride aqueous solution, a ferric chloride aqueous solution, an iron nitrate aqueous solution, and the like. If a divalent or trivalent iron salt aqueous solution is used, Good. Moreover, you may use together divalent or trivalent iron salt aqueous solution, and when using together, the ratio of divalent iron and trivalent iron is 10: 90-90: 10.

熟成時のpHは3〜14が好ましく特に5〜13が好ましい。   The pH during aging is preferably from 3 to 14, particularly preferably from 5 to 13.

加熱温度は、300〜800℃がより好ましい。また、加熱雰囲気は、大気中が好ましい。   As for heating temperature, 300-800 degreeC is more preferable. The heating atmosphere is preferably in the air.

鉄及びmからなる酸化物固溶体は、鉄及びmを含む水溶液を同時に混合し熟成するので、ここで生成した沈澱粒子は、元素の組成が均一な粒子になり、各元素が高分散し、固溶体を形成しやすくなる。   The oxide solid solution composed of iron and m is mixed and aged with an aqueous solution containing iron and m at the same time, so the precipitated particles produced here become particles with a uniform element composition, each element is highly dispersed, and the solid solution It becomes easy to form.

本発明においては、活性金属元素の水溶液を、鉄及びmを含む水溶液と同時、又は鉄などの複合化合物がスラリー状態のときに添加するので、活性金属元素が高分散しやすくなり、活性金属元素が高分散することによって活性金属元素の表面積が増加し、触媒活性が向上する。   In the present invention, the aqueous solution of the active metal element is added simultaneously with the aqueous solution containing iron and m, or when a composite compound such as iron is in a slurry state. Highly dispersed increases the surface area of the active metal element and improves the catalytic activity.

活性金属元素の種類によってはアルカリ性溶液と活性金属元素の溶液を混合しても活性金属元素が沈殿しにくい元素も存在するため、そのような元素は含浸法によって担持させることが好ましい。   Depending on the type of the active metal element, there is an element in which the active metal element is difficult to precipitate even when the alkaline solution and the active metal element solution are mixed. Therefore, it is preferable to support such an element by an impregnation method.

活性金属元素を含浸法によって担持させた場合でも、本発明においては、鉄及びmが固溶した酸化物であるので、高い触媒活性を有するものである。   Even when the active metal element is supported by the impregnation method, the present invention has high catalytic activity because it is an oxide in which iron and m are dissolved.

本発明4に係る触媒は、前記製造方法で得られた触媒とアルミナなどの異種金属元素の酸化物とを混合して得ることができる。   The catalyst according to the present invention 4 can be obtained by mixing the catalyst obtained by the above production method and an oxide of a different metal element such as alumina.

前記混合は、乾式混合、湿式混合のいずれでもよい。   The mixing may be either dry mixing or wet mixing.

本発明5に係る触媒は、前記製造方法で得られた触媒とアルミナなどの異種金属元素の酸化物とを混合した後、含浸法などにより活性金属元素を担持させることができる。   The catalyst according to the fifth aspect of the present invention can support the active metal element by an impregnation method or the like after mixing the catalyst obtained by the above production method and an oxide of a different metal element such as alumina.

触媒は通常、触媒を成形した触媒体として使用されることが多く、その製造方法も多岐にわたる。一般的な触媒体の製法としては触媒粉体を型に詰めて加圧成型する方法、ケーキ状の触媒を押し出し機によって押し出しその後焼成する方法、若しくは触媒粉体をパンに入れ転動させて造粒する方法等が挙げられる。   Usually, the catalyst is often used as a catalyst body obtained by molding the catalyst, and its production methods are diverse. As a general method for producing a catalyst body, a method in which a catalyst powder is packed in a mold and press-molded, a method in which a cake-like catalyst is extruded by an extruder and then calcined, or a catalyst powder is placed in a pan and rolled. The method of granulating etc. is mentioned.

しかし、実際に触媒を使用する場合、触媒反応に用いられるガスは主に触媒体の表面付近で反応し、触媒体内部にまでは侵入しにくい。よって触媒体内部の触媒成分は触媒反応に十分に寄与することができなくなる。特に、触媒が高価な材料からなる場合、触媒体内部の触媒は無駄になることとなる。
そこで、本発明10では、セラミックス又はメタル等のサポート材の表面に、前記本発明1〜5のいずれかの触媒を含むスラリーを、必要により、セラミックスを含むスラリーとともに塗布、焼成してコーティングさせることで、サポート材表面に触媒成分の相を形成させ、触媒成分を有効に活用することができる。
However, when a catalyst is actually used, the gas used for the catalytic reaction reacts mainly near the surface of the catalyst body and hardly penetrates into the catalyst body. Therefore, the catalyst component inside the catalyst body cannot sufficiently contribute to the catalytic reaction. In particular, when the catalyst is made of an expensive material, the catalyst inside the catalyst body is wasted.
Therefore, in the present invention 10, a slurry containing the catalyst according to any one of the present inventions 1 to 5 is coated on a surface of a support material such as ceramics or metal, if necessary, together with a slurry containing ceramics, and coated. Thus, a catalyst component phase is formed on the surface of the support material, and the catalyst component can be effectively utilized.

本発明においては、サポート材上にアルミナ等のセラミックスをコーティングさせた後に、前記本発明1〜5のいずれかの触媒をコーティングさせる、若しくは、前記本発明1〜5のいずれかの触媒をコーティングさせた後にセラミックスをごく薄くコーティングさせてもよく、さらに多層にコーティングさせてもよい。サポート材上にセラミックスをコーティングさせた後に前記本発明1〜5のいずれかの触媒をコーティングさせることで、サポート材上に触媒をより強固にコーティングさせることができる。   In the present invention, the support material is coated with a ceramic such as alumina, and then the catalyst according to any one of the present inventions 1 to 5 is coated, or the catalyst according to any one of the present inventions 1 to 5 is coated. After that, the ceramics may be coated very thinly, or may be further coated in multiple layers. The catalyst can be coated more firmly on the support material by coating the catalyst on any one of the first to fifth aspects of the present invention after coating the ceramic on the support material.

サポート材上に前記本発明1〜5の触媒をコーティングさせた後にごく薄くセラミックスをコーティングする場合は、触媒体同士又は容器などと接触したときの磨耗によって前記触媒が剥離するのを防ぐことができる。この場合、コーティングするセラミックスが多孔質でなければ触媒成分まで反応ガスが届かない。   When coating the ceramics of the present invention 1-5 on the support material very thinly, it is possible to prevent the catalyst from peeling off due to wear when contacting the catalyst bodies or containers. . In this case, the reaction gas does not reach the catalyst component unless the ceramic to be coated is porous.

従来の方法でも本発明1〜5の触媒をコーティングできるが、金属水溶液に浸しているので触媒層を厚くすることが難しく、触媒層の紛化も起こり易い。担体元素と触媒原料との化学反応により別相の生成も起こり予想以上の活性劣化も起こる。また、触媒層にある程度の厚みがないと十分な触媒活性が得られない。しかし、本発明においては触媒を含有するスラリーを塗布することができるため、触媒層を容易に厚くでき、粉化も抑制できる。   Although the catalysts of the present invention 1 to 5 can also be coated by conventional methods, it is difficult to increase the thickness of the catalyst layer because it is immersed in a metal aqueous solution, and the catalyst layer is easily pulverized. Due to the chemical reaction between the support element and the catalyst raw material, another phase is generated and the activity is deteriorated more than expected. Further, sufficient catalytic activity cannot be obtained unless the catalyst layer has a certain thickness. However, in the present invention, since the slurry containing the catalyst can be applied, the catalyst layer can be easily thickened and pulverization can be suppressed.

次に、本発明に係る触媒を用いた水性ガスシフト反応について述べる。   Next, the water gas shift reaction using the catalyst according to the present invention will be described.

本発明に係る触媒の存在下で、水及び一酸化炭素を50℃〜800℃の温度範囲で反応させることで、水素と二酸化炭素が得られる。触媒の存在割合は水と一酸化炭素を合わせたガス空間速度で100/h以上が好ましい。   Hydrogen and carbon dioxide are obtained by reacting water and carbon monoxide in the temperature range of 50 ° C. to 800 ° C. in the presence of the catalyst according to the present invention. The presence ratio of the catalyst is preferably 100 / h or more in terms of gas space velocity in which water and carbon monoxide are combined.

<作用>
本発明において、鉄及びmを含む酸化物固溶体からなる担体に、Au,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の活性金属元素を存在させた触媒は、より高い活性を示す。
また、本発明においては、鉄にmを固溶させることによって、mが固溶しておらず単独の化合物で存在する触媒に対し、比表面積の増加又は触媒の酸素の貯蔵放出能が向上することによって、高い触媒活性が達成される。
<Action>
In the present invention, one or two kinds selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru are used as a support made of an oxide solid solution containing iron and m. The catalyst in which the above active metal element is present exhibits higher activity.
Further, in the present invention, by dissolving m in iron, the specific surface area is increased or the oxygen storage and release ability of the catalyst is improved with respect to a catalyst in which m is not dissolved but exists as a single compound. In this way, high catalytic activity is achieved.

本発明においては、鉄とmが固溶体を形成し結晶構造がスピネル型であることによって、酸素の貯蔵放出能が向上し、効率よく水性ガスシフト反応が行えると推察される。   In the present invention, it is speculated that iron and m form a solid solution and the crystal structure is a spinel type, so that the ability to store and release oxygen is improved and water gas shift reaction can be efficiently performed.

なお、比表面積が増大すると担持した活性金属元素が高分散し、活性点が増加しやすくなり、活性が向上しやすくなることは一般的によく知られており、酸素の貯蔵放出能の向上は、酸素原子の移動によって達成されるとされる水性ガスシフト反応において、触媒活性の向上の要因になり得ると推察される。   In addition, it is generally well known that when the specific surface area is increased, the supported active metal element is highly dispersed, the active sites are easily increased, and the activity is easily improved. In the water gas shift reaction that is achieved by the movement of oxygen atoms, it is speculated that it can be a factor for improving the catalytic activity.

鉄などの固溶体に活性金属元素を担持させる方法として、活性金属元素の塩を含有する水溶液に乾燥させた鉄などの複合体を浸し、蒸発乾固させる含浸法が一般的であり、本発明においても同様に活性金属元素を含浸法によって担持してもよい。   As a method for supporting an active metal element in a solid solution such as iron, an impregnation method in which a dried complex such as iron is immersed in an aqueous solution containing a salt of the active metal element and evaporated to dryness is generally used. Similarly, an active metal element may be supported by an impregnation method.

さらに、上記触媒にアルミナなどを添加することによって、アルミナなどが前記本発明1〜3の触媒の障壁となり、製造時やシフト反応時に本発明1〜3の触媒粒子の成長又は焼結を抑制することができる。   Furthermore, by adding alumina or the like to the catalyst, alumina or the like becomes a barrier to the catalyst of the first to third aspects of the invention, and suppresses the growth or sintering of the catalyst particles of the first to third aspects of the invention during the production or shift reaction. be able to.

触媒粉体を圧縮成型して触媒体とする方法が一般的であるが、この方法では粉化がおこりやすい。これに対し、安価なサポート材(シリカなどの成型体)の表面に前記本発明1〜5の触媒をコーティングすることによって、触媒の使用量を減らすことができ、より安価な触媒を作成できる。さらに、触媒層を容易に厚くでき、粉化も起こりにくい触媒成型体を得ることができる。   A method of compressing and molding catalyst powder to form a catalyst body is common, but this method tends to cause pulverization. On the other hand, by coating the catalyst of the present invention 1-5 on the surface of an inexpensive support material (molded body such as silica), the amount of the catalyst used can be reduced, and a cheaper catalyst can be created. Furthermore, a catalyst molded body can be obtained in which the catalyst layer can be easily thickened and hardly pulverized.

以下、実施例に基づき本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

触媒を構成する金属元素、ジルコニウム、マンガン、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、亜鉛、ランタン、ネオジウム、アルミニウム、鉄、Au,Ag,Cu,Pt,Pd,Ni,Ir,Rh,Co,Os,Ruの含有量は、該触媒を酸で溶解し、「プラズマ発光分光分析装置 SPS4000(セイコー電子工業(株))」で測定して求めた。   Metal elements constituting the catalyst, zirconium, manganese, magnesium, calcium, strontium, barium, titanium, zinc, lanthanum, neodymium, aluminum, iron, Au, Ag, Cu, Pt, Pd, Ni, Ir, Rh, Co, Os , Ru content was obtained by dissolving the catalyst with an acid and measuring it with a “plasma emission spectrometer SPS4000 (Seiko Electronics Co., Ltd.)”.

BET比表面積値は、窒素によるBET法により測定した。   The BET specific surface area value was measured by the BET method using nitrogen.

相の同定は、X線回折測定で行った。X線回折装置は「X線回折装置RINT−2500(理学電機(株)製)」(管球:Cu、管電圧:40kV、管電流:300mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2°/min、発散スリット:1°、散乱スリット:1°、受光スリット:0.50mm)を使用した。   The phase was identified by X-ray diffraction measurement. The X-ray diffractometer is “X-ray diffractometer RINT-2500 (manufactured by Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, goniometer: wide-angle goniometer, sampling width: 0. 020 °, scanning speed: 2 ° / min, divergence slit: 1 °, scattering slit: 1 °, light receiving slit: 0.50 mm).

実施例1
第一硫酸鉄、第二硫酸鉄及び二塩化マンガンに純水を加えて500mlとしてよく撹拌したものを溶液1−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液1−2とする。なお、第一硫酸鉄と第二硫酸鉄との鉄のモル比は1:2とした。溶液1−2を60℃に加熱して攪拌しておき、そこに溶液1−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、400℃で1時間焼成した。これにジニトロジアンミン白金硝酸水溶液を用いて含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、マンガンの組成比(モル比)は0.4:96.6:3であった。
XRD測定では、得られた触媒はFeに帰属され、格子定数のうちa軸長は8.3543Åであって後出する比較例1より増加しており、マンガン化合物に起因するピークもみられないことから、マンガンが固溶していることが確認された。
Example 1
Pure water is added to ferrous sulfate, ferric sulfate, and manganese dichloride, and the mixture is well stirred to 500 ml. Solution 1-1 is obtained, and caustic soda is dissolved in water to 500 ml. The molar ratio of iron between ferrous sulfate and ferric sulfate was 1: 2. The solution 1-2 was heated to 60 ° C. and stirred, and the solution 1-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 400 ° C. for 1 hour. This was loaded with platinum by an impregnation method using a dinitrodiammine platinum nitric acid aqueous solution, calcined at 400 ° C. for 1 hour, and then subjected to hydrogen reduction at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and manganese was 0.4: 96.6: 3.
In the XRD measurement, the obtained catalyst was attributed to Fe 3 O 4, and the a-axis length of the lattice constant was 8.3543 mm, which was increased from Comparative Example 1 described later, and peaks due to the manganese compound were also observed. It was confirmed that manganese was in solid solution.

実施例2
二塩化マンガンの変わりに二塩化コバルトを使用して実施例1と同様に合成した。白金、鉄、コバルトの組成比(モル比)は0.4:96.6:3であった。
XRD測定によって求めた触媒の格子定数のうちa軸長は、8.3486Åであって後出する比較例1より減少しており、コバルト化合物に起因するピークもみられないことから、コバルトが固溶していることが確認された。
Example 2
Synthesis was performed in the same manner as in Example 1 except that cobalt dichloride was used instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and cobalt was 0.4: 96.6: 3.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 8.3486 mm, which is smaller than that of Comparative Example 1 to be described later, and no peak due to the cobalt compound is observed. It was confirmed that

実施例3
二塩化マンガンの変わりに四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
XRD測定によって求めた触媒の格子定数のうちa軸長は、8.3422Åであって後出する比較例1より減少しており、チタン化合物に起因するピークもみられないことから、チタンが固溶していることが確認された。
Example 3
Synthesis was performed in the same manner as in Example 1 using titanium tetrachloride instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 8.3422 mm, which is smaller than that of Comparative Example 1 to be described later, and no peak due to the titanium compound is observed. It was confirmed that

実施例4
二塩化マンガンの変わりに二塩化ニッケルを使用して実施例1と同様に合成した。白金、鉄、ニッケルの組成比(モル比)は0.4:96.6:3であった。
XRD測定によって求めた触媒の格子定数のうちa軸長は、8.3434Åであって後出する比較例1より減少しており、ニッケル化合物に起因するピークもみられないことから、ニッケルが固溶していることが確認された。
Example 4
Synthesis was performed in the same manner as in Example 1 except that nickel dichloride was used instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and nickel was 0.4: 96.6: 3.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 8.3434 mm, which is smaller than that of Comparative Example 1 to be described later, and no peak due to the nickel compound is observed. It was confirmed that

実施例5
二塩化マンガンの変わりに二塩化亜鉛を使用して実施例1と同様に合成した。白金、鉄、亜鉛の組成比(モル比)は0.4:96.6:3であった。
XRD測定によって求めた触媒の格子定数のうちa軸長は、8.3491Åであって後出する比較例1より減少しており、亜鉛化合物に起因するピークもみられないことから、亜鉛が固溶していることが確認された。
Example 5
Synthesis was performed in the same manner as in Example 1 except that zinc dichloride was used instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and zinc was 0.4: 96.6: 3.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length is 8.3491 mm, which is smaller than that of Comparative Example 1 to be described later, and no peak due to the zinc compound is observed. It was confirmed that

実施例6
二塩化マンガンの変わりに四塩化チタンを、ジニトロジアンミン白金の変わりに硝酸ロジウムを使用して実施例1と同様に合成した。ロジウム、鉄、チタンのmol%は0.4:96.6:3であった。
Example 6
Titanium tetrachloride was synthesized in the same manner as in Example 1, using titanium tetrachloride instead of manganese dichloride and rhodium nitrate instead of dinitrodiammine platinum. The mol% of rhodium, iron, and titanium was 0.4: 96.6: 3.

実施例7
二塩化マンガンの変わりに四塩化チタンを、ジニトロジアンミン白金の変わりに硝酸パラジウムを使用して実施例1と同様に合成した。パラジウム、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 7
Titanium tetrachloride was synthesized in the same manner as in Example 1 using titanium nitrate instead of manganese dichloride and palladium nitrate instead of dinitrodiammine platinum. The composition ratio (molar ratio) of palladium, iron, and titanium was 0.4: 96.6: 3.

実施例8
二塩化マンガンの変わりに四塩化チタンを、ジニトロジアンミン白金の変わりに硝酸ルテニウムを使用して実施例1と同様に合成した。ルテニウム、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 8
Titanium tetrachloride was synthesized in the same manner as in Example 1 using ruthenium nitrate instead of dinitrodiammine platinum instead of manganese dichloride. The composition ratio (molar ratio) of ruthenium, iron, and titanium was 0.4: 96.6: 3.

実施例9
二塩化マンガンの変わりに四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、チタンの組成比(モル比)は0.2:96.8:3であった。
Example 9
Synthesis was performed in the same manner as in Example 1 using titanium tetrachloride instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and titanium was 0.2: 96.8: 3.

実施例10
二塩化マンガンの変わりに四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、チタンの組成比(モル比)は0.6:96.4:3であった。
Example 10
Synthesis was performed in the same manner as in Example 1 using titanium tetrachloride instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and titanium was 0.6: 96.4: 3.

実施例11
第一硫酸鉄、第二硫酸鉄及び二塩化マンガンに加えて四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、マンガン、チタンの組成比(モル比)は0.4:96.6:1:2であった。
Example 11
Synthesis was performed in the same manner as in Example 1 using titanium tetrachloride in addition to ferrous sulfate, ferric sulfate and manganese dichloride. The composition ratio (molar ratio) of platinum, iron, manganese, and titanium was 0.4: 96.6: 1: 2.

実施例12
第一硫酸鉄、第二硫酸鉄、二塩化コバルト及び四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、コバルト、チタンの組成比(モル比)は0.4:96.6:1:2であった。
Example 12
Synthesis was performed in the same manner as in Example 1 using ferrous sulfate, ferric sulfate, cobalt dichloride and titanium tetrachloride. The composition ratio (molar ratio) of platinum, iron, cobalt, and titanium was 0.4: 96.6: 1: 2.

実施例13
第一硫酸鉄、第二硫酸鉄、二塩化ニッケル及び四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、ニッケル、チタンの組成比(モル比)は0.4:96.6:1:2であった。
Example 13
Synthesis was performed in the same manner as in Example 1 using ferrous sulfate, ferric sulfate, nickel dichloride and titanium tetrachloride. The composition ratio (molar ratio) of platinum, iron, nickel, and titanium was 0.4: 96.6: 1: 2.

実施例14
第一硫酸鉄、第二硫酸鉄、二塩化亜鉛及び四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、亜鉛、チタンの組成比(モル比)は0.4:96.6:1:2であった。
Example 14
Synthesis was performed in the same manner as in Example 1 using ferrous sulfate, ferric sulfate, zinc dichloride and titanium tetrachloride. The composition ratio (molar ratio) of platinum, iron, zinc, and titanium was 0.4: 96.6: 1: 2.

実施例15
組成比を変化させた以外は、実施例1と同様に合成した。白金、鉄、マンガンの組成比(モル比)は0.4:94.6:5であった。
Example 15
The synthesis was performed in the same manner as in Example 1 except that the composition ratio was changed. The composition ratio (molar ratio) of platinum, iron, and manganese was 0.4: 94.6: 5.

実施例16
二塩化マンガンの変わりに二塩化コバルトを使用して実施例1と同様に合成した。白金、鉄、コバルトの組成比(モル比)は0.4:94.6:5であった。
Example 16
Synthesis was performed in the same manner as in Example 1 except that cobalt dichloride was used instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and cobalt was 0.4: 94.6: 5.

実施例17
二塩化マンガンの変わりに四塩化チタンを使用して実施例1と同様に合成した。白金、鉄、チタンの組成比(モル比)は0.4:94.6:5であった。
Example 17
Synthesis was performed in the same manner as in Example 1 using titanium tetrachloride instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 94.6: 5.

実施例18
二塩化マンガンの変わりに二塩化ニッケルを使用して実施例1と同様に合成した。白金、鉄、ニッケルの組成比(モル比)は0.4:94.6:5であった。
Example 18
Synthesis was performed in the same manner as in Example 1 except that nickel dichloride was used instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and nickel was 0.4: 94.6: 5.

実施例19
二塩化マンガンの変わりに二塩化亜鉛を使用して実施例1と同様に合成した。白金、鉄、亜鉛の組成比(モル比)は0.4:94.6:5であった。
Example 19
Synthesis was performed in the same manner as in Example 1 except that zinc dichloride was used instead of manganese dichloride. The composition ratio (molar ratio) of platinum, iron, and zinc was 0.4: 94.6: 5.

実施例20
硝酸ロジウム、第一硫酸鉄、第二硫酸鉄及び四塩化チタンに純水を加えて500mlとしてよく撹拌したものを溶液2−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液2−2とする。溶液1−2を60℃に加熱して攪拌しておき、そこに溶液2−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、400℃で1時間焼成した後、200℃で水素還元を行った。
ロジウム、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 20
A solution prepared by adding pure water to rhodium nitrate, ferrous sulfate, ferric sulfate and titanium tetrachloride to make 500 ml is made solution 2-1, and caustic soda is dissolved in water to make 500 ml. And The solution 1-2 was heated to 60 ° C. and stirred, and the solution 2-1 was added thereto and aged at 80 ° C. for 3 hours. The obtained precipitate was filtered, washed, calcined at 400 ° C. for 1 hour, and then subjected to hydrogen reduction at 200 ° C.
The composition ratio (molar ratio) of rhodium, iron, and titanium was 0.4: 96.6: 3.

実施例21
硝酸ルテニウム、第一硫酸鉄、第二硫酸鉄及び四塩化チタンに純水を加えて500mlとしてよく撹拌したものを溶液3−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液4−2とする。溶液1−2を60℃に加熱して攪拌しておき、そこに溶液5−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、400℃で1時間焼成した後、200℃で水素還元を行った。
ルテニウム、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 21
Pure water is added to ruthenium nitrate, ferrous sulfate, ferric sulfate and titanium tetrachloride to make 500 ml, and the mixture is stirred well to make solution 3-1, and caustic soda is dissolved in water to make 500 ml. And Solution 1-2 was heated to 60 ° C. and stirred, and then solution 5-1 was added thereto and aged at 80 ° C. for 3 hours. The obtained precipitate was filtered, washed, calcined at 400 ° C. for 1 hour, and then subjected to hydrogen reduction at 200 ° C.
The composition ratio (molar ratio) of ruthenium, iron, and titanium was 0.4: 96.6: 3.

実施例22
第一硫酸鉄と第二硫酸鉄との鉄のモル比を1:1とした以外は実施例3と同様に合成した。白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 22
The synthesis was performed in the same manner as in Example 3 except that the molar ratio of iron of ferrous sulfate and ferric sulfate was 1: 1. The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

実施例22
第一硫酸鉄と第二硫酸鉄との鉄のモル比を2:1とした以外は実施例3と同様に合成した。白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 22
The synthesis was performed in the same manner as in Example 3 except that the molar ratio of iron of ferrous sulfate and ferric sulfate was 2: 1. The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

比較例1
第一硫酸鉄及び第二硫酸鉄に純水を加えて500mlとしてよく撹拌したものを溶液4−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液4−2とする。なお、第一硫酸鉄と第二硫酸鉄との鉄のモル比は1:2とした。溶液4−2を60℃に加熱して攪拌しておき、そこに溶液4−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、400℃で1時間焼成した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄の組成比(モル比)は0.4:99.6であった。
XRD測定によって求めた触媒の格子定数のうちa軸長は、8.3515Åであった。
Comparative Example 1
A solution prepared by adding pure water to ferrous sulfate and ferric sulfate to 500 ml and stirring well is designated as Solution 4-1, and a solution obtained by dissolving caustic soda in water to obtain 500 ml is designated as Solution 4-2. The molar ratio of iron between ferrous sulfate and ferric sulfate was 1: 2. The solution 4-2 was heated to 60 ° C. and stirred, and the solution 4-1 was added thereto and aged at 80 ° C. for 3 hours. The resulting precipitate was filtered, washed and baked at 400 ° C. for 1 hour. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum and iron was 0.4: 99.6.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length was 8.3515 mm.

比較例2
第一硫酸鉄及び第二硫酸鉄に純水を加えて500mlとしてよく撹拌したものを溶液5−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液5−2とする。なお、第一硫酸鉄と第二硫酸鉄との鉄のモル比は1:2とした。溶液5−2を60℃に加熱して攪拌しておき、そこに溶液5−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、400℃で1時間焼成し、その後チタニアを混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
XRD測定によって求めた触媒の格子定数のうちa軸長は、8.3514Åであり比較例1と同等であった。
Comparative Example 2
A solution obtained by adding pure water to ferrous sulfate and ferric sulfate to 500 ml and stirring well is designated as Solution 5-1, and a solution obtained by dissolving caustic soda in water to obtain 500 ml is designated as Solution 5-2. The molar ratio of iron between ferrous sulfate and ferric sulfate was 1: 2. The solution 5-2 was heated to 60 ° C. and stirred, and the solution 5-1 was added thereto and aged at 80 ° C. for 3 hours. The obtained precipitate was filtered, washed, and calcined at 400 ° C. for 1 hour, and then titania was mixed. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length was 8.3514 mm, which was equivalent to Comparative Example 1.

比較例3
第一硫酸鉄及び第二硫酸鉄に純水を加えて500mlとしてよく撹拌したものを溶液5−1とし、苛性ソーダを水に溶解し500mlとしたものを溶液5−2とする。なお、第一硫酸鉄と第二硫酸鉄との鉄のモル比は1:2とした。溶液5−2を60℃に加熱して攪拌しておき、そこに溶液5−1を投入し、80℃で3時間熟成した。得られた沈殿物を濾過、洗浄し、400℃で1時間焼成し、その後酸化コバルトを混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、コバルトの組成比(モル比)は0.4:96.6:3であった。
XRD測定によって求めた触媒の格子定数のうちa軸長は、8.3513Åであり比較例1と同等であった。
Comparative Example 3
A solution obtained by adding pure water to ferrous sulfate and ferric sulfate to 500 ml and stirring well is designated as Solution 5-1, and a solution obtained by dissolving caustic soda in water to obtain 500 ml is designated as Solution 5-2. The molar ratio of iron between ferrous sulfate and ferric sulfate was 1: 2. The solution 5-2 was heated to 60 ° C. and stirred, and the solution 5-1 was added thereto and aged at 80 ° C. for 3 hours. The obtained precipitate was filtered, washed, and calcined at 400 ° C. for 1 hour, and then cobalt oxide was mixed. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and cobalt was 0.4: 96.6: 3.
Of the lattice constants of the catalyst determined by XRD measurement, the a-axis length was 8.3513 mm, which was equivalent to Comparative Example 1.

比較例4
γ−アルミナにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、アルミの組成比(モル比)は0.4:99.6であった。
Comparative Example 4
Using an aqueous solution of dinitrodiammine platinum nitrate on γ-alumina, platinum was supported by an impregnation method, calcined at 400 ° C. for 1 hour, and then subjected to hydrogen reduction at 200 ° C.
The composition ratio (molar ratio) of platinum and aluminum was 0.4: 99.6.

実施例24
白金、鉄、チタンのmol比を0.35:96.6:3とした以外は、実施例3と同様な方法で製造した触媒とシリカとを重量比が50:50となるようによく混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 24
Except for the molar ratio of platinum, iron and titanium of 0.35: 96.6: 3, the catalyst prepared in the same manner as in Example 3 and silica were mixed well so that the weight ratio was 50:50. did. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

実施例25
白金、鉄、チタンのmol比を0.35:96.6:3とした以外は、実施例3と同様な方法で製造した触媒とチタニアとを重量比が50:50となるようによく混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 25
Except for the molar ratio of platinum, iron and titanium of 0.35: 96.6: 3, the catalyst produced by the same method as in Example 3 and titania were mixed well so that the weight ratio was 50:50. did. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

実施例26
白金、鉄、チタンのmol比を0.35:96.6:3とした以外は、実施例3と同様な方法で製造した触媒とアルミナとを重量比が50:50となるようによく混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。最終的な白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 26
Except for the molar ratio of platinum, iron and titanium of 0.35: 96.6: 3, the catalyst prepared in the same manner as in Example 3 and alumina were mixed well so that the weight ratio was 50:50. did. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C. The final composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

実施例27
白金、鉄、チタンのmol比を0.35:96.6:3とした以外は、実施例3と同様な方法で製造した触媒とアルミナとを重量比が75:25となるようによく混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 27
Except for the molar ratio of platinum, iron and titanium of 0.35: 96.6: 3, the catalyst prepared in the same manner as in Example 3 and alumina were mixed well so that the weight ratio was 75:25. did. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

実施例28
白金、鉄、チタンのmol比を0.35:96.6:3とした以外は、実施例3と同様な方法で製造した触媒とアルミナとを重量比が25:75となるようによく混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 28
Except for the molar ratio of platinum, iron and titanium of 0.35: 96.6: 3, the catalyst produced by the same method as in Example 3 and alumina were mixed well so that the weight ratio was 25:75. did. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

実施例29
実施例3と同様な方法で製造した触媒とシリカとを重量比が50:50となるようによく混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Example 29
The catalyst produced by the same method as in Example 3 and silica were mixed well so that the weight ratio was 50:50. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

比較例5
白金、鉄、チタンのmol比を0.35:96.6:3とした以外は、実施例3と同様な方法で製造した触媒とアルミナとを重量比が5:95となるようによく混合した。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
白金、鉄、チタンの組成比(モル比)は0.4:96.6:3であった。
Comparative Example 5
Except for the molar ratio of platinum, iron, and titanium of 0.35: 96.6: 3, the catalyst produced in the same manner as in Example 3 and alumina were mixed well so that the weight ratio was 5:95. did. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.
The composition ratio (molar ratio) of platinum, iron, and titanium was 0.4: 96.6: 3.

これらの触媒を、1から2mmに整粒した。この触媒の触媒層を電気炉で加熱し、所定の温度でCOが33体積%、水蒸気が67体積%のガスを空間速度(GHSV)20000h−1で流通させた。このときの出口ガス組成をガスクロマトグラフで測定した。 These catalysts were sized to 1 to 2 mm. The catalyst layer of this catalyst was heated in an electric furnace, and a gas having a volume of CO of 33% by volume and water vapor of 67% by volume was passed at a predetermined temperature at a space velocity (GHSV) of 20000 h −1 . The outlet gas composition at this time was measured with a gas chromatograph.

各触媒について、白金、ロジウム、パラジウム、ルテニウム、鉄、マンガン、コバルト、チタン、ニッケル、亜鉛のmol%、比表面積、200℃においてのCO転化率を表1に示した。   Table 1 shows platinum, rhodium, palladium, ruthenium, iron, manganese, cobalt, titanium, nickel, zinc mol%, specific surface area, and CO conversion at 200 ° C. for each catalyst.

また、本発明3の、本発明1又は2の触媒にアルミニウム、ジルコニウム、珪素、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、亜鉛、ランタン及びネオジウムの中から選ばれる1種または2種以上の元素からなる酸化物を前記触媒に対して、0.001〜900重量%添加し、Au,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の金属元素を0.0001〜5.0重量%担持させた触媒のCO転化率を表2に示した。   In addition, the catalyst of the present invention 3 of the present invention 1 or 2 is made of one or more elements selected from aluminum, zirconium, silicon, magnesium, calcium, strontium, barium, titanium, zinc, lanthanum and neodymium. One type selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru. Alternatively, Table 2 shows the CO conversion of the catalyst in which 0.0001 to 5.0% by weight of two or more metal elements are supported.

なお、CO転化率が100%にならないのは、反応平衡に依存するからである。   The reason why the CO conversion rate does not reach 100% is that it depends on the reaction equilibrium.

Figure 2006239542
Figure 2006239542

Figure 2006239542
Figure 2006239542

表1に示すとおり、本発明に係る触媒はいずれも反応温度が200℃であっても、高いCO転化率を有するものであることが確認された。従って、低い反応温度でも高いCO転化率を有するものである。   As shown in Table 1, it was confirmed that all the catalysts according to the present invention have a high CO conversion rate even when the reaction temperature is 200 ° C. Therefore, it has a high CO conversion even at a low reaction temperature.

本発明の触媒と構成元素の重量比が同じであっても、固溶体となっていなければ高い活性を示さない。   Even if the weight ratio of the catalyst of the present invention and the constituent elements is the same, high activity is not exhibited unless the catalyst is a solid solution.

表2より、本発明の触媒とアルミナ等を混合した触媒は、高い活性を示す。   From Table 2, a catalyst obtained by mixing the catalyst of the present invention with alumina or the like exhibits high activity.

実施例30
実施例22の触媒を、水ガラス及びPVAと共にカイコウして20%スラリーとした。アルミナの成型体をこのスラリーに浸し、触媒成分を担持後、成型体をスラリーから引き上げ、余分なスラリーを吹き飛ばし、乾燥させ、400℃にて焼成を行った。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
Example 30
The catalyst of Example 22 was silkwormed with water glass and PVA to give a 20% slurry. The alumina molded body was immersed in this slurry, and after supporting the catalyst component, the molded body was pulled up from the slurry, excess slurry was blown off, dried, and fired at 400 ° C. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.

比較例6
アルミナの成型体を塩化鉄、塩化チタン水溶液に浸し、鉄及びチタンを担持後、成型体をこの水溶液から引き上げ、乾燥させ、400℃にて焼成を行った。これにジニトロジアンミン白金硝酸水溶液を用いて、含浸法により白金を担持し、400℃で1時間焼成した後、200℃で水素還元を行った。
Comparative Example 6
The alumina molded body was immersed in an aqueous solution of iron chloride and titanium chloride, and after supporting iron and titanium, the molded body was pulled up from the aqueous solution, dried, and fired at 400 ° C. A dinitrodiammine platinum nitric acid aqueous solution was used for this, and platinum was supported by an impregnation method. After baking at 400 ° C. for 1 hour, hydrogen reduction was performed at 200 ° C.

比較例6では、水溶液を浸透させるので、アルミナ成型体上の触媒層を厚くすることが難しく、粉化がおこりやすい。これに対し、実施例28ではアルミナ成型体の表面に触媒スラリーを塗布することで、触媒層を容易に厚くでき、粉化も起こりにくい触媒成型体を得ることができる。   In Comparative Example 6, since the aqueous solution is infiltrated, it is difficult to thicken the catalyst layer on the alumina molded body, and powdering is likely to occur. On the other hand, in Example 28, by applying the catalyst slurry to the surface of the alumina molded body, the catalyst layer can be easily thickened and a catalyst molded body that hardly causes pulverization can be obtained.

一般的な触媒の成型方法である粉体に圧力をかけて成型する方法に比べ、実施例28では前者ほどの高価な装置や金型を必要とせず、比較的安価な装置で済み、焼結させることで、粉化が起こりにくい触媒を得ることができる。   Compared with the method of forming powder by applying pressure to the powder, which is a general catalyst forming method, Example 28 does not require an expensive device and mold as the former, and a relatively inexpensive device can be used. By making it, the catalyst which does not occur powdering easily can be obtained.

本発明に係る触媒は、鉄及びmを含む酸化物の固溶体に活性金属元素を存在させ、必要より、更に、アルミナなどを混合した触媒は、従来の触媒と比べ水性ガスシフト反応をより効率よく行え優れた効果を奏する。また、本発明の触媒成型体の作成方法を用いることでより、実用的な触媒成型体を得ることができる。
In the catalyst according to the present invention, an active metal element is present in a solid solution of an oxide containing iron and m, and a catalyst in which alumina or the like is further mixed can perform a water gas shift reaction more efficiently than a conventional catalyst. Excellent effect. Moreover, a practical catalyst molded body can be obtained by using the method for producing a molded catalyst body of the present invention.

Claims (10)

少なくとも鉄、m及び活性金属元素nからなる触媒で、鉄及びmが酸化物固溶体をなしており、mはMn,Co,Ti,Ni,Znの中から選ばれる1種または2種以上の元素であり、活性金属元素nはAu,Ag,Cu,Pt,Fe,Pd,Ni,Ir,Rh,Co,Os,Ruの中から選ばれる1種または2種以上の活性金属元素であることを特徴とする水性ガスシフト反応用の触媒。 A catalyst comprising at least iron, m and an active metal element n, wherein iron and m form an oxide solid solution, and m is one or more elements selected from Mn, Co, Ti, Ni, Zn The active metal element n is one or more active metal elements selected from Au, Ag, Cu, Pt, Fe, Pd, Ni, Ir, Rh, Co, Os, and Ru. A catalyst for water gas shift reaction. 前記請求項1記載の触媒中のm元素の含有量が、触媒中の元素の比で0.01〜20mol%であることを特徴とする水性ガスシフト反応用の触媒。 The catalyst for water gas shift reaction, wherein the content of element m in the catalyst according to claim 1 is 0.01 to 20 mol% in terms of the ratio of elements in the catalyst. 前記請求項1又は2記載の触媒を構成する活性金属元素nの存在量が0.001〜2mol%であることを特徴とする水性ガスシフト反応用の触媒。 A catalyst for water gas shift reaction, wherein the abundance of the active metal element n constituting the catalyst according to claim 1 or 2 is 0.001 to 2 mol%. 請求項1乃至3のいずれかに記載の触媒において、アルミニウム、ジルコニウム、珪素、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、亜鉛、ランタン及びネオジウムの中から選ばれる1種または2種以上の異種金属元素の酸化物を、触媒に対して1〜900重量%含有させたことを特徴とする水性ガスシフト反応用の触媒。 The catalyst according to any one of claims 1 to 3, wherein one or more different metal elements selected from aluminum, zirconium, silicon, magnesium, calcium, strontium, barium, titanium, zinc, lanthanum and neodymium A catalyst for water gas shift reaction, characterized by containing 1 to 900% by weight of the above oxide. 請求項1乃至3のいずれかに記載の触媒において、アルミニウム、ジルコニウム、珪素、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、亜鉛、ランタン及びネオジウムの中から選ばれる1種又は2種以上の異種金属元素の酸化物を、触媒に対して1〜900重量%含有し、さらに、活性金属元素を0.0001〜2mol%担持させたことを特徴とする水性ガスシフト反応用の触媒。 The catalyst according to any one of claims 1 to 3, wherein one or more different metal elements selected from aluminum, zirconium, silicon, magnesium, calcium, strontium, barium, titanium, zinc, lanthanum and neodymium The catalyst for water gas shift reaction characterized by containing 1 to 900% by weight of the above oxide and further supporting 0.0001 to 2 mol% of an active metal element. サポート材に、前記請求項1乃至5のいずれかに記載の触媒を存在させたことを特徴とする水性ガスシフト反応用の触媒体。 A catalyst body for a water gas shift reaction, characterized in that the catalyst according to any one of claims 1 to 5 is present in a support material. サポート材に、前記請求項1乃至5のいずれかに記載の触媒を存在させ、更に、活性金属元素を0.0001〜2mol%担持させたことを特徴とする水性ガスシフト反応用の触媒体。 A catalyst body for water gas shift reaction, characterized in that the catalyst according to any one of claims 1 to 5 is present on a support material, and 0.0001 to 2 mol% of an active metal element is further supported. アルカリ性溶液と、鉄、m及びnを含む溶液とを混合、熟成して得られる粒子を濾別、水洗した後、焼成することを特徴とする前記請求項1記載の水性ガスシフト反応用の触媒の製造方法。 The catalyst for a water gas shift reaction according to claim 1, wherein particles obtained by mixing and aging an alkaline solution and a solution containing iron, m and n are filtered, washed with water, and then fired. Production method. アルカリ性溶液と、鉄、m及びnを含む溶液とを混合、熟成して得られる粒子を濾別、水洗した後、活性金属元素nを担持させ、焼成することを特徴とする前記請求項1記載の水性ガスシフト反応用の触媒の製造方法。 2. The method according to claim 1, wherein particles obtained by mixing and aging an alkaline solution and a solution containing iron, m, and n are separated by filtration, washed with water, supported with active metal element n, and fired. The manufacturing method of the catalyst for water gas shift reaction of. サポート材の表面にセラミックスを含むスラリーを塗布して焼成した後、請求項1乃至5のいずれかに記載の触媒を担持し、更に、活性金属元素を担持させることを特徴とする前記請求項6又は7記載の水性ガスシフト反応用の触媒体の製造方法。
6. The catalyst according to any one of claims 1 to 5, further comprising an active metal element supported thereon after applying a slurry containing ceramics on the surface of the support material and firing the slurry. Or 7. A process for producing a catalyst body for water gas shift reaction according to 7.
JP2005057421A 2005-03-02 2005-03-02 Catalyst for water gas shift reaction and process for producing the same Active JP4715999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057421A JP4715999B2 (en) 2005-03-02 2005-03-02 Catalyst for water gas shift reaction and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057421A JP4715999B2 (en) 2005-03-02 2005-03-02 Catalyst for water gas shift reaction and process for producing the same

Publications (2)

Publication Number Publication Date
JP2006239542A true JP2006239542A (en) 2006-09-14
JP4715999B2 JP4715999B2 (en) 2011-07-06

Family

ID=37046466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057421A Active JP4715999B2 (en) 2005-03-02 2005-03-02 Catalyst for water gas shift reaction and process for producing the same

Country Status (1)

Country Link
JP (1) JP4715999B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
CN105792930A (en) * 2013-11-29 2016-07-20 优美科股份公司及两合公司 Oxygen storage materials
JP2017503634A (en) * 2013-11-29 2017-02-02 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Use of mixed oxides as oxygen storage components
WO2018151568A1 (en) * 2017-02-17 2018-08-23 한국가스공사 Catalyst for producing high-calorie synthetic natural gas and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360891A (en) * 1976-11-10 1978-05-31 Shell Int Research Manufacture of hydrogen enriched gas
JPH07289900A (en) * 1994-04-15 1995-11-07 Imperial Chem Ind Plc <Ici> Catalyst
JPH0957104A (en) * 1995-08-28 1997-03-04 Tosoh Corp Carbon monoxide converting catalyst
JP2003073107A (en) * 2001-06-19 2003-03-12 Matsushita Electric Ind Co Ltd Hydrogen refiner and fuel cell generation system
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol
JP2004160433A (en) * 2002-01-31 2004-06-10 Toyota Central Res & Dev Lab Inc Metal composite material, catalyst for cleaning exhaust gas and method for cleaning exhaust gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360891A (en) * 1976-11-10 1978-05-31 Shell Int Research Manufacture of hydrogen enriched gas
JPH07289900A (en) * 1994-04-15 1995-11-07 Imperial Chem Ind Plc <Ici> Catalyst
JPH0957104A (en) * 1995-08-28 1997-03-04 Tosoh Corp Carbon monoxide converting catalyst
JP2003073107A (en) * 2001-06-19 2003-03-12 Matsushita Electric Ind Co Ltd Hydrogen refiner and fuel cell generation system
JP2004160433A (en) * 2002-01-31 2004-06-10 Toyota Central Res & Dev Lab Inc Metal composite material, catalyst for cleaning exhaust gas and method for cleaning exhaust gas
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253978A (en) * 2007-03-30 2008-10-23 Tatung Co Production method and application by catalyst which contains nano gold and is loaded on manganese oxide / iron oxide
CN105792930A (en) * 2013-11-29 2016-07-20 优美科股份公司及两合公司 Oxygen storage materials
KR20160091998A (en) * 2013-11-29 2016-08-03 우미코레 아게 운트 코 카게 Oxygen storage materials
JP2017502824A (en) * 2013-11-29 2017-01-26 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Oxygen storage material
JP2017503634A (en) * 2013-11-29 2017-02-02 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG Use of mixed oxides as oxygen storage components
KR102301754B1 (en) * 2013-11-29 2021-09-15 우미코레 아게 운트 코 카게 Oxygen storage materials
WO2018151568A1 (en) * 2017-02-17 2018-08-23 한국가스공사 Catalyst for producing high-calorie synthetic natural gas and use thereof
KR20180095353A (en) * 2017-02-17 2018-08-27 한국가스공사 Catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof
KR101968297B1 (en) * 2017-02-17 2019-04-12 한국가스공사 Catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof

Also Published As

Publication number Publication date
JP4715999B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
EP2050497B1 (en) Exhaust gas purifying catalyst and method of preparation
KR101286799B1 (en) Composition including a lanthanum perovskite on an alumina or aluminium oxyhydroxide substrate, preparation method and use in catalysis
JP5354175B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
WO2007066444A1 (en) Catalyst for exhaust gas purification and exhaust gas purification catalyst member
US10010876B2 (en) Catalyst for high temperature steam reforming
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
JP4607715B2 (en) Catalyst and method for producing catalyst
JP4488178B2 (en) Methanation catalyst and method for producing the same, and method for methanation of carbon monoxide using the methanation catalyst
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP2014128766A (en) Catalyst for emission gas purification
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
CN116786126A (en) Nickel-silicon catalyst applied to ammonia decomposition and preparation method thereof
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP2007054685A (en) Catalyst for water gas shift reaction
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP5059156B2 (en) Methanol reforming catalyst, method for producing the same, and method for producing hydrogen using the catalyst for methanol reforming
JP4665044B2 (en) Fuel reforming catalyst, reformer, and fuel cell system
JP6442519B2 (en) Steam reforming catalyst composition and steam reforming catalyst
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP5967015B2 (en) Exhaust gas purification catalyst
JP5910486B2 (en) Exhaust gas purification catalyst
JP4340892B2 (en) Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst
JP6442518B2 (en) Steam reforming catalyst composition and steam reforming catalyst
JP2009090184A (en) Catalyst for water-gas-shift reaction and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4715999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350