JP2006239495A - Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article - Google Patents

Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article Download PDF

Info

Publication number
JP2006239495A
JP2006239495A JP2005055561A JP2005055561A JP2006239495A JP 2006239495 A JP2006239495 A JP 2006239495A JP 2005055561 A JP2005055561 A JP 2005055561A JP 2005055561 A JP2005055561 A JP 2005055561A JP 2006239495 A JP2006239495 A JP 2006239495A
Authority
JP
Japan
Prior art keywords
film
antifogging
coating material
coated article
fogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005055561A
Other languages
Japanese (ja)
Inventor
Takeshi Ohara
武 大原
Shizuo Otori
静夫 大鳥
Kenichi Yamada
健一 山田
Toyoyuki Teranishi
豊幸 寺西
Kazutaka Kamiya
和孝 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOO Corp KK
Kyoshin Co Ltd
Nippon Sheet Glass Co Ltd
Original Assignee
YOO Corp KK
Kyoshin Co Ltd
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOO Corp KK, Kyoshin Co Ltd, Nippon Sheet Glass Co Ltd filed Critical YOO Corp KK
Priority to JP2005055561A priority Critical patent/JP2006239495A/en
Priority to PCT/JP2006/303602 priority patent/WO2006093086A1/en
Publication of JP2006239495A publication Critical patent/JP2006239495A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/229Non-specific enumeration
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-fogging film coated article excellent in anti-fogging property and wear resistance, a coating material for forming an anti-fogging film, and a method for efficiently manufacturing the anti-fogging film coated article. <P>SOLUTION: The anti-fogging film coated article includes a substrate and the anti-fogging film formed on the surface of the substrate. The anti-fogging film includes phosphorus and an alkaline earth metal. The coating material for forming the anti-fogging film includes a phosphate compound and the alkaline earth metal. The method for manufacturing the anti-fogging film coated article includes forming the anti-fogging film by applying the coating material on the surface of the substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、防曇性被膜被覆物品、防曇性被膜形成用塗工材料及び防曇性被膜被覆物品の製造方法に関する。   The present invention relates to an antifogging film-coated article, an antifogging film-forming coating material, and a method for producing an antifogging film-coated article.

ガラスその他の物品表面が曇る現象は、物品の表面に結露等によって微小な水滴が付着し、この微小水滴が光を乱反射するために生じる。この曇りは、眼鏡、ゴーグル、光学レンズ等の光学部品において、その性能の著しい低下を引き起こし、また建築用窓ガラスや鏡においては、意匠上や設計上問題となる。さらに、自動車をはじめとする車両用窓ガラスにおいては、視野の低下を招き、安全上の問題が生じる場合がある。
これらの曇りをなくすために、防曇性被膜が施される。防曇性被膜には、有機系のものと無機系のものがあり、有機系の防曇性被膜は防曇性能に優れるが、膜の硬度が低く、耐摩耗性が低いという欠点を有する。一方、無機系の防曇性被膜は、膜の硬度が高く、耐摩耗性が高いという利点があるが、有機系の防曇性被膜に比較して防曇性能に劣るという欠点がある。
The phenomenon that the surface of an article such as glass becomes cloudy occurs because minute water droplets adhere to the surface of the article due to condensation or the like, and these minute water droplets diffusely reflect light. This fogging causes a significant decrease in the performance of optical parts such as glasses, goggles, and optical lenses, and becomes a design and design problem for architectural window glass and mirrors. Furthermore, in the window glass for vehicles such as automobiles, the field of view is lowered, which may cause a safety problem.
In order to eliminate these fogging, an anti-fogging coating is applied. There are organic and inorganic antifogging coatings, and organic antifogging coatings are excellent in antifogging performance, but have the disadvantages of low film hardness and low wear resistance. On the other hand, an inorganic antifogging film has the advantages of high film hardness and high wear resistance, but has the disadvantage of being inferior in antifogging performance as compared with an organic antifogging film.

以上の問題点を解決するために種々の提案がなされており、例えば有機系物質と無機系物質を複合化した防曇膜を備えた防曇性物品等が提案されている。具体的には、特定の粒径を有する金属酸化物をマトリックスとする凹凸状の膜を基材上に被覆し、さらにその上に特定の官能基を有するオルガノシラン等の層を形成させた防曇物品(特許文献1、請求項1及び7参照)、界面活性剤およびイソシアネート基含有シラン化合物を含んでなることを特徴とする防曇性組成物(特許文献2、請求項1参照)などが提案されている。
しかしながら、これら提案される防曇物品及び防曇性組成物は、いずれも、防曇性能が不十分である、防曇性能を維持することが困難である、あるいは膜硬度が低いために耐摩耗性に乏しいという欠点があった。
In order to solve the above problems, various proposals have been made. For example, an antifogging article including an antifogging film in which an organic substance and an inorganic substance are combined has been proposed. Specifically, a concavo-convex film having a metal oxide having a specific particle size as a matrix is coated on a substrate, and a layer such as an organosilane having a specific functional group is further formed thereon. A cloudy article (see Patent Document 1, Claims 1 and 7), an antifogging composition comprising a surfactant and an isocyanate group-containing silane compound (see Patent Document 2, Claim 1), etc. Proposed.
However, all of these proposed antifogging articles and antifogging compositions have insufficient antifogging performance, it is difficult to maintain antifogging performance, or wear resistance due to low film hardness. There was a disadvantage of poor nature.

また、膜に長期間にわたって親水性を付与することで防曇性能を維持し、かつ膜の強度を持続させることを目的にリン酸化合物を用いることが提案されている。例えば、リン酸化合物バインダーおよび平均粒径1〜300nmの酸化物微粒子を配合してなることを特徴とする防曇性コーティング材料が提案されている(特許文献3、請求項1参照)。
しかしながら、提案されているコーティング組成物は、防曇維持性能が乏しく、また被膜の膜厚が厚く、膜硬度が低いために耐摩耗性に乏しいという欠点があった。
In addition, it has been proposed to use a phosphoric acid compound for the purpose of maintaining antifogging performance by imparting hydrophilicity to the membrane over a long period of time and maintaining the strength of the membrane. For example, an antifogging coating material comprising a phosphoric acid compound binder and oxide fine particles having an average particle diameter of 1 to 300 nm has been proposed (see Patent Document 3 and Claim 1).
However, the proposed coating composition has the disadvantages of poor anti-fogging maintenance performance and poor wear resistance due to the thick film thickness and low film hardness.

特開平11−100234号公報Japanese Patent Laid-Open No. 11-100284 特開2003−73652号公報JP 2003-73652 A 特開2003−231827号公報JP 2003-231827 A

本発明の目的は、上記問題点に鑑み、防曇性能と耐摩耗性に優れる防曇性被膜被覆物品、防曇性被膜形成用塗工材料及び防曇性被膜被覆物品の製造方法を提供するものである。   In view of the above problems, an object of the present invention is to provide an antifogging film-coated article excellent in antifogging performance and abrasion resistance, a coating material for forming an antifogging film, and a method for producing an antifogging film-coated article. Is.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、基材上にリンとアルカリ土類金属を含有する防曇性被膜を配した防曇性被膜被覆物品によって、前記課題を解決し得ることを見出し、その知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)基材と、該基材表面に形成された防曇性被膜を備える防曇性被膜被覆物品であって、該防曇性被膜がリンとアルカリ土類金属を含有する防曇性被膜被覆物品、
(2)前記アルカリ土類金属がマグネシウムである上記(1)に記載の防曇性被膜被覆物品、
(3)防曇性被膜中のマグネシウムとリンの割合(Mg/P)が0.5〜10である上記(2)に記載の防曇性被膜被覆物品、
(4)前記防曇性被膜の厚さが2〜1000nmである上記(1)〜(3)のいずれかに記載の防曇性被膜被覆物品、
(5)初期のヘイズ値が0.5%以下である上記(1)〜(4)のいずれかに記載の防曇性被膜被覆物品、
(6)テーバー摩耗試験前後のヘイズ値の差が2%以下である上記(1)〜(5)のいずれかに記載の防曇性被膜被覆物品、
(7)前記基材が、透明な、ガラス板、樹脂板又は樹脂フィルムのいずれかである上記(1)〜(6)のいずれかに記載の防曇性被膜被覆物品、
(8)リン酸化合物とアルカリ土類金属を含む防曇性被膜形成用塗工材料、
(9)前記リン酸化合物がオルトリン酸、メタリン酸、ポリリン酸、ピロリン酸、三リン酸、四リン酸及びリン酸塩からなる群から選ばれる少なくとも1種である上記(8)に記載の防曇性被膜形成用塗工材料、
(10)前記アルカリ土類金属が水酸化物、塩化物、酸化物及び硫化物からなる群から選ばれる少なくとも1種の化合物を出発物質とする上記(8)又は(9)に記載の防曇性被膜形成用塗工材料、
(11)前記アルカリ土類金属がマグネシウムである上記(10)に記載の防曇性被膜形成用塗工材料、
(12)マグネシウムとリンの含有割合(Mg/Pの質量割合)が0.05〜4である上記(11)に記載の防曇性被膜形成用塗工材料、
(13)前記塗工材料が溶媒を含み、塗工材料中のアルカリ土類金属とリンの総量(金属換算)が0.01〜50質量%であるである上記(8)〜(12)のいずれかに記載の防曇性被膜形成用塗工材料、
(14)前記溶媒がアルコール又は水である上記(13)に記載の防曇性被膜形成用塗工材料、及び
(15)上記(8)〜(14)のいずれかに記載の防曇性被膜形成用塗工材料を基材表面に塗布し、成膜することによって防曇性被膜を形成する防曇性被膜被覆物品の製造方法、
を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have achieved the above object by providing an antifogging film-coated article in which an antifogging film containing phosphorus and an alkaline earth metal is disposed on a substrate. The inventors have found that the present invention can be solved, and have completed the present invention based on the findings.
That is, the present invention
(1) An antifogging film-coated article comprising a base material and an antifogging film formed on the surface of the base material, wherein the antifogging film contains phosphorus and an alkaline earth metal Coated articles,
(2) The antifogging film-coated article according to (1), wherein the alkaline earth metal is magnesium,
(3) The antifogging film-coated article according to the above (2), wherein the ratio of magnesium to phosphorus (Mg / P) in the antifogging film is 0.5 to 10,
(4) The antifogging film-coated article according to any one of (1) to (3), wherein the antifogging film has a thickness of 2 to 1000 nm,
(5) The antifogging film-coated article according to any one of (1) to (4), wherein the initial haze value is 0.5% or less,
(6) The antifogging film-coated article according to any one of the above (1) to (5), wherein the difference in haze value before and after the Taber abrasion test is 2% or less,
(7) The anti-fogging film-coated article according to any one of (1) to (6), wherein the substrate is a transparent glass plate, resin plate, or resin film,
(8) Coating material for forming an antifogging film containing a phosphoric acid compound and an alkaline earth metal,
(9) The prevention according to (8), wherein the phosphoric acid compound is at least one selected from the group consisting of orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and phosphate. Coating material for forming cloudy film,
(10) Antifogging as described in (8) or (9) above, wherein the alkaline earth metal is at least one compound selected from the group consisting of hydroxides, chlorides, oxides and sulfides. Coating material for forming a conductive film,
(11) The antifogging film-forming coating material according to (10), wherein the alkaline earth metal is magnesium,
(12) The antifogging film-forming coating material according to (11), wherein the content ratio of magnesium and phosphorus (mass ratio of Mg / P) is 0.05 to 4,
(13) In the above (8) to (12), the coating material contains a solvent, and the total amount (metal conversion) of alkaline earth metal and phosphorus in the coating material is 0.01 to 50% by mass. Coating material for forming an antifogging film according to any one of the above,
(14) The antifogging film-forming coating material according to (13) above, wherein the solvent is alcohol or water, and (15) the antifogging film according to any of (8) to (14) above A method for producing an antifogging film-coated article in which an antifogging film is formed by applying a coating material for forming on a substrate surface and forming a film;
Is to provide.

本発明の防曇性被膜被覆物品は防曇性能と耐摩耗性に優れ、眼鏡、ゴーグル、光学レンズ等の光学部品、建築用または車両用窓ガラスなどとして好適に使用される。また、本発明の防曇性被膜形成用塗工材料及び該防曇性被膜形成用塗工材料を用いた防曇性被膜被覆物品の製造方法によれば、防曇性能と耐摩耗性に優れる防曇性被膜被覆物品を高い生産性で、効率よく製造することができる。   The anti-fogging film-coated article of the present invention is excellent in anti-fogging performance and wear resistance, and is suitably used as optical parts such as glasses, goggles and optical lenses, architectural or vehicle window glass. In addition, according to the coating material for forming an antifogging film of the present invention and the method for producing an antifogging film-coated article using the coating material for forming an antifogging film, the antifogging performance and the wear resistance are excellent. An antifogging coated article can be produced efficiently with high productivity.

本発明の防曇性被膜被覆物品における防曇性被膜はリンとアルカリ土類金属を含有することを特徴とする。防曇性被膜中におけるリン(P)及びアルカリ土類金属(M)は酸素を介して結合していると推定され、−P−O−P−、−P−O−M−、−M−O−M−などの結合によって防曇性被膜を形成するものと思われる。
アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウムが挙げられ、これらのうちリン化合物と結合しやすく、膜を形成しやすいマグネシウムが好ましい。
The antifogging film in the antifogging film-coated article of the present invention is characterized by containing phosphorus and an alkaline earth metal. It is presumed that phosphorus (P) and alkaline earth metal (M) in the anti-fogging film are bonded via oxygen, and -P-O-P-, -P-OM-, -M- It is considered that an antifogging film is formed by bonding such as OM-.
Examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium, barium, and radium, and among these, magnesium that is easily bonded to a phosphorus compound and easily forms a film is preferable.

防曇性被膜中のリンとアルカリ土類金属との存在割合については、本発明の効果を奏する範囲で特に限定されないが、アルカリ土類金属(M)とリン(P)の割合が0.5〜10の範囲であることが好ましい。ここで割合とは、X線光電子分光分析法により検出されたアルカリ土類金属とリンの光電子の単位時間あたりの数の比(M/P、単位;count/sec)をいう。
アルカリ土類金属(M)とリン(P)の割合が0.5以上であると、十分な耐摩耗性を有するという利点があり、10以下であると防曇維持性に優れるという利点がある。以上の観点から、アルカリ土類金属(M)とリン(P)の割合は、1〜6の範囲であることがさらに好ましい。
アルカリ土類金属として、最も好適な態様であるマグネシウムの場合においても同様であり、マグネシウムとリンの含有割合が、マグネシウム(Mg)とリン(P)の割合として(Mg/P)で0.5〜10の範囲であることが好ましく、さらに1〜6の範囲であることが好ましい。
なお、防曇性被膜中のアルカリ土類金属(M)とリン(P)の割合は、防曇性被膜の深さ方向に、アルゴンエッチングをしながら、X線光電子分光分析によってMとPの元素分析を行い、防曇性被膜全体の平均値として算出した。
The proportion of phosphorus and alkaline earth metal present in the antifogging film is not particularly limited as long as the effect of the present invention is achieved, but the proportion of alkaline earth metal (M) and phosphorus (P) is 0.5. It is preferable that it is the range of -10. Here, the ratio means the ratio (M / P, unit: count / sec) of the number of photoelectrons of alkaline earth metal and phosphorus detected by X-ray photoelectron spectroscopy per unit time.
When the ratio of alkaline earth metal (M) and phosphorus (P) is 0.5 or more, there is an advantage of having sufficient wear resistance, and when it is 10 or less, there is an advantage of excellent anti-fogging maintenance. . From the above viewpoint, the ratio of the alkaline earth metal (M) and phosphorus (P) is more preferably in the range of 1-6.
The same applies to the case of magnesium which is the most preferable embodiment as the alkaline earth metal, and the content ratio of magnesium and phosphorus is 0.5 (Mg / P) as the ratio of magnesium (Mg) and phosphorus (P). Is preferably in the range of -10, more preferably in the range of 1-6.
The ratio of alkaline earth metal (M) and phosphorus (P) in the antifogging film is determined by X-ray photoelectron spectroscopic analysis while performing argon etching in the depth direction of the antifogging film. Elemental analysis was performed and calculated as the average value of the entire antifogging coating.

本発明の防曇性被膜には、上述のリン及びアルカリ土類金属の他に本発明の効果を阻害しない範囲内で他の成分を含んでいてもよい。例えば、光触媒機能を有するチタニア、防曇性被膜の強度を上げるためのシリカ、ジルコニア、アルミナ等である。
また、本発明の効果を損なわないものであれば、防曇性被膜中に基材中の成分が拡散されて存在してもよい。例えば、基材としてソーダライムガラスを用い、その上に防曇性被膜を形成するとソーダライムガラス中のナトリウム成分が拡散され、防曇性被膜中にナトリウム成分が含まれる場合がある。
The antifogging film of the present invention may contain other components in addition to the above-described phosphorus and alkaline earth metal as long as the effects of the present invention are not impaired. For example, titania having a photocatalytic function, silica, zirconia, alumina or the like for increasing the strength of the antifogging film.
Moreover, if the effect of this invention is not impaired, the component in a base material may be spread | diffused and exist in an anti-fogging film. For example, when soda lime glass is used as a substrate and an antifogging film is formed thereon, the sodium component in the soda lime glass is diffused, and the sodium component may be contained in the antifogging film.

本発明におけるリンの化合物とアルカリ土類金属は、防曇性被膜中にあって吸水性材料として機能し、これらによって防曇性被膜上に吸着水層が形成されるものと推定される。そして、防曇性被膜表面が親水性化され、これによって防曇性を発現しているものと考えられる。これら吸着水層の厚さは被膜の膜構造によって変化すると思われ、被膜の表面積が大きいほど、被膜上により多くの吸着水を安定的に保持することが可能である。従って、防曇性被膜の表面は平滑な表面よりも、凹凸形状や細孔構造を有していることが好ましい。凹凸形状を有する場合には、算術平均粗さ(Ra)が80nm以下であることが好ましく、さらには30nm以下であることが好ましい。算術平均粗さ(Ra)が80nm以下であると、初期のヘイズ値を小さく抑えることができ好ましい。   It is presumed that the phosphorus compound and alkaline earth metal in the present invention are present in the antifogging film and function as a water-absorbing material, thereby forming an adsorbed water layer on the antifogging film. And it is thought that the surface of an antifogging coating film is made hydrophilic, thereby expressing the antifogging property. The thickness of these adsorbed water layers is considered to change depending on the film structure of the film, and the larger the surface area of the film, the more adsorbed water can be stably held on the film. Therefore, it is preferable that the surface of the antifogging coating has an uneven shape and a pore structure rather than a smooth surface. When it has an uneven shape, the arithmetic average roughness (Ra) is preferably 80 nm or less, and more preferably 30 nm or less. When the arithmetic average roughness (Ra) is 80 nm or less, the initial haze value can be kept small, which is preferable.

本発明の防曇性被膜の厚さについては、本発明の効果を奏する範囲で特に限定されないが、2〜1000nmであることが好ましい。2nm以上であると十分な吸着水層ができるために十分な防曇維持性能が得られると考えられる。一方、1000nm以下であると十分な耐摩耗性を得ることができる。以上の観点から、防曇性被膜の厚さは、さらに2〜500nmの範囲であることが好ましい。さらに干渉色が認められないとの観点から、特に2〜200nmの範囲であることが好ましい。   The thickness of the antifogging film of the present invention is not particularly limited as long as the effects of the present invention are achieved, but is preferably 2 to 1000 nm. If the thickness is 2 nm or more, a sufficient adsorbed water layer is formed, and it is considered that sufficient antifogging maintenance performance can be obtained. On the other hand, if it is 1000 nm or less, sufficient wear resistance can be obtained. From the above viewpoint, the thickness of the antifogging coating is preferably in the range of 2 to 500 nm. Further, from the viewpoint that no interference color is recognized, the range of 2 to 200 nm is particularly preferable.

本発明における防曇性被膜は、基材上に直接形成してもよいし、基材の表面に金属酸化物の平滑または凹凸を有する膜を形成しておき、その上に形成してもよい。特に凹凸を有する金属酸化物膜上に防曇性被膜を形成すると、金属酸化物膜の凹凸に応じて防曇性被膜も凹凸が形成され好ましい。金属酸化物膜に凹凸を付与する方法としては特に制限はなく、例えば酸化ケイ素などの微粒子を金属酸化物中に分散させて凹凸を得る方法や、熱分解可能な樹脂微粒子を金属酸化物中に内包させておいて成膜の後に該樹脂微粒子を熱分解・焼失させることにより凹凸を得る方法などがある。
上記熱分解可能な樹脂微粒子を用いて凹凸を得る方法においては、例えば水ガラスなどのマトリックス中に熱分解可能な樹脂微粒子を内包させ、基材上に成膜後、該樹脂微粒子の分解温度以上(通常300℃程度以上)、かつ基材の耐熱温度以下の温度で熱処理する。ここで基材の耐熱温度とは基材の特性が保持できる上限の温度をいい、用いる基材の種類によって異なる。例えばガラス基材の場合には軟化点や失透温度をいい(通常600〜700℃程度)、プラスチック基材の場合は、ガラス転移温度、結晶化温度、分解点などをいう。
The antifogging film in the present invention may be formed directly on the substrate, or a film having a smooth or uneven metal oxide film may be formed on the surface of the substrate, and may be formed thereon. . In particular, when an antifogging film is formed on a metal oxide film having unevenness, the antifogging film is also preferably formed according to the unevenness of the metal oxide film. There is no particular limitation on the method for imparting irregularities to the metal oxide film, for example, a method for obtaining irregularities by dispersing fine particles such as silicon oxide in the metal oxide, or a method of providing thermally decomposable resin fine particles in the metal oxide. There is a method in which the resin fine particles are encapsulated and the resin fine particles are thermally decomposed and burned off to form irregularities.
In the method for obtaining irregularities using the thermally decomposable resin fine particles, for example, the thermally decomposable resin fine particles are encapsulated in a matrix such as water glass, and after film formation on the substrate, the resin fine particles are at a decomposition temperature or higher. Heat treatment is performed at a temperature (usually about 300 ° C. or higher) and lower than the heat resistant temperature of the substrate. Here, the heat resistant temperature of the base material means an upper limit temperature at which the characteristics of the base material can be maintained, and differs depending on the type of base material used. For example, in the case of a glass substrate, it refers to the softening point and devitrification temperature (usually about 600 to 700 ° C.), and in the case of a plastic substrate, it refers to the glass transition temperature, crystallization temperature, decomposition point, and the like.

次に、本発明の防曇性被膜被覆物品はその初期のヘイズ値が0.5%以下であることが好ましい。ここで、ヘイズ値は直読ヘイズコンピューター(スガ試験機(株)製「HGM−2DM」)を用いて測定した値である。
また、本発明の防曇性被膜被覆物品はテーバー摩耗試験前後のヘイズ値の差が2%以下であることが好ましい。ここでテーバー摩耗試験とは、JIS R3212:1998 3.7の方法において、摩耗ホイールの回転を100回転とした場合の試験である。テーバー摩耗試験によって、防曇性被膜被覆物品のヘイズ率の変化が小さいほど耐摩耗性が高いことを意味する。
Next, the anti-fogging film-coated article of the present invention preferably has an initial haze value of 0.5% or less. Here, the haze value is a value measured using a direct reading haze computer (“HGM-2DM” manufactured by Suga Test Instruments Co., Ltd.).
Moreover, it is preferable that the difference of the haze value before and after the Taber abrasion test is 2% or less in the antifogging coated article of the present invention. Here, the Taber abrasion test is a test when the rotation of the wear wheel is set to 100 in the method of JIS R3212: 1998 3.7. The smaller the change in the haze ratio of the antifogging film-coated article by the Taber abrasion test, the higher the abrasion resistance.

本発明で用いる基材としては特に限定されず、例えば、ガラス、樹脂、セラミックス、プラスチック、金属などが挙げられる。これらのうち透明性を確保する観点からガラスまたは樹脂が好ましく、特に透明な、ガラス板、樹脂板、または樹脂フィルムが好ましい。基材の厚さは、用途に応じ適宜選定されるものであり、特に限定されないが、通常0.01〜10mm程度である。   It does not specifically limit as a base material used by this invention, For example, glass, resin, ceramics, a plastics, a metal etc. are mentioned. Of these, glass or resin is preferable from the viewpoint of ensuring transparency, and a transparent glass plate, resin plate, or resin film is particularly preferable. The thickness of the substrate is appropriately selected according to the application and is not particularly limited, but is usually about 0.01 to 10 mm.

本発明の防曇性被膜物品における被膜は、基材表面にリン酸化合物とアルカリ土類金属を含む防曇性被膜形成用塗工材料を塗布し、成膜することによって形成することができる。
以下、リン酸化合物とアルカリ土類金属を含む防曇性被膜形成用塗工材料(以下単に「塗工材料」という場合がある。)について詳細に説明する。
塗工材料におけるリン酸化合物としては特に制限はなく、例えばオルトリン酸、メタリン酸、ポリリン酸、ピロリン酸、三リン酸、四リン酸、リン酸塩などを挙げることができる。これらは単独でまたは2種以上を混合して用いることができる。これらのうち特に、直鎖構造を有するものの方が耐水性に優れ、またリン酸塩等と比較してアルカリ土類金属との結合が強いとの観点からオルトリン酸、ポリリン酸、ピロリン酸、三リン酸及び四リン酸が好ましい。これらのリン酸化合物は後に詳述するアルカリ土類金属(M)と反応して、酸素を介してP−O−M結合を形成し、コーティング膜の強度を高めると考えられる。
The film in the antifogging film article of the present invention can be formed by applying a film material for forming an antifogging film containing a phosphoric acid compound and an alkaline earth metal on the surface of the base material, and forming a film.
Hereinafter, a coating material for forming an antifogging film containing a phosphoric acid compound and an alkaline earth metal (hereinafter sometimes simply referred to as “coating material”) will be described in detail.
There is no restriction | limiting in particular as a phosphoric acid compound in a coating material, For example, orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, a phosphate etc. can be mentioned. These can be used alone or in admixture of two or more. Among these, orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid, three-particulates are particularly preferred from the viewpoints that those having a linear structure are superior in water resistance and have a stronger bond with alkaline earth metals than phosphates and the like. Phosphoric acid and tetraphosphoric acid are preferred. These phosphate compounds are considered to react with an alkaline earth metal (M), which will be described in detail later, to form a POM bond via oxygen and to increase the strength of the coating film.

塗工材料中のアルカリ土類金属としては、上述した防曇性被膜中に存在するアルカリ土類金属と同様であり、特にマグネシウムが好ましい。
また、アルカリ土類金属の出発物質としては種々の形態のものを用いることができ、例えば水酸化物、塩化物、酸化物、硫化物などを用いることができる。これらのうち取り扱いの容易さ等を考慮すると水酸化物または塩化物が好ましい。
従って、アルカリ土類金属としてマグネシウムを用いる場合には、塗工材料中に存在する出発物質として水酸化マグネシウム、塩化マグネシウム、酸化マグネシウム、硫化マグネシウムなどを用いることができる。これらのうち取り扱いの容易さ等を考慮すると、水酸化マグネシウム又は塩化マグネシウムが好ましい。
The alkaline earth metal in the coating material is the same as the alkaline earth metal present in the antifogging film described above, and magnesium is particularly preferable.
In addition, as the alkaline earth metal starting material, various forms can be used. For example, hydroxides, chlorides, oxides, sulfides and the like can be used. Of these, hydroxides or chlorides are preferable in view of ease of handling.
Accordingly, when magnesium is used as the alkaline earth metal, magnesium hydroxide, magnesium chloride, magnesium oxide, magnesium sulfide, or the like can be used as a starting material present in the coating material. Of these, magnesium hydroxide or magnesium chloride is preferable in view of ease of handling.

塗工材料中でのアルカリ土類金属とリン酸化合物との含有割合(M/Pの質量割合)は、本発明の効果を奏する範囲で特に限定されないが、アルカリ土類金属(M)とリン(P)の質量比換算で0.05〜4の範囲であることが好ましい。アルカリ土類金属(M)とリン(P)の含有割合が0.05以上であると十分な耐摩耗性を有するという利点があり、4以下であると防曇維持性に優れるという利点がある。以上の観点から、アルカリ土類金属(M)とリン(P)の含有割合は、0.1〜2の範囲であることがさらに好ましく、0.3〜1の範囲であることが特に好ましい。
また、アルカリ土類金属として、最も好適な態様であるマグネシウムの場合においても同様であり、マグネシウムとリン酸化合物との含有割合(Mg/Pの質量割合)が、マグネシウム(Mg)とリン(P)の質量比換算で0.05〜4の範囲であることが好ましい。さらには0.1〜2の範囲であることが好ましく、0.3〜1の範囲であることが特に好ましい。なお、アルカリ土類金属(M)とリン(P)の含有割合(M/Pの質量割合)は、ICP発光分析法により算出した。
The content ratio (mass ratio of M / P) of the alkaline earth metal and the phosphate compound in the coating material is not particularly limited as long as the effect of the present invention is achieved, but the alkaline earth metal (M) and phosphorus are not limited. It is preferable that it is the range of 0.05-4 in conversion of the mass ratio of (P). When the content ratio of alkaline earth metal (M) and phosphorus (P) is 0.05 or more, there is an advantage of having sufficient abrasion resistance, and when it is 4 or less, there is an advantage of excellent anti-fogging maintenance. . From the above viewpoint, the content ratio of the alkaline earth metal (M) and phosphorus (P) is more preferably in the range of 0.1 to 2, and particularly preferably in the range of 0.3 to 1.
The same applies to the case of magnesium, which is the most preferred embodiment as the alkaline earth metal, and the content ratio of magnesium and phosphate compound (mass ratio of Mg / P) is magnesium (Mg) and phosphorus (P ) Is preferably in the range of 0.05 to 4 in terms of mass ratio. Furthermore, it is preferably in the range of 0.1 to 2, particularly preferably in the range of 0.3 to 1. In addition, the content ratio (mass ratio of M / P) of alkaline earth metal (M) and phosphorus (P) was calculated by an ICP emission analysis method.

基材に塗工材料を塗布する方法としては、特に限定されず公知の方法を用いることができ、例えば、スパッタリングや蒸着法等の真空成膜、フローコーティング法、ディップコーティング法、カーテンコーティング法、スピンコーティング法、スプレーコーティング法、バーコーティング法、ロールコーティング法、手塗り法、浸漬吸着法、ゾルゲル法などのウエットコーティングが挙げられる。ウエットコーティングは高価な設備を必要しない点で有利であり、以下ウエットコーティング法を用いた場合を例として、本発明の防曇性被膜被覆物品の製造方法について詳細に説明する。   The method for applying the coating material to the substrate is not particularly limited, and a known method can be used. For example, vacuum film formation such as sputtering or vapor deposition, flow coating method, dip coating method, curtain coating method, Examples include wet coating such as spin coating, spray coating, bar coating, roll coating, hand coating, immersion adsorption, and sol-gel. Wet coating is advantageous in that it does not require expensive equipment, and the method for producing an antifogging film-coated article of the present invention will be described in detail below, taking the case of using the wet coating method as an example.

リン酸化合物とアルカリ土類金属を含む塗工材料の溶媒に関しては、リン酸化合物とアルカリ土類金属を溶解し得るものであれば特に限定されず、水、アルコール等が好適に挙げられるが、特に水が好ましい。水は成膜時の乾燥や成膜後の熱処理によって簡単に除去でき、製造環境上も好適である。なお、該溶媒は1種を単独で、又は2種以上を混合して使用することができる。
また、塗工材料中のマグネシウム等のアルカリ土類金属とリンの総量(金属換算)は、0.01〜50質量%の範囲であることが好ましい。0.01質量%以上であると、一定以上の膜厚が確保され、防曇維持性が良いとの利点があり、50質量%以下であると膜厚が厚くなりすぎず、耐摩耗性が良いという利点がある。以上の観点から、マグネシウム等のアルカリ土類金属とリンの総量は、さらに0.07〜10質量%の範囲が好ましい。
The solvent of the coating material containing the phosphate compound and the alkaline earth metal is not particularly limited as long as it can dissolve the phosphate compound and the alkaline earth metal, and water, alcohol, and the like are preferable. Water is particularly preferable. Water can be easily removed by drying at the time of film formation or by heat treatment after film formation, which is preferable in terms of manufacturing environment. In addition, this solvent can be used individually by 1 type or in mixture of 2 or more types.
Moreover, it is preferable that the total amount (metal conversion) of alkaline-earth metals, such as magnesium, and phosphorus in a coating material is the range of 0.01-50 mass%. When it is 0.01% by mass or more, there is an advantage that a film thickness of a certain level or more is secured and anti-fogging maintenance is good, and when it is 50% by mass or less, the film thickness does not become too thick and wear resistance is improved. There is an advantage of being good. From the above viewpoint, the total amount of alkaline earth metal such as magnesium and phosphorus is preferably in the range of 0.07 to 10% by mass.

基材に前記塗工材料を塗布するにあたり、基材表面の洗浄や表面改質を行うことができる。基材の汚れの付着状態等によっては、該溶液をはじくなどの現象が起こり、均一に成膜できない場合があり、その場合に洗浄は有効である。洗浄の方法としては、例えばアルコール、アセトン、ヘキサン等の有機溶媒による脱脂洗浄、アルカリや酸による洗浄、研磨剤により基材表面を研磨する方法などがある。
また、基材表面には親水性基が存在することが好ましく、親水性基を増加させる目的で、防曇性被膜を形成する前に、あらかじめ基材の表面処理を行うことも好適である。表面改質の方法としては、紫外線照射処理、紫外線オゾン処理、プラズマ処理、コロナ放電処理、熱処理などが挙げられる。
In applying the coating material to the base material, the surface of the base material can be washed or modified. Depending on the adherence of the substrate to the soil, a phenomenon such as repelling of the solution may occur and uniform film formation may not be possible. In that case, cleaning is effective. Examples of the cleaning method include degreasing cleaning with an organic solvent such as alcohol, acetone, and hexane, cleaning with an alkali or acid, and a method of polishing the substrate surface with an abrasive.
In addition, it is preferable that a hydrophilic group is present on the surface of the base material, and it is also preferable to perform a surface treatment of the base material in advance before forming the antifogging film for the purpose of increasing the hydrophilic group. Examples of the surface modification method include ultraviolet irradiation treatment, ultraviolet ozone treatment, plasma treatment, corona discharge treatment, and heat treatment.

基材上に塗工材料を塗布した後は、室温から200℃の範囲、さらに好ましくは100〜200℃の範囲で乾燥することが好ましい。また乾燥後に焼成することが好ましく、焼成温度としては300℃よりも高く、かつ基材の耐熱温度以下の温度で熱処理することが好ましい。具体的には300〜700℃の範囲が好ましく、さらに好ましくは300〜500℃の範囲である。   After the coating material is applied on the substrate, it is preferably dried in the range of room temperature to 200 ° C, more preferably in the range of 100 to 200 ° C. Moreover, it is preferable to bake after drying, and it is preferable to heat-process at a temperature higher than 300 degreeC and below the heat-resistant temperature of a base material. Specifically, the range of 300 to 700 ° C is preferable, and the range of 300 to 500 ° C is more preferable.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(評価方法)
(1)防曇性被膜の分析
被膜組成をX線光電子分光分析(アルバック・ファイ(株)製「ESCA−5600ci」)を用いて評価した。X線光電子分光分析の条件は以下のとおりである。
(a)前処理方法;試料切断後、モリブデンマスクを用いて試料台に固定した。
(b)分析条件
Current X-ray anode;Al Monochromated 2mm Filament
Anode Energy;1486.6eV
Anode Power;150Watts
X-ray Voltage;14kV
Stage Angle;45゜
(c)エッチング条件
Primary ion species;Ar
Beam voltage;3.0kV
Raster;4×4mm
Etching Rate;約1.4nm/min(SiO2膜換算)
また、被膜の表面構造及び断面構造を走査型電子顕微鏡(日立製作所(株)製「S−4700型」)を用いて、加速電圧5kV、照射電流10μA、傾斜角10度(断面)、30度(表面)、表面の観察倍率5万倍、断面の観察倍率10万倍の条件で観察した。
(2)耐摩耗性の評価
各実施例及び比較例で得られた防曇性被膜被覆物品について、JIS R3212:1998 3.7の方法による耐摩耗性試験(テーバー摩耗試験)を行い、試験前後の耐摩耗性をヘイズ値で評価した。なお、摩耗ホイールの回転を100回転として試験を実施した。ヘイズ値は、直読ヘイズコンピューター(スガ試験機(株)製「HGM−2DM」)を用いて測定した。ヘイズ値の値が小さいほど、膜剥がれやキズ等の外観不良がなく、耐摩耗性に優れていることを示す。
(3)防曇維持性の評価
各実施例及び比較例で得られた防曇性被膜被覆物品について、温度20±5℃、湿度30±10%の室内に放置し、防曇性能の経時変化を、呼気を吹き付けた際のガラス越しに見える視界の曇り具合の見え方で評価した。評価は以下の基準に基づいて行った。
◎;曇りがなく、見え方が乾燥状態と変わらない。
○;ぼやけや歪みがわずかに見られるが、見え方は良好である。
△;同一条件で呼気を吹き付けた通常のガラスにおける曇りよりも良好であるが、見え方は悪い。
×;同一条件で呼気を吹き付けた通常のガラスにおける曇りと同等もしくはそれ以下であり、見え方は悪い。
(4)塗工材料中の元素分析
ICP発光分析法により、塗工材料中のリン(P)、マグネシウム(Mg)、チタン(Ti)の定量分析を実施した。なお、測定装置としては、ICP発光分析装置(島津製作所製「ICPS−8000」を使用した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
(Evaluation methods)
(1) Analysis of antifogging coating The coating composition was evaluated using X-ray photoelectron spectroscopy ("ESCA-5600ci" manufactured by ULVAC-PHI Co., Ltd.). The conditions for X-ray photoelectron spectroscopy are as follows.
(A) Pretreatment method: After cutting the sample, the sample was fixed on a sample table using a molybdenum mask.
(B) Analysis conditions
Current X-ray anode; Al Monochromated 2mm Filament
Anode Energy; 1486.6eV
Anode Power; 150Watts
X-ray Voltage; 14kV
Stage Angle; 45 ° (c) Etching conditions
Primary ion species; Ar
Beam voltage; 3.0kV
Raster; 4 × 4mm
Etching Rate; about 1.4nm / min (SiO 2 film conversion)
Further, the surface structure and the cross-sectional structure of the coating film were measured using a scanning electron microscope (“S-4700 type” manufactured by Hitachi, Ltd.) with an acceleration voltage of 5 kV, an irradiation current of 10 μA, an inclination angle of 10 degrees (cross section), and 30 degrees. (Surface), observation was performed under the conditions of a surface observation magnification of 50,000 and a cross-section observation magnification of 100,000.
(2) Evaluation of wear resistance The antifogging coated articles obtained in each of the examples and comparative examples were subjected to a wear resistance test (Taber abrasion test) according to the method of JIS R3212: 1998 3.7 before and after the test. The wear resistance was evaluated by the haze value. The test was conducted with the wear wheel rotating at 100 rotations. The haze value was measured using a direct reading haze computer (“HGM-2DM” manufactured by Suga Test Instruments Co., Ltd.). The smaller the haze value is, the better the abrasion resistance is without the appearance defects such as film peeling and scratches.
(3) Evaluation of anti-fogging maintenance property About the anti-fogging film-coated article obtained in each Example and Comparative Example, it was left in a room with a temperature of 20 ± 5 ° C. and a humidity of 30 ± 10%, and the anti-fogging performance was changed over time. Was evaluated based on how the field of view was visible through the glass when exhaled. Evaluation was performed based on the following criteria.
A: There is no cloudiness and the appearance is the same as the dry state.
○: Blurring and distortion are slightly seen, but the appearance is good.
Δ: It is better than fogging in normal glass blown under the same conditions, but the appearance is bad.
X: It is equal to or less than the fogging in ordinary glass sprayed under the same conditions, and the appearance is poor.
(4) Elemental analysis in coating material Quantitative analysis of phosphorus (P), magnesium (Mg), and titanium (Ti) in the coating material was carried out by ICP emission analysis. As the measuring device, an ICP emission analyzer (“ICPS-8000” manufactured by Shimadzu Corporation) was used.

実施例1
イオン交換水1000質量部に四塩化チタン(TiCl4;キシダ化学(株)製)100質量部を混合し、30分以上攪拌してA液を得た。またイオン交換水4000質量部と、このA液200質量部を混合し、30分以上攪拌してB液を得た。次に、B液1000質量部に、ポリリン酸(H1346;キシダ化学(株)製)70質量部、水酸化マグネシウム(Mg(OH)2;シグマアルドリッチジャパン(株)製)20質量部を混合して攪拌した。この後、これを静置することによって沈殿物を沈澱させ、上澄み液をイオン交換水で5倍に希釈して防曇性被膜形成用塗工材料Cとした。塗工材料C中のマグネシウムとリンの含有量はそれぞれ0.166質量%、0.546質量%であった。また、チタンについては検出限界以下であった。
この塗工材料Cを洗浄したガラス基板上に、20℃、相対湿度30%の条件下でフローコート法により塗布した。その後、室温下で30分間、さらに100℃で30分間乾燥した後、320℃で30分間熱処理した。このガラス物品について、上記評価を実施した。
図1及び第1表にX線光電子分光分析による測定結果を示す。防曇性被膜の主成分としてマグネシウム(1S軌道)とリン(2p軌道)が検出され、スパッタリング時間30分程度の部分までリンが存在することがわかる。スパッタリング時間30分程度でSi(2p軌道)が飽和することから、この時点以降は基板部分であると考えられる。防曇性被膜中のマグネシウムとリンの平均の割合は2.6であった。
また、走査型電子顕微鏡写真を図2及び図3に示す。該ガラス物品の防曇性被膜の厚さは約50nmであった。
次に、テーバー摩耗試験前後のヘイズ率変化、及び防曇維持性の評価結果を第2表に示す。テーバー摩耗試験前後のヘイズ率変化が小さく、膜剥がれやキズ等の外観不良もなく、耐摩耗性に優れていることが確認された。また、2ヶ月放置後であっても防曇性能が維持されていることが確認された。
Example 1
100 parts by mass of titanium tetrachloride (TiCl 4 ; manufactured by Kishida Chemical Co., Ltd.) was mixed with 1000 parts by mass of ion-exchanged water, and stirred for 30 minutes or more to obtain a liquid A. Moreover, 4000 mass parts of ion-exchange water and 200 mass parts of this A liquid were mixed, and it stirred for 30 minutes or more, and obtained B liquid. Next, 70 parts by mass of polyphosphoric acid (H 13 P 4 O 6 ; manufactured by Kishida Chemical Co., Ltd.), magnesium hydroxide (Mg (OH) 2 ; manufactured by Sigma Aldrich Japan Co., Ltd.) 20 The mass parts were mixed and stirred. Thereafter, the precipitate was settled by allowing it to stand, and the supernatant was diluted 5 times with ion-exchanged water to obtain a coating material C for forming an antifogging film. The contents of magnesium and phosphorus in the coating material C were 0.166% by mass and 0.546% by mass, respectively. Titanium was below the detection limit.
The coating material C was applied on a cleaned glass substrate by a flow coating method at 20 ° C. and a relative humidity of 30%. Then, after drying at room temperature for 30 minutes and further at 100 ° C. for 30 minutes, heat treatment was performed at 320 ° C. for 30 minutes. The above evaluation was performed on this glass article.
FIG. 1 and Table 1 show the measurement results by X-ray photoelectron spectroscopy. Magnesium (1S orbital) and phosphorus (2p orbital) are detected as the main components of the antifogging film, and it can be seen that phosphorus exists up to a portion of about 30 minutes sputtering time. Since Si (2p orbital) is saturated after about 30 minutes of sputtering time, it is considered that the substrate portion is present after this point. The average ratio of magnesium and phosphorus in the antifogging film was 2.6.
Scanning electron micrographs are shown in FIGS. The thickness of the antifogging coating on the glass article was about 50 nm.
Next, Table 2 shows the haze rate change before and after the Taber abrasion test and the evaluation results of the anti-fogging maintenance property. It was confirmed that the haze rate change before and after the Taber abrasion test was small, there was no appearance defect such as film peeling and scratches, and the abrasion resistance was excellent. Further, it was confirmed that the antifogging performance was maintained even after being left for 2 months.

実施例2
実施例1で調製したB液1000質量部に、リン酸(H3PO4;キシダ化学(株)製)60質量部、水酸化マグネシウム(Mg(OH)2;前出)20質量部を混合して攪拌した。この後、これを静置することによって沈殿物を沈澱させ、上澄み液を防曇性被膜形成用塗工材料Dとした。塗工材料D中のマグネシウムとリンの含有量はそれぞれ1.32質量%、1.46質量%であった。また、チタンについては検出限界以下であった。
この塗工材料Dを洗浄したガラス基板上に、20℃、相対湿度30%の条件下でフローコート法により塗布した。その後、室温下で30分間乾燥した後、320℃で15分間熱処理した。このガラス物品について、上記評価を実施した。
得られたガラス物品の防曇性被膜の厚さは約250nmであった。また、防曇性被膜の主成分としてマグネシウムとリンが検出され、防曇性被膜中のマグネシウムとリンの平均の割合は2.7であった。テーバー摩耗試験前後のヘイズ率変化、及び防曇維持性の評価結果を第2表に示す。テーバー摩耗試験前後のヘイズ率変化が小さく、膜剥がれやキズ等の外観不良もなく、耐摩耗性に優れていることが確認された。また、2ヶ月放置後であっても防曇性能が維持されていることが確認された。
Example 2
To 1000 parts by mass of the B solution prepared in Example 1, 60 parts by mass of phosphoric acid (H 3 PO 4 ; manufactured by Kishida Chemical Co., Ltd.) and 20 parts by mass of magnesium hydroxide (Mg (OH) 2 ; supra) were mixed. And stirred. Thereafter, the precipitate was settled by allowing it to stand, and the supernatant liquid was used as a coating material D for forming an antifogging film. The contents of magnesium and phosphorus in the coating material D were 1.32% by mass and 1.46% by mass, respectively. Titanium was below the detection limit.
The coating material D was applied on a cleaned glass substrate by a flow coating method at 20 ° C. and a relative humidity of 30%. Then, after drying for 30 minutes at room temperature, it heat-processed for 15 minutes at 320 degreeC. The above evaluation was performed on this glass article.
The thickness of the antifogging film of the obtained glass article was about 250 nm. Further, magnesium and phosphorus were detected as main components of the antifogging coating, and the average ratio of magnesium and phosphorus in the antifogging coating was 2.7. Table 2 shows the evaluation results of the haze ratio change before and after the Taber abrasion test and the anti-fogging maintenance property. It was confirmed that the haze rate change before and after the Taber abrasion test was small, there was no appearance defect such as film peeling and scratches, and the abrasion resistance was excellent. Further, it was confirmed that the antifogging performance was maintained even after being left for 2 months.

実施例3
実施例1の塗工材料Cを、イオン交換水を用いて4倍に希釈したこと以外は実施例1と同様にしてガラス物品を得、同様に評価した。得られたガラス物品の防曇性被膜の厚さは約13nmであった。また、防曇性被膜の主成分としてマグネシウムとリンが検出され、塗工材料中のマグネシウムとリンの含有量は、それぞれ0.0415質量%、0.1365質量%であった。また、防曇性被膜中のマグネシウムとリンの平均の割合は2.7であった。テーバー摩耗試験前後のヘイズ率変化、及び防曇維持性の評価結果を第2表に示す。テーバー摩耗試験前後のヘイズ率変化が小さく、膜剥がれやキズ等の外観不良もなく、耐摩耗性に優れていることが確認された。また、2ヶ月放置後であっても防曇性能が維持されていることが確認された。
Example 3
A glass article was obtained in the same manner as in Example 1 except that the coating material C of Example 1 was diluted 4 times with ion-exchanged water, and was similarly evaluated. The thickness of the antifogging film of the obtained glass article was about 13 nm. Further, magnesium and phosphorus were detected as the main components of the antifogging film, and the contents of magnesium and phosphorus in the coating material were 0.0415% by mass and 0.1365% by mass, respectively. Moreover, the average ratio of magnesium and phosphorus in the antifogging film was 2.7. Table 2 shows the evaluation results of the haze ratio change before and after the Taber abrasion test and the anti-fogging maintenance property. It was confirmed that the haze rate change before and after the Taber abrasion test was small, there was no appearance defect such as film peeling and scratches, and the abrasion resistance was excellent. Further, it was confirmed that the antifogging performance was maintained even after being left for 2 months.

比較例1
水溶性第一リン酸アルミニウム水溶液50質量部(多木化学(株)製「50L」、水溶性第一リン酸アルミニウム含有量33質量%)に蒸留水150質量部とエチレングリコールモノブチルエーテル20質量部を添加した。その後、平均粒径20nmのシリカゾル分散体(日産化学工業(株)「スノーテックスC」、分散媒;水、シリカ含有量;20質量%)200質量部とエタノール500質量部を加え、防曇性被膜形成用塗工材料Eを得た。溶液E中の水溶性リン酸アルミニウム/シリカの固形分換算質量比は、0.29/0.71、全固形分濃度は5.8質量%であった。
この塗工材料Eを洗浄したガラス基板上に20℃、相対湿度30%の条件下でフローコート法により塗布し、その後、300℃で1時間熱処理して防曇性被膜被覆ガラス物品を得た。得られたガラス物品の防曇性被膜の厚さは200nmであった。このガラス物品について、実施例1と同様に評価した。評価結果を第2表に示す。
テーバー摩耗試験前後のヘイズ率変化が大きく、また、膜剥がれなどの外観変化も発生し、耐摩耗性に劣ることが確認された。また、2ヶ月放置後の防曇性能が低下しており、防曇維持性が低いことが確認された。
Comparative Example 1
50 parts by mass of a water-soluble monobasic aluminum phosphate aqueous solution (“50L” manufactured by Taki Chemical Co., Ltd., water-soluble monobasic aluminum phosphate content 33% by mass), 150 parts by mass of distilled water and 20 parts by mass of ethylene glycol monobutyl ether Was added. Then, 200 parts by mass of silica sol dispersion (Nissan Chemical Industry Co., Ltd. “Snowtex C”, dispersion medium: water, silica content: 20% by mass) and 500 parts by mass of ethanol with an average particle size of 20 nm were added, and antifogging properties were added. A film-forming coating material E was obtained. The water-soluble aluminum phosphate / silica solid content-converted mass ratio in Solution E was 0.29 / 0.71, and the total solid content concentration was 5.8% by mass.
The coating material E was coated on the cleaned glass substrate by a flow coating method at 20 ° C. and a relative humidity of 30%, and then heat treated at 300 ° C. for 1 hour to obtain an antifogging film-coated glass article. . The thickness of the antifogging film of the obtained glass article was 200 nm. This glass article was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
It was confirmed that the haze ratio change before and after the Taber abrasion test was large, and the appearance change such as film peeling occurred, resulting in poor wear resistance. Moreover, it was confirmed that the anti-fogging performance after being left for 2 months is lowered and the anti-fogging maintenance property is low.

Figure 2006239495
Figure 2006239495

Figure 2006239495
Figure 2006239495

本発明の防曇性被膜被覆物品は防曇性能と耐摩耗性に優れ、眼鏡、ゴーグル、光学レンズ等の光学部品、建築用または車両用窓ガラスなどとして好適に使用される。また、本発明の塗工材料及び該塗工材料を用いた製造方法によれば、防曇性能と耐摩耗性に優れる防曇性被膜被覆物品を高い生産性で、効率よく製造することができる。   The anti-fogging film-coated article of the present invention is excellent in anti-fogging performance and wear resistance, and is suitably used as optical parts such as glasses, goggles and optical lenses, architectural or vehicle window glass. Further, according to the coating material of the present invention and the production method using the coating material, it is possible to efficiently produce an antifogging film-coated article excellent in antifogging performance and wear resistance with high productivity. .

実施例1で製造した被膜被覆物品の組成分析結果である。2 is a composition analysis result of a film-coated article manufactured in Example 1. FIG. 実施例1で製造した被膜被覆物品の断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the cross section of the coated article manufactured in Example 1. FIG. 実施例1で製造した被膜被覆物品の表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of a film-coated article produced in Example 1. FIG.

Claims (15)

基材と、該基材表面に形成された防曇性被膜を備える防曇性被膜被覆物品であって、該防曇性被膜がリンとアルカリ土類金属を含有する防曇性被膜被覆物品。 An anti-fogging film-coated article comprising a substrate and an anti-fogging film formed on the surface of the substrate, wherein the anti-fogging film contains phosphorus and an alkaline earth metal. 前記アルカリ土類金属がマグネシウムである請求項1に記載の防曇性被膜被覆物品。 The antifogging film-coated article according to claim 1, wherein the alkaline earth metal is magnesium. 防曇性被膜中のマグネシウムとリンの割合(Mg/P)が0.5〜10である請求項2に記載の防曇性被膜被覆物品。 The antifogging film-coated article according to claim 2, wherein the ratio of magnesium to phosphorus (Mg / P) in the antifogging film is 0.5 to 10. 前記防曇性被膜の厚さが2〜1000nmである請求項1〜3のいずれかに記載の防曇性被膜被覆物品。 The antifogging film-coated article according to any one of claims 1 to 3, wherein the antifogging film has a thickness of 2 to 1000 nm. 初期のヘイズ値が0.5%以下である請求項1〜4のいずれかに記載の防曇性被膜被覆物品。 The anti-fogging film-coated article according to any one of claims 1 to 4, wherein an initial haze value is 0.5% or less. テーバー摩耗試験前後のヘイズ値の差が2%以下である請求項1〜5のいずれかに記載の防曇性被膜被覆物品。 The antifogging film-coated article according to any one of claims 1 to 5, wherein a difference in haze values before and after the Taber abrasion test is 2% or less. 前記基材が、透明な、ガラス板、樹脂板又は樹脂フィルムのいずれかである請求項1〜6のいずれかに記載の防曇性被膜被覆物品。 The anti-fogging film-coated article according to any one of claims 1 to 6, wherein the substrate is a transparent glass plate, resin plate, or resin film. リン酸化合物とアルカリ土類金属を含む防曇性被膜形成用塗工材料。 An antifogging coating-forming coating material containing a phosphoric acid compound and an alkaline earth metal. 前記リン酸化合物がオルトリン酸、メタリン酸、ポリリン酸、ピロリン酸、三リン酸、四リン酸及びリン酸塩からなる群から選ばれる少なくとも1種である請求項8に記載の防曇性被膜形成用塗工材料。 The antifogging film formation according to claim 8, wherein the phosphoric acid compound is at least one selected from the group consisting of orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and phosphate. Coating material. 前記アルカリ土類金属が水酸化物、塩化物、酸化物及び硫化物からなる群から選ばれる少なくとも1種の化合物を出発物質とする請求項8又は9に記載の防曇性被膜形成用塗工材料。 The antifogging film-forming coating according to claim 8 or 9, wherein the alkaline earth metal is at least one compound selected from the group consisting of hydroxide, chloride, oxide and sulfide. material. 前記アルカリ土類金属がマグネシウムである請求項10に記載の防曇性被膜形成用塗工材料。 The coating material for forming an antifogging film according to claim 10, wherein the alkaline earth metal is magnesium. マグネシウムとリンの含有割合(Mg/Pの質量割合)が0.05〜4である請求項11に記載の防曇性被膜形成用塗工材料。 The coating material for forming an antifogging film according to claim 11, wherein the content ratio of magnesium and phosphorus (mass ratio of Mg / P) is 0.05-4. 前記塗工材料が溶媒を含み、塗工材料中のアルカリ土類金属とリンの総量(金属換算)が0.01〜50質量%である請求項8〜12のいずれかに記載の防曇性被膜形成用塗工材料。 The anti-fogging property according to any one of claims 8 to 12, wherein the coating material contains a solvent, and the total amount (metal conversion) of the alkaline earth metal and phosphorus in the coating material is 0.01 to 50% by mass. Coating material for film formation. 前記溶媒がアルコール及び/又は水である請求項13に記載の防曇性被膜形成用塗工材料。 The coating material for forming an antifogging film according to claim 13, wherein the solvent is alcohol and / or water. 請求項8〜14のいずれかに記載の防曇性被膜形成用塗工材料を基材表面に塗布し、成膜することによって防曇性被膜を形成する防曇性被膜被覆物品の製造方法。

The manufacturing method of the anti-fogging film coating article which forms the anti-fogging film by apply | coating the coating material for anti-fogging film formation in any one of Claims 8-14 to a base-material surface, and forming into a film.

JP2005055561A 2005-03-01 2005-03-01 Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article Pending JP2006239495A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005055561A JP2006239495A (en) 2005-03-01 2005-03-01 Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article
PCT/JP2006/303602 WO2006093086A1 (en) 2005-03-01 2006-02-27 Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055561A JP2006239495A (en) 2005-03-01 2005-03-01 Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article

Publications (1)

Publication Number Publication Date
JP2006239495A true JP2006239495A (en) 2006-09-14

Family

ID=36941115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055561A Pending JP2006239495A (en) 2005-03-01 2005-03-01 Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article

Country Status (2)

Country Link
JP (1) JP2006239495A (en)
WO (1) WO2006093086A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059606A1 (en) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method of producing honeycomb structural body and honeycomb structural body
JP2019214510A (en) * 2015-12-16 2019-12-19 イーエヌジー カ エンタープライズ スンディリアン ブルハドEng Kah Enterprise Sdn. Bhd. Method for laser printing image on glass product
US20200023618A1 (en) * 2016-12-28 2020-01-23 Nippon Sheet Glass Company, Limited Method for manufacturing glass plate and glass plate for automobile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172148A (en) * 1997-12-12 1999-06-29 Kobe Steel Ltd Hydrophilic coating material and production of hydrophilic substrate
JP2000079370A (en) * 1998-09-08 2000-03-21 Nippon Steel Corp Galvanized steel sheet excellent in heat resistance, heat discoloration resistance and corrosion resistance
JP2002080829A (en) * 2000-09-07 2002-03-22 Toto Ltd Hydrophilic member, its production method, and coating material for its production
WO2002053285A1 (en) * 2000-12-28 2002-07-11 Showa Denko K.K. Powder exhibiting optical function and use thereof
WO2003053576A1 (en) * 2001-12-21 2003-07-03 Showa Denko K.K. High active photocatalyst particle, method for production thereof and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542322B2 (en) * 2003-09-10 2010-09-15 株式会社Yooコーポレーション Amorphous coating and anti-fogging amorphous coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172148A (en) * 1997-12-12 1999-06-29 Kobe Steel Ltd Hydrophilic coating material and production of hydrophilic substrate
JP2000079370A (en) * 1998-09-08 2000-03-21 Nippon Steel Corp Galvanized steel sheet excellent in heat resistance, heat discoloration resistance and corrosion resistance
JP2002080829A (en) * 2000-09-07 2002-03-22 Toto Ltd Hydrophilic member, its production method, and coating material for its production
WO2002053285A1 (en) * 2000-12-28 2002-07-11 Showa Denko K.K. Powder exhibiting optical function and use thereof
WO2003053576A1 (en) * 2001-12-21 2003-07-03 Showa Denko K.K. High active photocatalyst particle, method for production thereof and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059606A1 (en) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method of producing honeycomb structural body and honeycomb structural body
JP2019214510A (en) * 2015-12-16 2019-12-19 イーエヌジー カ エンタープライズ スンディリアン ブルハドEng Kah Enterprise Sdn. Bhd. Method for laser printing image on glass product
US20200023618A1 (en) * 2016-12-28 2020-01-23 Nippon Sheet Glass Company, Limited Method for manufacturing glass plate and glass plate for automobile

Also Published As

Publication number Publication date
WO2006093086A1 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
US6156409A (en) Non-fogging article and process for the production thereof
EP0816466B1 (en) Use of material having ultrahydrophilic and photocatalytic surface
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
JP6989650B2 (en) A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device.
JP3344256B2 (en) Coating liquid for forming hydrophilic film and method for producing the same
JP4118086B2 (en) Method for producing anti-fogging and antifouling thin film having hydrophilicity
US6479141B1 (en) Photocatalytic coating composition and product having photocatalytic thin film
JP2007063477A (en) Inorganic coating composition, hydrophilic coating film, and agricultural film
RU2269495C2 (en) Method of application of coat on glass
JP2006239495A (en) Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article
JP2006076829A (en) Anti-fogging article and its producing method
EP3406579A1 (en) Transparent substrate with non-transparent film
JP5156393B2 (en) VEHICLE GLASS PLATE HAVING COATING AND METHOD FOR MANUFACTURING SAME
JP4292992B2 (en) Composition for forming photocatalyst film and substrate with photocatalyst film
JP2009018946A (en) Method for forming transparent super-water-repellent film and glass substrate having transparent super-water-repellent film
JP2002078821A (en) Clouding preventive water goggles
JP2001070801A (en) Base material provided with highly durable photocatalyst film and production process of the same
JP3400259B2 (en) Hydrophilic coating and method for producing the same
JP7476564B2 (en) Superhydrophilic film, its manufacturing method, and optical member
Bi et al. A silica-sol-based fortified structure with superhydrophobic coating for harsh conditions
JP2006070141A (en) Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane
JP7153638B2 (en) Glass articles with low reflection coating
JP2003073146A (en) Fogging proof mirror and its manufacturing method
JP2000264680A (en) Antifogging coating film of mirror for vehicle and its product ion
JP2011126948A (en) Coating agent for glass, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080404

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726