JP2006239303A - X-ray ct apparatus - Google Patents

X-ray ct apparatus Download PDF

Info

Publication number
JP2006239303A
JP2006239303A JP2005062655A JP2005062655A JP2006239303A JP 2006239303 A JP2006239303 A JP 2006239303A JP 2005062655 A JP2005062655 A JP 2005062655A JP 2005062655 A JP2005062655 A JP 2005062655A JP 2006239303 A JP2006239303 A JP 2006239303A
Authority
JP
Japan
Prior art keywords
ray
scattered radiation
projection data
value
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062655A
Other languages
Japanese (ja)
Other versions
JP4703221B2 (en
Inventor
Keiji Matsuda
圭史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2005062655A priority Critical patent/JP4703221B2/en
Publication of JP2006239303A publication Critical patent/JP2006239303A/en
Application granted granted Critical
Publication of JP4703221B2 publication Critical patent/JP4703221B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce dark-band artifacts caused by an influence of scattered rays in a row direction in a multi-slice X-ray CT apparatus with multiple detector rows. <P>SOLUTION: The X-ray CT apparatus is equipped with an X-ray generating means to irradiate a subject with an X-ray like cone-beam, an X-ray detector equipped with plural detector rows of X-ray detecting elements and detecting the X-ray that passed through the subject, a scattered rays correcting means to eliminate the scattered rays in the row direction included in reflection data outputted by the X-ray detector, which is configured to eliminate the scattered rays presumed by the size of the value of the reflection data for the scattered rays correction or that of its adjacent data, and a reconstructing means to reconstruct the image in the subject based on the reflection data after the scattered rays correction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検体にX線を曝射して得られた投影データに基づいて被検体内部の画像を生成するX線CT装置に関する。   The present invention relates to an X-ray CT apparatus that generates an image inside a subject based on projection data obtained by exposing the subject to X-rays.

X線CT装置の進歩は目覚しく、より高精細(高解像度)且つ広範囲に撮影したいという医療現場からの強い要望に応えて、マルチスライスX線CT装置が開発され、これがかなり普及してきている。このマルチスライスX線CT装置は、スライス方向(寝台天板の長手方向)に広がり幅を有するコーンビームX線を曝射するX線源と、複数列の検出素子列をスライス方向に並べた構造の2次元検出器とを備え、これによりヘリカルスキャンを行うことができるように構成されている。これにより、シングルスライスX線CT装置に比べて、被検体内部の広範囲にわたるボリュームデータを高精度、且つ、短時間で得ることができる。   The progress of X-ray CT apparatuses has been remarkable, and in response to the strong demand from the medical field to capture images with higher definition (high resolution) and a wider range, multi-slice X-ray CT apparatuses have been developed and have become quite popular. This multi-slice X-ray CT apparatus has a structure in which an X-ray source that radiates cone beam X-rays having a spreading width in the slice direction (longitudinal direction of the couch top) and a plurality of detection element rows are arranged in the slice direction. The two-dimensional detector is configured to be able to perform a helical scan. Thereby, compared with a single slice X-ray CT apparatus, volume data over a wide range inside the subject can be obtained with high accuracy and in a short time.

X線CT装置により被検体のスキャンを行う際、X線投影パス上の物質により散乱線が生じ、この散乱線が再構成画像上でアーチファクトを生じる原因となることが知られている。このよう散乱線の影響を除去する方法として下記の文献が知られている。
特開平8−252248号公報
It is known that when an object is scanned by an X-ray CT apparatus, scattered rays are generated by substances on the X-ray projection path, and these scattered rays cause artifacts on the reconstructed image. The following documents are known as methods for removing the influence of such scattered rays.
JP-A-8-252248

近年、マルチスライスX線CT装置の検出器の列数が増加しており、広範囲のX線収集が可能になってきている。このような列数の多いマルチスライスX線CT装置の画質評価を行ったところ、CT値が実際より低い値に落ち込み画像上で実際より黒く表示される(ダークバンド)というアーチファクトが、従来の装置に比べて大きくなっていた。本発明は、このようなマルチスライスX線CT装置におけるCT値の落ち込みを改善することを目的としている。   In recent years, the number of detector rows in a multi-slice X-ray CT apparatus has increased, and a wide range of X-ray acquisition has become possible. When the image quality evaluation of such a multi-slice X-ray CT apparatus having a large number of columns is performed, an artifact that the CT value drops to a value lower than the actual value and is displayed blacker on the image (dark band) is a conventional apparatus. It was bigger than An object of the present invention is to improve CT value drop in such a multi-slice X-ray CT apparatus.

請求項1にかかる本発明は、被検体に向けてコーンビーム状のX線を曝射するX線発生手段と、複数列のX線検出素子群を備え、前記被検体を透過したX線を検出するX線検出器と、前記X線検出器が出力した投影データに含まれる列方向の散乱線を除去するものであり、その散乱線補正を行う投影データ又はその隣接投影データの値の大きさから推定される散乱線を除去するように構成された散乱線補正手段と、前記散乱線補正後の投影データに基づいて、被検体内部の画像を再構成する再構成手段とを備えたことを特徴とするX線CT装置である。   According to a first aspect of the present invention, there is provided an X-ray generation means for irradiating a cone beam-shaped X-ray toward a subject, and a plurality of rows of X-ray detection element groups. An X-ray detector to be detected and a column direction scattered ray included in the projection data output from the X-ray detector are removed, and the value of the projection data for correcting the scattered ray or the value of the adjacent projection data is large. Scattered ray correction means configured to remove the scattered radiation estimated from the above, and reconstruction means for reconstructing an image inside the subject based on the projection data after the scattered ray correction Is an X-ray CT apparatus characterized by

請求項2にかかる本発明は、被検体に向けてコーンビーム状のX線を曝射するX線発生手段と、複数列のX線検出素子群を備え、前記被検体を透過したX線を検出するX線検出器と、前記検出器の列方向におけるX線の曝射範囲を変えるための絞り手段と、前記列方向におけるX線の曝射範囲の大きさに応じて散乱線補正に用いるパラメータの値を変更するように構成された散乱線補正手段と、前記散乱線補正後の投影データに基づいて、被検体内部の画像を再構成する再構成手段とを備えたことを特徴とするX線CT装置である。   According to a second aspect of the present invention, there is provided X-ray generation means for irradiating a cone beam-shaped X-ray toward a subject and a plurality of rows of X-ray detection element groups, and the X-ray transmitted through the subject is detected. X-ray detector to be detected, aperture means for changing the X-ray exposure range in the column direction of the detector, and scattered ray correction according to the size of the X-ray exposure range in the column direction The apparatus includes: a scattered radiation correction unit configured to change a parameter value; and a reconstruction unit configured to reconstruct an image inside the subject based on the projection data after the scattered radiation correction. X-ray CT apparatus.

本発明は、2次元検出器を用いたX線CT装置において、列方向の散乱線を良好に除去して、アーチファクトの少ない画像を得ることのできるX線CT装置を提供することにある。   It is an object of the present invention to provide an X-ray CT apparatus that can remove scattered rays in the column direction and obtain an image with few artifacts in an X-ray CT apparatus using a two-dimensional detector.

以下、本発明の実施例について説明する。図1は、実施例に係るX線CT装置1の構成図である。X線CT装置1は、被検体に関する投影データを収集するために構成された架台2、被検体(人体)Pを載せて移動させるための寝台装置3、X線CT装置の操作するための入力及び画像表示を行うための操作コンソール4を備えている。   Examples of the present invention will be described below. FIG. 1 is a configuration diagram of an X-ray CT apparatus 1 according to the embodiment. The X-ray CT apparatus 1 includes a gantry 2 configured to collect projection data relating to a subject, a bed device 3 for placing and moving a subject (human body) P, and an input for operating the X-ray CT apparatus. And an operation console 4 for displaying images.

架台2は、X線管5、X線検出器6、X線絞り装置7a、絞り駆動装置7b、回転フレーム8、高電圧発生装置9、回転駆動装置10、架台制御部11、データ収集部12を有する。X線管5とX線検出器6は回転フレーム8に取り付けられている。この回転フレーム8を回転駆動装置10で回転することにより、X線管5とX線検出器6を対向させた状態で被検体の周りを回転できるように構成されている。   The gantry 2 includes an X-ray tube 5, an X-ray detector 6, an X-ray diaphragm device 7 a, a diaphragm driving device 7 b, a rotating frame 8, a high voltage generator 9, a rotational driving device 10, a gantry controller 11, and a data collector 12. Have The X-ray tube 5 and the X-ray detector 6 are attached to a rotating frame 8. The rotating frame 8 is rotated by the rotation drive device 10 so that the X-ray tube 5 and the X-ray detector 6 can be rotated around the subject with the X-ray tube 5 and the X-ray detector 6 facing each other.

X線管5は、高電圧発生器9から供給された管電圧に応じてX線を発生する。X線検出器6は、2次元アレイ型検出器(マルチスライス型検出器ともいう)である。X線検出素子は例えば0.5mm×0.5mmの正方の検出面を有する。例えば916個のX線検出素子がチャンネル方向に配列され、この列がスライス方向(検出器の列方向)に沿って例えば64列以上並設されている。   The X-ray tube 5 generates X-rays according to the tube voltage supplied from the high voltage generator 9. The X-ray detector 6 is a two-dimensional array type detector (also called a multi-slice type detector). The X-ray detection element has a square detection surface of 0.5 mm × 0.5 mm, for example. For example, 916 X-ray detection elements are arranged in the channel direction, and for example, 64 or more rows are arranged in parallel along the slice direction (row direction of the detector).

X線絞り装置は、X線遮蔽板7a及び絞り駆動装置7bにより構成され、被検体に曝射するX線のスライス方向の曝射範囲を調整するものである。絞り駆動装置7bによりX線遮蔽板7aを移動することにより、スライス方向のX線曝射範囲を変更できる。   The X-ray diaphragm device includes an X-ray shielding plate 7a and a diaphragm driving device 7b, and adjusts the exposure range in the slice direction of the X-rays exposed to the subject. The X-ray exposure range in the slice direction can be changed by moving the X-ray shielding plate 7a by the diaphragm driving device 7b.

一般的にDAS(data acquisition system)と呼ばれているデータ収集部12は、検出器6からチャンネルごとに出力される信号を増幅し、さらにディジタル信号に変換する。この投影データ(生データ)は架台外部の操作コンソール4に供給される。   A data collection unit 12 generally called a DAS (data acquisition system) amplifies a signal output from the detector 6 for each channel, and further converts it into a digital signal. This projection data (raw data) is supplied to the operation console 4 outside the gantry.

架台制御部11は、コンソール制御部13からの制御信号に基づいて、高圧発生部9、絞り駆動装置7b、回転駆動装置10、データ収集部12等の制御を行う。   The gantry control unit 11 controls the high pressure generation unit 9, the aperture drive device 7 b, the rotation drive device 10, the data collection unit 12, and the like based on a control signal from the console control unit 13.

寝台装置3は、被検体を載せる天板、天板をスライス方向に沿って移動させる天板駆動装置を備えている。回転フレーム8の中央部分は開口を有し、その開口部に天板に載置された被検体Pが挿入される。なお、回転フレーム8の回転中心軸と平行な方向をZ軸方向(スライス方向)、Z軸方向に直交する平面をX軸方向、Y軸方向で定義する。   The couch device 3 includes a top plate on which the subject is placed and a top plate driving device that moves the top plate in the slice direction. The central portion of the rotating frame 8 has an opening, and the subject P placed on the top plate is inserted into the opening. A direction parallel to the rotation center axis of the rotary frame 8 is defined as a Z-axis direction (slice direction), and planes orthogonal to the Z-axis direction are defined as an X-axis direction and a Y-axis direction.

操作コンソール4は、コンソール制御部13、入力装置14、前処理部15、散乱線補正部16、再構成処理部17、画像記憶部18、画像処理部19、表示装置20を備えている。   The operation console 4 includes a console control unit 13, an input device 14, a preprocessing unit 15, a scattered radiation correction unit 16, a reconstruction processing unit 17, an image storage unit 18, an image processing unit 19, and a display device 20.

前処理部15は、データ収集装置12から出力される投影データに対して対数変換処理や、感度補正等の補正処理を施して出力する。この投影データは、散乱線補正部16に送られ散乱線の除去処理が施される。散乱線補正部16は、X線曝射範囲内の投影データの値に基づいて散乱線の除去を行うものであり、散乱線補正を行う対象の投影データ又はその隣接投影データの値の大きさから推定された散乱線を、対象となる投影データから減じて散乱線補正を行う。この散乱X線除去後の投影データは再構成処理部17に送られる。   The preprocessing unit 15 subjects the projection data output from the data collection device 12 to logarithmic conversion processing and correction processing such as sensitivity correction, and outputs the result. This projection data is sent to the scattered radiation correction unit 16 and subjected to a scattered radiation removal process. The scattered radiation correction unit 16 removes scattered radiation based on the value of the projection data within the X-ray exposure range, and the magnitude of the projection data to be subjected to scattered radiation correction or the value of the adjacent projection data. The scattered radiation estimated from the above is subtracted from the target projection data to perform the scattered radiation correction. The projection data after the scattered X-ray removal is sent to the reconstruction processing unit 17.

画像再構成処理部17は、スライス方向におけるX線パスが平行であると仮定したファンビーム再構成、スライス方向におけるX線曝射角度(コーン角)を考慮したコーンビーム再構成等の再構方法を用いて被検体内部の生体情報の画像を再構成する。   The image reconstruction processing unit 17 performs reconstruction methods such as fan beam reconstruction assuming that the X-ray paths in the slice direction are parallel, and cone beam reconstruction in consideration of the X-ray exposure angle (cone angle) in the slice direction. Is used to reconstruct an image of biological information inside the subject.

再構成した画像は画像記憶部18に記憶される。画像処理部19は、画像記憶部18に記憶された画像データに対して各種画像処理を施して表示画像を生成する。表示画像を生成する際の各種設定条件、関心領域の設定等は、操作者による入力装置14への入力に基づいて行われる。表示装置20は、画像処理部19で生成された画像を表示する。又、コンソール制御部13は、操作者の入力に基づいて、ヘリカルスキャン等のスキャンが行われるように架台制御部11へ制御信号を送るように構成されている。尚、操作コンソール4は、専用ハードウェアで構成しても良いし、コンピュータを用いてソフトウェアで同様の機能を実現しても良い。   The reconstructed image is stored in the image storage unit 18. The image processing unit 19 performs various image processing on the image data stored in the image storage unit 18 to generate a display image. Various setting conditions for generating a display image, setting of a region of interest, and the like are performed based on an input to the input device 14 by an operator. The display device 20 displays the image generated by the image processing unit 19. Further, the console control unit 13 is configured to send a control signal to the gantry control unit 11 so that a scan such as a helical scan is performed based on an input from the operator. The operation console 4 may be configured by dedicated hardware, or the same function may be realized by software using a computer.

図2は、X線CT装置における散乱線の説明図である。図2(A)はシングル検出器、図2(B)は2次元アレイ検出器を表している。シングルスライス検出器では、スライス方向のコーン角が小さいためスライス方向の散乱線の影響は小さいが、2次元アレイ検出器ではコーン角が大きくなるためスライス方向からの散乱線の入射量が多くなる。   FIG. 2 is an explanatory diagram of scattered radiation in the X-ray CT apparatus. 2A shows a single detector, and FIG. 2B shows a two-dimensional array detector. In a single slice detector, the cone angle in the slice direction is small, so the influence of scattered rays in the slice direction is small, but in a two-dimensional array detector, the cone angle is large, so the incident amount of scattered rays from the slice direction increases.

図3は、本発明の散乱線補正部の動作を表したフローチャートである。ステップS1は、閾値処理を行い、投影データの値の大きさに基づいてステップS2の散乱線の減算処理を行うか否かを判断する。ステップS1において、入力された1つの投影パスに対応した投影データと所定の閾値とを比較し、その閾値を越えない場合はステップS2の処理を行い、その閾値を超える場合はステップS2の処理を行わずそのままの投影データの値を散乱線補正部16の出力とする。   FIG. 3 is a flowchart showing the operation of the scattered radiation correction unit of the present invention. In step S1, threshold processing is performed, and it is determined whether or not to perform the scattered radiation subtraction processing in step S2 based on the value of the projection data. In step S1, the projection data corresponding to one input projection path is compared with a predetermined threshold value. If the threshold value is not exceeded, the process of step S2 is performed. If the threshold value is exceeded, the process of step S2 is performed. The value of the projection data as it is without being used is set as the output of the scattered radiation correction unit 16.

ステップS2は、入力された補正対象の投影データから推定した散乱線量を減算し、その結果を散乱線補正部16の出力とする。この散乱線補正では、散乱線補正とする対象の投影データの大きさに基づいて、その外周部から入射する散乱線量を推定して除去している。人体においては、スライス方向の位置に応じて投影データの値が比較的緩やかに変化することが多いため、補正対象となる投影データの大きさと、その投影データに含まれるスライス方向からの散乱線量に相関関係がある。このため補正対象となる投影データの値から散乱線量の推定を行う。   In step S 2, the estimated scattered dose is subtracted from the input projection data to be corrected, and the result is used as the output of the scattered radiation correction unit 16. In this scattered radiation correction, the scattered radiation incident from the outer peripheral portion is estimated and removed based on the size of the projection data to be subjected to the scattered radiation correction. In the human body, the value of the projection data often changes relatively slowly depending on the position in the slice direction, so the size of the projection data to be corrected and the scattered dose from the slice direction included in the projection data There is a correlation. For this reason, the scattered dose is estimated from the value of the projection data to be corrected.

ステップS2では、入力された補正対象の投影データから、図4に示されるような散乱線推定曲線に基づいて散乱線の推定を行う。尚、特性曲線は、その特性を表す所定の関数及びそのパラメータや、対応テーブル表のパラメータとして装置上に保存して使用する。   In step S2, the scattered radiation is estimated from the input projection data to be corrected based on the scattered radiation estimation curve as shown in FIG. The characteristic curve is stored and used on the apparatus as a predetermined function representing the characteristic, its parameter, and a parameter of the correspondence table.

図4のグラフでは、X線投影パス上の物質のX線減衰量が所定の閾値より低い部分では散乱線量はほぼ0であり、X線減衰量が所定の閾値より大きい部分ではX線減衰量の増加に伴ってほぼ直線的に散乱線の量が増加する。   In the graph of FIG. 4, the scattered dose is almost zero in the portion where the X-ray attenuation amount of the substance on the X-ray projection path is lower than the predetermined threshold, and the X-ray attenuation amount in the portion where the X-ray attenuation amount is larger than the predetermined threshold. As the value increases, the amount of scattered radiation increases almost linearly.

この時の散乱線の増加率は、スライス方向のX線曝射範囲の大きさに応じて変化する。スライス方向のX線の曝射範囲が広い場合に散乱線の増加率が大きくなり、曝射範囲が狭い場合に増加率が小さくなる。このため、散乱線の推定に使用するパラメータは、別途設定されたX線のスライス方向の曝射範囲の大きさ、言い換えると絞り手段の開口幅に応じて変更して適切に散乱線量を求めるように構成されている。   The increasing rate of the scattered radiation at this time changes according to the size of the X-ray exposure range in the slice direction. When the exposure range of X-rays in the slice direction is wide, the increase rate of scattered radiation is large, and when the exposure range is narrow, the increase rate is small. For this reason, the parameters used for the estimation of scattered radiation are changed according to the size of the exposure range in the X-ray slice direction, which is set separately, in other words, according to the aperture width of the diaphragm means so as to obtain the scattered radiation appropriately. It is configured.

尚、X線投影パスにおけるX線減衰量が大きい部分では透過するX線が小さくなるため投影データの値は小さくなり、X線減衰量が小さい部分では透過するX線が大きくなるため投影データの値は大きくなる。このため、散乱線補正部の出力は、投影データの値が大きい場合には散乱線の減算が行われずにそのままの値が出力され、投影データの値が小さい場合は推定した散乱線の値が減算された値が出力されることになる。   In the X-ray projection path, the transmitted X-ray becomes smaller in the portion where the X-ray attenuation amount is large, so that the value of the projection data becomes small. In the portion where the X-ray attenuation amount is small, the transmitted X-ray becomes large. The value gets bigger. For this reason, as for the output of the scattered radiation correction unit, when the value of the projection data is large, the scattered radiation is not subtracted and the value is output as it is, and when the value of the projection data is small, the estimated scattered radiation value is The subtracted value is output.

図5は、実験により求めた散乱線のデータを表しており、本発明ではこのデータを元に散乱線の推定を行う。このグラフの縦軸は散乱線の値を表しており、横軸はX線透過パス上の物質のX線減衰量を表している。   FIG. 5 shows scattered radiation data obtained by experiments. In the present invention, the scattered radiation is estimated based on this data. The vertical axis of this graph represents the value of scattered radiation, and the horizontal axis represents the amount of X-ray attenuation of the substance on the X-ray transmission path.

人体に近いX線減衰特性の有するファントムの回りをX線管及び検出器を回転させて、スライス方向の曝射幅が広い場合と狭い場合の投影データを収集する。狭い時の曝射幅は、スライス方向からの散乱線が無くなるように、投影データを収集可能な範囲で最も小さい幅、例えば検出器1素子分の幅にする。この時、広いスライス幅で収集した投影データにはスライス方向からの散乱線が多く含まれ、狭いスライス幅で収集した投影データはスライス方向の散乱線が無い値となる。このため、この両者の差分がスライス方向における散乱線量とみなすことができる。   The X-ray tube and the detector are rotated around a phantom having an X-ray attenuation characteristic close to a human body, and projection data when the exposure width in the slice direction is wide and narrow are collected. The exposure width at the time of narrowness is set to the smallest width within the range in which projection data can be collected, for example, the width of one detector element, so that scattered radiation from the slice direction is eliminated. At this time, the projection data collected with a wide slice width includes many scattered rays from the slice direction, and the projection data collected with a narrow slice width has a value with no scattered rays in the slice direction. For this reason, the difference between the two can be regarded as the scattered dose in the slice direction.

この差分の値が図5の縦軸の値となり、広いスライス幅で収集した投影データの値が横軸の値となる。尚、ファントムは、X線投影パスの回転角方向の変化に応じてX線減衰量が変るため、各回転角方向の投影データから各X線減衰量に対応する散乱線量を求めることができる。図5のグラフにおいて、この求めたX線減衰量と散乱線量に対応する位置に*印がそれぞれ付けられている。この*印の分布に対して、最小2乗法等のフィッティング処理を行って求めた近似曲線がグラフ上の点線である。この近似した特性曲線では、水等価厚で320mm相当のX線減衰量より小さいX線減衰量の部分では、散乱線の量はほぼ0である。また、水等価厚で320mm相当のX線減衰量より大きいX線減衰量の部分では、そのX線減衰量の増加に伴って、散乱線量が直線的に徐々に増加している。本実施の形態では、このようにして求めた特性曲線に基づいて、散乱線量を推定して除去する。   The value of this difference becomes the value on the vertical axis in FIG. 5, and the value of the projection data collected with a wide slice width becomes the value on the horizontal axis. Since the X-ray attenuation changes in accordance with the change in the rotation angle direction of the X-ray projection path, the phantom can determine the scattered dose corresponding to each X-ray attenuation from the projection data in each rotation angle direction. In the graph of FIG. 5, the mark corresponding to the calculated X-ray attenuation and scattered dose is marked with *. An approximate curve obtained by performing a fitting process such as a least square method on the distribution of the mark * is a dotted line on the graph. In this approximate characteristic curve, the amount of scattered radiation is almost zero in the portion of the X-ray attenuation smaller than the X-ray attenuation equivalent to 320 mm in water equivalent thickness. In addition, in the portion of the X-ray attenuation greater than the X-ray attenuation equivalent to 320 mm in water equivalent thickness, the scattered dose gradually increases linearly as the X-ray attenuation increases. In the present embodiment, the scattered dose is estimated and removed based on the characteristic curve thus obtained.

このような実施例によれば、2次元検出器を用いたX線CT装置において、列方向の散乱線を良好に除去して、アーチファクトの少ない画像を得ることができる。これにより、最もX線減衰量が大きくなるCT画像の中央付近でのCT値の落ち込みを改善することができる。又、骨のような高いX線減衰量の物質で囲まれた部分のCT値の落ち込みを改善することができる。   According to such an embodiment, in an X-ray CT apparatus using a two-dimensional detector, it is possible to satisfactorily remove scattered rays in the column direction and obtain an image with few artifacts. Thereby, it is possible to improve the drop of the CT value near the center of the CT image where the X-ray attenuation amount is the largest. In addition, it is possible to improve the drop in the CT value of a portion surrounded by a substance having a high X-ray attenuation such as bone.

又、スライス方向のX線曝射範囲の幅に応じて、散乱線補正に用いるパラメータを変更するため、X線曝射範囲の変更に対応して良好に散乱線を除去することができる。   In addition, since the parameter used for correcting the scattered radiation is changed according to the width of the X-ray exposure range in the slice direction, the scattered radiation can be satisfactorily removed corresponding to the change of the X-ray exposure range.

又、対象となる投影データの値に基づいて散乱線補正を行う構成であるため、特開平8−252248号のようにX線投影範囲以外のデータから散乱線プロファイルを求めて散乱線補正を行う方法に比べて、X線投影範囲以外のデータの検出が必要なく、演算処理も簡単である。このため簡単な装置構成で散乱線の除去を行うことができる。   Further, since the scattered radiation correction is performed based on the value of the target projection data, the scattered radiation correction is performed by obtaining a scattered radiation profile from data outside the X-ray projection range as disclosed in JP-A-8-252248. Compared with the method, it is not necessary to detect data outside the X-ray projection range, and the arithmetic processing is simple. For this reason, scattered radiation can be removed with a simple apparatus configuration.

尚、本発明は上記実施例に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施例に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施例に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施例にわたる構成要素を適宜組み合わせてもよい。   In addition, this invention is not limited to the said Example, In an implementation stage, a component can be deform | transformed and embodied in the range which does not deviate from the summary. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, constituent elements over different embodiments may be appropriately combined.

例えば、上記実施例では、対象となる投影データの値のみに基づいて散乱線補正を行ったが、隣接するX線投影パスの投影データまたはそれらの重み付け加算データに基づいてステップS1の判定処理及びステップS2の散乱線推定処理を行うようにしても良い。この場合、対象となる投影データから、隣接の投影データの値から求めた散乱線量を減算することにより散乱線の補正を行うことができる。   For example, in the above-described embodiment, the scattered radiation correction is performed based only on the value of the target projection data, but the determination processing in step S1 and the weighted addition data of adjacent X-ray projection paths or the weighted addition data thereof are performed. You may make it perform the scattered-radiation estimation process of step S2. In this case, the scattered radiation can be corrected by subtracting the scattered dose obtained from the adjacent projection data value from the target projection data.

又、上述の実施例では、ステップS1の判定及びステップS2の散乱線減算処理を用いて散乱線補正を行ったが、入力投影データ値と出力投影データ値を対応付けた対応テーブルデータを用いて上述のステップS1、S2と同様の結果が得られるようにしても良い。   In the above-described embodiment, the scattered radiation correction is performed using the determination in step S1 and the scattered radiation subtraction process in step S2. However, the correspondence table data in which the input projection data value is associated with the output projection data value is used. You may make it obtain the result similar to the above-mentioned step S1 and S2.

本発明にかかるX線CT装置の構成図。The block diagram of the X-ray CT apparatus concerning this invention. スライス方向の散乱線の説明図。Explanatory drawing of the scattered ray of a slice direction. 本発明の実施例にかかる散乱線補正部の処理を表した図。The figure showing the process of the scattered radiation correction | amendment part concerning the Example of this invention. 散乱線推定に用いる特性曲線を表した図。The figure showing the characteristic curve used for scattered radiation estimation. 散乱線の量の測定データを表した図。The figure showing the measurement data of the amount of scattered radiation.

符号の説明Explanation of symbols

1…X線CT装置、2…架台装置、3…寝台装置、15…前処理部、16…散乱線補正部、17…再構成処理部、18…画像記憶部、19…画像処理部、20…表示装置   DESCRIPTION OF SYMBOLS 1 ... X-ray CT apparatus, 2 ... Stand apparatus, 3 ... Bed apparatus, 15 ... Pre-processing part, 16 ... Scattering ray correction part, 17 ... Reconstruction processing part, 18 ... Image storage part, 19 ... Image processing part, 20 ... Display device

Claims (4)

被検体に向けてコーンビーム状のX線を曝射するX線発生手段と、
複数列のX線検出素子群を備え、前記被検体を透過したX線を検出するX線検出器と、
前記X線検出器が出力した投影データに含まれる列方向の散乱線を除去するものであり、その散乱線補正を行う投影データ又はその隣接投影データの値の大きさから推定される散乱線を除去するように構成された散乱線補正手段と、
前記散乱線補正後の投影データに基づいて、被検体内部の画像を再構成する再構成手段とを備えたことを特徴とするX線CT装置。
X-ray generation means for exposing cone-beam X-rays toward the subject;
An X-ray detector comprising a plurality of rows of X-ray detection element groups and detecting X-rays transmitted through the subject;
The scattered radiation in the column direction included in the projection data output from the X-ray detector is removed, and the scattered radiation estimated from the magnitude of the projection data for correcting the scattered radiation or the value of the adjacent projection data is obtained. Scattered radiation correction means configured to remove,
An X-ray CT apparatus comprising: reconstruction means for reconstructing an image inside a subject based on the projection data after the scattered radiation correction.
被検体に向けてコーンビーム状のX線を曝射するX線発生手段と、
複数列のX線検出素子群を備え、前記被検体を透過したX線を検出するX線検出器と、
前記検出器の列方向におけるX線の曝射範囲を変えるための絞り手段と、
前記列方向におけるX線の曝射範囲の大きさに応じて散乱線補正に用いるパラメータの値を変更するように構成された散乱線補正手段と、
前記散乱線補正後の投影データに基づいて、被検体内部の画像を再構成する再構成手段とを備えたことを特徴とするX線CT装置。
X-ray generation means for exposing cone-beam X-rays toward the subject;
An X-ray detector comprising a plurality of rows of X-ray detection element groups and detecting X-rays transmitted through the subject;
A diaphragm means for changing the X-ray exposure range in the row direction of the detector;
Scattered radiation correction means configured to change the value of a parameter used for scattered radiation correction according to the size of the X-ray exposure range in the row direction;
An X-ray CT apparatus comprising: reconstruction means for reconstructing an image inside a subject based on the projection data after the scattered radiation correction.
前記散乱線補正手段は、
投影データの値が所定の閾値より大きい部分では散乱線がほぼ無いものとして補正処理を行い、投影データの値が所定の閾値より小さい部分では投影データの値が小さくなるに従って散乱線が増加するものとして補正処理を行うものであることを特徴とする請求項1又は請求項2記載のX線CT装置。
The scattered radiation correcting means includes
Correction processing is performed assuming that there is almost no scattered radiation in the portion where the projection data value is greater than the predetermined threshold value, and the scattered radiation increases as the projection data value decreases in the portion where the projection data value is smaller than the predetermined threshold value. The X-ray CT apparatus according to claim 1, wherein correction processing is performed.
投影データの値を閾値と比較し、所定の閾値を越える場合に散乱線の推定値を減算し、
所定の閾値を越えない場合は、推定値の減算を行わないように構成されたことを特徴とする請求項1又は請求項2記載のX線CT装置。
Compare the value of the projection data with the threshold value, and subtract the estimated value of scattered radiation if it exceeds the predetermined threshold value.
3. The X-ray CT apparatus according to claim 1, wherein the X-ray CT apparatus is configured not to subtract an estimated value when a predetermined threshold value is not exceeded.
JP2005062655A 2005-03-07 2005-03-07 X-ray CT system Expired - Fee Related JP4703221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062655A JP4703221B2 (en) 2005-03-07 2005-03-07 X-ray CT system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062655A JP4703221B2 (en) 2005-03-07 2005-03-07 X-ray CT system

Publications (2)

Publication Number Publication Date
JP2006239303A true JP2006239303A (en) 2006-09-14
JP4703221B2 JP4703221B2 (en) 2011-06-15

Family

ID=37046270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062655A Expired - Fee Related JP4703221B2 (en) 2005-03-07 2005-03-07 X-ray CT system

Country Status (1)

Country Link
JP (1) JP4703221B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188113A (en) * 2009-02-19 2010-09-02 Toshiba Corp Scattered radiation correction method and scattered radiation correction apparatus
JP2016158671A (en) * 2015-02-26 2016-09-05 富士フイルム株式会社 Image processing apparatus, radiographic imaging system, image processing method, and image processing program
US9779520B2 (en) 2009-03-18 2017-10-03 Toshiba Medical Systems Corporation X-ray computed tomography scanner, data processing device, and data processing method
WO2017169091A1 (en) * 2016-03-29 2017-10-05 キヤノン株式会社 Radiography device, radiography system, radiography method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319730A (en) * 1993-05-11 1994-11-22 Yokogawa Medical Syst Ltd Correction of scattered radiation in x-ray ct
JPH07124150A (en) * 1993-11-02 1995-05-16 Hitachi Medical Corp Method for correcting scattered x-ray, x-ray ct device and multichannel x-ray detecting device
JPH11299768A (en) * 1998-04-24 1999-11-02 Toshiba Corp X-ray ct scanner
JP2002200072A (en) * 2000-10-25 2002-07-16 Toshiba Corp X-ray ct scanner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319730A (en) * 1993-05-11 1994-11-22 Yokogawa Medical Syst Ltd Correction of scattered radiation in x-ray ct
JPH07124150A (en) * 1993-11-02 1995-05-16 Hitachi Medical Corp Method for correcting scattered x-ray, x-ray ct device and multichannel x-ray detecting device
JPH11299768A (en) * 1998-04-24 1999-11-02 Toshiba Corp X-ray ct scanner
JP2002200072A (en) * 2000-10-25 2002-07-16 Toshiba Corp X-ray ct scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188113A (en) * 2009-02-19 2010-09-02 Toshiba Corp Scattered radiation correction method and scattered radiation correction apparatus
US9779520B2 (en) 2009-03-18 2017-10-03 Toshiba Medical Systems Corporation X-ray computed tomography scanner, data processing device, and data processing method
JP2016158671A (en) * 2015-02-26 2016-09-05 富士フイルム株式会社 Image processing apparatus, radiographic imaging system, image processing method, and image processing program
WO2017169091A1 (en) * 2016-03-29 2017-10-05 キヤノン株式会社 Radiography device, radiography system, radiography method, and program
JP2017176384A (en) * 2016-03-29 2017-10-05 キヤノン株式会社 Radiographic apparatus, radiographic system, radiographic method, and program

Also Published As

Publication number Publication date
JP4703221B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
EP2433566B1 (en) System for blood vessel stenosis visualization and quantification using spectral CT analysis
US7920672B2 (en) X-ray detector gain calibration depending on the fraction of scattered radiation
JP5582514B2 (en) X-ray CT system
JP6242631B2 (en) Medical image processing apparatus and X-ray computed tomography apparatus
WO2010016425A1 (en) X-ray ct image formation method and x-ray ct device using same
JP2009507544A (en) Direct measurement and scatter correction for CT
JP2004174249A (en) Methodology and apparatus for calculating volume perfusion
JP2007300964A (en) Radiographic equipment and radiography method
JP2008104761A (en) Tomographic x-ray apparatus and method of reducing artifact
JP5406063B2 (en) Reconstruction calculation device, reconstruction calculation method, and X-ray CT apparatus
JP2004174264A (en) Method and apparatus for forming computed tomography scout image
JP2009153829A (en) Image processor, program and x-ray ct apparatus
JP3897925B2 (en) Cone beam CT system
JP2004181243A (en) Method and system enhancing tomosynthesis image using transverse filtering processing
US10098603B2 (en) Method for estimation and correction of grid pattern due to scatter
JP2007111314A (en) X-ray ct apparatus, method for generating image for x-ray ct apparatus, and device and method for computing scattered ray component for x-ray ct apparatus
JP4703221B2 (en) X-ray CT system
JP2007260187A (en) Radiation tomographic apparatus
JP4090970B2 (en) Radiation tomography apparatus, radiation tomography method, image generation apparatus, and image generation method
KR101284986B1 (en) Method and apparatus for reconstructing high-resolution tomosynthesis
KR20050025914A (en) Radiation tomography apparatus and radiation tomography method thereof
JP2006239118A (en) X-ray ct system
JP2021003240A (en) X-ray tomosynthesis device, image processing device and program
JP2003033348A (en) Three dimensional x-ray ct scanner
JP2006212308A (en) Tomographic radiography device, simulation method for radiographic image and image simulation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees