JP2006236888A - Nonaqueous electrolyte solution battery - Google Patents

Nonaqueous electrolyte solution battery Download PDF

Info

Publication number
JP2006236888A
JP2006236888A JP2005052816A JP2005052816A JP2006236888A JP 2006236888 A JP2006236888 A JP 2006236888A JP 2005052816 A JP2005052816 A JP 2005052816A JP 2005052816 A JP2005052816 A JP 2005052816A JP 2006236888 A JP2006236888 A JP 2006236888A
Authority
JP
Japan
Prior art keywords
fluorinated
low
battery
graphite
fluorinated graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005052816A
Other languages
Japanese (ja)
Other versions
JP4561404B2 (en
Inventor
Susumu Yamanaka
晋 山中
Shinichi Kawaguchi
真一 川口
Shinji Fujii
慎二 藤井
Toru Hitomi
徹 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005052816A priority Critical patent/JP4561404B2/en
Publication of JP2006236888A publication Critical patent/JP2006236888A/en
Application granted granted Critical
Publication of JP4561404B2 publication Critical patent/JP4561404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution battery which eliminates a fault that discharge characteristics in a low temperature is low though it excels in high temperature characteristics and is excellent in the discharge characteristics in the low temperature, without spoiling the high temperature characteristics which is the advantage of a BR system in the nonaqueous solution battery which uses a graphite fluoride for an anode. <P>SOLUTION: The nonaqueous electrolyte solution battery has a cathode to make a light metal an active material, and an anode to make a graphite fluoride an active material. The graphite fluoride is the mixture of a high fluorination graphite fluoride expressed with (CFx)n(0.95≤x≤1.05) and a low fluorination graphite fluoride expressed with (CFy)n(0.45≤y≤0.90), the low fluorination graphite fluoride is in the state that an unfluorination graphite fluoride is in the state the non-fluorinated carbon is covered with the fluorinated carbon, and the ratio of the low fluorination graphite fluoride which occupies in the fluorinated graphite is 10 wt% or more to 60 wt% or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非水電解液電池に関するもので、特にフッ化黒鉛を正極活物質に用いた非水電解液電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery, and more particularly to a non-aqueous electrolyte battery using fluorinated graphite as a positive electrode active material.

非水電解液電池のリチウム一次電池は、エネルギー密度が高く、保存性、耐漏液特性などの信頼性に優れ、また、小型化、軽量化が可能なことから、これまで各種電子機器の主電源やメモリバックアップ用電源として、その需要は年々増加している。   Non-aqueous electrolyte lithium primary batteries have high energy density, excellent storability, leakage resistance, and other reliability, and can be reduced in size and weight. As a memory backup power source, the demand is increasing year by year.

近年、用途として増加しているものでは車載用途があげられる。特に最近では、タイヤ内部の圧力を測定するセンサーの電源としての用途も注目されている。このような用途では、使用温度範囲は下限が−40℃から上限は100℃以上となり電池には非常に厳しい条件となる。リチウム一次電池の代表的なものには、二酸化マンガンを正極活物質に用いたCR系、そしてフッ化黒鉛を正極活物質に用いたBR系がある。一般的にCR系は低温での負荷特性は優れているが、耐高温特性が低く、60℃以上の高温になると電池内の微量水分の存在下で二酸化マンガンの触媒作用により電解液が分解してガスを発生するため、電池の膨れによる電池内部の緊迫性の低下等による内部抵抗の上昇が起こる。他方のBR系は、100℃以上の高温下でも、フッ化黒鉛と電解液等の発電材料間での反応性は低いため、内部抵抗の上昇は小さく、耐高温特性に優れている。そのため、上記用途等で100℃以上での高信頼性が求められる場合では、主にBR系が優位にある。   In recent years, an increasing number of applications include in-vehicle applications. In particular, the use as a power source of a sensor for measuring the pressure inside the tire has recently attracted attention. In such applications, the lower limit of the operating temperature range is −40 ° C. and the upper limit is 100 ° C. or more, which is a very severe condition for the battery. Representative lithium primary batteries include a CR system using manganese dioxide as a positive electrode active material and a BR system using fluorinated graphite as a positive electrode active material. In general, the CR system has excellent load characteristics at low temperatures, but the resistance to high temperatures is low. When the temperature rises above 60 ° C, the electrolyte decomposes due to the catalytic action of manganese dioxide in the presence of a small amount of moisture in the battery. As a result, the internal resistance increases due to a decrease in tightness inside the battery due to the swelling of the battery. The other BR system is low in reactivity between power generation materials such as fluorinated graphite and an electrolytic solution even at a high temperature of 100 ° C. or higher. Therefore, the increase in internal resistance is small and the high temperature resistance is excellent. Therefore, when high reliability at 100 ° C. or higher is required for the above-mentioned applications, the BR system is predominant.

現在、リチウム一次電池の正極活物質に使用されているフッ化黒鉛は、容量及び放電電圧の平坦性が優れるという点よりフッ化度の高いフッ化黒鉛が使用されている。このフッ化黒鉛を使用したBR系の耐高温特性は非常に優れているが、低温における放電特性が低いという特徴がある。この低温での低い放電特性はメモリのバックアップのような微弱電流では、電圧の低下が小さいため問題にならないが、上記のタイヤ空気圧センサーのような電波を発信する機器では使用電流が大きいため、電圧の落ち込みが大きくなる。今後、更に機器が小型化された場合、それに伴い電池のサイズも小型化になるため電極の反応面積も小さくなり、放電の電流密度が増加するため、放電電圧は更に低下する。   At present, fluorinated graphite used for the positive electrode active material of a lithium primary battery is fluorinated graphite having a high degree of fluorination from the viewpoint of excellent flatness of capacity and discharge voltage. The BR system using this fluorinated graphite has very high temperature resistance, but is characterized by low discharge characteristics at low temperatures. This low discharge characteristic at low temperature is not a problem for weak currents such as memory backups, because the voltage drop is small, but in devices that emit radio waves such as the above tire pressure sensor, the current used is large, so the voltage The decline of the will increase. If the device is further downsized in the future, the size of the battery will be reduced accordingly, the reaction area of the electrode will be reduced, the current density of the discharge will be increased, and the discharge voltage will be further lowered.

BR系のこの放電特性を改良するため、これまでに電解液にエーテル系化合物等の添加が提案されている(特許文献1参照)。
特公昭58−012990号公報
In order to improve the discharge characteristics of the BR system, addition of an ether compound or the like to the electrolytic solution has been proposed so far (see Patent Document 1).
Japanese Patent Publication No. 58-012990

しかし、この特許文献1に記載の技術を用いた非水電解液電池は、低温での放電特性の向上は認められるが、85℃以上の高温での内部抵抗の上昇が非常に大きくなり、低温での放電特性と耐高温特性との両方を満足することができない。   However, the non-aqueous electrolyte battery using the technique described in Patent Document 1 is improved in discharge characteristics at a low temperature, but the increase in internal resistance at a high temperature of 85 ° C. or higher becomes very large. Both the discharge characteristics and the high temperature resistance characteristics cannot be satisfied.

本発明は前記問題点を解決するものであり、耐高温特性を損なうことなく、低温での放電特性が優れた非水電解液電池を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide a non-aqueous electrolyte battery having excellent discharge characteristics at low temperatures without impairing the high-temperature resistance characteristics.

本発明の非水電解液電池は、軽金属を活物質とする負極と、フッ化黒鉛を活物質とする正極からなる非水電解液電池において、前記フッ化黒鉛が(CFx)n(0.95≦x≦1.05)で表される高フッ素化フッ化黒鉛と、未フッ素化炭素がフッ素化された炭素に覆われた状態である(CFy)n(0.45≦y≦0.90)と表される低フッ素化フッ化黒鉛の混合物であり、前記フッ化黒鉛に占める前記低フッ素化フッ化黒鉛の割合が10重量%以上60重量%以下であることを特徴とするものである。   The non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery comprising a negative electrode using a light metal as an active material and a positive electrode using fluorinated graphite as an active material, wherein the fluorinated graphite is (CFx) n (0.95). ≦ x ≦ 1.05) and (CFy) n (0.45 ≦ y ≦ 0.90) in a state where unfluorinated carbon is covered with fluorinated carbon. ), And the ratio of the low fluorinated fluorinated graphite in the fluorinated graphite is 10 wt% or more and 60 wt% or less. .

低フッ素化フッ化黒鉛は、フッ素化炭素と未フッ素化炭素からなっており、その状態は、表面はフッ素化されており、中心部は未反応の炭素が残ったものとなっている。この低フッ素化フッ化黒鉛には上記のようにフッ素化されている部分と未反応部分とがあり、その間にはフッ素と炭素との結合状態の弱いのものが含まれている。そのため、このフッ化黒鉛の電位は完全にフッ素化されたフッ化黒鉛と比較して高いものとなるため、放電電圧も向上する。   The low fluorinated fluorinated graphite is composed of fluorinated carbon and non-fluorinated carbon, and the state is such that the surface is fluorinated and unreacted carbon remains in the center. This low-fluorinated fluorinated graphite has a fluorinated portion and an unreacted portion as described above, and includes a weakly bonded state between fluorine and carbon. Therefore, since the potential of the fluorinated graphite is higher than that of the fully fluorinated graphite, the discharge voltage is also improved.

そのため高フッ素化フッ化黒鉛に、低フッ素化フッ化黒鉛を放電電圧の向上と耐高温特性の維持を満足する比率のみ混合する。その比率はフッ化黒鉛に占める低フッ素化フッ化黒鉛の比率が10重量%以上60重量%以下とするのが好ましい。この構成にすることにより、耐高温特性を低下させることなく低温での放電特性を改善することが実現できる。   For this reason, low fluorinated fluorinated graphite is mixed with high fluorinated fluorinated graphite only in a ratio that satisfies the improvement of the discharge voltage and the maintenance of high temperature resistance. The ratio is preferably such that the ratio of the low fluorinated fluorinated graphite in the fluorinated graphite is from 10% by weight to 60% by weight. With this configuration, it is possible to improve the discharge characteristics at low temperatures without deteriorating the high temperature resistance characteristics.

本発明によると、安定した耐高温特性をもち、低温での放電特性に優れた非水電解液電池を得ることができる。   According to the present invention, it is possible to obtain a non-aqueous electrolyte battery having stable high temperature resistance and excellent discharge characteristics at low temperatures.

本発明は上記のように非水電解液電池の正極活物質であるフッ化黒鉛を、(CFx)n(0.95≦x≦1.05)で表される高フッ素化フッ化黒鉛と、内部に未フッ素化炭素を持つフッ化黒鉛で(CFy)n(0.45≦y≦0.90)で表される低フッ素化フッ化黒鉛との混合物とすると、低温での放電特性の向上が得られることを見出したものである。そして、その際、フッ化黒鉛に占める低フッ素化フッ化黒鉛の割合が10重量%以上60重量%以下であると、耐高温特性を低下させることなく低温での放電特性の向上が得られる点で好ましい。   The present invention, as described above, fluorinated graphite as a positive electrode active material of a non-aqueous electrolyte battery, highly fluorinated fluorinated graphite represented by (CFx) n (0.95 ≦ x ≦ 1.05), Improved discharge characteristics at low temperatures when mixed with low-fluorinated fluorinated graphite represented by (CFy) n (0.45 ≦ y ≦ 0.90), which is fluorinated graphite with unfluorinated carbon inside. Has been found to be obtained. In that case, when the ratio of the low fluorinated fluorinated graphite in the fluorinated graphite is 10% by weight or more and 60% by weight or less, the improvement of the discharge characteristic at a low temperature can be obtained without deteriorating the high temperature resistance. Is preferable.

次に、本発明について実施例及び比較例に基づいて図面を参照しながら詳細に説明するが、本発明は下記の実施例に限定されるものではない。   Next, the present invention will be described in detail based on examples and comparative examples with reference to the drawings. However, the present invention is not limited to the following examples.

(実施例1)
図1は本発明の実施例における扁平形の非水電解液電池でBR2450の断面図である。図1において、電池ケース1は正極端子を兼ねており金属製カップ、正極2はフッ化黒鉛、導電剤、そして結着剤の混合粉末を加圧成形したペレット、セパレータ3はポリブチレンテレフタレートの不織布、負極4は金属リチウム、封口板5は負極端子を兼ねた金属製の略皿状となっており、絶縁ガスケット6は断面が略L字形状となっている。
Example 1
FIG. 1 is a cross-sectional view of BR2450 in a flat nonaqueous electrolyte battery according to an embodiment of the present invention. In FIG. 1, a battery case 1 also serves as a positive electrode terminal and is a metal cup, a positive electrode 2 is a pellet obtained by pressure-molding a mixed powder of graphite fluoride, a conductive agent, and a binder, and a separator 3 is a non-woven fabric of polybutylene terephthalate. The negative electrode 4 is made of metallic lithium, the sealing plate 5 is made of a metal substantially serving as a negative electrode terminal, and the insulating gasket 6 has a substantially L-shaped cross section.

正極は正極活物質のフッ化黒鉛、導電剤のアセチレンブラック、及び結着剤のポリテトラフルオロエチレンとを、質量比84:8:8で練合・乾燥・粉砕し、この粉末を加圧成形し、直径16mmで厚み3mmの円板状のペレットとし、高温乾燥(150℃で5時間)してペレット中の水分を除去して作製した。前記フッ化黒鉛は、石油コークスをフッ素化したフッ化度x=1.00である高フッ素化フッ化黒鉛(CFx)nと、石油コークスをフッ素化したy=0.45である低フッ素化フッ化黒鉛(CFy)nとを重量比40:60で混合したものを用いた。   The positive electrode is kneaded, dried, and pulverized in a mass ratio of 84: 8: 8 with graphite fluoride as a positive electrode active material, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder, and this powder is pressed. Then, it was made into a disk-shaped pellet having a diameter of 16 mm and a thickness of 3 mm, and was dried by high-temperature drying (at 150 ° C. for 5 hours) to remove moisture in the pellet. The fluorinated graphite includes a highly fluorinated fluorinated graphite (CFx) n having a degree of fluorination x = 1.00 obtained by fluorinating petroleum coke, and a low fluorination having y = 0.45 obtained by fluorinating petroleum coke. A mixture of graphite fluoride (CFy) n at a weight ratio of 40:60 was used.

負極は、1.3mmのリチウム箔を直径18mmの円板状に打ち抜き、封口板内面に相互が同芯になるように加圧して、圧着することで負極とした。   The negative electrode was made by punching a 1.3 mm lithium foil into a disk shape having a diameter of 18 mm, pressurizing the inner surface of the sealing plate so as to be concentric with each other, and press-bonding them.

電解液は溶質であるLiBF4を溶媒のγ−ブチロラクトンに1モル溶解したものを使用した。 The electrolyte used was a solution of 1 mol of LiBF 4 as a solute dissolved in γ-butyrolactone as a solvent.

そして、それら各部品材料を構成し、最後にガスケットを封口板とケースとで圧縮するようにかしめて、非水電解液電池を作製し、これを電池1とした。電池寸法は直径が24.5mm、厚みが5.0mmである。   Then, each of these component materials was constituted, and finally, a gasket was caulked so as to be compressed with a sealing plate and a case to produce a non-aqueous electrolyte battery. The battery dimensions are 24.5 mm in diameter and 5.0 mm in thickness.

(実施例2)
混合する低フッ素化フッ化黒鉛(CFy)nのフッ化度および高フッ素化フッ化黒鉛と低フッ素化フッ化黒鉛の混合比を表1に示すように変化させた以外は、実施例1と同様に非水電解液電池を作製し、それぞれ電池2〜電池5とした。
(Example 2)
Example 1 except that the degree of fluorination of the low fluorinated fluorinated graphite (CFy) n to be mixed and the mixing ratio of the highly fluorinated fluorinated graphite and the low fluorinated fluorinated graphite were changed as shown in Table 1. Similarly, non-aqueous electrolyte batteries were produced and designated as Battery 2 to Battery 5, respectively.

Figure 2006236888
Figure 2006236888

(比較例1)
正極にフッ化度x=1.05の高フッ素化フッ化黒鉛のみを使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池6とした。
(Comparative Example 1)
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that only a highly fluorinated fluorinated graphite having a degree of fluorination x = 1.05 was used for the positive electrode.

(比較例2)
正極にフッ化度x=0.95の高フッ素化フッ化黒鉛のみを使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池7とした。
(Comparative Example 2)
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that only a highly fluorinated fluorinated graphite having a degree of fluorination x = 0.95 was used for the positive electrode.

(比較例3)
正極にフッ化度y=0.45の低フッ素化フッ化黒鉛のみを使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池8とした。
(Comparative Example 3)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that only a low fluorinated fluorinated graphite having a degree of fluorination y = 0.45 was used for the positive electrode.

(比較例4)
正極にフッ化度y=0.90の低フッ素化フッ化黒鉛のみを使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池9とした。
(Comparative Example 4)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that only a low fluorinated fluorinated graphite having a degree of fluorination y = 0.90 was used for the positive electrode.

(比較例5)
正極に高フッ素化フッ化黒鉛と低フッ素化フッ化黒鉛を95:5の割合で混合したフッ化黒鉛を使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池10とした。
(Comparative Example 5)
A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that fluorinated graphite in which a high fluorinated fluorinated graphite and a low fluorinated fluorinated graphite were mixed at a ratio of 95: 5 was used for the positive electrode. This was designated as battery 10.

(比較例6)
正極に高フッ素化フッ化黒鉛と低フッ素化フッ化黒鉛を30:70の割合で混合したフッ化黒鉛を使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池11とした。
(Comparative Example 6)
A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that a fluorinated graphite in which a high fluorinated fluorinated graphite and a low fluorinated fluorinated graphite were mixed at a ratio of 30:70 was used for the positive electrode. This was designated as battery 11.

(比較例7)
正極にフッ化度y=0.95のフッ素化フッ化黒鉛を使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池12とした。
(Comparative Example 7)
A non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that fluorinated fluorinated graphite having a degree of fluorination y = 0.95 was used for the positive electrode.

(比較例8)
正極にフッ化度x=0.40の低フッ素化フッ化黒鉛を使用していること以外は実施例1と同様に非水電解液電池を作製し、これを電池13とした。
(Comparative Example 8)
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that low-fluorinated fluorinated graphite having a degree of fluorination x = 0.40 was used for the positive electrode, and this was designated as battery 13.

電池の低温での放電特性、高温保存における内部抵抗挙動及び保存後の低温放電特性を電池1〜電池13の非水電解液電池において確認するために以下の実験を行った。   In order to confirm the discharge characteristics at low temperature of the battery, the internal resistance behavior at high temperature storage and the low temperature discharge characteristics after storage in the nonaqueous electrolyte batteries of batteries 1 to 13, the following experiments were conducted.

低フッ素化フッ化黒鉛のフッ化度及び添加量と低温放電特性との関係を調べた。その具体的な放電条件(パルス放電条件)は、−40℃において10mAで100ms間の放電が1分に1回行われるパターンを300時間繰り返し、300時間後のパルス放電電圧をその電池のパルス電圧とした。各5個ずつ試験を行い平均値を比較した。結果を表2に示す。   The relationship between the degree of fluorination and the amount of low fluorinated fluorinated graphite and the low temperature discharge characteristics was investigated. The specific discharge condition (pulse discharge condition) is that a pattern in which discharge for 100 ms at 10 mA at −40 ° C. is performed once a minute is repeated for 300 hours, and the pulse discharge voltage after 300 hours is used as the pulse voltage of the battery. It was. Each test was performed five times, and the average values were compared. The results are shown in Table 2.

Figure 2006236888
Figure 2006236888

低温パルス試験結果では電池1〜電池5、電池8、電池9、電池11及び電池13の低フッ化度フッ化黒鉛を使用したものにおいて良好なパルス電圧が得られた。低温でのパルス放電電圧の差はパルス電流が流れる時の電圧の変化量に差があるのではなく、パルス電流が流れる直前の電池電圧に相関する。低フッ化度フッ化黒鉛を使用するものは正極電位が高いため、電池電圧は高くなる。ただし、電池10においては、低フッ素化フッ化黒鉛を使用しているが向上は見られていない。試験での個別結果では向上しているものもあるが、平均すると従来例のものと差はなくなった。これは、添加量が少なく、低フッ素化フッ化黒鉛の影響が低いためと考えられる。また、電池12においてyの値を0.95にすると、効果は見られない。これは電池7の結果とも一致する。   As a result of the low-temperature pulse test, a good pulse voltage was obtained in the batteries 1 to 5, 5, 8, 9, 11 and 13 using low fluorinated graphite. The difference in the pulse discharge voltage at a low temperature is not a difference in the amount of change in voltage when the pulse current flows, but correlates with the battery voltage immediately before the pulse current flows. Since the positive electrode potential is high for those using low fluorinated graphite, the battery voltage is high. However, although the battery 10 uses low fluorinated fluorinated graphite, no improvement has been observed. Although the individual results in the test have improved, on average, there is no difference from the conventional example. This is presumably because the addition amount is small and the influence of the low fluorinated fluorinated graphite is low. Further, when the value of y in the battery 12 is 0.95, no effect is seen. This agrees with the result of the battery 7.

次に高温保存における内部抵抗との関係を調べた。約120℃に設定した環境槽内に非水電解液電池を入れ、10日間保存した後、各電池について内部抵抗(1kHz、120Hz)を測定した。各20個ずつ試験を行い、平均値の比較を行った。そして、内部抵抗の測定が終了した電池を、前記と同様の低温パルス放電試験を行い、300時間後の電圧をその電池の保存後のパルス放電電圧とした。各5個ずつ試験を行い、平均値の比較を行った。   Next, the relationship with internal resistance during high temperature storage was investigated. A non-aqueous electrolyte battery was placed in an environmental tank set at about 120 ° C. and stored for 10 days, and then the internal resistance (1 kHz, 120 Hz) was measured for each battery. Each of the 20 tests was performed, and the average values were compared. The battery for which the measurement of the internal resistance was completed was subjected to the same low-temperature pulse discharge test as described above, and the voltage after 300 hours was defined as the pulse discharge voltage after storage of the battery. Each of the five tests was performed, and the average values were compared.

高温保存後の内部抵抗の測定結果と、高温保存後パルス放電電圧の平均値を表3に示す。   Table 3 shows the measurement results of the internal resistance after high-temperature storage and the average value of the pulse discharge voltage after high-temperature storage.

Figure 2006236888
Figure 2006236888

電池1〜電池5、及び電池6、電池7、電池10、電池12では、内部抵抗は小さく良好な結果となっている。一方、電池8、電池9、電池11及び電池13では、内部抵抗が非常に大きくなっている。それに伴い、低温パルスの落ち込みも大きくなっている。この電池8、電池9、電池11及び電池13を調べると、負極リチウム表面にフッ素が非常に多く存在している。これは低フッ素化フッ化黒鉛には不安定なフッ素が多く存在し、それが電解液に溶出して負極のリチウム表面と反応し、生じた被膜が抵抗成分となっているのが原因と考えられる。電池6、電池7は内部抵抗の上昇は小さいものの、電池1〜電池5に比べると低フッ素化フッ化黒鉛添加の効果がない分、パルス放電電圧は低いレベルにある。リチウム表面のフッ素量を電池1〜電池5でも確認すると電池6、電池7と比較すると多くなっているが、その量は放電特性に大きな影響を及ぼすものではなく、それはパルス試験結果を見ても判断できる。   In the batteries 1 to 5, the battery 6, the battery 7, the battery 10, and the battery 12, the internal resistance is small and good results are obtained. On the other hand, the internal resistance of the battery 8, the battery 9, the battery 11, and the battery 13 is very large. Along with this, the drop in low temperature pulses has also increased. When the battery 8, the battery 9, the battery 11, and the battery 13 are examined, a large amount of fluorine is present on the negative electrode lithium surface. This is thought to be due to the presence of a lot of unstable fluorine in low-fluorinated fluorinated graphite, which dissolves in the electrolyte and reacts with the lithium surface of the negative electrode, and the resulting coating is the resistance component. It is done. Although the increase in internal resistance of the batteries 6 and 7 is small, the pulse discharge voltage is at a low level as compared with the batteries 1 to 5 because the effect of the low fluorinated fluorinated graphite is not added. When the amount of fluorine on the lithium surface is confirmed also in the batteries 1 to 5, the amount is larger than those of the battery 6 and the battery 7, but the amount does not greatly affect the discharge characteristics. I can judge.

以上説明したように、本発明によると、軽金属を活物質とする負極、フッ化黒鉛を活物質とする正極である非水電解液電池において、上記フッ化黒鉛が(CFx)n(0.95≦x≦1.05)で表されるものと、内部に未フッ素化炭素を持つフッ化黒鉛からなる(CFy)n(0.45≦y≦0.90)と表せるものの混合物であり、(CFy)nの割合が10から60重量%である構成にすることにより、低温での放電特性と耐高温特性が優れた非水電解液電池を提供することができる。   As described above, according to the present invention, in a non-aqueous electrolyte battery that is a negative electrode using a light metal as an active material and a positive electrode using fluorinated graphite as an active material, the fluorinated graphite is (CFx) n (0.95). ≦ x ≦ 1.05) and (CFy) n (0.45 ≦ y ≦ 0.90) made of fluorinated graphite having unfluorinated carbon inside, and a mixture of ( By adopting a constitution in which the ratio of CFy) n is 10 to 60% by weight, it is possible to provide a non-aqueous electrolyte battery having excellent discharge characteristics at low temperatures and high temperature resistance characteristics.

上記、実施例では、石油コークスから作製されるフッ化黒鉛を使用したが、天然黒鉛及び人造黒鉛から作製したものでも同様の効果が得られるものである。   In the above examples, fluorinated graphite produced from petroleum coke was used, but the same effect can be obtained even from those produced from natural graphite and artificial graphite.

本発明は、低温での放電特性が優れ、また高温使用後の放電特性劣化が少ないため、たとえば低温から高温までの信頼性が求められる用途である車載用途としての活用が好適である。   Since the present invention has excellent discharge characteristics at low temperatures and little deterioration in discharge characteristics after use at high temperatures, it is suitable for use in in-vehicle applications, for example, where reliability from low temperatures to high temperatures is required.

本発明の実施例における扁平形の非水電解液電池の構成を示す断面図Sectional drawing which shows the structure of the flat type nonaqueous electrolyte battery in the Example of this invention

符号の説明Explanation of symbols

1 正極ケース
2 正極ペレット
3 セパレータ
4 リチウム
5 封口板
6 ガスケット
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2 Positive electrode pellet 3 Separator 4 Lithium 5 Sealing plate 6 Gasket

Claims (1)

軽金属を活物質とする負極と、フッ化黒鉛を活物質とする正極からなる非水電解液電池において、前記フッ化黒鉛が(CFx)n(0.95≦x≦1.05)で表される高フッ素化フッ化黒鉛と、(CFy)n(0.45≦y≦0.90)で表される低フッ素化フッ化黒鉛の混合物であり、前記低フッ素化フッ化黒鉛は未フッ素化炭素がフッ素化された炭素に覆われた状態であり、前記フッ化黒鉛に占める前記低フッ素化フッ化黒鉛割合が10重量%以上60重量%以下であることを特徴とする非水電解液電池。 In a non-aqueous electrolyte battery comprising a negative electrode using a light metal as an active material and a positive electrode using fluorinated graphite as an active material, the fluorinated graphite is represented by (CFx) n (0.95 ≦ x ≦ 1.05). And a low fluorinated fluorinated graphite represented by (CFy) n (0.45 ≦ y ≦ 0.90). The low fluorinated fluorinated graphite is unfluorinated. A non-aqueous electrolyte battery characterized in that carbon is covered with fluorinated carbon, and the proportion of the low fluorinated fluorinated graphite in the fluorinated graphite is 10 wt% or more and 60 wt% or less. .
JP2005052816A 2005-02-28 2005-02-28 Non-aqueous electrolyte battery Expired - Fee Related JP4561404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005052816A JP4561404B2 (en) 2005-02-28 2005-02-28 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005052816A JP4561404B2 (en) 2005-02-28 2005-02-28 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006236888A true JP2006236888A (en) 2006-09-07
JP4561404B2 JP4561404B2 (en) 2010-10-13

Family

ID=37044286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005052816A Expired - Fee Related JP4561404B2 (en) 2005-02-28 2005-02-28 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4561404B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031293A1 (en) * 2007-09-06 2009-03-12 Panasonic Corporation Nonaqueous electrolyte battery
JP2010521782A (en) * 2007-03-14 2010-06-24 カリフォルニア・インスティテュート・オブ・テクノロジー High discharge rate battery
CN101877410A (en) * 2009-04-27 2010-11-03 松下电器产业株式会社 Lithium primary battery and manufacture method thereof
WO2011068825A1 (en) 2009-12-04 2011-06-09 Eaglepicher Technologies, Llc Non-aqueous cell having a mixture of fluorinated carbon cathode materials
JP2012014877A (en) * 2010-06-29 2012-01-19 Panasonic Corp Graphite fluoride lithium battery
CN113764740A (en) * 2021-07-16 2021-12-07 厦门大学 Electrolyte of battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826891B1 (en) * 1968-07-02 1973-08-17
JPS4916131B1 (en) * 1970-04-20 1974-04-19
JPS5111140A (en) * 1974-07-18 1976-01-29 Matsushita Electric Ind Co Ltd
JPS5784570A (en) * 1980-11-14 1982-05-26 Matsushita Electric Ind Co Ltd Battery
JPS5987763A (en) * 1982-11-10 1984-05-21 Daikin Ind Ltd Active material for battery
JPH05299100A (en) * 1992-04-17 1993-11-12 Matsushita Electric Ind Co Ltd Organic electrolyte battery and manufacture of fluoric carbon positive electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826891B1 (en) * 1968-07-02 1973-08-17
JPS4916131B1 (en) * 1970-04-20 1974-04-19
JPS5111140A (en) * 1974-07-18 1976-01-29 Matsushita Electric Ind Co Ltd
JPS5784570A (en) * 1980-11-14 1982-05-26 Matsushita Electric Ind Co Ltd Battery
JPS5987763A (en) * 1982-11-10 1984-05-21 Daikin Ind Ltd Active material for battery
JPH05299100A (en) * 1992-04-17 1993-11-12 Matsushita Electric Ind Co Ltd Organic electrolyte battery and manufacture of fluoric carbon positive electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521782A (en) * 2007-03-14 2010-06-24 カリフォルニア・インスティテュート・オブ・テクノロジー High discharge rate battery
US8709660B2 (en) 2007-09-06 2014-04-29 Panasonic Corporation Non-aqueous electrolyte battery
JP2009152174A (en) * 2007-09-06 2009-07-09 Panasonic Corp Nonaqueous electrolyte battery
JP4510912B2 (en) * 2007-09-06 2010-07-28 パナソニック株式会社 Non-aqueous electrolyte battery
WO2009031293A1 (en) * 2007-09-06 2009-03-12 Panasonic Corporation Nonaqueous electrolyte battery
CN101877410A (en) * 2009-04-27 2010-11-03 松下电器产业株式会社 Lithium primary battery and manufacture method thereof
CN102754249B (en) * 2009-12-04 2015-05-06 伊格皮切尔科技有限责任公司 Non-aqueous cell having a mixture of fluorinated carbon cathode materials
CN102754249A (en) * 2009-12-04 2012-10-24 伊格皮切尔科技有限责任公司 Non-aqueous cell having a mixture of fluorinated carbon cathode materials
WO2011068825A1 (en) 2009-12-04 2011-06-09 Eaglepicher Technologies, Llc Non-aqueous cell having a mixture of fluorinated carbon cathode materials
EP2507857A4 (en) * 2009-12-04 2016-11-02 Eaglepicher Technologies Llc Non-aqueous cell having a mixture of fluorinated carbon cathode materials
JP2012014877A (en) * 2010-06-29 2012-01-19 Panasonic Corp Graphite fluoride lithium battery
CN113764740A (en) * 2021-07-16 2021-12-07 厦门大学 Electrolyte of battery
CN113764740B (en) * 2021-07-16 2023-08-11 厦门大学 Electrolyte of battery

Also Published As

Publication number Publication date
JP4561404B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP5355203B2 (en) Lithium primary battery and manufacturing method thereof
JP5022035B2 (en) Secondary battery with surface mount terminals
JP5354893B2 (en) Lithium battery
JP6372821B2 (en) Nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP4561404B2 (en) Non-aqueous electrolyte battery
JP2007103298A (en) Positive electrode active material, its manufacturing method, and aqueous lithium secondary battery
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
US7229719B2 (en) Non-aqueous electrolyte secondary battery
JP2007087688A (en) Non-aqueous electrolytic solution battery, positive electrode therefor, and manufacturing method of positive electrode therefor
JP2005317266A (en) Method of manufacturing nonaqueous electrolyte battery
JP4200326B2 (en) Non-aqueous electrolyte primary battery
JP2009123549A (en) Lithium primary battery
WO2020072783A1 (en) Electrochemical plating of additives on metallic electrodes for energy dense batteries
JP6489547B2 (en) Nonaqueous electrolyte secondary battery
JP2006073259A (en) Positive electrode active material and water dissolving lithium secondary battery
JP2021180064A (en) Lithium primary battery
JP5533110B2 (en) Lithium primary battery
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
JP4326201B2 (en) Heat-resistant lithium battery
JP2006032129A (en) Lithium battery
JP7015102B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2003007303A (en) Nonaqueous electrolyte secondary battery
JP2004127545A (en) Lithium battery
JP2005071665A (en) Water-based lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees