JP2006234581A - 電子コンパス及び方位測定方法 - Google Patents

電子コンパス及び方位測定方法 Download PDF

Info

Publication number
JP2006234581A
JP2006234581A JP2005049731A JP2005049731A JP2006234581A JP 2006234581 A JP2006234581 A JP 2006234581A JP 2005049731 A JP2005049731 A JP 2005049731A JP 2005049731 A JP2005049731 A JP 2005049731A JP 2006234581 A JP2006234581 A JP 2006234581A
Authority
JP
Japan
Prior art keywords
azimuth
component data
center
magnetic field
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049731A
Other languages
English (en)
Inventor
Setsuhei Ri
雪萍 李
Hitoshi Aoyama
均 青山
Yoshinobu Motokura
義信 本蔵
Hideji Kako
英児 加古
Katsuhiko Tsuchida
克彦 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Micro Intelligent Corp
Original Assignee
Aichi Micro Intelligent Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Micro Intelligent Corp filed Critical Aichi Micro Intelligent Corp
Priority to JP2005049731A priority Critical patent/JP2006234581A/ja
Priority to US11/359,574 priority patent/US20060190174A1/en
Publication of JP2006234581A publication Critical patent/JP2006234581A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Navigation (AREA)

Abstract

【課題】着磁により電子コンパスが誤った方位を表示しても、車両の旋回を利用して誤差の少ない進行方位を表示する。
【解決手段】直交配置された2つの磁気検出部11、11’と、移動体の進行方位を算出する方位演算手段32と、磁界の正常・異常を判定する磁界判定手段31と、磁界判定手段31が異常と判定したとき、該移動体の旋回によって2軸成分データが描く方位円の中心を校正する校正手段33と、を有し、校正手段33は、少なくとも3つの2軸成分データから方位円の中心を算出する中心演算手段331と、所定数の2軸成分データから最小2乗法を用いて方位円を算出する最小2乗法演算手段332と、を備え、方位演算手段32は、磁界判定手段31が正常と判定したとき、2軸成分データから算出した進行方位を出力し、磁界判定手段31が異常と判定したとき、校正手段33で校正された該方位円の中心を用いて進行方位θを算出して出力する。
【選択図】図3

Description

本発明は、磁気センサを用いた移動体の電子コンパス及び方位測定方法に関し、特に、移動体の着磁等による外乱磁場に伴い生じる方位測定誤差を補正する電子コンパス及び方位測定方法に関するものである。
先ず、従来の磁気センサを用いた方位測定原理を図1を用いて説明する。従来の地磁気方位検出器は、励磁コイルL0が巻回されたリング状のパーマロイコア51に対して互いに直交する2つのコイルLX、LYが巻回されている。励磁コイルL0には、励磁電源52により、パーマロイコア51が磁気飽和するような交流電流が供給される。この励磁により、コイルLX(LYでも同じ)において、図中、コア51が交わる上側の箇所で磁束Φ1が鎖交し、そして、下側の箇所において磁束Φ2が鎖交するが、両磁束の大きさは等しく、向きが互いに逆のため、コイルLX全体に対して鎖交する全磁束は0であり、コイルLXの出力X、LYの出力Yは、それぞれX=0、Y=0となる。
ここで、図示したように、横方向の水平磁界Heが作用する時、この磁界Heがパーマロイコア51中を図中、右方向に向かう一定の磁束Φ0がバイアスとして与えられ、コイルLxの上側での鎖交磁束数は、(Φ0+Φ1)となり、コイルLxの下側での鎖交磁束数は、(Φ0−Φ2)となる。これにより、コイルLxにおける全鎖交磁束数は0でなくなり、Xはある値を持つ。一方、前記磁束Φ0はコイルLyと交差しないため、Yは0である。次に、地磁気He’で示されるように、コイルLXに対してΨの角度をなす時、この地磁気He’により、コイルLX、LYに作用する地磁気の2軸成分H0X、H0Yは、
Figure 2006234581
となり、この地磁気の2軸成分に対応してX、Yがある値を持つようになる。そのときの出力(X、Y)は、数式1でわかるように、Ψが変化すると(つまり地磁気方位検出器を搭載した移動体が旋回すると)、図2で示した横軸をX、縦軸をYとする座標上で原点O(0、0)を中心とする円を描く。この円を方位円という。このとき原点O(0、0)と座標(X、Y)を結ぶ直線とY軸とのなす角をθとすると、
Figure 2006234581
で与えられる。
移動体自体の磁化(以後、着磁という)による影響がない場合、移動体の1周旋回時の出力信号X、Yの軌跡は、上記のように、図2に示す実線のように原点O(0、0)を中心とした円となるので、X、Yが求まれば、上式からθが算出でき、移動体の進行方位θが得られる。
移動体が例えば電車の踏切を横断すると、移動体が着磁し、方位円が例えば矢印方向に偏移して点線のようにOA(XA、YA)を中心とする円となる。このように大きく偏移した方位円上に得られる出力信号、すなわち地磁気ベクトルを直交する2軸成分データとして検出した出力信号(Xi、Yi)に基づいて移動体の進行方位を求めると、方位測定誤差が大きくなり、突然でたらめな方位が表示される。
このような着磁による方位誤差を低減するために、従来の磁気センサを用いた移動体の電子コンパスは、2つの2軸成分データ点を結ぶ線分の垂直二等分線を算出し、算出された垂直二等分線の傾きによって複数個のセクターに分類し、全セクターに一定個数以上のデータが格納されると各セクターの代表値を算出し、各セクターの代表値からの距離の自乗和が最小となるポイントを算出して方位円の中心とするものである(例えば、特許文献1参照)。
この方法は、全てのセクターに一定個数以上のデータを格納する必要があり、さらに自乗和が最小となるポイントを算出して方位円の中心を求めるため、方位測定誤差の少ない方位を表示するまで長時間を要する。
また、地磁気方位検出器による所定数の2軸成分データに基づき最小2乗法を用いて方位円として楕円を決定するパラメータを求め、決定された楕円上に位置する2軸成分データを真円上のデータに補正変換して方位円の中心を求めるものもある(例えば、特許文献2参照)。
この方法も、方位円の中心を求めるためには、所定数のデータが集まるまで待つ必要があり、方位測定誤差の少ない方位を表示するまで長時間を要する。
特開平6−58758号公報 特開平9−68431号公報
従来の磁気センサを用いた電子コンパスは、着磁した場合、上記のように方位測定誤差の少ない方位を表示するまで長時間を要するため、誤差の大きな(あるいは、でたらめな)方位が長時間表示されることになる。通常ドライバーは、着磁に気づかないため、でたらめな方位の長時間の表示はドライバーに不安感を与える。
本発明は、上記の問題に鑑みてなされたものであり、でたらめな方位の表示によるドライバーの不安感を低減する電子コンパス及び方位測定方法を提供することを課題とする。
課題を解決するためになされた請求項1に係る発明は、電子コンパスであって、移動体の進行方位θと共に変化する地磁気ベクトルの2軸成分を直交する2軸成分データ(X1、Y1)、(X2、Y2)、・・・(Xi、Yi)として検出する直交配置された2つの磁気検出部をもつ地磁気方位検出器と、該2軸成分データ(Xi、Yi)から該移動体の進行方位θを算出する方位演算手段と、磁界の正常・異常を判定する磁界判定手段と、該磁界判定手段が異常と判定したとき、該移動体の旋回によって該2軸成分データ(Xi、Yi)が描く方位円の中心を校正する校正手段と、を有し、該校正手段は、少なくとも3つの該2軸成分データ(Xi、Yi)から該方位円の中心を算出する中心演算手段と、所定数の該2軸成分データ(Xi、Yi)から最小2乗法を用いて該方位円を算出する最小2乗法演算手段と、を備え、該方位演算手段は、該磁界判定手段が正常と判定したとき、該2軸成分データ(Xi、Yi)から算出した該進行方位θを出力し、該磁界判定手段が異常と判定したとき、該校正手段で校正された該方位円の中心を用いて順次該進行方位θを算出して出力することを特徴としている。
磁界判定手段で異常と判定され、方位円の中心を校正する必要があるときのみ、中心演算手段で少なくとも3つの2軸成分データ(Xi、Yi)から方位円の中心を算出し、その中心を方位円の暫定中心として方位演算手段で方位を求めるので、短時間に比較的誤差の少ない方位を表示することができる。その後、最小2乗法演算手段で所定数の2軸成分データから方位円の中心を求め、方位演算手段で方位を求めるので、最終的には高精度の方位を表示することができる。したがって、着磁によるでたらめな方位の表示がなくなり、ドライバーの不安を解消することができる。
また、請求項2に係る発明は、請求項1に記載の電子コンパスであって、前記磁界判定手段は、前記2軸成分データ(Xi、Yi)から求まる前記磁気ベクトルの大きさ或いは及び前記方位演算手段で算出される前記進行方位θの時間変化を所定閾値と比較して磁界の正常・異常を判定することを特徴としている。
磁気ベクトルの大きさも進行方位θの時間変化も2軸成分データ(Xi、Yi)から求まるので、新たな構成要素を必要としない。磁気ベクトルの大きさ、或いは進行方位θの時間変化で磁界の異常・正常を判定しても良いし、両方で判定しても良い。両方で判定した方が判定精度が高くなる。
また、請求項3に係る発明は、請求項1或いは2に記載の電子コンパスであって、前記中心演算手段は、前記2軸成分データ(Xi、Yi)から少なくとも二組の異なる2軸成分データ間の距離の垂直2等分線を少なくとも2本求め、該少なくとも2本の垂直2等分線の交点を算出することを特徴としている。
3つの2軸成分データ点を結ぶ2つの弦のそれぞれの垂直2等分線の交点を求め、それを方位円の暫定中心とするので着磁によるでたらめな方位の表示を短時間に解消することができる。
また、請求項4に係る発明は、請求項1或いは2に記載の電子コンパスであって、前記中心演算手段は、前記2軸成分データ(Xi、Yi)から3つのデータを結ぶ3角形を求め、該3角形の最も長い辺の長さ及び該最も長い辺に対向する頂角で規定される垂線を該最も長い辺の該辺を2等分する位置から引いて、該垂線の端点を算出することを特徴としている。
3つのデータを結ぶ3角形を求め、3角形の最も長い辺の該辺を2等分する位置から延びる垂線の端点を算出し、それを方位円の暫定中心とするので着磁によるでたらめな方位の表示を短時間に解消することができる。
また、請求項5に係る発明は、請求項1ないし4のいずれか1項に記載の電子コンパスであって、さらに、前記校正手段は前記中心演算手段で算出された交点或いは端点と前記最小2乗法演算手段で算出された方位円の中心点との平均を算出する平均演算手段を有することを特徴としている。
中心演算手段で算出された交点或いは端点と最小2乗法演算手段で算出された方位円の中心点との平均値を求め、その平均値を方位円の中心にして方位演算手段で方位を求めるので、最終的にはより高精度の方位を表示することができる。
また、請求項6に係る発明は、請求項1ないし5のいずれか1項に記載の電子コンパスであって、前記磁気検出部は、マグネトインピーダンス磁気センサであることを特徴としている。
マグネトインピーダンス磁気センサは、超小型であり、地磁気方位検出器を小型化することができる。したがって、地磁気方位検出器を車両のルームミラーのミラー枠や取り付け台の中に配設することができる。これにより、車両のルーフやボディー構造物など磁気センサに悪影響を与えやすい透磁率の高い鋼材から遠ざけて配設することが可能となり、より高精度の電子コンパスを実現することができる。
課題を解決するためになされた請求項7に係る発明は、方位測定方法であって、移動体の進行方位θと共に変化する地磁気ベクトルの2軸成分を直交する2軸成分データ(X1、Y1)、(X2、Y2)、・・・(Xi、Yi)として検出する2軸成分データ検出ステップと、該2軸成分データ検出ステップで検出された該2軸成分データ(Xi、Yi)から該移動体の該進行方位θを算出する方位演算ステップと、磁界の正常・異常を判定する磁界判定ステップと、該磁界判定ステップが異常と判定したとき、該移動体の旋回によって該2軸成分データ(Xi、Yi)が描く方位円の中心を校正する校正ステップと、を有し、該校正ステップは、少なくとも3つの該2軸成分データ(Xi、Yi)から該方位円の中心を算出する中心演算ステップと、所定数の該2軸成分データ(Xi、Yi)から最小2乗法を用いて該移動体の旋回時の方位円を算出する最小2乗法演算ステップと、を備え、該方位演算ステップは、該磁界判定ステップが正常と判定したとき、該2軸成分データ(Xi、Yi)から算出された該移動体の進行方位θを出力し、該磁界判定ステップが異常と判定したとき、該校正ステップで校正された該方位円の中心を用いて順次該進行方位θを算出して出力することを特徴としている。
また、請求項8に係る発明は、請求項7に記載の方位測定方法であって、前記磁界判定ステップは、前記2軸成分データ(Xi、Yi)から求まる前記磁気ベクトルの大きさ或いは及び前記方位演算ステップで算出される前記進行方位θの時間変化を所定閾値と比較して磁界の正常・異常を判定することを特徴としている。
また、請求項9に係る発明は、請求項7或いは8に記載の方位測定方法であって、前記中心演算ステップは、前記2軸成分データ(Xi、Yi)から少なくとも二組の異なる2軸成分データ間の距離の垂直2等分線を少なくとも2本求め、該少なくとも2本の垂直2等分線の交点を算出することを特徴としている。
また、請求項10に係る発明は、請求項7或いは8に記載の方位測定方法であって、前記中心演算ステップは、前記2軸成分データ(Xi、Yi)から3つのデータを結ぶ3角形を求め、該3角形の頂角及び最も長い辺の長さで規定される垂線を該最も長い辺の該辺を2等分する位置から引いて、該垂線の端点を算出することを特徴としている。
また、請求項11に係る発明は、請求項7ないし10のいずれか1項に記載の方位測定方法であって、さらに、前記校正ステップは前記中心演算ステップで算出された交点又は端点と前記最小2乗法演算ステップで算出された方位円の中心点との平均を算出する平均演算ステップを有することを特徴としている。
着磁により電子コンパスが誤った方位を表示しても、車両が旋回するのを利用して中心演算手段により直ちに方位円の中心を校正でき、さらに、長期的には最小2乗法演算手段により、より高精度の校正ができる。したがって、車両のドライバーに不安を抱かせることなく、快適なドライビングを続行させることができる。
また、中心演算手段で算出された方位円の中心位置と最小2乗法演算手段で算出された方位円の中心位置とを平均した値を方位円の中心とするので、さらに高精度な校正ができる。
本発明の電子コンパスを実施するための最良の形態を図面を参照して説明する。
(実施形態1)
本実施形態の電子コンパスは、 図3に示すように、感度軸が直交配設され、地磁気ベクトルのX成分とY成分を直交する2軸成分データ(X1、Y1)、(X2、Y2)、・・・(Xi、Yi)として検出する2つの磁気検出部11、11’をもつ地磁気方位検出器1と、磁気検出部11、11’の出力を所定の頻度でデジタル信号に変換するAD変換器2と、デジタル信号を受けてソフトウエアにより移動体の方位を演算するマイクロコンピュータ3と、演算された方位を表示する表示手段4を備えている。
地磁気方位検出器1として、パーマロイコアに直交して巻回された2つのコイルを磁気検出部11、11’とする従来の検出器(図1参照)を用いてもよいが、マグネトインピーダンス磁気センサを磁気検出部11、11’とする磁気検出器を用いることが好ましい。マグネトインピーダンス磁気センサ(以後、「MIセンサ」という)は、例えば、直径20μm、長さ1mmのアモルファス(FeCoSiB)ワイヤと、このワイヤに巻回された検出コイルとからなり、磁界の強さに比例したアナログ電圧を出力する、超小型・高感度の磁気センサである。したがって、地磁気方位検出器1を、図4に示すように、2つのMIセンサを互いに直角に配設し(11、11’とし)、駆動回路12と共に、縦約3.5mm、横約3.5mmのIC用パッケージに封入したものとすることができる。移動体が自動車の場合、地磁気方位検出器1が3.5mm□と超小型であるので、例えば図5に示すように、ウインドシールド6に取り付けられたルームミラー7の取り付け台部に配設することができる。
AD変換器2としては、分解能が14ビット程度のものを用いるとよい。これにより、移動体の方位測定分解能を満たすことができると共に、移動体の磁化による地磁気方位検出器1の周辺の磁界が地磁気より大きくなっても信号が飽和することがない。
マイクロコンピュータ3は、磁界の正常・異常を判定する磁界判定A手段31と、移動体の進行方位θを算出する方位演算手段32と、磁界判定A手段31が異常と判定したとき、方位円の中心を校正する校正手段33と、を有している。また、校正手段33は、中心演算A手段331と、最小2乗法演算手段332と、を備えている。なお、磁界判定A手段31、方位演算手段32、及び校正手段33は、ソフトウエアにより構成されている。
磁界判定A手段31は、2軸成分データ(Xi、Yi)から求まる磁気ベクトルの大きさを所定閾値と比較して磁界の正常・異常を判定するものである。
中心演算A手段331は、2軸成分データ(Xi、Yi)から二組の異なる2軸成分データ間の距離の垂直2等分線を2本求め、2本の垂直2等分線の交点を算出して、それを中心とするものであるが、2軸成分データ(Xi、Yi)から三組以上の異なる2軸成分データ間の距離の垂直2等分線を3本以上求め、各交点を平均するようにするとよい。交点の精度が上がり、方位測定精度が高くなる。
2つの磁気検出部11、11’からの2軸成分データ(Xi、Yi)は、AD変換器2を介してマイクロコンピュータ3に入力される。マイクロコンピュータ3の磁界判定A手段31は、2軸成分データ(Xi、Yi)の絶対値(Xi2+Yi21/2 とHa±Hsとの大小関係を判別する。ここでHaは、日本本州の地磁気水平成分の絶対値であり、Ha=300mGs(=30μT)である。また、HsはHaの1/10〜2/10の範囲に設定され、例えばHs=50mGs(=5μT)である。なお、このHa及びHsは電子コンパスが使用される地域に応じて変化させることが望ましい。また、Hsは、例えば+Hs、−Hs’というように、正側と負側で閾値が異なる値にしてもよい。
磁界判定A手段31の動作を図11のフローチャートを使って説明する。ステップS11で2軸成分データ(Xi、Yi)の取得を行い、ステップS12で(Xi2+Yi21/2を演算し、Ha±Hsとの大小関係を比較し、(Xi2+Yi21/2>Ha+Hs又は(Xi2+Yi21/2<Ha−HsのときY(異常)と判定し、Ha−Hs≦(Xi2+Yi21/2≦Ha+HsのときN(正常)と判定する。異常と判定されると、ステップS13に進み、ステップS13で所定時間経過が判定され、ステップS14で再度磁界異常判定を行う。このステップS14でも異常と判定されると、校正手段33へ進む。
ステップS12及びステップS14で正常と判定されると、方位演算手段32へ進む。方位演算手段32は、磁界が正常と判定されると、前記数2に基づいてθが算出され、表示手段4によって車両のドライバーに方位が示される。
前記のように、ステップS14でも異常と判定されると、校正手段33へ進み、校正が次のように行われる。たとえば、移動体が図7に示すように、Zaゾーンの北進状態から90°の旋回をして、Zcゾーンの東進状態になる場合、2軸成分データ点(Xi、Yi)の方位円上の分布は、図8のようになる。すなわち、曲線路に進入する前の直進路のZaゾーン及び曲線路を抜け出した後のZcゾーンでは、僅かな車両の蛇行を含む直進走行のため、データ点がほぼ同じ進行方向を表す位置に多く集まり、旋回ゾーンZbでは、データ点の間隔が大きくなる。また、車両はローリングやピッチングにより磁気検出部11、11’を含む電子回路のノイズも存在するため、理想的な方位円Gの上に必ずしも乗らずその周辺に分布する。中心演算A手段331は、車両が旋回することで得られる3つのデータ点(X1,Y1)、(X2,Y2)、(X3,Y3)から得られる2つの弦a1、a2それぞれに対する垂直2等分線l1,l2の交点(Xp,Yp)を、方位円の中心位置として算出する。算出された方位円の中心位置(Xp,Yp)は、図3に示すように、方位演算手段32で 使われ、
Figure 2006234581
に基づいて、θが算出され、表示手段4によって車両のドライバーに方位が示される。
中心演算A手段331の動作の機能は図12のフローチャートによるソフトウエアで行われる。このフローチャートは磁界判定A手段31が異常と判定したとき起動する。ステップS21でデータ点(Xi、Yi)を取得し、ステップS22でそのデータを順次ストアする。次にステップS23で互いに所定距離以上離れたデータ点を3つ取り出す。ここで、所定距離以上離れたデータ点とは、たとえば、2つのデータ点(Xi,Yi)、(Xj,Yj)の距離[(Xi−Xj2+(Yi−Yj2]1/2が所定値L以上離隔するデータ点のことである。ここで、所定値Lとは、前記方位円の半径を1とするとき、例えば、0.5のことである。ステップS23で所定値L以上離隔するデータ点を取り出すと、ステップS24では、互いのデータ点を結ぶ2つの弦の垂直2等分線の交点(Xp,Yp)を算出し、その結果をステップS25で方位演算手段32に渡す。
この垂直2等分線によって方位円の中心を求める方法は、車両が旋回するときのデータ点が3つあれば直ちに方位円の中心が求まり、暫定的に方位をドライバーに知らせることができるのが特徴である。しかし、実際は前述のように、各データ点は必ずしも理想的な方位円の上に乗らないこともあるので、地磁気方位検出器1の時々刻々のデータを用いるこの方法は誤差が重畳し易いが、車両が磁化され、突然でたらめな方位を表示してしまうような状況から素早く回復させることができるので、ドライバーを不安から守るためには、十分有用で即応的な校正手段である。特に、車両用の電子コンパスには、通常8方位あるいは16方位程度の表示分解能が要求されることが多いので、十分な性能と言うことができる。
次に、図8に示したように、旋回が終了するとその前後のZaゾーンとZcゾーンでは、多くのデータ点が得られるので、最小2乗法演算手段332は所定数のデータ点を使って十分精度の高い方位円を推定し、その中心位置を十分な精度で求めることができる。
最小2乗法演算手段332の機能は、図13のフローチャートによるソフトウエアで行われる。このフローチャートは、磁界判定A手段31が異常と判定したとき、中心演算A手段331と同時に起動する。ステップS31でデータ点を取得し、ステップS32でそのデータ点を順次ストアする。次に、ステップS33において、所定数のデータ点を取りだし、ステップS34において、最小2乗法演算により方位円を推定し、この方位円の中心位置(Xp’、Yp’)を算出する。なお、ここで、データ点を取り出す所定数とは、40のことである。ここで求められた中心位置(Xp’、Yp’)は、ステップS35で方位演算手段32へ渡される。前記図8において、ZaゾーンおよびZcゾーンの各データ間の離隔の度合いがZbゾーンの各データ間の離隔の度合いに比べて小さく、数多くのデータ点がデータ群として集まる。そこで、ZaゾーンおよびZcゾーンそれぞれのデータ群を予め平均化してそれぞれ一点のデータに置き換えてから、Za、Zb、Zc各ゾーンのデータを使って最小二乗法演算を行うことが好ましい。曲線の各部分のデータ点の密度を均等に振り分けることで、より正確な近似が可能になる。
この最小2乗法演算手段332による中心位置(Xp’、Yp’)の演算は、所定のデータ点数が集まるまである程度の時間が必要であり、中心演算A手段331よりも遅れて完了する。方位演算手段32は、図3に示すように、最小2乗法演算手段332から中心位置(Xp’,Yp’)データが渡されると、これを新たな方位円の中心位置として入れ替え、その後の方位θを算出し、表示手段4で精度の高い方位をドライバーに知らせる。
図6に示すように、校正手段33’が、中心演算A手段331で求められた方位円の中心位置(Xp、Yp)と、最小2乗法演算手段332で求められた方位円の中心位置(Xp’、Yp’)の平均を演算する平均演算手段333をさらに有するようにするとよい。
磁界判定A手段31が異常と判定すると、図6に示すように、はじめ中心演算A手段331の演算結果である方位円の中心位置(Xp、Yp)が方位演算手段32へ出力され、その後、所定のデータ点が集まり、最小2乗法演算手段332で方位円の中心位置(Xp’、Yp’)の演算が完了すると、前記(Xp、Yp)と(Xp’、Yp’)の平均((1−α)Xp+αXp’、(1−α)Yp+αYp’)が方位演算手段32へ出力され、この値が新たな方位円の中心位置として方位演算に使われる。ここで、αは加重平均の重みであり、0≦α≦1の値が可能であり、本実施形態では、例えば、α=0.5である。
平均演算手段333の機能は、図14に示すフローチャートによるソフトウエアで行われる。すなわち、ステップS41において、中心演算A手段331で求められた方位円の中心位置(Xp、Yp)を取得し、ステップS42において最小2乗法演算手段332で求められた方位円の中心位置(Xp’、Yp’)を取得し、ステップS43においてこれら両者の平均値演算を行い、この結果((1−α)Xp+αXp’、(1−α)Yp+αYp’)を新たな方位円の中心位置(Xp’’、Yp’’)として、ステップS44において方位演算手段32へ渡す。
方位演算手段32は、図6に示すように、平均演算手段333から中心位置(Xp’’,Yp’’)データが渡されると、これを新たな方位円の中心位置として入れ替え、その後の方位θを算出し、表示手段4でより精度の高い方位をドライバーに知らせる。
(実施形態2)
本実施形態の電子コンパスは、図9に示すように実施形態1とマイクロコンピュータが異なるだけである。すなわち、本実施形態のマイクロコンピュータ3”は、移動体の進行方位θを算出する方位演算手段32と、方位演算手段32から方位θを入力して磁界の正常・異常を判定する磁界判定B手段31’と、磁界判定B手段31’が異常と判定したとき、方位円の中心を校正する校正手段33”と、を有している。また、校正手段33”は、中心演算B手段331’と、最小2乗法演算手段332と、を備えている。なお、磁界判定B手段31’、方位演算手段32、及び校正手段33”は、ソフトウエアにより構成されている。なお、実施形態1と同じ要素には同じ符号を付し、説明を省略する。
磁界判定B手段31’は、方位演算手段32からの方位θを時間微分して角速度δθ/δtを演算して所定の角速度kと大きさを比較する。所定の角速度kは、車両が旋回することによって発生しうる角速度よりも大きな角速度であって、例えば、k=90°/secである。
磁界判定B手段31’の動作を図15のフローチャートを使って説明する。ステップS51で方位データθを取得し、ステップS52でそのデータを順次ストアする。次にステップS53でδθ/δtを演算し、kと大きさを比較し、δθ/δt<kのときN(正常)と判定し、δθ/δt≧kのときY(異常)と判定する。ステップS53で異常と判定されると、校正手段33”へ進み、正常と判定されると、方位演算手段32に方位演算結果を表示手段4に出力するように指示する。
前記したように、ステップS53で異常と判定されると、校正手段33”へ進むが、校正は次のように行われる。図10に示すように、実施形態1における中心演算A手段331が2本の垂直2等分線の交点を求めるのに対して、本実施形態の中心演算B手段331’は、3つのデータ点(X1,Y1)、(X2,Y2)、(X3,Y3)を結んでできる3角形の辺の中間点から次式で表される垂線lを求め、その端点(Xp、Yp)を方位円の中心位置として算出する。
Figure 2006234581
数4は、次のよう導出される。図10に示すように、辺(X1,Y1)(X2,Y2)の長さをa、辺(X2,Y2)(X3,Y3)の長さをb、辺(X3,Y3)(X1,Y1)の長さをc、∠(X1,Y1)(X2,Y2)(X3,Y3)をφとすると、余弦法則により、
Figure 2006234581
の関係がある。一方、円Gに内接する3角形の2点(X1,Y1),(X3,Y3)と円Gの中心Opからなる3角形の外角は、2φであるから、内角は、2(π−φ)となる。中心Opから辺cに下ろした垂線lを辺とする2つの3角形の2つの頂角は、(π−φ)であるから、
tan(π−φ)=(c/2)/l
の関係が成り立ち、これから数4が導かれる。
中心演算B手段331’で算出された方位円の中心位置(Xp,Yp)は、図9に示すように、方位演算手段32で 使われ、数3に基づいて、θが算出され、表示手段4によって車両のドライバーに方位が示される。
中心演算B手段331’の動作の機能は、図16のフローチャートによるソフトウエアで行われる。このフローチャートは磁界判定B手段31’が異常と判定したとき起動する。ステップS61でデータ点(Xi、Yi)を取得し、ステップS62でそのデータを順次ストアする。次にステップS63で異なるデータ点を3つ取り出し、ステップS64では、3つのデータ点を結ぶ3角形の辺の長さa,b,c求め,頂角φを数5に基づいて演算する.次にステップS65で,長さcの辺の中間点から数4で表される垂線lを引いてその端点(Xp,Yp)を算出し、その結果をステップS66で方位演算手段32に渡す。
この3角形の長さcの辺の中間点から垂線を引いて方位円の中心を求める方法でも、車両が旋回するときのデータ点が3つあれば直ちに方位円の中心が求まり、暫定的に方位をドライバーに知らせることができる。
電子コンパスの原理図を示した図である。 外乱磁場により方位円が偏移する様子を示した図である。 本発明の実施形態1における電子コンパスのブロック図である。 MIセンサを用いた地磁気方位検出器の概略構成図である。 MIセンサを用いた地磁気方位検出器を自動車のルームミラーに取り付ける様子を示す図である。 実施形態1の変形態様における電子コンパスの要部ブロック図である。 実施形態1の電子コンパスを搭載した車両が北進状態から東進状態に旋回する状況を示す図である。 図7に示す旋回に基づく2軸成分データ点から垂直2等分線及び最小2乗法による方位円の求め方を説明するための図である。 本発明の実施形態2における電子コンパスのブロック図である。 図7に示す旋回に基づく2軸成分データ点から3つのデータ点を結ぶ3角形を求め、最も長い辺のその辺を2等分する位置から引いた垂線の端点を求める方法を説明するための図である。 実施形態1の電子コンパスにおける磁界判定A手段のフローチャートである。 実施形態1の電子コンパスにおける中心演算A手段のフローチャートである。 実施形態1の電子コンパスにおける最小2乗法演算手段のフローチャートである。 実施形態1の変形態様における電子コンパスの平均演算手段のフローチャートである。 実施形態2の電子コンパスにおける磁界判定B手段のフローチャートである。 実施形態2の電子コンパスにおける中心演算B手段のフローチャートである。
符号の説明
1・・・・・・・・・・・・地磁気方位検出器
11,11’・・・・・・・磁気検出部(マグネトインピーダンス磁気センサ)
31、31’・・・・・・・磁界判定手段(A、B)
32・・・・・・・・・・・方位演算手段
33、33’、33”・・・校正手段
331、331’・・・・・中心演算手段(A、B)
332・・・・・・・・・・最小2乗法演算手段
333・・・・・・・・・・平均演算手段

Claims (11)

  1. 移動体の進行方位θと共に変化する地磁気ベクトルの2軸成分を直交する2軸成分データ(X1、Y1)、(X2、Y2)、・・・(Xi、Yi)として検出する直交配置された2つの磁気検出部をもつ地磁気方位検出器と、
    該2軸成分データ(Xi、Yi)から該移動体の進行方位θを算出する方位演算手段と、
    磁界の正常・異常を判定する磁界判定手段と、
    該磁界判定手段が異常と判定したとき、該移動体の旋回によって該2軸成分データ(Xi、Yi)が描く方位円の中心を校正する校正手段と、を有し、
    該校正手段は、少なくとも3つの該2軸成分データ(Xi、Yi)から該方位円の中心を算出する中心演算手段と、
    所定数の該2軸成分データ(Xi、Yi)から最小2乗法を用いて該方位円を算出する最小2乗法演算手段と、
    を備え、
    該方位演算手段は、該磁界判定手段が正常と判定したとき、該2軸成分データ(Xi、Yi)から算出した該進行方位θを出力し、該磁界判定手段が異常と判定したとき、該校正手段で校正された該方位円の中心を用いて順次該進行方位θを算出して出力することを特徴とする電子コンパス。
  2. 前記磁界判定手段は、前記2軸成分データ(Xi、Yi)から求まる前記磁気ベクトルの大きさ或いは及び前記方位演算手段で算出される前記進行方位θの時間変化を所定閾値と比較して磁界の正常・異常を判定することを特徴とする請求項1に記載の電子コンパス。
  3. 前記中心演算手段は、前記2軸成分データ(Xi、Yi)から少なくとも二組の異なる2軸成分データ間の距離の垂直2等分線を少なくとも2本求め、該少なくとも2本の垂直2等分線の交点を算出することを特徴とする請求項1或いは2に記載の電子コンパス。
  4. 前記中心演算手段は、前記2軸成分データ(Xi、Yi)から3つのデータを結ぶ3角形を求め、該3角形の最も長い辺の長さ及び該最も長い辺に対向する頂角で規定される垂線を該最も長い辺の該辺を2等分する位置から引いて、該垂線の端点を算出することを特徴とする請求項1或いは2に記載の電子コンパス。
  5. さらに、前記校正手段は前記中心演算手段で算出された交点或いは端点と前記最小2乗法演算手段で算出された方位円の中心点との平均を算出する平均演算手段を備えることを特徴とする請求項1ないし4のいずれか1項に記載の電子コンパス。
  6. 前記磁気検出部は、マグネトインピーダンス磁気センサであることを特徴とする請求項1ないし5のいずれか1項に記載の電子コンパス。
  7. 移動体の進行方位θと共に変化する地磁気ベクトルの2軸成分を直交する2軸成分データ(X1、Y1)、(X2、Y2)、・・・(Xi、Yi)として検出する2軸成分データ検出ステップと、
    該2軸成分データ検出ステップで検出された該2軸成分データ(Xi、Yi)から該移動体の該進行方位θを算出する方位演算ステップと、
    磁界の正常・異常を判定する磁界判定ステップと、
    該磁界判定ステップが異常と判定したとき、該移動体の旋回によって該2軸成分データ(Xi、Yi)が描く方位円の中心を校正する校正ステップと、
    を有し、
    該校正ステップは、少なくとも3つの該2軸成分データ(Xi、Yi)から該方位円の中心を算出する中心演算ステップと、
    所定数の該2軸成分データ(Xi、Yi)から最小2乗法を用いて該移動体の1周旋回時の方位円を算出する最小2乗法演算ステップと、
    を備え、
    該方位演算ステップは、該磁界判定ステップが正常と判定したとき、該2軸成分データ(Xi、Yi)から算出された該移動体の進行方位θを出力し、該磁界判定ステップが異常と判定したとき、該校正ステップで校正された該方位円の中心を用いて順次該進行方位θを算出して出力することを特徴とする方位測定方法。
  8. 前記磁界判定ステップは、前記2軸成分データ(Xi、Yi)から求まる前記磁気ベクトルの大きさ或いは及び前記方位演算ステップで算出される前記進行方位θの時間変化を所定閾値と比較して磁界の正常・異常を判定することを特徴とする請求項7に記載の方位測定方法。
  9. 前記中心演算ステップは、前記2軸成分データ(Xi、Yi)から少なくとも二組の異なる2軸成分データ間の距離の垂直2等分線を少なくとも2本求め、該少なくとも2本の垂直2等分線の交点を算出することを特徴とする請求項7或いは8に記載の方位測定方法。
  10. 前記中心演算ステップは、前記2軸成分データ(Xi、Yi)から3つのデータを結ぶ3角形を求め、該3角形の頂角及び最も長い辺の長さで規定される垂線を該最も長い辺の該辺を2等分する位置から引いて、該垂線の端点を算出することを特徴とする請求項7或いは8に記載の方位測定方法。
  11. さらに、前記校正ステップは前記中心演算ステップで算出された交点又は端点と前記最小2乗法演算ステップで算出された方位円の中心点との平均を算出する平均演算ステップを有することを特徴とする請求項7ないし10のいずれか1項に記載の方位測定方法。
JP2005049731A 2005-02-24 2005-02-24 電子コンパス及び方位測定方法 Pending JP2006234581A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005049731A JP2006234581A (ja) 2005-02-24 2005-02-24 電子コンパス及び方位測定方法
US11/359,574 US20060190174A1 (en) 2005-02-24 2006-02-23 Electronic compass and direction finding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049731A JP2006234581A (ja) 2005-02-24 2005-02-24 電子コンパス及び方位測定方法

Publications (1)

Publication Number Publication Date
JP2006234581A true JP2006234581A (ja) 2006-09-07

Family

ID=36913863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049731A Pending JP2006234581A (ja) 2005-02-24 2005-02-24 電子コンパス及び方位測定方法

Country Status (2)

Country Link
US (1) US20060190174A1 (ja)
JP (1) JP2006234581A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107102A (ja) * 2006-10-23 2008-05-08 Aichi Micro Intelligent Corp 電子コンパス及び方位測定方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301794B1 (en) * 1999-05-27 2001-10-16 Johnson Controls, Inc. Vehicle compass system with continuous automatic calibration
KR100574506B1 (ko) * 2004-02-26 2006-04-27 삼성전자주식회사 연산된 방위각의 오류여부를 표시하는 지자기센서 및 그방위각측정방법
JP4919142B2 (ja) * 2005-10-19 2012-04-18 アイチ・マイクロ・インテリジェント株式会社 磁気コンパス
EP2031349A4 (en) * 2006-05-09 2012-10-03 Alps Electric Co Ltd CALIBRATION PROGRAM AND ELECTRONIC COMPASS
US7755517B2 (en) * 2006-06-20 2010-07-13 Microsoft Corporation Navigation device
EP2136181A4 (en) * 2007-03-06 2012-12-26 Alps Electric Co Ltd DIRECTIONAL CALCULATION PROGRAM AND ELECTRONIC COMPASS
EP2543961B1 (en) * 2007-05-24 2014-12-24 Asahi Kasei EMD Corporation Physical amount measuring device and physical amount measuring method
US9062971B2 (en) * 2008-03-06 2015-06-23 Texas Instruments Incorporated E-compass, tilt sensor, memory and processor with coarse detilting procedure
JP5492389B2 (ja) * 2008-06-16 2014-05-14 独立行政法人石油天然ガス・金属鉱物資源機構 磁場センサー装置
JP4908637B2 (ja) * 2008-11-20 2012-04-04 旭化成エレクトロニクス株式会社 物理量計測装置および物理量計測方法
US8898034B2 (en) * 2009-06-03 2014-11-25 Apple Inc. Automatically identifying geographic direction
US7921572B2 (en) * 2009-06-05 2011-04-12 Apple Inc. Accuracy indications for an electronic compass in a portable device
US7891103B2 (en) * 2009-06-05 2011-02-22 Apple Inc. Magnetometer accuracy and use
US8437970B2 (en) * 2009-06-05 2013-05-07 Apple Inc. Restoring and storing magnetometer calibration data
US9116002B2 (en) * 2009-08-27 2015-08-25 Apple Inc. Context determination to assist location determination accuracy
US8531180B2 (en) 2010-03-30 2013-09-10 Apple Inc. Determining heading using magnetometer data and angular rate data
US8626465B2 (en) 2010-03-30 2014-01-07 Apple Inc. Calibrating sensor measurements on mobile devices
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US8321161B1 (en) * 2010-09-17 2012-11-27 The United States of America as represented by the Secretarty of the Navy Autonomous magnetic measurement system
US8717009B2 (en) 2010-10-06 2014-05-06 Apple Inc. Magnetometer calibration
EP2447668B1 (en) * 2010-10-26 2014-11-26 BlackBerry Limited System and method for calibrating a magnetometer according to device states
US8615253B2 (en) 2011-06-03 2013-12-24 Apple Inc. State estimation using motion context and multiple input observation types
US8843338B2 (en) 2011-07-29 2014-09-23 Nokia Corporation Processing Data for Calibration
US9423252B2 (en) 2012-09-11 2016-08-23 Apple Inc. Using clustering techniques to improve magnetometer bias estimation
US9151610B2 (en) 2013-06-08 2015-10-06 Apple Inc. Validating calibrated magnetometer data
KR102006029B1 (ko) * 2013-07-24 2019-08-01 매그나칩 반도체 유한회사 방위각 계산장치 및 그 방법
CN104965102B (zh) * 2015-05-25 2018-04-27 厦门大学 一种有效提高声学多普勒流速剖面仪流向测量精度的方法
JP2017084975A (ja) * 2015-10-28 2017-05-18 オムロン株式会社 位置検出装置、位置検出方法、情報処理プログラム、および記録媒体
CN107144271A (zh) * 2017-05-16 2017-09-08 北京京东尚科信息技术有限公司 数据处理方法和装置
EP3667355A1 (en) * 2018-12-12 2020-06-17 Rohde & Schwarz GmbH & Co. KG Method for radio direction finding, direction finding system as well as platform
CN112325868B (zh) * 2020-10-20 2022-06-10 中北大学 一种基于多尺度变换的偏振光罗盘去噪方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672565A (en) * 1981-03-10 1987-06-09 Nippon Soken, Inc. Direction detecting system for vehicles
JPH0781863B2 (ja) * 1985-10-23 1995-09-06 日本電装株式会社 方位演算システムのための補正装置
US4807462A (en) * 1987-04-03 1989-02-28 Chrysler Motors Corporation Method for performing automatic calibrations in an electronic compass
JPH03131712A (ja) * 1989-10-17 1991-06-05 Pioneer Electron Corp 車載地磁気センサ出力の補正方法
US5644851A (en) * 1991-12-20 1997-07-08 Blank; Rodney K. Compensation system for electronic compass
US5297063A (en) * 1991-12-27 1994-03-22 Chrysler Corporation Method for selecting calibration data for an auto-calibrating compass
US5737226A (en) * 1995-06-05 1998-04-07 Prince Corporation Vehicle compass system with automatic calibration
EP1460604A3 (en) * 1996-04-16 2006-11-02 Xanavi Informatics Corporation Map display device, navigation device and map display method
US6192315B1 (en) * 1997-06-27 2001-02-20 Prince Corporation Dual-calibrated compass
US6513252B1 (en) * 1999-04-08 2003-02-04 Donnelly Corporation Vehicle compass compensation
JP3872262B2 (ja) * 2000-01-25 2007-01-24 セイコーインスツル株式会社 電子方位計及び電子方位計付電子時計
US6539639B2 (en) * 2000-12-06 2003-04-01 Honeywell International Inc. Monitoring accuracy of an electronic compass
US6968273B2 (en) * 2002-03-01 2005-11-22 Gentex Corporation Electronic compass system
US7149627B2 (en) * 2002-03-01 2006-12-12 Gentex Corporation Electronic compass system
CN100535593C (zh) * 2002-07-01 2009-09-02 旭化成电子材料元件株式会社 方位角测量装置和方位角测量方法
KR100541081B1 (ko) * 2003-06-24 2006-01-11 삼성전기주식회사 전자 나침반용 신호 처리기
KR100743384B1 (ko) * 2003-07-18 2007-07-30 아이치 세이코우 가부시키가이샤 3차원 자기 방위센서 및 마그네토-임피던스 센서 소자
KR100580628B1 (ko) * 2003-11-08 2006-05-16 삼성전자주식회사 이동물체의 진행방향 추정 방법 및 시스템
KR100561860B1 (ko) * 2004-02-04 2006-03-16 삼성전자주식회사 콤파스를 이용한 지자기 판단 방법 및 장치와 이를 이용한이동물체의 방위각 생성 방법 및 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107102A (ja) * 2006-10-23 2008-05-08 Aichi Micro Intelligent Corp 電子コンパス及び方位測定方法

Also Published As

Publication number Publication date
US20060190174A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP2006234581A (ja) 電子コンパス及び方位測定方法
JP4919142B2 (ja) 磁気コンパス
EP0485132B1 (en) Direction sensor having an earth magnetism sensor and a rate gyro sensor and navigation system having this direction sensor
JP4466705B2 (ja) ナビゲーション装置
JPH09152473A (ja) 磁気探知装置
JP2007271599A (ja) オフセット補正プログラム及び電子コンパス
JPH04238216A (ja) ジャイロのスケールファクタの算出方法
JPH03131712A (ja) 車載地磁気センサ出力の補正方法
JP2006275523A (ja) 電子方位装置および記録媒体
JP4988170B2 (ja) 方位角計測装置、および、方位角計測方法
JPH08278137A (ja) 方位出力装置
JP2723352B2 (ja) 車載用ナビゲーションシステム
JP4955115B2 (ja) 方位角計測装置、および、方位角計測方法
JP2884259B2 (ja) 一方位指定着磁補正型方位検出装置
JP4776583B2 (ja) 地磁気センサを搭載した携帯端末、方位検出方法及びプログラム
JP2815534B2 (ja) 進行方位検出装置
JP4928875B2 (ja) センサーモジュール
JPH0650248B2 (ja) 移動体方位検知装置
JP3019965B2 (ja) 方位測定装置
JPS61193016A (ja) 方位検知装置
JPH0585847B2 (ja)
JPH08278139A (ja) 方位出力装置
JPS61147104A (ja) 車両用方位検出装置
JP2580214B2 (ja) 移動体用方位検出装置
JPH08313260A (ja) 車両用方位検出装置